Active Matter Models of Mechanobiolog Julia Yeomans University of Oxford

1. Introduction

- 2. Active turbulence: the basics
- Background 1: Swimming at low Re
- Background 2: nematic liquid crystals
- Active stress and active instabilities
- Active topological defects
- 3D
- P. Mirabilis spreading
- 3. Active turbulence: details (other instabilities, confinement)
- 4. Mechanobiology

Experiment:s

Haoran Xu Yilin Wu

The Chinese University of Hong Kong

Mehrana Nejad

Xu, Nejad, Yeomans, Wu, PNAS 2023

P. Mirabilis on agar Scale bar 500 microns

regular interfacial protrusions

0.0 min

regular interfacial protrusions

Scale bar 50 microns

Simulations: technical comments

- Active nematohydrodynamic equations of motion, extensile activity
- Interface modelled by a phase field, +1 inside the drop, -1 outside, moves in response to the active velocity
- Initial conditions: director field parallel to the interface with an imposed noise and zero velocity field
- the strength of nematic order was taken to decay from the edge to the center of the drop

Simulations: results

A

 $L \times L$ N(L)

N(L)

 $L \times L$ N(L)

1. Introduction

- 2. Active turbulence: the basics
- Background 1: Swimming at low Re
- Background 2: nematic liquid crystals
- Active stress and active instabilities
- Active topological defects
- P. Mirabilis spreading
- 3D
- 3. Active turbulence: details (other instabilities, confinement)
- 4. Mechanobiology

Active nematics:

Gradients in the order parameter => stresses => flows

Active topological defects: the +1/2 defects are selfpropelled

1. Introduction

- 2. Active turbulence: the basics
- 3. Active turbulence: details
- Instability 2 (activity-induced nematic ordering)
- Instability 3 (squishy nematogens)
- Confinement
- Active anchoring and cell sorting
- 4. Mechanobiology

Can we get active turbulence if the passive state is isotropic?

Instability 2: isotropic nematogens are unstable to nematic order

even if the passive system is isotropic, can still get active turbulence –

BUT need flow aligning parameter x activity > 0

Can we get active turbulence if the individual nematogens are isotropic?

Instability 3: deformable, isotropic particles can give nematic order

1. Introduction

- 2. Active turbulence: the basics
- 3. Active turbulence: details
- Instability 2 (activity-induced nematic ordering)
- Instability 3 (squishy nematogens)
- Confinement
- Active anchoring
- 4. Mechanobiology

no slip at walls and weak parallel anchoring

director field

flow

Voituriez et al, EPL 2005

Microtubules and kinesin motors in channels

Widths 30 – 400 microns

Shear + periodic bursts of defects

Opathalage et al PNAS 116, 4788 (2019)

States of an Active Nematic in a Channel

simulations by Kristain Thijssen

Ceilidh Dance

Vortex lattice and active topological microfluidics

The dancing state in confined microtubule – kinesin mixtures

Distribution of defects across the channel:

Blue -1/2

Green +1/2

Active anchoring

Nematogens tend lie along (or perpendicular to) a surface (aligned by flows along the surface)

Gradients in the magnitude or direction of the nematic order induce flow.

Extensile – align along surface

Contractile – align perpendicular to surface

Active anchoring

extensile flows =>
in-plane anchoring
(light brown)

Surface alignment distr

contractile flows =>
normal anchoring
(dark brown)

<u>ζ</u> < 0

0

Surface Normal-director angle $|\cos(\theta)|$

1. Introduction

- 2. Active turbulence: the basics
- 3. Active turbulence: details
- Instability 2 (activity-induced nematic ordering)
- Instability 3 (squishy nematogens)
- Confinement
- Active anchoring
- 4. Mechanobiology

Active anchoring and cell sorting

How do confluent cell layers move?

Are cells extensile or contractile?

Cell sorting

Saraswat Bhattacharyya

Sorting in cell monolayers

Sorting in cell spheroids

Balasubramanian et al Nature Materials 20 1156 (2021)

Pawlizak et al New Journal of Physics 2015

Can mixtures of cells with different activities phase separate?

- An active two-fluid model with compressible components
- Centre-of-mass fluid behaves like an incompressible fluid
- Relative flows allow concentration field to change
- Viscous drag between component fluids keeps relative flows small

active + passive no thermodynamic ordering

concentration difference

0.01

0.02

0.03

 ζ/γ

0.04

0.05

Mechanism: flows + active anchoring

extensile

contractile

