Mechanical Transitions in Cells and Tissues

Moumita (Mo) Das, School of Physics and Astronomy, Rochester Institute of Technology

Boulder School 2001: Nonequilibrium Statistical Physics: Glasses, transport & friction, biological systems, and turbulence

July 2-27, 2001

Scientific Coordinators:

<u>E. Bodenschatz</u> (Cornell) <u>M. C. Marchetti</u> (Syracuse) <u>A. A. Middleton</u> (Syracuse)

Trajectory

Boulder School 2024: Self-Organizing Matter: From Inanimate to the Animate

July 1-26, 2024 Scientific Coordinators

Shiladitya Banerjee (Carnegie Mellon) Andela Saric (IST Austria) Eric R. Dufresne (Cornell) Margaret L. Gardel (Chicago)

Cells and tissues are soft and squishy

David Rogers

But are resilient and can adapt to different mechanical contexts

Das Group: Why are cells and tissues soft and squishy but robust and resilient? Physics of network-like materials in biological and bio-inspired systems

Cell level systems

Cytoskeletal networks

Mitochondria

Organization of DNA in starved E. Coli

Tissues and synthetic biology

ECM networks in cartilage tissue

Synthetic biomaterials with programmable properties

Condensate

Physics of network-like materials in biological and bio-inspired systems

Interplay of mechanics, statistical mechanics, Geometry/morphology (composite morphology/properties spatial heterogeneity, anisotropy)

Write down Mathematical Models (Equations of Motion, Free Energies)

Method: Solve ODEs, PDEs, Minimize functions Solve analytically when feasible Use Computer simulations when hard

Collaborate with experimentalists to ensure models are realistic

Mechanical Transitions in Cells and Tissues: Outline

Day 1: Brief introduction to biopolymer networks, how we characterize mechanics (rigidity and rigidity percolation), rigidity percolation in spring networks

Day 2: Mechanics of semiflexible networks (homogeneous and inhomogeneous), applications to mechanical transitions in in-vitro cytoskeletal and extracellular networks

Day 3: Mechanics of composite and active networks, applications to mechanical transitions in cells and tissues

Mechanical Response of Cells is mainly due to the Cytoskeleton

Cytoskeleton

- Three major types of filaments: filamentous actin (F-actin), intermediate filaments (eg. vimentin), microtubules
- All are *semiflexible* polymers, and form networks

Semiflexible polymers have rigidity intermediate between flexible polymers and rigid rods

Flexible

Semiflexible Biopolymers

Stiff

Stiffness

Mechanics of semiflexible polymers

$$E_{\text{bend}} = \frac{1}{2} \kappa \int \left(\frac{\partial \theta}{\partial s}\right)^2 ds \qquad \text{Bending rigidity,} \quad \kappa \cong E \ a^4 \qquad \text{E= Young's modulus}$$

$$\langle \cos(\theta(s) - \theta(s')) \rangle = e^{-|s-s'|/\ell_p}$$
 Persistence length, $\ell_p = \frac{\kappa}{k_B T}$

Mechanics of semiflexible polymers

$$E_{\text{bend}} = \frac{1}{2} \kappa \int \left(\frac{\partial \theta}{\partial s}\right)^2 ds \qquad \text{Bending rigidity,} \quad \kappa \cong E \ a^4 \qquad \text{E= Young's modulus}$$
$$\left\langle \cos(\theta(s) - \theta(s')) \right\rangle = e^{-|s-s'|/\ell_p} \qquad \text{Persistence length,} \ \ell_p = \frac{\kappa}{k_B T}$$
$$\qquad \text{For } E \cong 10^9 \text{ Pa and } a \cong 3 \text{ nm}, \ \ell_p \cong 10 \ \mu \text{m} \qquad \text{Actin}$$
$$\qquad a \cong 10 \text{ nm}, \ \ell_p \cong 1 \text{ nm} \qquad \text{Microtubules}$$

DNA

 $a \approx 0.2 \text{ nm}, \ell_p \approx 100 \text{ nm}$

Networks of semiflexible polymers are abundant in cells and tissues

Rigidity of biopolymer networks often characterized using their shear modulus, G

Shear modulus of reconstituted (in vitro) F-actin networks

Gardel et al., Science 2004

- How do we predict whether a network is rigid or not?
- How do predict G for networks of different types of biopolymers, different densities?

Rigidity of biopolymer networks often characterized using their shear modulus, G

Shear modulus of reconstituted (in vitro) F-actin networks

Gardel et al., Science 2004

- How do we predict whether a network is rigid or not?
- How do predict G for networks of different types of biopolymers, different densities?

Rigidity Percolation Theory

Example of Percolation: Connectivity percolation phase transition in cell phone networks

Houston-Edwards, Scientific Am. 2021

Floppy

Bond diluted network on a Kagome lattice

Floppy

Bond diluted network on a Kagome lattice

on a Kagome lattice

Rigid cluster which can transfer forces

> Bond diluted network on a Kagome lattice

Rigid cluster which can transfer forces

> Bond diluted network on a Kagome lattice

J. C. Maxwell, Philos. Mag., 1864

Consider a lattice of N nodes in d dimensions, z coordination number, and bond occupation probability p

of degrees of freedom =Nd

constraints =
$$\frac{N}{2} z p$$

J. C. Maxwell, Philos. Mag., 1864

Consider a lattice of N nodes in d dimensions, z coordination number, and bond occupation probability p

of degrees of freedom =Nd

constraints =
$$\frac{N}{2} z p$$

Maxwell criterion: Balance # constraints and # degrees of freedom

$$p_c = 2d/z, \quad z_c = 2d$$

Isostatic coordination

 $p > p_c, z > z_c$ Condition for rigidity

J. C. Maxwell, Philos. Mag., 1864

Maxwell criterion: Balance # constraints and # degrees of freedom

$$p_c = 2d/z, \quad z_c = 2d$$

Isostatic coordination

How can these networks be rigid?

J. C. Maxwell, Philos. Mag., 1864

Maxwell criterion: Balance # constraints and # degrees of freedom

$$p_c = 2d/z, \quad z_c = 2d$$

Isostatic coordination

How can these networks be rigid?

Have additional constraints due to filament bending rigidity: Semiflexible Networks

 $z < z_c$

 $z < z_c$

 $z < z_c$

Rigidity Percolation in Semiflexible Networks

Study using effective medium theory or energy minimization

MD, MacKintosh, Levine, PRL 2007, MD, D Quint, JM Schwarz, PloS One 2012, Broedersz et al Nature Ohys 0211

Rigidity Percolation in Semiflexible Networks: Network Construction

- Start with a lattice with all bonds present. Contiguous series of bonds constitutes a filament.
- Remove bonds with a probability p to create broad distribution of filament lengths.
- Distribution of the stretching and bending elasticity of bonds

 $P(\alpha') = p\delta(\alpha' - \alpha) + (1 - p)\delta(\alpha')$ $P(\kappa') = p^2\delta(\kappa' - \kappa) + (1 - p^2)\delta(\kappa')$

• Anytime two filaments cross, we assume there is a crosslink which prevents sliding but allow free rotations

Effective Medium Theory (EMT)

EMT for central force (spring) networks

Feng, Thorpe, Garboczi, PRB 1985

Focus on one connection

 $\alpha_{eff} = \frac{\alpha_m}{a^*}$

Apply Strain

- Put ordered lattice under constant strain such that every bond is deformed by δ_{um}

Introduce wrong bond α

What is the extra deformation δ_u of replaced bond ?

Virtual force f that can correct the extra deformation of replaced bond

$$f = \delta_{um}(\alpha_m - \alpha)$$

Apply this force f on the replaced bond

Apply this force f on the replaced bond

$$\delta_u = \frac{f}{\frac{\alpha_m}{\alpha^*} - \alpha_m + \alpha}$$

$$f = \delta_{um}(\alpha_m - \alpha)$$

$$\delta_{u} = \frac{\delta_{um}(\alpha_{m} - \alpha)}{\frac{\alpha_{m}}{\alpha^{*}} - \alpha_{m} + \alpha}$$

Replacing more than one bond

When averaged over the entire system, these fluctuations should go to 0

$$\int \frac{\alpha_m - \alpha'}{\frac{\alpha_m}{\alpha^*} - \alpha_m + \alpha'} * P(\alpha') \, d\alpha' = 0$$

Where
$$P(\alpha') = p\delta(\alpha' - \alpha) + (1 - p)\delta(\alpha')$$

$$\frac{\alpha_m}{\alpha} = \frac{p - a^*}{1 - a^*}$$

What is a^* ?

- Geometric constant relating geometry of lattice to rigidity
- Evaluated in terms of Dynamical Matrix

$$a^* = \frac{1}{3} \sum_{q} Tr \left[\boldsymbol{D} \ (q) \cdot \boldsymbol{D}^{-1}(q) \right]$$