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How do individual cells move?

Active forces in confluent cell monolayers

Guanming Zhang1 and Julia M. Yeomans1
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abstract

Introduction: Asking how cells move collectively is
a fascinating and important problem that encompasses
both the concepts of forces and flows traditional to
physics [1, 2] and the molecular signalling which drives
many biological phenomena [3]. Generic descriptions of
cell motility, such as the phase field model [4–11] and ver-
tex models [12–16], have recently proved useful in identi-
fying key contributions to understanding several aspects
of cell motility.

The forces driving single cells across a flat surface
are well understood. The cell is controlled by direc-
tional actin filaments, which can continuously polymerize
and depolymerize to form lamellopodia, protrusions that
push the cell forwards [17, 18]. To advance, the cell needs
to push against the substrate and to do this e�ectively
it creates focal adhesions, which are mechanical links be-
tween internal actin bundles and the external surface [19].
As it moves, the cell tends to polarize and elongate in the
direction of motion[20]. Contractile forces, mediated by
myosin motors interacting with the actin network within
the cell, tend to restore it to circular[21]. Thus a mini-
mal physical model of single cell motility comprises a net
force in the direction of the cell polarity, together with
contractile, balanced forces restoring the cell to a circu-
lar shape (Fig. 1(c)). (We will refer to forces that tend
to return an elongated cell to circular, or to extend it
further, as contractile and extensile respectively.)

FIG. 1: (a)The schematic of +1/2 comet-like defect.
(b)The schematic of -1/2 trefoil-like defect

(c)self-deformation activity (d)The inter-cellular
contractile forces acting e�ectively like a self extensile

froce. (e)The cell-cell interfaces (f) The nematic state of
cells with strong contractile inter-cellular force and

cell-cell adhesion

Much less is understood about the dynamics of conflu-
ent cell layers. The cells can be jammed with small local
fluctuations [13, 22] or form liquid-like states where the
motion has localised, correlated bursts of velocity or vor-
ticity. Moreover motile topological defects( Fig.1(a)(b)),
regions where the long axes of the cells take comet or
trefoil-like configurations have been identified in several
confluent cell layers [23–26]. This is reminiscent of active
turbulence, which is the dynamical behaviour of many ac-
tive nematic materials, such as suspensions of microswim-
mers [27, 28] and microtubule -motor protein suspensions
[27]. However, the appearance of active turbulence re-
quires elongated particles [29] and therefore it is some-
what surprising to identify topological defects even in as-
semblies of e.g. MDCK cells that are on average isotropic
in shape[25]. Moreover the comet defects can move to-
wards their head, corresponding to extensile driving[30],
even though individual cells are contractile[24]. Indeed,
experiments and simulations have shown that the defect
motion changes direction - indicating a change from ex-
tensile to contractile behaviour - as the cell-cell adhesion
is weakened. Other, theoretical, work has shown that
fluctuating polar (unbalanced) forces can result in exten-
sile defect movement [31, 32].

These observations raise questions about the identify
of the physical forces leading to collective cell motility in
cell layers. The formation of lamellopodia is suppressed
in confluent cell layers, a phenomenon termed contact
inhibition of locomotion, suggesting the absence of any
persistent unbalanced polar forces [33, 34]. Therefore
balanced forces must be acting to drive the cellular dy-
namics and, because the motion is persistent, these must
be active, i.e. fuelled by chemical energy. The most ob-
vious physical origin for these balanced active forces is
the contractile forces within a cell, mediated by the in-
tracellular actin network, which, because of inter-cellular
junctions, pull on their neighbours.

We present analytical and numerical arguments, based
on a coarse-grained, phase field model of cell motility to
show that active, contractile interactions between cells,
mediated through cell junctions, lead to the cells elongat-
ing and lining up to form a stable nematic state. Decreas-
ing cell-cell adhesion leads to long-range flows which have
a destabilising e�ect and result in active turbulence. The
active forces have the simple physical interpretation of
neighbouring cells pulling on each other. We further show
that anisotropic fluctuations in the interactions changes
both the direction in which the defects move, and their
appearance.
Model: The phase-field approach to describing the dy-

Polar driving



How do monolayers of cells move?

epithelial cells 



Cetera et al. Nature Comms. 5, 5511 (2014)

During development, tissue morphogenesis requires precise
coordination of individual cell behaviours and reciprocal
interactions between cells and their extracellular matrix.

The Drosophila egg chamber provides a highly amenable system
to identify molecular mechanisms underlying changes in tissue
and organ shape1. Egg chambers are multicellular structures
within the fly ovary that will each give rise to a single egg. They
are composed of a germ cell cluster surrounded by an epithelial
layer of follicle cells. The basal surface of the epithelium is in
contact with a basement membrane extracellular matrix, which
encapsulates the egg chamber (Fig. 1a,b). Egg chambers are
assembled in an anterior ovarian region known as the germarium
and are then organized into a developmental array called an
ovariole (Fig. 1a). Each egg chamber progresses through 14
developmental stages before forming an egg.

Although initially spherical, egg chambers lengthen along
their anterior–posterior axes as they mature (Fig. 1a)2–4. This
morphogenesis begins at stage five and depends on a precise
organization of the basal epithelial surface, in which parallel
arrays of actin bundles within the cells and fibril-like structures in
the adjacent basement membrane align perpendicular to the
elongation axis (Fig. 1c)5,6. This circumferential arrangement of
structural molecules is thought to act as a ‘molecular corset’ that
directionally biases egg chamber growth towards the poles, as
mutations that disrupt this pattern lead to the production of
round rather than elongated eggs6–12. Elongation also depends on
an intriguing collective cellular motion, in which the entire egg
chamber rotates perpendicular to the anterior–posterior axis
within its surrounding basement membrane (Fig. 1d)10.

The discovery that egg chamber elongation depends on
rotation has led to two major challenges in understanding this
system. The first is to determine the mechanisms underlying
individual follicle cell motility. The second is to determine the
relationship between the rotational motion and the morphogen-
esis itself. There is compelling evidence that rotation builds the
polarized basement membrane associated with the molecular
corset10. However, the relationship between rotation and the
actin-based component of the corset, the basal actin bundles,
remains unknown.

The tissue-level organization of the basal actin bundles has
been reported to fluctuate during the early stages of egg chamber

development. The actin bundles first show a circumferential
arrangement within the follicle cell precursors in the germarium9.
However, this early tissue-level organization was reported to be
lost on egg chamber formation, such that the basal actin bundles
were still aligned within individual cells, but their global
orientation was perturbed. The tissue-level alignment of the
basal actin bundles was then thought to re-emerge at stage five,
concurrent with the time that rotation and basement membrane
polarization were reported to begin9,10. Recent work has shown
that when rotation ends at stage nine, the actin bundles undergo
oscillating, Myosin II-mediated contractions to produce a
circumferentially constrictive force around the egg chamber to
further elongate the tissue13.

Here we show that egg chamber rotation is driven by
lamellipodial protrusions at each follicle cell’s leading edge. We
further show that rotation begins much earlier than previously
reported, and that this motion is required for the tissue-level
alignment of the basal actin bundles. By blocking rotation at
discrete time points and employing a new quantitative method to
characterize actin organization, we find that the actin-based
component of the molecular corset is built in three steps. Global
actin bundle alignment is first established among the follicle cell
precursors in the germarium9. Contrary to previous reports,
however, the tissue-level actin pattern is maintained by egg
chamber rotation during stages one through five. Starting at stage
six, rotation becomes dispensable for tissue-level actin bundle
alignment. This change coincides with basement membrane
polarization, which suggests that interactions between the basal
actin bundles and the fibrillar matrix may stabilize the corset
pattern. This work sheds light on the cellular mechanisms that
drive egg chamber rotation and demonstrates how collective
cell migration can be harnessed to build a tissue-level actin
organization required for organ morphogenesis.

Results
Follicle cells have leading edge filopodia and lamellipodia. To
elucidate the cellular mechanisms underlying egg chamber rota-
tion, we first investigated the composition of the actin cytoske-
leton at the basal surface of the follicular epithelium. In addition
to the parallel arrays of actin bundles, previous reports have

Egg chamber rotation

Stage 1
Stage 7

Germarium

Stage 6
Stage 4

Basal
actin
ECM

Follicle cells

Apical

Basal

Molecular corset

Actin Col IV 

Stage 9

Figure 1 | Overview of key concepts in egg chamber elongation. (a) Illustration of an ovariole, a developmental array of egg chambers. Egg chambers
are spherical when they bud from the germarium and then lengthen along their anterior–posterior axes as they develop. (b) Blowup of the boxed region in a
highlighting the apical–basal axis of the follicle cell epithelium. (c) The ‘molecular corset’ consists of parallel arrays of actin bundles at the basal
epithelial surface (stage nine) and fibril-like structures in the adjacent basement membrane (stage seven). Laser-scanning confocal images. Scale bar,
10mm. (d) Transverse section through a stage seven egg chamber, as shown by the dashed line in a. The egg chamber rotates within the surrounding
basement membrane (illustration adapted from ref. 32).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6511

2 NATURE COMMUNICATIONS | 5:5511 | DOI: 10.1038/ncomms6511 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.
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How do layers of cells move? Active turbulence?

velocity fields reminiscent
of active turbulence

7334 | Soft Matter, 2015, 11, 7328--7336 This journal is©The Royal Society of Chemistry 2015

driven by the intrinsic activity, in the absence of an ordering
free energy which found that the correlation length increases
(decreases) with decreasing (increasing) activity.50 However,
here the variation of the cell concentration due to division
events introduces new dynamics to the system and any analogy
must be treated with caution.

Another important consequence of cell division is in changing
the number density of topological defects, which may be impor-
tant in controlling the structure of cell layers. Recent experiments
on fibroblasts cells have shown that the nematic order of the cells
is accompanied by formation of topological defects, which pre-
vent the development of infinite size nematic domains.51 In the
simulations, the number density of topological defects increases
with increase in cell division in a system with no intrinsic activity
(z = 0). However, the cell division has a different effect when it is
associated with systems having intrinsic extensile or contractile
activities. While the generation of topological defects is enhanced
by cell division in extensile systems (Fig. 3(g) and (h)), it is
significantly reduced in contractile assemblies (Fig. 3(e) and (f)).
This again can be explained by the division reducing (increasing)
the effective activity of contractile (extensile) active nematics in
accord with recent studies showing that the number of defects
increases with increase in the activity of the system.52 Taking the
effects of cell division, a decrease (increase) in the number of
defects for contractile (extensile) systems is observed since effec-
tive activity is reduced (increased). Less topological defects implies
less stress in the tissue, which might have important physiological
implications.

5 Cell division and the free surface
Up to now, we have considered division effects on the dynamics
of cell assemblies in periodic domains. In many physiological
applications such as morphogenesis, tissue expansion, and wound
healing, the mechanical response of a free surface to the cell
invasion is of considerable importance.2–4,7 Here, using the equa-
tions of lyotropic active nematics, we extend our results to the case
where a cell assembly is separated from an otherwise isotropic
liquid by a free interface. To distinguish the cell culture from the
isotropic fluid, we define a scalar order parameter f, which
measures the relative density of each component with f = 1 for
the cells and f = 0 for the isotropic fluid and evolves according
to the Cahn–Hilliard equation53

qtf + qi(uif) = Gfr2m + af, (14)

where Gf is the mobility, m = d/df is the chemical potential and
the free energy of the system is

F ¼ Af

2
f2ð1# fÞ2 þ 1

2
A q2f# 1

2
QijQji

! "2

þ 1

2
kf @kfð Þ2þ1

2
K @kQij

# $2
;

(15)

where Af and kf are material constants. Eqn (14) together with
eqn (1)–(3) are solved here to describe the dynamics of a
dividing colony of cells with free surfaces. An additional term

Pij = (F # mf)dij # qif(qF/q(qjf)) must be added to the stress
components in eqn (3), when the variable f is introduced.
More details of the form of the free energy and the governing
equations of lyotropic active nematics can be found in.33 We
use Gf = 0.1, Af = 0.08 and kf = 0.01. We do not explicitly
include any terms in the free energy that lead to interface
anchoring,54 but active anchoring may result from hydrodynamic
stresses at the interface.33

In Fig. 4(a), numerical results for the time evolution of the
surface of a cellular layer are compared to the results of
experiments on the growth of the surface in a colony of dividing
MDCK cells. Unlike the experiments, we consider cells with no
intrinsic activity (z = 0) in the simulation to show that a similar
behaviour follows from considering the division-induced acti-
vity alone. Previous studies have predicted that existence of
source terms such as material production can drive hydro-
dynamic instabilities in the form of undulations at the interface
between a viscous fluid and viscoelastic material.55 As evident
from Fig. 4(a), the expansion of the band is accompanied by
instabilities that lead to the formation of fingers at the surface
in both experiment and simulation. Although previous studies
have associated the fingering instabilities to the formation of
leader cells at the border,35 our results suggest that the same

Fig. 4 (a) Temporal evolution of a free surface of MDCK cells and emer-
gence of the fingering instability in experiments (left) and the same phenom-
ena observed in our simulations by division-induced activity (right). In the
simulations, colormaps show the concentration. The time step in experi-
ments is 150 min and in the simulation it is 120 in simulation units. (b and c)
A close-up of the velocity field in the band for experiment and simulation,
respectively.
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Figure 1 | RAB5A promotes coherent, ballistic motion of jammed epithelia. a, Left: snapshots of the velocity field obtained from PIV analysis of
doxycycline-treated control (Ctrl) and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary
Movie 2). The red arrow in each inset is the mean velocity v0 (average over the entire field of view). The colour map reflects the alignment with respect to
the mean velocity, quantified by the parameter a(x)= (v(x) ·v0)/(|v(x)||v0|). The local velocity is parallel (a=+1) or antiparallel (a=�1) to the mean
direction of migration. Right: root mean square velocity vr.m.s. (representative of >10 independent experiments). Vertical lines indicate the time interval
used for the analysis of motility parameters. b, Left plots: migration paths of control and RAB5A-MCF-10A cells (Supplementary Movie 6) seeded sparsely
to monitor individual cell motility and analysed using the Chemotaxis Tool ImageJ software plugin. Right plots: velocity and persistence of the locomotion
of cells. Data are the mean ± s.d. (n=40 single cells/experiment/genotype of three independent experiments); NS, not significant. c, Snapshots depicting
the angular velocity of control and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary Movie 7).
Angular velocity vectors are calculated by CIV analysis. The colour code indicates the direction of migration. Homogeneous and inhomogeneous scattered
colours indicate regions with high and low migration coherence, respectively. Scale bar, 100 µm. Representative images from n=5 time-lapse series.
d–f, PIV analysis of motion of doxycycline-treated control and RAB5A-MCF-10A cells seeded at jamming density (Supplementary Movie 2). In e, vertical
lines indicate the time interval used for the analysis of motility parameters. d, Left: velocity correlation functions CVV evaluated in the time window
comprised between 4 and 12 h during which the availability of EGF allows migration. The continuous lines are best fits of CVV with a stretched exponential
function. Right: correlation lengths Lcorr (five movies/experimental condition out of three to eight independent experiments). e, Order parameter  as a
function of time.  = 1 means a perfectly uniform velocity field.  ⇠=0 indicates randomly oriented velocities. f, Left: mean square displacements (MSD)
obtained by numerical integration of the velocity maps. Right: persistence length Lpers obtained by fitting the MSD curves with a model function
(continuous lines) describing the transition from a short-time ballistic to a long-time di�usive behaviour.

mammary epithelial MCF-10A cells (Supplementary Fig. 1a).
These cells form polarized monolayers and, upon reaching
confluence, display a typical collective locomotion mode
characterized by the emergence of large-scale, coordinated
motility streams, involving tens of cells. As cells keep on dividing,
density increases, causing a near complete kinetic arrest akin
to a jamming or rigidity transition5,16 (Supplementary Fig. 1b
and Supplementary Movie 1). Unexpectedly, under these latter
conditions, elevation of RAB5A-reawakened motility of kinetically

arrested monolayer by promoting large and heterogeneous
multicellular streams (Fig. 1a and Supplementary Movies 2 and
3). RAB5A expression had marginal e�ects on the rate of cell
division of confluent monolayers (Supplementary Fig. 1c), and
collective motility was unperturbed by inhibition of cell division
(Supplementary Fig. 1d and Supplementary Movie 4). Large-scale,
collective locomotion was also induced by expression of RAB5A
in jammed keratinocyte monolayers (Supplementary Fig. 1e
and Supplementary Movie 5) and oncogenically transformed
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Figure 1 | RAB5A promotes coherent, ballistic motion of jammed epithelia. a, Left: snapshots of the velocity field obtained from PIV analysis of
doxycycline-treated control (Ctrl) and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary
Movie 2). The red arrow in each inset is the mean velocity v0 (average over the entire field of view). The colour map reflects the alignment with respect to
the mean velocity, quantified by the parameter a(x)= (v(x) ·v0)/(|v(x)||v0|). The local velocity is parallel (a=+1) or antiparallel (a=�1) to the mean
direction of migration. Right: root mean square velocity vr.m.s. (representative of >10 independent experiments). Vertical lines indicate the time interval
used for the analysis of motility parameters. b, Left plots: migration paths of control and RAB5A-MCF-10A cells (Supplementary Movie 6) seeded sparsely
to monitor individual cell motility and analysed using the Chemotaxis Tool ImageJ software plugin. Right plots: velocity and persistence of the locomotion
of cells. Data are the mean ± s.d. (n=40 single cells/experiment/genotype of three independent experiments); NS, not significant. c, Snapshots depicting
the angular velocity of control and RAB5A-MCF-10A cells seeded at jamming density and monitored by time-lapse microscopy (Supplementary Movie 7).
Angular velocity vectors are calculated by CIV analysis. The colour code indicates the direction of migration. Homogeneous and inhomogeneous scattered
colours indicate regions with high and low migration coherence, respectively. Scale bar, 100 µm. Representative images from n=5 time-lapse series.
d–f, PIV analysis of motion of doxycycline-treated control and RAB5A-MCF-10A cells seeded at jamming density (Supplementary Movie 2). In e, vertical
lines indicate the time interval used for the analysis of motility parameters. d, Left: velocity correlation functions CVV evaluated in the time window
comprised between 4 and 12 h during which the availability of EGF allows migration. The continuous lines are best fits of CVV with a stretched exponential
function. Right: correlation lengths Lcorr (five movies/experimental condition out of three to eight independent experiments). e, Order parameter  as a
function of time.  = 1 means a perfectly uniform velocity field.  ⇠=0 indicates randomly oriented velocities. f, Left: mean square displacements (MSD)
obtained by numerical integration of the velocity maps. Right: persistence length Lpers obtained by fitting the MSD curves with a model function
(continuous lines) describing the transition from a short-time ballistic to a long-time di�usive behaviour.

mammary epithelial MCF-10A cells (Supplementary Fig. 1a).
These cells form polarized monolayers and, upon reaching
confluence, display a typical collective locomotion mode
characterized by the emergence of large-scale, coordinated
motility streams, involving tens of cells. As cells keep on dividing,
density increases, causing a near complete kinetic arrest akin
to a jamming or rigidity transition5,16 (Supplementary Fig. 1b
and Supplementary Movie 1). Unexpectedly, under these latter
conditions, elevation of RAB5A-reawakened motility of kinetically

arrested monolayer by promoting large and heterogeneous
multicellular streams (Fig. 1a and Supplementary Movies 2 and
3). RAB5A expression had marginal e�ects on the rate of cell
division of confluent monolayers (Supplementary Fig. 1c), and
collective motility was unperturbed by inhibition of cell division
(Supplementary Fig. 1d and Supplementary Movie 4). Large-scale,
collective locomotion was also induced by expression of RAB5A
in jammed keratinocyte monolayers (Supplementary Fig. 1e
and Supplementary Movie 5) and oncogenically transformed
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Contact inhibition of locomotion (Abercrombie, 1953)

If two cells come into contact they tend 
to move away from each other – 
cells prefer to move into free space
colony expansion / wound healing

Polarisation tends to point away 
from the direction of greatest cell-cell
overlap

Cells within a colony are much less
likely to form lamellopodia

Strength of the polarization decreases 
with increasing cell-cell overlap

Michael Abercrombie and contact inhibition    9 

HSLWKHOLDO�FHOOV�DQG�ÀEUREODVWV�LV�GULYHQ�E\�WKH�IRUPDWLRQ�RI�KHWHUR-
typic adhesions of E- and N-cadherin, where the epithelial cells 
VROHO\�H[SUHVV�(��DQG�WKH�ÀEUREODVWV�VROHO\�H[SUHVV�1�FDGKHULQ�
(Omelchenko et al., 2001). 

In additional to classical cadherins, Eph receptors have also 
EHHQ�LPSOLFDWHG�LQ�GULYLQJ�&,/��$VWLQ et al., 2010; Batson et al., 
2013; Batson et al., 2014; Marston et al., 2003). Eph receptors 
are a group of tyrosine receptors that bind to transmembrane 
ephrin ligands from a neighbouring cell and induce bidirectional 
VLJQDOOLQJ�LQ�ERWK�WKH�OLJDQG��DQG�UHFHSWRU�H[SUHVVLQJ�FHOO��.XO-
lander and Klein, 2002). Eph-ephrin signalling can result in either 
a repulsive or attractive response (Poliakov et al., 2004). EphA 
VLJQDOOLQJ�LV�UHTXLUHG�IRU�&,/�LQ�SURVWDWH�FDQFHU�FHOOV��%DWVRQ et 
al., 2013; Batson et al., 2014) whereas EphB signalling supresses 
this response (Astin et al., 2010; Batson et al., 2013). However, 
(SK%�VLJQDOOLQJ�LQGXFHV�D�&,/�UHVSRQVH�XSRQ�D�FROOLVLRQ�LQ�07OQ��
cells, a highly invasive breast adenoacarinoma cell line (Lin et al., 
�������DQG�ÀEUREODVWV��0DUVWRQ et al., 2003). Interestingly both EphA 
DQG�(SK%�VLJQDOOLQJ�LV�UHTXLUHG�IRU�&,/�LQ�&DMDO�5HW]LXV�QHXURQV�
�9LOODU�&HUYLxR et al., 2013). There is evidence of cadherin-Eph 
VLJQDOOLQJ�FURVVWDON�LQ�KHWHURW\SLF�&,/�EHWZHHQ�JOLDO�DQG�JOLREODV-
toma cells (Tanaka et al., 2012). Upon a collision N-cadherin stimu-
ODWHV�D�&,/�UHVSRQVH�WKURXJK�LWV�DVVRFLDWLRQ�ZLWK�WKH�QXFOHRWLGH�
diphosphate kinase Nm23-H1 (Tanaka et al., 2012). Nm23-H1 
ORFDOLVHV�WR�1�FDGKHULQ�ZKHUH�LW�ELQGV�7LDP���D�JXDQLQH�H[FKDQJH�
factor involved in the activation of Rac1, and blocks Tiam1 from 
DFWLYDWLQJ�5DF��QHDU�WKH�FHOO�FHOO�FRQWDFW��+RZHYHU��WKH�H[SUHV-
VLRQ�RI�HSKULQ�%��VXSUHVVHV�&,/�E\�EORFNLQJ�WKH�DVVRFLDWLRQ�RI�
Nm23-H1 with Tiam1 and thus elevates the activity of Tiam1 and 
FRQVHTXHQWO\�5DF��DW�WKH�FHOO�FHOO�FRQWDFW��7DQDND et al., 2012). 
,Q�RUGHU�IRU�&,/�WR�RFFXU��D�FR�RUGLQDWHG�UHVSRQVH�LV�OLNHO\�WR�EH�
UHTXLUHG�EHWZHHQ�FDGKHULQ�EDVHG�DGKHVLRQV�DQG�(SK�UHFHSWRUV�
such as that which occurs during embryonic boundary formation 
in Xenopus mesoderm (Fagotto et al., 2013).

$�UHFHQW�SDSHU�PRGHOOLQJ�&,/�EHWZHHQ�FHOOV�RQ���GLPHQVLRQDO�
lines has highlighted the importance of tightly controlled cell-
FHOO�DGKHVLRQ�VWUHQJWK�IRU�&,/�WR�RFFXU��.XODZLDN et al., 2016). 
Increased adhesions can lead to the formation of chains of cells 
where cells no longer separate after colliding (Desai et al., 2013; 
Kulawiak et al., 2016).

Cell-matrix adhesions
&HOO�PDWUL[�DGKHVLRQV�DUH�ODUJH�PXOWL�SURWHLQ�FRPSOH[HV�WKDW�

FRXSOH� WKH� H[WUDFHOOXODU� PDWUL[� WR� WKH� DFWLQ� F\WRVNHOHWRQ� WKXV�
FUHDWLQJ�WUDFWLRQ�ZKLFK�IDFLOLWDWHV�FHOO�PLJUDWLRQ��$OH[DQGURYD et 
al., 2008; Gardel et al., 2010). Abercrombie speculated about the 
G\QDPLF�EHKDYLRXU�RI�FHOO�PDWUL[�DGKHVLRQV�GXULQJ�&,/�LQ������
(Abercrombie, 1970). However, it was not Abercrombie but Harris 
ZKR�ÀUVW�DWWHPSWHG�WR�HOXFLGDWH�WKHLU�EHKDYLRXU�GXULQJ�&,/��+DU-
ULV���������+DUULV�XVHG�D�FUXGH�WHFKQLTXH�WR�LQIHU�WKH�SUHVHQFH�
of attachment to the substrate. A capillary was inserted between 
the cell and the substrate and, with the use of micromanipulation 
and time-lapse cinematography, the regions where the cell was 
attached to the substrate were revealed (Rappaport and Rappaport, 
�������8VLQJ�WKLV�WHFKQLTXH�+DUULV�FRQFOXGHG�WKDW�D�GHWDFKPHQW�RI�
WKH�FHOO�PDWUL[�DGKHVLRQV�LQ�WKH�ODPHOODH�RFFXUV�XSRQ�D�FROOLVLRQ�
resulting in the transfer of tension to the cell-cell contact and the 
VXEVHTXHQW�FHOO�FHOO� VHSDUDWLRQ� �+DUULV���������+RZHYHU��ZKHQ�
Abercrombie himself came to investigate the behaviour of the 

FHOO�PDWUL[�DGKHVLRQV�LQ�WKH�FROOLGLQJ�ODPHOODH�XVLQJ�LQWHUIHUHQFH�
UHÁHFWLRQ�PLFURVFRS\��KH�REVHUYHG�D�FRQÁLFWLQJ�UHVXOW��$EHUFURPELH�
DQG�'XQQ���������,QWHUIHUHQFH�UHÁHFWLRQ�PLFURVFRS\�DVVXPHV�WKDW�
the regions where the cell membrane is closest to the substrate 
LV� ZKHUH� WKH� FHOO�PDWUL[� DGKHVLRQV� DUH� ORFDWHG� �&XUWLV�� �������

Fig. 4. Role of cytoskeleton and cell-cell adhesions in contact inhibi-
tion of locomotion. Illustration of the stages of contact inhibition of 
locomotion. Cytoskeleton rearrangements are illustrated in the left-hand 
cell whilst the adhesions involved and how they change is illustrated in 
the right-hand cell. (A) Freely migrating cells show actin driven protrusions 
stabilised by microtubules. Cells have large cell-matrix adhesions in their 
leading edge. (B) Upon a collision cadherin-based adhesions form between 
cells. Eph receptors bind to ephrin from the colliding cell partner and pro-
trusions start to collapse. Actin flow is reduced and an actin stress fibre 
and microtubule bundles form, these are aligned between colliding cells. 
Cell-matrix adhesions begin to disassembly near to the cell-cell contact. 
(C) Eph/ephrin signalling and cadherin-based adhesions lead to Rho acti-
vation and Rac inhibition at the cell-cell contact. Protrusions towards the 
contact completely collapse. Actin based protrusions develop away from 
the contact as the cells repolarise. Cell-matrix adhesions begin to enlarge 
in these new protrusions. (D) The cells eventually separate thanks to the 
disassembly of large cell-matrix adhesions near the contact, the actin stress 
fibre and microtubule catastrophe events. Microtubules form in the new 
leading edge stabilising protrusions.
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Figure 1. Functionalization and validation of ECM/Ecad:Fc Janus substrate
(A) Janus substrate functionalization strategy. (i) Ecad:Fc functionalization in the exposed region while masking part of the surface. Removal of the silicone stencil

that covered the non-functionalized half to (ii) backfill with the Col IV solution. (iii) Preparation of contiguous Col IV/Ecad:Fc substrate. (iv) Monolayer of MDCK

tissue seeded within the stencil.

(B) Summary of Janus substrate surface chemistry. Focal adhesion formation and basal Ecad recruitment at the tissue-ECM interface and tissue-Ecad:Fc

interface, respectively. Figure was generated with BioRender. Ecad:dsRed-expressing MDCK monolayer on Janus boundary; ECM (left, blue), Ecad:Fc (right,

orange), and dashed boundary (purple).

(C) Immunofluorescence imaging of Ecad:dsRed expressing MDCK monolayer seeded on top of Janus substrate. Dotted line indicates the boundary of Janus

substrate.

(D) Quantification of the normalized average basal (left) and junctional (right) Ecad:dsRed signal across the boundary (n = 17 across 3 experiments).

(E) Quantification of western blot analysis to detect the Ecad (left) and b-catenin (right) expression levels (n = 9 across 3 experiments).

(F) (Left) Fluorescent labeling of MDCK tissue on Janus substrate with phalloidin to visualize F-actin cytoskeleton. (Right) Paxillin-GFPMDCK on Janus boundary.

(G) Confocal xz section of Ecad:dsRed MDCK on the Janus boundary, immunostained for an apical marker (podocalyxin) and nucleus (Hoechst).

p values are calculated using the unpaired, non-parametric Mann-Whitney test. ns, non-significant. Scale bar: 50 mm.
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from cells over the Ecad:Fc substrate, our analysis would expose
two (or more) characteristic frequencies. The temporal frequency
with which these strain-rate waves propagated through the tissue
was calculated by performing Fourier transforms on signal traces
(i.e., individual columns) within the strain-rate kymographs (Fig-
ure 3D; STAR Methods). By plotting the power spectra of strain-
rate propagation perpendicular to the boundary, one can see
that there is a clear peak in the ECM spectra, representing a reso-

nant frequency with which strain-rate waves propagate within the
tissue (Figure 3E). Conversely, the power spectra on the Ecad:Fc
substrate show a canonical power cascade,47,48 with no charac-
teristic frequency. As such, we describe the boundary between
the two substrates as a ‘‘pseudo-mechanical’’ boundary, with
properties such as strain-wave reflection. As a final demonstration
that the Janus substrate acts as an effectivemechanical boundary
between the two halves of the tissue, we calculated similar

ECM

.
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Figure 3. A pseudo-mechanical boundary on the Janus substrate
(A) Spatial profiles of mean speed across the Janus substrate, binned into 12-h periods.

(B) Strain-rate heatmaps expose regions of highly correlated strain on the ECM substrate but weaker, disordered regions on the Ecad:Fc substrate.

(C) Strain-rate kymographs exhibit reflection at the Janus boundary for !40 h until contact inhibition. Scale bar: 50 mm.

(D) Cross-sections of the strain-rate kymograph show large-magnitude periodicity on the ECM substrate.

(E) Power spectra of _εxx wave propagation on the ECM and Ecad:Fc substrate show resonance and a cascade, respectively. (Top) Power spectra of _swall showing

reflection at the tissue-PDMS boundary (middle). Overlay of _sxx and _swall spectra, showing similar resonances between the two different boundaries (bottom).

Points and error bars represent mean and standard deviation, respectively, over all columns of the kymograph in (C) for each substrate. This was repeated for n =

16 tissues across 3 experiments to construct the full spectra.
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Are cell forces polar, fluctuating polar or nematic?

Underlying biology?

How much difference does the substrate make?

How much difference do free boundaries make?

Why can squishy cells give active turbulence?

If nematic, are cells extensile or contractile?
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misalignment 
angle

misalignment angle: angle between shape and stress



Misalignment angle in an MDCK monolayer

Angle between contractile stress axis and shape axis  small  (0 to 45o) (red)
                                                                                              large (45o to 90o)(blue)



Misalignment angle in an MDCK monolayer

misalignment angle small (red); large (blue)



Angle between stress axis and shape axis 
small (red)                                                                        
large (blue)

distribution of angle between
shape and stress axes

area fraction of red
& blue cells to show
variation by MDCK sample

Misalignment angle in an MDCK monolayer



Shape and stress respond in different ways to strong active flows

2

individual cells we obtain continuous director fields n and m which respectively describe cell shape orientation and
the principal axis of contractile stress throughout the tissue (see Methods).

We analysed the local cell shape and stress orientations over the course of 12 hours in 11 MDCK tissue samples,
in time lapse experiments taking data every 15 minutes at a resolution of ??. We define ◊ as the misalignment angle
between the local cell shape orientation n and the principal axis of contractile stress m in the tissue (Fig. 2a). The
distribution of ◊ is shown in Fig. 2b. While most cells create contractile stresses along their cell shape axis (◊ ¥ 0),
there is a large number of cells in which the axis of contractile stress is significantly misaligned with respect to shape
orientation. If the misalignment angle reaches ◊ ¥ 90¶, cells create contractile stresses perpendicular to the cell
shape orientation, thereby pulling inward not along their long shape axis but rather along their short shape axis. In
the following we will refer to cells with large misalignment (◊ > 45¶) as extensile and cells with small misalignment
(◊ < 45¶) as contractile following the usual terminology in the mathematics and active matter literature, and we
distinguish these ranges of ◊ as blue and red in Fig. 2b.

We now investigate the spatial and temporal correlation of the shape and the stress orientations in the MDCK
monolayers. Fig. 2c (left) shows a tissue snapshot where the cell shape orientation field n is shown as black lines and
the color map again indicates whether ◊ is greater (extensile, blue) or less (contractile, red) than 45¶. Fig. 2c (right)
shows the time evolution of a region of the tissue with snapshots taken at 15 min intervals. Similar data is presented
dynamically in Movie 1. It is evident that the misalignment angle forms evolving spatio-temporal patterns where
extensile cells form small, dynamic clusters in a mostly contractile background. The extensile clusters grow, shrink
and coalesce over time. The time-averaged area fraction of extensile cells is 27 ± 4% (Fig. 2d).

To further quantify the spatial patterns we calculated the spatial and time correlation functions of the cell shape
orientation, the cell stress orientation, and the mismatch angle ◊. These are defined as

Cx(r) = Ècos 2[Âx(r + r0, t0) ≠ Âx(r0, t0)]Ít0,r0 , Cx(t) = Ècos 2[Âx(r0, t + t0) ≠ Âx(r0, t0)]Ít0,r0 , (1)

where Âx represents shape director angle, stress angle, or the mismatch angle ◊, and È. . .Ír0,t0 denotes an average over
space (a circle of diameter 312µm in the centre of the island to avoid edge e�ects) and time. The results, shown in
Figs. 3a and 3b, indicate a length-scale ≥ 50µm and a time scale for the decay of the extensile patches ≥ 300 minutes.

OUR HYPOTHESIS

Many cells contain bundles of actomyosin, termed stress fibres, that tend to form along the long axes of cells and
are the primary source of contractile stresses. We hypothesise that the regions of large misalignment angle are due to
active flows disturbing the natural alignment of the stress fibres with the long axis of the cell due to di�erent responses
of the shape axis n and the stress axes m to flows over time. This leads to the formation of extensile regions which
have a large mismatch between the shape and stress axes. A cell’s stress axis and shape axis then gradually relax
towards each other.

TISSUE-SCALE FLOWS PROMOTE MISALIGNMENT OF CONTRACTILE STRESS FIBRES

Continuum tissue models, based on the equation of motion of active nematics, have been very successful in explaining
cell motility on a coarse-grained level. However the assumption has always been that the principal axis of contractile
stress m and the shape axis n are indistinguishable. Therefore, to investigate the consequences of our hypothesis, we
extend the continuum modelling to decouple m and n.

We describe the shape of the cells and the stress using nematic order parameters Qn = Sn(n ¢ n ≠ I/2) and
Qm = Sm(n ¢ n ≠ I/2), respectively. The nematic order parameters encode the magnitude of nematic order in cells
Sn or in the stress Sm, and the director field associated with cell shape, n or the stress m. We assume that the
flows are created by contractile active forces that act along the direction of stress fibres m. The flows a�ect both the
cell shape and the cell stress orientation fields. The experimental spatial correlation functions show that the nematic
order of the shape director n has a longer length scale than that of the stress director m which we model by choosing
di�erent elastic constants. In the continuum simulations, we have the freedom to choose a length and time scale, and
we do this by matching the length and time scales of the correlation functions (1) between simulation and experiment,
as shown in Figs. 3a and 3b. See Methods for further details of the modelling.

We compare the simulation results to the experiments in Fig. 2. In agreement with the experiments, spatially
correlated domains of extensile cells in a contractile background emerge in the simulations (Fig. 2f). We also obtain a
quantitative match to the probability distribution for the misalignment angle ◊ if we assume a realignment time scale
25 minutes (Fig. 2b).

spatial 
correlation 
functions

stress (red)
shape (black)



Active stress

viscous + elastic + active stress

couples nematic order and shear flows

                                 relaxation to minimum of Landau-de Gennes free energy



Continuum equations of active liquid crystal hydrodynamics

Polar and Apolar Contributions to Collective Cell Motility
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Two different order parameters: one for shape, one for stress:
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Two different order parameters: one for shape, one for stress:

Active forces produced by the stress fibres



Changes in the free energy
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stress and shape
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experiments

simulations

misalignment angle small (red); 
                                    large (blue)



Yellow: area fraction of interface

Green: fraction of defects at interface

simulations                           experiments

Defects sit at interfaces where misalignment angle approx. 45o
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1. Introduction

2. Active turbulence: the basics

3. Active turbulence: details

4. Mechanobiology

 Active anchoring and cell sorting

How do confluent cell layers move?

Are cells extensile or contractile?

Phase field models

… and a bit more about vertex models

The hare and the tortoise



continuum models: 
active nematic /polar
active gels

particle models
Vicsek model
cellular Potts model

Vertex + Voronoi models

Phase field models

Alert & Trepat, Annual Review of Condensed Matter Physics 2020
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Grant, Aranson



Polar and Apolar Contributions to Collective Cell Motility

1 Introduction

1.1 The phase field approach
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Each cell is described by a phase field 
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Equations of motion

passive forces + active forces



Passive forces: relax to minimise free energy 
Polar and Apolar Contributions to Collective Cell Motility
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Each point si on the boundary of cell i moves according to the equation of
motion

@t'i(si) + vi(si) ·r'i(si) = � �F
�'i(si)

(4)

where F = FCH + Farea + Frep is the total free energy of the cell layer. If
no forces are acting, the cell layer will relax to a minimum of the total free
energy. The global minimum is for the cells to be identical hexagons, but the
system can also become stuck in a glassy state.

1.2 Defining cell shape

However, in general, the cells will be driven out of equilibrium by active forces.
We will need a way to keep track of the shape of each cell. To do this we
calculate the traceless shape deformation tensor of cell i
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The deformation tensor allows us to approximate the cell as an ellipse with
major and minor axes along its eigenvectors. It is related to the usual defini-
tion of the nematic Q-tensor

Qi = S(nin
T

i
� I/2) (6)

where ni is the normalised eigenvector of Di which corresponds to its largest
eigenvalue and S is half the di↵erence between its eigenvalues.

We define the cell polarization pi as a unit vector along the director ni,
with the direction of the vector chosen randomly. A nicer way of doing this
would be the direction between the cell and its centre of mass.

1

Cahn-Hilliard term: fixes            to 1 inside a cell and 0 outside 
and imposes a surface tension 
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1

soft constraint on the area
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penalises overlap between cells

for a single cell is reviewed in [?] [?] [?]. The algorithm has also been used to study the contact
inhibition of locomotion and collisions in binary cell systems [?, ?] and the e↵ect of the sti↵ness
mismatch between single cancer cells and normal cells in metastasis [?].

We consider a two-dimensional, confluent layer of cells. The extent of each cell i is defined by a
phase field 'i. Each phase field 'i(x) moves with velocity vi according to the equation of motion

@t'i(x) + vi(x) ·r'i(x) = �
�F

�'i(x)
(1)

where F is the total free energy of the cell layer.
We assume overdamped dynamics as cell Reynolds numbers are typically ⇠ 10�4. Therefore the

velocity of each point in cell in Eq. (??) is related to the forces acting on it by

⇠ vi(x) = ftoti (x) (2)

where ⇠ is a friction coe�cient.ftoti is the total force density exerted on cell i. There are three

contributions to the force acting on each cell(f toti = fpassivei + fnemi + fpoli ), a passive force related to
the free energy, an active polar force, and an active nematic force.

2.1 Passive force

Passive forces stem from the e↵ective free energy; if a cell deviates from equilibrium, the passive
thermodynamic force will drive it towards a lower free energy state [?]

fpassivei (x) =
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F includes four terms, F = FCH + Farea + Frep + Fadh [?]:
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is a Cahn-Hilliard free energy that restricts 'i to take bulk values 1, which we choose to correspond
to the inside of the cell i, or 0, which denotes the region outside the cell. The cell boundary has
width O(�) because of the derivative term, and �/� is an energy scale.
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is a soft constraint, of strength µ, restricting the area of each cell to ⇡R2.
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penalises overlap between cells with an energy scale /�.
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is a term favouring cell-cell adhesion. Note that �
R
dxr�i ·r�j measures the length of contact

line between two cells and !/� is an energy scale.
If no active forces or external forces are acting, the cell layer will relax to a minimum of the

total free energy. The global minimum is for the cells to be identical hexagons, but the system
can also become stuck in a glassy state. To model a self-propelled system, out of thermodynamic
equilibrium, we need to add active forcing.

3

favours cell-cell adhesion

Passive forces: relax to minimise free energy 
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to the inside of the cell i, or 0, which denotes the region outside the cell. The cell boundary has
width O(�) because of the derivative term, and �/� is an energy scale.
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is a soft constraint, of strength µ, restricting the area of each cell to ⇡R2.
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penalises overlap between cells with an energy scale /�.
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is a term favouring cell-cell adhesion. Note that �
R
dxr�i ·r�j measures the length of contact

line between two cells and !/� is an energy scale.
If no active forces or external forces are acting, the cell layer will relax to a minimum of the

total free energy. The global minimum is for the cells to be identical hexagons, but the system
can also become stuck in a glassy state. To model a self-propelled system, out of thermodynamic
equilibrium, we need to add active forcing.
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Passive forces: relax to minimise free energy 

Equilibrium is identical hexagons, but the system can get stuck
In a jammed state.



Active polar force

2.2 Active nematic force

The active nematic force models the way in which a cell is pulled or pushed by the motion of its
neighbours. For each cell we calculate the deformation tensor
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Z
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⇢
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1

2
Tr(r'ir'T

i )

�
(7)

and define an associated stress field due to all the cells

�D = �⇣
X

i

'i(x)Di (8)

where ⇣ is the strength of the nematic forcing. The active nematic force density is then

f(x)nem = r · �D. (9)

This is constant within the cells but acts at interfaces. ⇣ > 0 and ⇣ < 0 model extensile and
contractile stress, Figs. ?? and ??, respectively. For an individual cell, an extensile (contractile)
force density elongates (contracts) the cell along its deformation axis. For a collection of cells, the
active force also? enhances any parallel alignment of neighbour cells. is this true for both extensile
and contractile?

We note in passing that deformation tensor Di is related to the usual definition of the nematic
Q-tensor [?]

Qi = Si(nin
T
i � I/2) (10)

where ni, the direction of the elongation axis of the object, is the normalised eigenvector of Di

which corresponds to its largest eigenvalue and Si is half the di↵erence between its eigenvalues. We
can measure the deformation of a cell by

Di =
1

2
Si =

q
D2

xx,i +D2
xy,i (11)

where Dxx,i and Dxy,i are the xx and xy components of the deformation tensor.
check notation consistent with using n and S below

2.3 Active polar force

The active polar contribution models any unbalanced force acting on a cell due to actin treadmilling.
We associate each cell with a polarisation vector pi, and define the polar force to act in the direction
of the polarisation vector and to be uniformly distributed over the cell and of strength ↵ (Fig. ??).

f
pol
i (x) = ↵'i(x)pi. (12)

The most physical route to choose the direction of the polarisation vector pi is unclear. Therefore
we compare di↵erent possibilities to predict di↵erences in behaviour that might be observed in
experiment:

1. active Brownian motion (Brownian)

We first simulate cell layers where the polarisation direction is subject to Gaussian white
noise. Writing pi = ↵(cos ✓i, sin ✓i), where ↵ is the constant magnitude of pi,

@t✓i = Dpol ⌘. (13)

⌘ is standard Gaussian noise with standard deviation 1 and Dpol is the strength of the noise.

4

Lamellopodium formation is usually suppressed in confluent cell layers and, although cryptic
lamellopodia can sometimes appear beneath the cells, these appear to have negligible e↵ect on the
cell dynamics, suggesting that any polar contribution to the forces on a cell in a monolayer is small.
However, in the presence of an external stimulus, e.g. a wound or a variation in substrate sti↵ness,
the cell layer can show directed, collective motion [?]. Wound healing experiments have suggested
that this may be mediated by leader cells that pull the colony forwards [?]. Of particular interest,
recent experiments have shown that adding RAB5A to a confluent cell layer leads to flocking,
with the cells moving coherently in a preferred direction, and about five times faster than in the
unperturbed, active turbulent state [?]. The explanation for this striking change in behaviour is not
clear, but a plausible reason is the disturbance of inter-cell interactions. The crossover from glassy
dynamics to flocking has been reproduced in a vertex model by including an alignment between the
polarisation of a cell to its velocity. Also, agent-base modeling with polarisation-velocity alignments
and repulsive interactions leads to a flocking motion [?] [?].

Other numerical models of cell motility have included cellular Potts models [?], vertex models [?],
continuum approaches and phase field models [?] [?]. Here we choose the phase field approach which
allows the cells to change shape, and hence allows us to model nematic ordering and the resultant
active turbulence. We include both polar and nematic driving and study the cell dynamics which
results as their relative importance is varied. This allows us to to compare the conditions that lead
to flocking or to active turbulence, hence unifying a range of collective cell dynamics. Moreover
the most physical way to include the polar force is not known, for example a cell could tend to
propel along its long axis, or along its direction of motion or in a random direction. We compare
the di↵erent possibilities, thus suggesting how these might be distinguished in experiment.

In the next section we describe the numerical model in detail. In section 3 we present our
results, considering in turn the cell velocities, their shapes and the appearance of breaks in the cell
monolayer. Section discusses the results and suggests ideas for future simulations and experiments.
check when results section finished

(a) (b) (c)

Figure 1: Forces densities acting on a cell (a) polar (b) extensile, nematic (c) contractile, nematic.
In (b) and (c) the lines denots the nematic director.

2 The phase field model

We model a monolayer of cells using a coarse-grained, phase field approach. This resolves individual
cells and the forces between them, but not the internal machinery of the cell. The phase field method
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2. Aligns with velocity of cell (+noise)

3. Aligns with long axis of cell (+noise)

4. Aligns and is proportional to the elongation of the cell (+noise)
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2 The phase field model

We model a monolayer of cells using a coarse-grained, phase field approach. This resolves individual
cells and the forces between them, but not the internal machinery of the cell. The phase field method
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(a) (b)

Figure 2: Trajectories of cells in case deform. 1 for 2100 time steps in (a) the jammed state with
! = 0.005,↵ = 0.02, ⇣ = 0.00 and (b) the liquid state with ! = 0.005,↵ = 0.00, ⇣ = 0.04.

(a) (b)

Figure 3: Rearrangement rate as a function of the strength of (a) the nematic force ⇣, (b) the polar
force ↵. ! = 0.01 in both frames. The inset plot in (b) is for case 4: polar force slaved to the
deformation of the cell, where the control parameter is �.

take place, as either ⇣ or ↵ are increased. This is illustrated in Fig. ?? where the trajectories of the
cell centres are compared in typical jammed and liquid configurations.

The transition between the two regimes can be investigated more quantitatively by plotting the
average number of cells that change neighbours at each time step. Fig. ?? shows how this quantity
changes as a function of the strengths of the nematic and polar active forces, ⇣ and ↵, respectively.
Fig. ?? shows a sharp crossover between glassy and liquid dynamics as a function of ⇣. As ↵ is
increased (for small ⇣) there is a much smoother increase in the rearrangement rate (Fig. ??).

This information is summarised in the phase diagram in Fig. ??a where we choose an unjamming
transition of 0.15 as the boundary between the glassy and liquid phases. These results are for case
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deformation of the cell, where the control parameter is �.

take place, as either ⇣ or ↵ are increased. This is illustrated in Fig. ?? where the trajectories of the
cell centres are compared in typical jammed and liquid configurations.

The transition between the two regimes can be investigated more quantitatively by plotting the
average number of cells that change neighbours at each time step. Fig. ?? shows how this quantity
changes as a function of the strengths of the nematic and polar active forces, ⇣ and ↵, respectively.
Fig. ?? shows a sharp crossover between glassy and liquid dynamics as a function of ⇣. As ↵ is
increased (for small ⇣) there is a much smoother increase in the rearrangement rate (Fig. ??).

This information is summarised in the phase diagram in Fig. ??a where we choose an unjamming
transition of 0.15 as the boundary between the glassy and liquid phases. These results are for case
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namics of a confluent cell layer resolves individual cells
and their interaction forces but not the internal cell ma-
chinery [4, 7, 35, 36]. Each cell i is represented by an in-
dividual phase field, Ï(i)(x).The phase fields move with
velocity field defined over space v(i)(x) according to the
equation of motion

ˆtÏ
(i)(x) + v(i)(x) · ÒÏ(i)(x) = ≠J0

”F
”Ï(i)(x)

(1)

where F is a free energy. ≠J0
”F

”Ï(i) describes the relax-
ation dynamics of the cells to a free energy minimum
at a rate J0. The Reynolds number of cells is typically
≥ 10≠4, so the dynamics is over-damped and the velocity
v(i)(x) of a cell is determined by the local force density
acting on cell i,

›v(i)(x) = f (i)
passive(x) + f (i)

active(x), (2)

where › is a friction coe�cient.

The passive force density, f (i)
passive(x) = ”F

”Ï(i) ÒÏ(i), in-
cludes a Cahn-Hilliard term that encourages Ï(i) to take
values 1, which we choose to correspond to the inside of
the cell i, or 0, which denotes the region outside the cell;
a soft constraint, restricting the area of each cell, a re-
pulsion energy that penalises overlap between cells and,
of particular relevance here, a cell-cell adhesion energy
with strength parameterised by Ê. Details of the model
are given in the SM, and can be found in several places
in the literature.

To formulate the active contribution to the force den-
sity, factive, we first calculate the deformation tensor that
quantifies the shape of a cell [4, 37], notation?

D(i) = ≠
⁄

dx
;

ÒÏ(i)ÒÏ(i)T

≠ 1
2Tr(ÒÏ(i)ÒÏ(i)T

)
<

©
Ò

(D(i)
xx)2 + (D(i)

xy )2 (d(i)
Î d(i)T

Î ≠ d(i)
‹ d(i)T

‹ )
(3)

where d(i)
Î and d(i)

‹ are the orthonormal eigenvectors of
the D(i), along and perpendicular to the elongation axis
of the cell respectively, normalised so that d(i)

Î d(i)T

Î +

d(i)
‹ d(i)T

‹ = 1.

We next define a director, n(i), associated with each
cell i.Without inter-cellular force fluctuations, it is phys-
ical that n(i) coincide with its elongation axis(n(i) =
d(i)

Î ).With inter-cellular force fluctuations, we assume
that n(i) relaxes towards d(i)

Î through a stochastic re-
laxation process,

dn(i)

dt
= Jn(d(i)

Î ≠ n(i)) + ⌘(i)(t). (4)

Jn controls the time scale of relaxation we assume

anisotropic, Gaussian noise with

È⌘(t)Í = 0,

È⌘(i)(t)⌘(j)(tÕ)T Í =

”ij”(t ≠ tÕ)(DÎd(i)
Î d(i)T

Î + D‹d(i)
‹ d(i)T

‹ )
(5)

which is uncorrelated between di�erent cells i, j and in
time. The variance of the noise couples to the shape
of the cell and can take di�erent values for fluctuations
along d(i)

Î or d(i)
‹ . notation D and D rather similar?

In the absence of any polar (unbalanced) active forces,
the leading order contribution to the active stress acting
on cell i is related to the director field by

‡(i)
–—(x) = ≠’self Ï(i)(x)Q(i)

–— ≠ ’inter
ÿ

j ”=i

Ï(j)(x)Q(j)
–— (6)

where

Q(i)
–— = {(n(i)

– n(i)
— ≠

--n(i)--2

2 ”–—}. (7)

We distinguish between the stress acting on cell i due to
internal forces, of strength ’self, and that due to other
cells, of strength ’inter. Our arguments are not changed
qualitatively by the value of by ’self and therefore we
choose it to be zero.commenting further on this in the dis-
cussion. The force density arising from the active stress
is then

f (i)
inter(x) = Ò · �(i) = ≠’inter

ÿ

j ”=i

Q(j)
–— · ÒÏ(j)(x) (8)

Inter-cellular contractile forces without fluctua-
tions: It is known that individual cells are contractile, so
the most likely physical picture is that a cell feels the con-
tractile forces from its neighbours, transmitted through
cell-cell junctions. Therefore, we first investigate contrac-
tile, inter-cellular forces (’inter < 0) and assume instanta-
neous relaxation of the director to the elongation axis of
the cell (n(i) = d(i)

Î ), and no fluctuations. Fig. 1(d) shows
the typical force density acting on a given cell due to its
contractile neighbours. Surprisingly, the cell is stretched,
which can be explained by considering Eq. (8).

The gradient of a phase-field, ÒÏ(i), points perpen-
dicular to a cell boundary towards the cell centre. In
addition, in a confluent monolayer with strong cell-
cell adhesion, cells nestle closely sharing common inter-
faces(Fig. 1(e)). These properties allow us to approxi-
mate ÒÏ(j) ¥ ≠ÒÏ(i) for all non-zero contributions in
Eq. (8) so the active inter-cellular force can be written

f (i)
inter(x) = ≠’e� Q(i)

e� · ÒÏ(i)(x) (9)

in terms of an e�ective Q-tensor, Q(i)
e� =

q
j ”=i Q(j), and

an e�ective inter-cellular activity ’e� = ≠’inter. This
shows that a cell with contractile neighbours will be sub-
ject to an extensile-like, self-deformation force density
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Introduction: Asking how cells move collectively is
a fascinating and important problem that encompasses
both the concepts of forces and flows traditional to
physics [1, 2] and the molecular signalling which drives
many biological phenomena [3]. Generic descriptions of
cell motility, such as the phase field model [4–11] and ver-
tex models [12–16], have recently proved useful in identi-
fying key contributions to understanding several aspects
of cell motility.

The forces driving single cells across a flat surface
are well understood. The cell is controlled by direc-
tional actin filaments, which can continuously polymerize
and depolymerize to form lamellopodia, protrusions that
push the cell forwards [17, 18]. To advance, the cell needs
to push against the substrate and to do this e�ectively
it creates focal adhesions, which are mechanical links be-
tween internal actin bundles and the external surface [19].
As it moves, the cell tends to polarize and elongate in the
direction of motion[20]. Contractile forces, mediated by
myosin motors interacting with the actin network within
the cell, tend to restore it to circular[21]. Thus a mini-
mal physical model of single cell motility comprises a net
force in the direction of the cell polarity, together with
contractile, balanced forces restoring the cell to a circu-
lar shape (Fig. 1(c)). (We will refer to forces that tend
to return an elongated cell to circular, or to extend it
further, as contractile and extensile respectively.)

FIG. 1: (a)The schematic of +1/2 comet-like defect.
(b)The schematic of -1/2 trefoil-like defect

(c)self-deformation activity (d)The inter-cellular
contractile forces acting e�ectively like a self extensile

froce. (e)The cell-cell interfaces (f) The nematic state of
cells with strong contractile inter-cellular force and

cell-cell adhesion

Much less is understood about the dynamics of conflu-
ent cell layers. The cells can be jammed with small local
fluctuations [13, 22] or form liquid-like states where the
motion has localised, correlated bursts of velocity or vor-
ticity. Moreover motile topological defects( Fig.1(a)(b)),
regions where the long axes of the cells take comet or
trefoil-like configurations have been identified in several
confluent cell layers [23–26]. This is reminiscent of active
turbulence, which is the dynamical behaviour of many ac-
tive nematic materials, such as suspensions of microswim-
mers [27, 28] and microtubule -motor protein suspensions
[27]. However, the appearance of active turbulence re-
quires elongated particles [29] and therefore it is some-
what surprising to identify topological defects even in as-
semblies of e.g. MDCK cells that are on average isotropic
in shape[25]. Moreover the comet defects can move to-
wards their head, corresponding to extensile driving[30],
even though individual cells are contractile[24]. Indeed,
experiments and simulations have shown that the defect
motion changes direction - indicating a change from ex-
tensile to contractile behaviour - as the cell-cell adhesion
is weakened. Other, theoretical, work has shown that
fluctuating polar (unbalanced) forces can result in exten-
sile defect movement [31, 32].

These observations raise questions about the identify
of the physical forces leading to collective cell motility in
cell layers. The formation of lamellopodia is suppressed
in confluent cell layers, a phenomenon termed contact
inhibition of locomotion, suggesting the absence of any
persistent unbalanced polar forces [33, 34]. Therefore
balanced forces must be acting to drive the cellular dy-
namics and, because the motion is persistent, these must
be active, i.e. fuelled by chemical energy. The most ob-
vious physical origin for these balanced active forces is
the contractile forces within a cell, mediated by the in-
tracellular actin network, which, because of inter-cellular
junctions, pull on their neighbours.

We present analytical and numerical arguments, based
on a coarse-grained, phase field model of cell motility to
show that active, contractile interactions between cells,
mediated through cell junctions, lead to the cells elongat-
ing and lining up to form a stable nematic state. Decreas-
ing cell-cell adhesion leads to long-range flows which have
a destabilising e�ect and result in active turbulence. The
active forces have the simple physical interpretation of
neighbouring cells pulling on each other. We further show
that anisotropic fluctuations in the interactions changes
both the direction in which the defects move, and their
appearance.
Model: The phase-field approach to describing the dy-

Extensile forces within a cell  => active turbulence
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a fascinating and important problem that encompasses
both the concepts of forces and flows traditional to
physics [1, 2] and the molecular signalling which drives
many biological phenomena [3]. Generic descriptions of
cell motility, such as the phase field model [4–11] and ver-
tex models [12–16], have recently proved useful in identi-
fying key contributions to understanding several aspects
of cell motility.

The forces driving single cells across a flat surface
are well understood. The cell is controlled by direc-
tional actin filaments, which can continuously polymerize
and depolymerize to form lamellopodia, protrusions that
push the cell forwards [17, 18]. To advance, the cell needs
to push against the substrate and to do this e�ectively
it creates focal adhesions, which are mechanical links be-
tween internal actin bundles and the external surface [19].
As it moves, the cell tends to polarize and elongate in the
direction of motion[20]. Contractile forces, mediated by
myosin motors interacting with the actin network within
the cell, tend to restore it to circular[21]. Thus a mini-
mal physical model of single cell motility comprises a net
force in the direction of the cell polarity, together with
contractile, balanced forces restoring the cell to a circu-
lar shape (Fig. 1(c)). (We will refer to forces that tend
to return an elongated cell to circular, or to extend it
further, as contractile and extensile respectively.)

FIG. 1: (a)The schematic of +1/2 comet-like defect.
(b)The schematic of -1/2 trefoil-like defect

(c)self-deformation activity (d)The inter-cellular
contractile forces acting e�ectively like a self extensile

froce. (e)The cell-cell interfaces (f) The nematic state of
cells with strong contractile inter-cellular force and

cell-cell adhesion

Much less is understood about the dynamics of conflu-
ent cell layers. The cells can be jammed with small local
fluctuations [13, 22] or form liquid-like states where the
motion has localised, correlated bursts of velocity or vor-
ticity. Moreover motile topological defects( Fig.1(a)(b)),
regions where the long axes of the cells take comet or
trefoil-like configurations have been identified in several
confluent cell layers [23–26]. This is reminiscent of active
turbulence, which is the dynamical behaviour of many ac-
tive nematic materials, such as suspensions of microswim-
mers [27, 28] and microtubule -motor protein suspensions
[27]. However, the appearance of active turbulence re-
quires elongated particles [29] and therefore it is some-
what surprising to identify topological defects even in as-
semblies of e.g. MDCK cells that are on average isotropic
in shape[25]. Moreover the comet defects can move to-
wards their head, corresponding to extensile driving[30],
even though individual cells are contractile[24]. Indeed,
experiments and simulations have shown that the defect
motion changes direction - indicating a change from ex-
tensile to contractile behaviour - as the cell-cell adhesion
is weakened. Other, theoretical, work has shown that
fluctuating polar (unbalanced) forces can result in exten-
sile defect movement [31, 32].

These observations raise questions about the identify
of the physical forces leading to collective cell motility in
cell layers. The formation of lamellopodia is suppressed
in confluent cell layers, a phenomenon termed contact
inhibition of locomotion, suggesting the absence of any
persistent unbalanced polar forces [33, 34]. Therefore
balanced forces must be acting to drive the cellular dy-
namics and, because the motion is persistent, these must
be active, i.e. fuelled by chemical energy. The most ob-
vious physical origin for these balanced active forces is
the contractile forces within a cell, mediated by the in-
tracellular actin network, which, because of inter-cellular
junctions, pull on their neighbours.

We present analytical and numerical arguments, based
on a coarse-grained, phase field model of cell motility to
show that active, contractile interactions between cells,
mediated through cell junctions, lead to the cells elongat-
ing and lining up to form a stable nematic state. Decreas-
ing cell-cell adhesion leads to long-range flows which have
a destabilising e�ect and result in active turbulence. The
active forces have the simple physical interpretation of
neighbouring cells pulling on each other. We further show
that anisotropic fluctuations in the interactions changes
both the direction in which the defects move, and their
appearance.
Model: The phase-field approach to describing the dy-

Contractile forces within a cell => nothing moves



Active forces in confluent cell monolayers

Guanming Zhang1 and Julia M. Yeomans1

1
The Rudolf Peierls Centre for Theoretical Physics, Department of Physics,

University of Oxford, Parks Road, Oxford OX1 3PU, UK

abstract

Introduction: Asking how cells move collectively is
a fascinating and important problem that encompasses
both the concepts of forces and flows traditional to
physics [1, 2] and the molecular signalling which drives
many biological phenomena [3]. Generic descriptions of
cell motility, such as the phase field model [4–11] and ver-
tex models [12–16], have recently proved useful in identi-
fying key contributions to understanding several aspects
of cell motility.

The forces driving single cells across a flat surface
are well understood. The cell is controlled by direc-
tional actin filaments, which can continuously polymerize
and depolymerize to form lamellopodia, protrusions that
push the cell forwards [17, 18]. To advance, the cell needs
to push against the substrate and to do this e�ectively
it creates focal adhesions, which are mechanical links be-
tween internal actin bundles and the external surface [19].
As it moves, the cell tends to polarize and elongate in the
direction of motion[20]. Contractile forces, mediated by
myosin motors interacting with the actin network within
the cell, tend to restore it to circular[21]. Thus a mini-
mal physical model of single cell motility comprises a net
force in the direction of the cell polarity, together with
contractile, balanced forces restoring the cell to a circu-
lar shape (Fig. 1(c)). (We will refer to forces that tend
to return an elongated cell to circular, or to extend it
further, as contractile and extensile respectively.)

FIG. 1: (a)The schematic of +1/2 comet-like defect.
(b)The schematic of -1/2 trefoil-like defect

(c)self-deformation activity (d)The inter-cellular
contractile forces acting e�ectively like a self extensile

froce. (e)The cell-cell interfaces (f) The nematic state of
cells with strong contractile inter-cellular force and

cell-cell adhesion

Much less is understood about the dynamics of conflu-
ent cell layers. The cells can be jammed with small local
fluctuations [13, 22] or form liquid-like states where the
motion has localised, correlated bursts of velocity or vor-
ticity. Moreover motile topological defects( Fig.1(a)(b)),
regions where the long axes of the cells take comet or
trefoil-like configurations have been identified in several
confluent cell layers [23–26]. This is reminiscent of active
turbulence, which is the dynamical behaviour of many ac-
tive nematic materials, such as suspensions of microswim-
mers [27, 28] and microtubule -motor protein suspensions
[27]. However, the appearance of active turbulence re-
quires elongated particles [29] and therefore it is some-
what surprising to identify topological defects even in as-
semblies of e.g. MDCK cells that are on average isotropic
in shape[25]. Moreover the comet defects can move to-
wards their head, corresponding to extensile driving[30],
even though individual cells are contractile[24]. Indeed,
experiments and simulations have shown that the defect
motion changes direction - indicating a change from ex-
tensile to contractile behaviour - as the cell-cell adhesion
is weakened. Other, theoretical, work has shown that
fluctuating polar (unbalanced) forces can result in exten-
sile defect movement [31, 32].

These observations raise questions about the identify
of the physical forces leading to collective cell motility in
cell layers. The formation of lamellopodia is suppressed
in confluent cell layers, a phenomenon termed contact
inhibition of locomotion, suggesting the absence of any
persistent unbalanced polar forces [33, 34]. Therefore
balanced forces must be acting to drive the cellular dy-
namics and, because the motion is persistent, these must
be active, i.e. fuelled by chemical energy. The most ob-
vious physical origin for these balanced active forces is
the contractile forces within a cell, mediated by the in-
tracellular actin network, which, because of inter-cellular
junctions, pull on their neighbours.

We present analytical and numerical arguments, based
on a coarse-grained, phase field model of cell motility to
show that active, contractile interactions between cells,
mediated through cell junctions, lead to the cells elongat-
ing and lining up to form a stable nematic state. Decreas-
ing cell-cell adhesion leads to long-range flows which have
a destabilising e�ect and result in active turbulence. The
active forces have the simple physical interpretation of
neighbouring cells pulling on each other. We further show
that anisotropic fluctuations in the interactions changes
both the direction in which the defects move, and their
appearance.
Model: The phase-field approach to describing the dy-

Contractile forces between cells =>
cells elongate and form a nematic-like lattice
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abstract

Introduction: Asking how cells move collectively is
a fascinating and important problem that encompasses
both the concepts of forces and flows traditional to
physics [1, 2] and the molecular signalling which drives
many biological phenomena [3]. Generic descriptions of
cell motility, such as the phase field model [4–11] and ver-
tex models [12–16], have recently proved useful in identi-
fying key contributions to understanding several aspects
of cell motility.

The forces driving single cells across a flat surface
are well understood. The cell is controlled by direc-
tional actin filaments, which can continuously polymerize
and depolymerize to form lamellopodia, protrusions that
push the cell forwards [17, 18]. To advance, the cell needs
to push against the substrate and to do this e�ectively
it creates focal adhesions, which are mechanical links be-
tween internal actin bundles and the external surface [19].
As it moves, the cell tends to polarize and elongate in the
direction of motion[20]. Contractile forces, mediated by
myosin motors interacting with the actin network within
the cell, tend to restore it to circular[21]. Thus a mini-
mal physical model of single cell motility comprises a net
force in the direction of the cell polarity, together with
contractile, balanced forces restoring the cell to a circu-
lar shape (Fig. 1(c)). (We will refer to forces that tend
to return an elongated cell to circular, or to extend it
further, as contractile and extensile respectively.)

FIG. 1: (a)The schematic of +1/2 comet-like defect.
(b)The schematic of -1/2 trefoil-like defect

(c)self-deformation activity (d)The inter-cellular
contractile forces acting e�ectively like a self extensile

froce. (e)The cell-cell interfaces (f) The nematic state of
cells with strong contractile inter-cellular force and

cell-cell adhesion

Much less is understood about the dynamics of conflu-
ent cell layers. The cells can be jammed with small local
fluctuations [13, 22] or form liquid-like states where the
motion has localised, correlated bursts of velocity or vor-
ticity. Moreover motile topological defects( Fig.1(a)(b)),
regions where the long axes of the cells take comet or
trefoil-like configurations have been identified in several
confluent cell layers [23–26]. This is reminiscent of active
turbulence, which is the dynamical behaviour of many ac-
tive nematic materials, such as suspensions of microswim-
mers [27, 28] and microtubule -motor protein suspensions
[27]. However, the appearance of active turbulence re-
quires elongated particles [29] and therefore it is some-
what surprising to identify topological defects even in as-
semblies of e.g. MDCK cells that are on average isotropic
in shape[25]. Moreover the comet defects can move to-
wards their head, corresponding to extensile driving[30],
even though individual cells are contractile[24]. Indeed,
experiments and simulations have shown that the defect
motion changes direction - indicating a change from ex-
tensile to contractile behaviour - as the cell-cell adhesion
is weakened. Other, theoretical, work has shown that
fluctuating polar (unbalanced) forces can result in exten-
sile defect movement [31, 32].

These observations raise questions about the identify
of the physical forces leading to collective cell motility in
cell layers. The formation of lamellopodia is suppressed
in confluent cell layers, a phenomenon termed contact
inhibition of locomotion, suggesting the absence of any
persistent unbalanced polar forces [33, 34]. Therefore
balanced forces must be acting to drive the cellular dy-
namics and, because the motion is persistent, these must
be active, i.e. fuelled by chemical energy. The most ob-
vious physical origin for these balanced active forces is
the contractile forces within a cell, mediated by the in-
tracellular actin network, which, because of inter-cellular
junctions, pull on their neighbours.

We present analytical and numerical arguments, based
on a coarse-grained, phase field model of cell motility to
show that active, contractile interactions between cells,
mediated through cell junctions, lead to the cells elongat-
ing and lining up to form a stable nematic state. Decreas-
ing cell-cell adhesion leads to long-range flows which have
a destabilising e�ect and result in active turbulence. The
active forces have the simple physical interpretation of
neighbouring cells pulling on each other. We further show
that anisotropic fluctuations in the interactions changes
both the direction in which the defects move, and their
appearance.
Model: The phase-field approach to describing the dy-

Extensile forces between cells =>
cells elongate and form a “capped line” state



Active, contractile inter-cellular interactions
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Introduction: Asking how cells move collectively is
a fascinating and important problem that encompasses
both the concepts of forces and flows traditional to
physics [1, 2] and the molecular signalling which drives
many biological phenomena [3]. Generic descriptions of
cell motility, such as the phase field model [4–11] and ver-
tex models [12–16], have recently proved useful in identi-
fying key contributions to understanding several aspects
of cell motility.

The forces driving single cells across a flat surface
are well understood. The cell is controlled by direc-
tional actin filaments, which can continuously polymerize
and depolymerize to form lamellopodia, protrusions that
push the cell forwards [17, 18]. To advance, the cell needs
to push against the substrate and to do this e�ectively
it creates focal adhesions, which are mechanical links be-
tween internal actin bundles and the external surface [19].
As it moves, the cell tends to polarize and elongate in the
direction of motion[20]. Contractile forces, mediated by
myosin motors interacting with the actin network within
the cell, tend to restore it to circular[21]. Thus a mini-
mal physical model of single cell motility comprises a net
force in the direction of the cell polarity, together with
contractile, balanced forces restoring the cell to a circu-
lar shape (Fig. 1(c)). (We will refer to forces that tend
to return an elongated cell to circular, or to extend it
further, as contractile and extensile respectively.)

FIG. 1: (a)The schematic of +1/2 comet-like defect.
(b)The schematic of -1/2 trefoil-like defect

(c)self-deformation activity (d)The inter-cellular
contractile forces acting e�ectively like a self extensile

froce. (e)The cell-cell interfaces (f) The nematic state of
cells with strong contractile inter-cellular force and

cell-cell adhesion

Much less is understood about the dynamics of conflu-
ent cell layers. The cells can be jammed with small local
fluctuations [13, 22] or form liquid-like states where the
motion has localised, correlated bursts of velocity or vor-
ticity. Moreover motile topological defects( Fig.1(a)(b)),
regions where the long axes of the cells take comet or
trefoil-like configurations have been identified in several
confluent cell layers [23–26]. This is reminiscent of active
turbulence, which is the dynamical behaviour of many ac-
tive nematic materials, such as suspensions of microswim-
mers [27, 28] and microtubule -motor protein suspensions
[27]. However, the appearance of active turbulence re-
quires elongated particles [29] and therefore it is some-
what surprising to identify topological defects even in as-
semblies of e.g. MDCK cells that are on average isotropic
in shape[25]. Moreover the comet defects can move to-
wards their head, corresponding to extensile driving[30],
even though individual cells are contractile[24]. Indeed,
experiments and simulations have shown that the defect
motion changes direction - indicating a change from ex-
tensile to contractile behaviour - as the cell-cell adhesion
is weakened. Other, theoretical, work has shown that
fluctuating polar (unbalanced) forces can result in exten-
sile defect movement [31, 32].

These observations raise questions about the identify
of the physical forces leading to collective cell motility in
cell layers. The formation of lamellopodia is suppressed
in confluent cell layers, a phenomenon termed contact
inhibition of locomotion, suggesting the absence of any
persistent unbalanced polar forces [33, 34]. Therefore
balanced forces must be acting to drive the cellular dy-
namics and, because the motion is persistent, these must
be active, i.e. fuelled by chemical energy. The most ob-
vious physical origin for these balanced active forces is
the contractile forces within a cell, mediated by the in-
tracellular actin network, which, because of inter-cellular
junctions, pull on their neighbours.

We present analytical and numerical arguments, based
on a coarse-grained, phase field model of cell motility to
show that active, contractile interactions between cells,
mediated through cell junctions, lead to the cells elongat-
ing and lining up to form a stable nematic state. Decreas-
ing cell-cell adhesion leads to long-range flows which have
a destabilising e�ect and result in active turbulence. The
active forces have the simple physical interpretation of
neighbouring cells pulling on each other. We further show
that anisotropic fluctuations in the interactions changes
both the direction in which the defects move, and their
appearance.
Model: The phase-field approach to describing the dy-

Active, extensile, intercellular forces



Vertex model

• One of the standard approaches to modelling epithelia

• Area-and-perimeter elasticity

• Vertices follow overdamped dynamics
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Flows in channel confinement

Rozman*, Chaithanya*, et al. arXiv (2023)
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• Nematic stresses: unidirectional channel flows

• Flows never develop in the vertex model
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Vertex model
• One of the standard approaches to modelling epithelia

• Area-and-perimeter elasticity

• Vertices follow overdamped dynamics

• Separate vertex-substrate (𝜂)	and vertex-vertex (𝜉)	frictions 

• Dry model for	𝜉 = 0
• “Wet” model if !
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Flows in channel confinement

Rozman*, Chaithanya*, et al. arXiv (2023)

vi
f
i
sub

vivj1 vj2

vj3

f
i
vert

a b

𝜂�̇�! + 𝜉&
"!

(�̇�! − �̇�#) = 𝐟!

• Dipolar stresses: unidirectional channel flows

• Flows never develop in the vertex model

• Internal dissipation: formation of flows
• Hydrodynamics & long-range correlation
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Correlations

• Velocity-velocity and director-director correlations

• ~1 cell range in dry periodic system
• Much longer range in wet model
• Increasing substrate friction reduces correlation
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