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Theoretical models of collective cell motion
Edouard Hannezo



E. Coli migrates/expands in bands when 
locally platted on a dish

Adler, Science, 1966

Collective motion at the mesoscale in biology



Rich patterns of colony growth can be seen when changing the 
experimental conditions/bacterial strain

Budrene and Berg, Nature, 1995

Collective motion at the mesoscale in biology



Slime mold/social amoebae aggregation (Dictyostelium)

Collective motion at the mesoscale in biology

Čejková J. (2013)



Where does long-range polar order come from?

Finding the right direction: how is directed cell migration encoded? 

MDCK, phase contrast, Hino et al, Dev Cell, 2020
See also works from the Silberzan, Ladoux, Trepat groups.
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Classical view: cells can move up gradients of signals (diffusible molecules, but also 
stiffness/electric fields/friction etc)…

But where does the gradient come from in most situations?

Finding the right direction: how is directed cell migration encoded? 

Sengupta et al, Nat Rev Mol Cell Biol, 2021
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Directional migration via self-generated gradients

Cells can collectively solve mazes via cell migration in the absence of pre-patterned
gradients!

Twieedy and Insall, 2020



3D « flocks » of birds

Global ordering of active self-propelled objects

Emergence of global polar order in biology

Schaller et al, Nature, 2010



Collective cell migration and active matter models

9

Garcia et al, PNAS, 2015 Malinverno et al, Nat Mat, 2017

Complex spatio-temporal patterns observed in minimal in vitro systems of homogeneous
cells migrating on flat 2D substrates…

Extensive comparisons to active matter theories in the past decade (e.g. flocking, active 
glasses, nematic turbulence etc)

E.g. Banerjee et al,, 2015, Blanc-Mercader et al, 2017, Notbohm et al, 2017, Tlili et al, 2018, Petroli et al, 2019, Henkes et al, 2020, Alert & 
Trepat, 2020



Part 1: Directional migration via self-generated chemokine gradients

Cells can self-generate gradients by consuming their own chemoattractant

Dona et al, Cell, 2013, Tweedy et al, Science 2020, Stock et al, Sci Adv, 2021, Alanko et al, Sci Immuno, 2022

Can different cell types communicate directionality to each other via a diffusible 
signal?

Stock et al, Sci Adv, 2022

See also Agudo-Canalejo and Golestanian, PRL, 2019



Part 1: Directional migration via self-generated chemokine gradients

Dendritic cells (DC) self-generated their own gradients (Alanko et al, 2022), but most
other immune cell types might not…

Could they « surf » on the gradients from DC cells? Are there optimal principles for co-
migration of multiple cell populations?

Michael Sixt Zane Alsberga

Mehmet Ucar 
 Sheffield



Optimal principles for co-migration of multiple cell populations

In vitro experiments in presence of an initially uniform chemoattractant show robust
co-migration, with « sensors » in front.

T cells, Dendritic cells



Optimal principles for co-migration of multiple cell populations

Theory of multiple cellular species 𝑖𝑖 with 
diffusion 𝐷𝐷𝑖𝑖  and chemotactic strength 𝜒𝜒𝑖𝑖

One species 𝑐𝑐 consumes the 
chemoattractant 𝑎𝑎



Optimal principles for co-migration of multiple cell populations

Theory of multiple cellular species 𝑖𝑖 with 
diffusion 𝐷𝐷𝑖𝑖  and chemotactic strength 𝜒𝜒𝑖𝑖

One species 𝑐𝑐 consumes the 
chemoattractant 𝑎𝑎

Essentially controlled by two rescaled parameters: 
• 𝜒𝜒𝑐𝑐/𝐷𝐷𝑐𝑐  (advection/diffusion of the consumer)
•  𝜒𝜒𝑠𝑠/𝜒𝜒𝑐𝑐 (relative advection of sensor vs consumer)



Optimal principles for co-migration of multiple cell populations

𝜒𝜒𝑐𝑐/𝐷𝐷𝑐𝑐 controls the peakedness of the 
distribution and the capacity for long-
term travelling waves.
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Sharp boundary for 𝜒𝜒𝑠𝑠/𝜒𝜒𝑐𝑐 < 1 (sensor 
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Optimal principles for co-migration of multiple cell populations

𝜒𝜒𝑐𝑐/𝐷𝐷𝑐𝑐 controls the peakedness of the 
distribution and the capacity for long-
term travelling waves.

Sharp boundary for 𝜒𝜒𝑠𝑠/𝜒𝜒𝑐𝑐 < 1 (sensor 
population cannot keep up and falls 
behind). 
For 𝜒𝜒𝑠𝑠/𝜒𝜒𝑐𝑐 ≫ 1, speed of sensors still 
bounded by speed of consumers, but 
peaks farther and farther ahead.

Analytics for speed of propagation:

Front of the pulse:

Meaning that 



Quantitative comparison to experimental data

Most parameters can be extracted from
independent experiments (e.g. single cell
types, FRAP assay for chemoattractant).

𝜒𝜒𝑠𝑠/𝜒𝜒𝑐𝑐 ≈ 1.5 − 3
𝜒𝜒𝑐𝑐/𝐷𝐷𝑐𝑐 ≈ 4 − 5
𝐷𝐷𝑠𝑠/𝐷𝐷𝑐𝑐 ≈ 3



Quantitative comparison to experimental data

Most parameters can be extracted from
independent experiments (e.g. single cell
types, FRAP assay for chemoattractant).

𝜒𝜒𝑠𝑠/𝜒𝜒𝑐𝑐 ≈ 1.5 − 3
𝜒𝜒𝑐𝑐/𝐷𝐷𝑐𝑐 ≈ 4 − 5
𝐷𝐷𝑠𝑠/𝐷𝐷𝑐𝑐 ≈ 3

Good qualitative and quantitative 
agreement with data! 

 Peaked travelling waves with near
constant spacing between the two
populations

 Analytical predictions for the back & 
front of the waves consistent with data



Conclusion 1: Tradeoffs between robust co-migration and co-
localization during immune response

Trade-offs if immune cells want to 
interact/co-colocalize during migration 
(e.g. antigen presentation)

Intermediate region of parameter space that
optimizes for both robust and colocalized
co-migration?



3D « flocks » of birds

Global ordering of active self-propelled objects

Emergence of global polar order in biology

Schaller et al, Nature, 2010



Vicsek model (1995) as a paradigm of active systems

3D « flocks » of birds

Animals as point particles with a spin.
White noise 𝜼𝜼(𝒕𝒕) + Ising-like aligment term + movement 𝒗𝒗𝟎𝟎 in the direction of the spin.

In 2D, let’s define spin angle of particle i as 𝜃𝜃𝑖𝑖 𝑡𝑡 , so that 𝑣𝑣𝑖𝑖 𝑡𝑡 = 𝑣𝑣0(𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 𝑡𝑡 , 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 𝑡𝑡 )
  for 𝑣𝑣0 = 0, this is simply the classical XY model! 

�
𝒓𝒓𝒊𝒊 𝒕𝒕+ 𝒅𝒅𝒅𝒅 = 𝒓𝒓𝒊𝒊 𝒕𝒕 + 𝒗𝒗𝒊𝒊 𝒕𝒕 𝒅𝒅𝒅𝒅
𝜽𝜽𝒊𝒊 𝒕𝒕+ 𝒅𝒅𝒅𝒅 =< 𝜽𝜽𝒋𝒋 𝒕𝒕 > +𝜼𝜼(𝒕𝒕)

where j is a neighbor list of i : 𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋 < 𝑹𝑹𝟎𝟎



Model predicts emergence of long-range orientational order when interactions are 
large enough compared to noise

Vicsek, PRL, 1995

�
𝒓𝒓𝒊𝒊 𝒕𝒕+ 𝒅𝒅𝒅𝒅 = 𝒓𝒓𝒊𝒊 𝒕𝒕 + 𝒗𝒗𝒊𝒊 𝒕𝒕 𝒅𝒅𝒅𝒅
𝜽𝜽𝒊𝒊 𝒕𝒕+ 𝒅𝒅𝒅𝒅 =< 𝜽𝜽𝒋𝒋 𝒕𝒕 > +𝜼𝜼(𝒕𝒕)

where j is a neighbor list of i : 𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋 < 𝑹𝑹𝟎𝟎

Vicsek model (1995) as a paradigm of active systems



Viscek model: continuum symmetry (as XY), finite noise, 
2d… but still broken symmetry. 

Clearly active movements 𝒗𝒗𝟎𝟎 have to explain this (in fact
singular transition for any 𝒗𝒗𝟎𝟎 > 𝟎𝟎) … but how exactly?

First order transition, which occurs when density is large 
enough/noise low enough

Vicsek model (1995) as a paradigm of active systems



First order transition, which occurs when density is large 
enough/noise low enough

Simple mean field argument - at density 𝜌𝜌0, velocity 𝑣𝑣0 and 
noise 𝜂𝜂:
- Mean free path of a particle (between collisions) scales as 

1/𝜌𝜌0
- Particle looses spin orientation memory on length scales 𝑣𝑣0

𝜂𝜂2

Ordering can only happen if 𝜂𝜂 < 𝑣𝑣0𝜌𝜌0 (collisions more 
frequent than random re-orientation)

Good approximation for low densities

Vicsek model (1995) as a paradigm of active systems

Ginelli et al, 2016



Collective cell migration and active matter models

27

Garcia et al, PNAS, 2015 Malinverno et al, Nat Mat, 2017

Complex spatio-temporal patterns observed in minimal in vitro systems of homogeneous
cells migrating on flat 2D substrates…

Extensive comparisons to active matter theories in the past decade (e.g. flocking, active 
glasses, nematic turbulence etc)

E.g. Banerjee et al,, 2015, Blanc-Mercader et al, 2017, Notbohm et al, 2017, Tlili et al, 2018, Petroli et al, 2019, Henkes et al, 2020, Alert & 
Trepat, 2020



Part 2: Geometry-driven migration efficiency of minimal cell clusters 

Alert & Trepat, 2020

Experimentally, different collective modes of motility alignement or anti-alignement in 
different cell types…

See also Veluda et al, 2012, Sepulveda et al, 2013, Basan et al, 2013, Camley et al, 2014, Bertrand et al, 2020, Bruckner et al, 2021, Ron 
et al, 2023



Geometry-driven migration efficiency of minimal cell clusters 

Alert & Trepat, 2020

Flocking in 1D train, Jain, Ladoux & Mege, 2021

Collective cellular anti-alignement, Weber et al, 2012

Experimentally, different collective modes of motility alignement or anti-alignement in 
different cell types… or even in the same cell type as a function of boundary conditions

Theoretically, many of these interactions results in the same models of migration for 
infinite systems…

See also Veluda et al, 2012, Sepulveda et al, 2013, Basan et al, 2013, Camley et al, 2014, Bertrand et al, 2020, Bruckner et al, 2021, Ron 
et al, 2023



Geometry-driven migration efficiency of minimal cell clusters 

Eléonore
Vercruysse

Sylvain 
Gabriele

Univ. Mons
David Bruckner
 Biozentrum

How are collective modes of migration 
affected by varying boundary
conditions in controlled ways?

Can we learn how active systems
interact with each other by looking at 

how they react to boundaries? 



Geometry-driven migration efficiency of minimal cell clusters 

Eléonore
Vercruysse

Sylvain 
Gabriele

Univ. Mons

David 
Bruckner

How are collective modes of migration 
affected by varying boundary
conditions in controlled ways?

Can we learn how active systems
interact with each other by looking at 

how they react to boundaries? 

Fish keratocytes



Cell trains display length-independent migration speed…



… but strongly width-dependent migration speed



Systematically scanning cell-cell interactions based on symmetries

Cell trains as elastically coupled, active interacting particles:

Force balance

Polarity equation



Systematically scanning cell-cell interactions based on symmetries

𝜆𝜆CIL𝛽𝛽vel
polarity

velocity

polarity alignment (PA) stress-polarity 
coupling (SPC)

contact inhibition
of locomotion (CIL)velocity alignment (VA)

𝛽𝛽pol 𝜆𝜆SPC

Polarity equation



Systematically scanning cell-cell interactions based on symmetries

𝜆𝜆CIL

length / width length / width length / width length / width

𝛽𝛽vel
polarity

velocity

polarity alignment (PA) stress-polarity 
coupling (SPC)

contact inhibition
of locomotion (CIL)velocity alignment (VA)

𝛽𝛽pol 𝜆𝜆SPC

All models fail at recapitulating the data!
  either always flock at the same speed regardless of width, or gets 
completely stuck by anti-aligments…

Even pair-wise combinations of models fail in all parameter regimes! 



Combining three interactions with nearly equal contributions 
recapitulates observations

no match match
VA + PA + CIL

w
id

th

Velocity alignment guarantees global flocking… 
Contact inhibition of locomotion creates outwards, unproductive polarization
Polarity alignment “propagates” this outward polarization inwards 

𝜆𝜆CIL𝛽𝛽vel
polarity

velocity

polarity alignment (PA) stress-polarity 
coupling (SPC)

contact inhibition
of locomotion (CIL)velocity alignment (VA)

𝛽𝛽pol 𝜆𝜆SPC



Combining three interactions with nearly equal contributions 
recapitulates observations



Model prediction: monolayer stress build-up in the orthogonal 
direction

tensile

compressive

With M Gomez & X. Trepat, IBEC 
Seemingly wasteful mechanism… 
Are there any advantages/trade-offs that might explain why this is used by cells?



velocity alignment (VA)

polarity alignment (PA)

VA + contact inhibition of locomotion (CIL)

VA + PA + CIL (experimental phenotype)

Model prediction: VA + PA + CIL gives optimal run & reorientation 
behaviour

Optimal behavior for all three parameters with near equal contribution … very close 
to the inferred best-fit region…

Vercruysse*, Brückner* et al Nat Phys (2024)



Experiment: cell trains reorient efficiently upon collisions/dead-ends

Nearly instantaneous collective repolarization regardless of width of the train!



Experiment: cell trains reorient efficiently upon collisions/dead-ends

Nearly instantaneous collective repolarization regardless of width of the train!



Conclusion 2: Geometry-driven migration efficiency of minimal cell
clusters 

Vercruysse*, Brückner* et al Nat Phys (2024)

Importance of contact geometry in defining the migration properties of cell clusters.

Framework to extract interaction rules from how active systems interact with 
physical boundaries.
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Quite a lot of active matter theories on this in the past decade (e.g. flocking, active 
glasses, zero-Reynolds turbulence etc)

… but limited information on the internal/chemical state of epithelial cells can we
really neglect these « hidden variables »?

Part 3: Mechano-chemical instabilities and collective cell migration

E.g. Banerjee et al,, 2015, Blanc-Mercader et al, 2017, Notbohm et al, 2017, Tlili et al, 2018, Petroli et al, 2019, Henkes et al, 
2020, Alert & Trepat, 2020
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Daniel Boocock

Tsuyoshi Hirashima Naoya Hino (IST)

Kyoto University

Oscillations in space and time of both cell density and ERK signalling (with small delay). 

Mechano-chemical instabilities and collective cell migration
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Vertex-based models of tissues: tissues as active foams

Epithelial tissues have a rather well-defined mesoscopic structure! 
(apico-basal polarity, relatively ordered shapes, tight adhesion)

Equilibrium-like description: cell/tissue shape as a surface energy
minimization process
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From models of cells as active foams to collective oscillations

Cells as incompressible active foams under
frictional contact with a substrate.

Can be simplified to an overdamped chain 
of oscillators, and linearized as springs 
with rest length l0 dependent on signalling 
(ERK) activity.

 

Sign of coupling can be arbitrary as ERK 
can control differentially lateral, and 
apico/basal tensions.
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Mechano-chemical model of ERK oscillations

At linear order, this can be captured by 
three equations on:

- Cell position 𝑟𝑟 (force balance) 

- Cell rest length 𝑙𝑙0 (dep. on ERK)

- ERK activity 𝐸𝐸 (dep. on area)

 Linearly unstable with a well-defined
spatial wavelength and temporal 
period, for 𝛼𝛼𝛼𝛼 > 𝛾𝛾(𝜏𝜏𝑟𝑟 , 𝜏𝜏𝑙𝑙 , 𝜏𝜏𝑒𝑒)

 Isotropic mechano-chemical
instability, depends only on the three
timescales of the problem

Boocock*, Hino* et al, 2020
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Testing the couplings between ERK and mechanics
Ti
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Activation
0

-2

2
Optogenetically activating ERK 

decreases cell area

Biochemistry  Mechanics

Decreasing cell area by compression 
inhibits ERK (and vice versa)

Mechanics  Biochemistry

All parameters of the model extractable from these perturbations
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Mechano-chemical patterns in confluent monolayers

Parameter-free predictions match 
well the data:
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What are these patterns good for?

Symmetry-breaking: unidirectional ERK wave
propagation during wound healing (also in vivo 
in mouse skin).

Accompanied by long-range order of migration 
polarity.

Hino et al, Dev Cell, 2020
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What are these patterns good for?

Coupling ERK-density mechano-chemical
feedbacks with cell polarity p.

Assumption of polarity coupled to gradients 
of stresses.

Not enough for symmetry breaking! 
(« back-of-the-wave paradox » in dictyostelium, see
Levine, Goldstein, Murray, Sawai and many others)

Need for a non-linearity 𝛾𝛾(𝐸𝐸): becomes 
possible to exploit phase differences
between chemical and mechanica waves:

Direction of polarity from gradient in 
mechanical stress
Magnitude of traction forces from
chemical activity



Response of a monolayer to an externally driven ERK wave

Only optimal for a unique value of pattern 
wavelength and period!

Reported values are 1-6h and 10-30 cells
(both in vivo and in vitro!)

Dispersion relation of the instability (black 
line) can only give rise to positive polarity
robust polarization against a wave.



Feedback between ERK wave directionality and long-range 
polarization

Polarity
ERK

ERK

Hino et al, Dev Cell, 2020

Global polarization of ERK waves and 
polarity in response to a wound.

Model predicts the propagation of 
unidirectional ERK waves away from
the wound.

Leads in return to long-range polarity 
towards the wound.



Conclusion 3: From mechano-chemical waves to optimal 
monolayer polarization

1. Density/ERK waves in monolayer as an 
isotropic instability, involving feedback 
delays between ERK and cell mechanics.

2. Phase-shifts and non-linearities in mechano-
chemical waves allow for symmetry-breaking
and polarization.

3. From biophysical origins to design principles
of patterns: robustness and optimality for 
long-ranged migration during wound
healing.

Boocock*, Hino* et al, Nat Phys, 2020



Mechano-chemical waves and defects in 2D

Mechano-chemical
instabilities

Glassy dynamics via active propulsion in an 
elastic sheet (Henkes et al, Nat Comm, 2020)

Unified description for the active 2D patterns formed 
by MDCK monolayers in vitro?



Generalizing our model to 2D

Mechano-chemical equations + an active vertex model (Bi et al, PRX, 2016).
Solid (resp. fluid) for low(resp high) shape index 𝑝𝑝0/√𝐴𝐴0 (jamming) or for 
high enough active migration force 𝑓𝑓0 (glass)



Transition from deterministic patterning to active glass

How can we constrain further parameters in this 2D description?
 - 𝛼𝛼/𝛽𝛽 proportional to relative area vs ERK amplitudes
 - 𝛼𝛼𝛼𝛼 and 𝑓𝑓0 can be estimated from absolute amplitudes 
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Self-propulsion force



Transition from deterministic patterning to active glass

Boocock et al, 2023



Testing the model: how to quantify noisy 2D patterns?

Quantifying topological defects in the ERK phase field as a robust metric? 
(see also Tan et al, Nat Phys, 2020)

Experimental phase map
+ topological defects motion



Testing the model: how to quantify noisy 2D patterns?

Already parametrized model 
can predict both the 
exponential distribution and 
average life time of defects.

Phase space in intermediary
region between active glass 
and patterning!



Mechano-chemical phase controls local monolayer fluidization

Mechano-chemical patterning
amplitude 𝛼𝛼𝛼𝛼 only weakly
affects overall T1 numbers (or 
MSD), i.e. global material
state

But strong local control of T1 
transitions in globally solid
monolayers!

Spatio-temporal mechanism to 
control local tissue fluidity? 



Outlook: Mechano-chemical models of complex tissue 
morphogenesis

Pinheiro et al, Nat Phys, 2022

Integrating morphogen gradients, 
migration and adhesion in Zebrafish 
gastrulation

Integrating fate and mechano-osmotic forces in 
intestinal organoids

Recho et al, PNAS, 2019

Integrating morphogen diffusion and tissue/fluid 
interactions

Yang*, Xue, et al, NCB, 2021



Part 4: Collective cell migration in heterogeneous environments

Collective migration in vivo typically occurs within a highly disordered environment…

67

Park, D., et al. Nat. Mat (2020) 



Part 4: Environmental heterogeneity and tumor migration 
modes

Cell detachments as key step of cancer 
metastasis

Classical picture:  lower adhesion (epithelial-
mesenchymal transition)

Role of mechanics and microenvironment?

Adapted from: Novikov, N.M., et al. Br J Cancer (2021). 



How does microenvironment geometry affect invasion 
collectivity?

Controlled in vitro microfluidic experiments
Pillar patterns invaded by epidermoid carcinoma cells (A431)Saren Tasciyan

Regular Disarranged

Michael Sixt 

Zuzana Dunajova

See also Ilina et al, NCB, 2020, Kang et al, iScience, 2021



No obstacles at all  collective mode of migration without detachements…
Regular obstacles  collective mode of migration (irrespective of lengthscale)
Random obstacles  single-cell mode of migration, similar to E-P-Cadherin knockout!

Detachments of cells induced by disordered environment

http://drive.google.com/file/d/13tHoGbIDhXBR4p5z6OIlCjVyPtHALhxZ/view


𝛾𝛾 - friction coefficient
𝐹⃗𝐹p- cellular  self propulsion
𝐷𝐷r- rotational diffusion constant
𝜂𝜂 - unit variance random variable
𝜀𝜀 - well depth
𝜎𝜎 ~ cell size

Can we capture this behavior with a minimalistic model?

Biased active particles with attraction in a disordered medium

J. A. Anderson, J. Glaser, and S. C. Glotzer. Comput. Mater. Sci. (2020)



Very generic/robust feature: extensive cell detachments in disordered pattern 

Can we capture this behavior with a minimalistic model?

How does this work? Which features of heterogeneity facilitate 
detachments?

http://drive.google.com/file/d/1G7pbZBY3L4y7hmN_6pCK8IEBXg6HlSdE/view


Environment heterogeneity increases rate of detachment

Experiment:

Constraining parameters:
• single cell parameters - trajectories of detached cells (Fp, Dr, bias)
• Interaction parameter (𝜀𝜀)~ velocity ratio of bulk vs. detached cells; confluency 

without pillars

Simulations:



Spatial distribution of detachments

Can we find simple rules without analysing specific pillar 
arrangements?
  Detachment events always increase in time!
  Also consistent “hotspots” across many simulations

Invasion

Detachment probability (n=40):



Interfaces roughens over time across all conditions…

… but with qualitatively different scaling exponents!

Juraj Majek



Interfaces roughens over time across all conditions…

… but with qualitatively different scaling exponents!

Hypothesis: detachments require a critical interfacial curvature/occurs at 
the tip regions of the interface

N.Ganai et al, New. J.  Phys. 21 (2019)
A. Bru et al. Biophys. J., 85 (5), 2948 (2003)



Cells detach at the tips of protrusions

Relative position of detachments at interface

Protrusions 
(local maxima = 1 )

local minima = 0

Hypothesis: detachments require a critical interfacial curvature/occurs at 
the tip regions of the interface



What determines detachments in lateral direction?

La
te

ra
l

Invasion

Heterogeneity drives protrusions in specific areas
Lateral heterogeneity- geometries creating rough interface

Invasion

Detachment probability (n=40):

http://drive.google.com/file/d/1seYSqca45QsqExxa22KmA6OGv4SRmigN/view


Conclusion 4: Inducing collective to single migration modes via 
environmental heterogeneity

Detachments induced by disordered 
geometry

• Interface roughening and lateral 
heterogeneity can explain the global 
and local detachment pattern

• Complex cellular behavior explored 
by simple mechanical model of 
identical cells interacting with a 
complex environment

http://drive.google.com/file/d/13tHoGbIDhXBR4p5z6OIlCjVyPtHALhxZ/view
http://drive.google.com/file/d/1G7pbZBY3L4y7hmN_6pCK8IEBXg6HlSdE/view
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