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Cells and tissues are soft and squishy

David Rogers

But are resilient and can adapt to different mechanical contexts



Cytoskeletal networks

Cell level systems
Mitochondria

Tissues and synthetic biology
ECM networks in cartilage tissue Synthetic biomaterials with programmable properties 

using biological timers

Organization of DNA in 
starved E. Coli

Das Group: Why are cells and tissues soft and squishy but robust and resilient?
Physics of network-like materials in biological and bio-inspired systems



Interplay of mechanics, 
statistical mechanics,
Geometry/morphology 

(composite morphology/properties
spatial heterogeneity, anisotropy)

  
Write down Mathematical Models 

(Equations of Motion, Free Energies)

Method: Solve ODEs, PDEs, Minimize functions 
         Solve analytically when feasible
Use Computer simulations when hard

Physics of network-like materials in biological and bio-inspired systems

Collaborate with experimentalists to ensure models are realistic



Mechanical Transitions in Cells and Tissues: Outline

Day 1:  Brief introduction to biopolymer networks, how we characterize 
mechanics (rigidity and rigidity percolation), rigidity percolation in spring 
networks

Day 2: Mechanics of semiflexible networks (homogeneous and 
inhomogeneous), applications to mechanical transitions in in-vitro 
cytoskeletal and extracellular networks 

Day 3: Mechanics of composite and active networks, applications to 
mechanical transitions in cells and tissues



Mechanical Response of Cells is mainly due to the Cytoskeleton
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Cytoskeleton

7

• Three major types of filaments: filamentous actin (F-actin), intermediate 
filaments (eg. vimentin), microtubules

• All are semiflexible polymers, and form networks 



Semiflexible polymers have rigidity intermediate between 
flexible polymers and rigid rods

StiffFlexible

Stiffness

Semiflexible
Biopolymers



Mechanics of semiflexible polymers

Persistence length, ℓ! =
"
#!$

𝜅	 ≅ 𝐸	𝑎%Bending rigidity, E= Young’s modulus



Mechanics of semiflexible polymers

Persistence length, ℓ! =
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#!$

𝜅	 ≅ 𝐸	𝑎%Bending rigidity, E= Young’s modulus



Networks of semiflexible polymers are abundant in cells and tissues

11



Rigidity of biopolymer networks often characterized using their shear 
modulus, G
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Shear modulus of reconstituted 
(in vitro) F-actin networks 

Gardel et al., Science 2004

• How do we predict whether a network is rigid or not? 
• How do predict G for networks of different types of biopolymers, different densities? 



Rigidity of biopolymer networks often characterized using their shear 
modulus, G

13

Shear modulus of reconstituted 
(in vitro) F-actin networks 

Gardel et al., Science 2004

• How do we predict whether a network is rigid or not? 
• How do predict G for networks of different types of biopolymers, different densities? 

Rigidity Percolation Theory 



Houston-Edwards, Scientific Am. 2021

Example of Percolation: 
Connectivity percolation phase transition in cell phone networks



Rigidity Percolation Phase Transition

Floppy

p = 0.45
Bond diluted network 
on a Kagome lattice



Rigidity Percolation Phase Transition

Floppy

p = 0.50
Bond diluted network 
on a Kagome lattice



Rigidity Percolation Phase Transition

Floppy

Connected 
cluster, 
But cannot 
transfer forces 
systemwide – 
not rigid yet

p = 0.55
Bond diluted network 
on a Kagome lattice



Rigidity Percolation Phase Transition

Floppy

p = 0.60

Rigid cluster 
which can 
transfer 
forces

Bond diluted network 
on a Kagome lattice



Rigidity Percolation Phase Transition

Floppy

p = 0.65

Rigid cluster 
which can 
transfer 
forces

Bond diluted network 
on a Kagome lattice
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Rigidity Percolation in Spring Networks:  Maxwell criterion

Consider a lattice of N nodes in d dimensions, z coordination number, and 
bond occupation probability p 

# of degrees of freedom =𝑁𝑑

# constraints =
𝑁
2
	𝑧	𝑝

J. C. Maxwell, Philos. Mag., 1864
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Rigidity Percolation in Spring Networks:  Maxwell criterion

Consider a lattice of N nodes in d dimensions, z coordination number, and 
bond occupation probability p 

# of degrees of freedom =𝑁𝑑

# constraints =
𝑁
2
	𝑧	𝑝

Maxwell criterion: Balance # constraints 
and #  degrees of freedom  

pc = 2d/z,   zc= 2d Isostatic coordination  

J. C. Maxwell, Philos. Mag., 1864

𝑝 > 	𝑝! , 𝑧 > 𝑧! Condition for rigidity



Rigidity Percolation in Spring Networks:  Maxwell criterion

Maxwell criterion: Balance # constraints 
and #  degrees of freedom  

pc = 2d/z,   zc= 2d
Isostatic coordination  

J. C. Maxwell, Philos. Mag., 1864

How can these networks be rigid?



Rigidity Percolation in Spring Networks:  Maxwell criterion

Maxwell criterion: Balance # constraints 
and #  degrees of freedom  

pc = 2d/z,   zc= 2d
Isostatic coordination  

J. C. Maxwell, Philos. Mag., 1864

How can these networks be rigid?

Have additional constraints due to
filament bending rigidity: 
Semiflexible Networks
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Study using effective medium theory or energy minimization 
MD, MacKintosh, Levine, PRL 2007, MD, D Quint, JM Schwarz, PloS One 2012, Broedersz et al Nature Ohys 0211

Rigidity Percolation in Semiflexible Networks



• Start with a lattice with all bonds present.
Contiguous series of bonds constitutes a filament.

• Remove bonds with a probability p to create broad 
distribution of filament lengths.

• Distribution of the stretching and bending elasticity of 
bonds 

𝑃 𝛼! = 𝑝𝛿 𝛼! − 𝛼 + 1 − 𝑝 𝛿 𝛼!

𝑃 𝜅! = 𝑝"𝛿 𝜅! − 𝜅 + 1 − 𝑝" 𝛿 𝜅!

• Anytime two filaments cross, we assume there is a 
crosslink which prevents sliding but allow free rotations
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𝛼, 𝜅

Rigidity Percolation in Semiflexible Networks: 
Network Construction



Effective Medium Theory (EMT)

26

𝛼, 𝜅 𝛼!, 𝜅!



EMT for central force (spring) networks 
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α αm
Feng, Thorpe, Garboczi, PRB 1985



Focus on one connection
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αm

𝛼/00 =
𝛼1
𝑎∗



Apply Strain

• Put ordered lattice under constant strain such that every bond is 
deformed by 𝛿31
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Introduce wrong bond 𝛼
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Wrong bond  𝛼
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𝛼/00 =
𝛼1
𝑎∗

− 𝛼1 + 𝛼

What is the extra deformation 𝛿$	 of replaced bond ?



Virtual force f that can correct the extra  
deformation of replaced bond
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𝑓 = 	𝛿31(𝛼1 − 𝛼)



Apply this force f on the replaced bond
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𝛼!"" =
𝛼#
𝛼∗ − 𝛼# + 𝛼

𝑓 = 𝛿31(𝛼1 − 𝛼) 

𝛿3 =
𝑓

𝛼1
𝛼∗ − 𝛼1 + 𝛼



Apply this force f on the replaced bond
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𝛼!"" =
𝛼#
𝛼∗ − 𝛼# + 𝛼

𝑓 = 𝛿31(𝛼1 − 𝛼) 

𝛿3 =
𝛿31(𝛼1 − 𝛼)
𝛼1
𝛼∗ − 𝛼1 + 𝛼

𝛿3 =
𝑓

𝛼1
𝛼∗ − 𝛼1 + 𝛼



Replacing more than one bond
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+
𝛼1 − 𝛼′

𝛼1
𝑎∗ − 𝛼1 + 𝛼′

∗ 𝑃 𝛼4 	𝑑𝛼′ = 0

𝛼1
𝛼
=
𝑝 − 𝑎∗

1 − 𝑎∗
	

Where 𝑃 𝛼( = 𝑝𝛿 𝛼( − 𝛼 + 1 − 𝑝 𝛿(𝛼()

When averaged over the entire system, these fluctuations should go to 0 



What is 𝑎∗?

• Geometric constant relating geometry of lattice to rigidity
• Evaluated in terms of Dynamical Matrix
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