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Cells and tissues are soft and squishy

David Rogers

But are resilient and can adapt to different mechanical contexts



Das Group: Why are cells and tissues soft and squishy but robust and resilient?
Physics of network-like materials in biological and bio-inspired systems
Cell level systems

Mitochondria

[Fission =

Organization of DNA in

Cytoskeletal networks
starved E. Coli

Condensate

Tissues and synthetic biology
Synthetic biomaterials with programmable properties

ECM networks in cartilage tissue
- - . - bonds @3 W2 &
using biological timers ::: e . I
g—i (Y 9 4L >
o contract stiffen 2 ® Y NS E )
wﬁisslinked 0:} Crosslinked . 8 E § 3
extend “wcoften EE Q 7 Q é 2
i : Sl .
Uncrosslinked® @Crosslinked "% .6.' va 5 . 10 — TJ'S (hz;-—.—o " 3!0
Y_/ ime
Oscillations of . Q
53 States o} = B
S8 i S0
-E,c__) Y : . .
j=8) .
5 e £ * A g
3] O ) .
o o 12 24 ol =
f =) B4 Y KaiARC-Actin




Physics of network-like materials in biological and bio-inspired systems

Fission Fusion

Interplay of mechanics,
statistical mechanics,

Geometry/morphology

(composite morphology/properties
spatial heterogeneity, anisotropy)

Write down Mathematical Models

(Equations of Motion, Free Energies)

Method: Solve ODEs, PDEs, Minimize functions
' Solve analytically when feasible

Use Computer simulations when hard

Collaborate with experimentalists to ensure models are realistic



Mechanical Transitions in Cells and Tissues: Outline

Day 1: Brief introduction to biopolymer networks, how we characterize
mechanics (rigidity and rigidity percolation), rigidity percolation in spring
networks

Day 2: Mechanics of semiflexible networks (homogeneous and
inhomogeneous), applications to mechanical transitions in in-vitro
cytoskeletal and extracellular networks

Day 3: Mechanics of composite and active networks, applications to
mechanical transitions in cells and tissues



Mechanical Response of Cells is mainly due to the Cytoskeleton




Microtubule

« Three major types of filaments: fillamentous actin (F-actin), intermediate
filaments (eg. vimentin), microtubules

« All are semiflexible polymers, and form networks ,



Semiflexible polymers have rigidity intermediate between
flexible polymers and rigid rods

Flexible Stiff
1By, WESE,
e
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AV SS Semiflexible
Biopolymers

Stiffness



Mechanics of semiflexible polymers

K

<COS(9 (s)—H(s'))> = e_‘HW" Persistence length, £, = P



Mechanics of semiflexible polymers

2
E .= —Kf(—) ds Bendingrigidity, x = E a*  E=Young’s modulus

K

<COS(9 (s)—@(s')» = e_is—sl‘/é” Persistence length, £, = P

For E =10° Pa andg=3nm,/ =10 um  Actin
a=10nm, ,€p =] mm Microtubules
asO.an,,épleOnm DNA




Networks of semiflexible polymers are abundant in cells and tissues

collagen (in vitro) actin-cortex vimemtin (in vitro) red blood cell (actin-spectrin)

11



Rigidity of biopolymer networks often characterized using their shear

modulus, G

Elastic 1('
Modulus
G,(Pa) 10

Shear modulus of reconstituted
(in vitro) F-actin networks

Gardel et al., Science 2004

 How do we predict whether a network is rigid or not?
 How do predict G for networks of different types of biopolymers, different densities?
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Rigidity of biopolymer networks often characterized using their shear
modulus, G

A
10°
Elastic 1Q' Shear modulus of reconstituted
Modulus (in vitro) F-actin networks
G,(Pa) 10
10"
10°

Dance, 1O o .
NSity of 10 ) Gardel et al., Science 2004

 How do we predict whether a network is rigid or not?
 How do predict G for networks of different types of biopolymers, different densities?

Rigidity Percolation Theory
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Example of Percolation:
Connectivity percolation phase transition in cell phone networks

Phase Transition
Nodes = 6

Edge
Node

Houston-Edwards, Scientific Am. 2021



Rigidity Percolation Phase Transition
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Rigidity Percolation Phase Transition
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Rigidity Percolation Phase Transition
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Rigidity Percolation Phase Transition
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Rigidity Percolation Phase Transition
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Rigidity Percolation in Spring Networks: Maxwell criterion

J. C. Maxwell, Philos. Mag., 1864

Consider a lattice of N nodes in d dimensions, z coordination number, and

N

bond occupation probability p

# of degrees of freedom =Nd

N
# constraints =7 Zp

20



Rigidity Percolation in Spring Networks: Maxwell criterion
J. C. Maxwell, Philos. Mag., 1864

Consider a lattice of N nodes in d dimensions, z coordination number, and

N

bond occupation probability p

# of degrees of freedom =Nd

N
# constraints =7 Zp

Maxwell criterion: Balance # constraints
and # degrees of freedom

De = Zd/Z 7= 2d |Isostatic coordination

P > Dc.Z > Z:  Condition for rigidity 21



Rigidity Percolation in Spring Networks: Maxwell criterion

Maxwell criterion: Balance # constraints

and # degrees of freedom

collagen (in vitro)

. "S. Mdenst

Pe—

J. C. Maxwell, Philos. Mag., 1864

2d/z, zc=2d

Isostatic coordination

actin-cortex vimemtin (in vitro)

er- |

. | How can these networks be rigid?



Rigidity Percolation in Spring Networks: Maxwell criterion
J. C. Maxwell, Philos. Mag., 1864

Maxwell criterion: Balance # constraints Dc = 2d/z, ze= 2d

and # degrees of freedom _ o
|sostatic coordination

collagen (in vitro) actin-cortex vimemtin (in vitro)
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| How can these networks be rigid?

l" Have additional constraints due to
filament bending rigidity:
| Semiflexible Networks




Rigidity Percolation in Semiflexible Networks
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E = Espm'ng + Efilament bending

Study using effective medium theory or energy minimization

MD, MacKintosh, Levine, PRL 2007, MD, D Quint, JM Schwarz, PloS One 2012, Broedersz et al Nature Ohys 0211



Rigidity Percolation in Semiflexible Networks:

Network Construction

Start with a lattice with all bonds present.
Contiguous series of bonds constitutes a filament.

Remove bonds with a probability p to create broad
distribution of filament lengths.

Distribution of the stretching and bending elasticity of
bonds

P(a') =pé(a’ —a) + (1 —p)é(a’)

P(') = p*6(x’ — k) + (1 — p*)&(x")

Anytime two filaments cross, we assume there is a
crosslink which prevents sliding but allow free rotations
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Effective Medium Theory (EMT)
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EMT for central force (spring) networks

Feng, Thorpe, Garboczi, PRB 1985
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Focus on one connection

O

/
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Apply Strain

» Put ordered lattice under constant strain such that every bond is
deformed by §,,,,



Introduce wrong bond «

—)




Wrong bond «

aeff: 0 —C(m‘l‘a

What is the extra deformation é,, of replaced bond ?



Virtual force f that can correct the extra
deformation of replaced bond

f = oum(am — a)




Apply this force f on the replaced bond
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f = oum(aym —a)



Apply this force f on the replaced bond
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Replacing more than one bond

When averaged over the entire system, these fluctuations should goto 0

a, —a
f“ i * P(a')da' =0
Cﬁ—am+d

Where P(a') = pé(a’ —a) + (1 — p)é(a’)

X

a, p—a

k
a 1—a .




What is a™?

« Geometric constant relating geometry of lattice to rigidity
« Evaluated in terms of Dynamical Matrix

a = %ZTr D (q)-D"(q)]



