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regular interfacial protrusions
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Simulations: technical comments
e Active nematohydrodynamic equations of motion, extensile activity

* Interface modelled by a phase field, +1 inside the drop, -1 outside, moves in
response to the active velocity

* |nitial conditions: director field parallel to the interface with an imposed noise
and zero velocity field

* the strength of nematic order was taken to decay from the edge to the center
of the drop



Simulations: results
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Active nematics:
Gradients in the order parameter => stresses => flows

Active topological defects: the +1/2 defects are self-
propelled
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Can we get active turbulence if the
passive state is isotropic?




Instability 2: isotropic nematogens are unstable to nematic order

even if the passive system is isotropic, can still get active
turbulence —
BUT need flow aligning parameter x activity >0



Can we get active turbulence if the
individual nematogens are isotropic?




Instability 3: deformable, isotropic particles can give
nematic order

particles
stretched by
extensional
flows

no flows
within ordered
nematic
regions, so
they shrink

local nematic
order and
active
turbulence
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no slip at walls and
weak parallel anchoring

flow director field

Voituriez et al, EPL 2005



Microtubules and kinesin motors in channels
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Shear + periodic bursts of defects




Opathalage et al PNAS 116, 4788 (2019)




States of an Active Nematic in a Channel
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Vortex lattice and active topological microfluidics
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The dancing state in confined microtubule — kinesin mixtures

Distribution of defects across
the channel:

Blue -1/2

Green +1/2

Lxperitoeres



Active anchoring

Nematogens tend lie along (or perpendicular to) a surface
(aligned by flows along the surface)

Gradients in the magnitude or direction
of the nematic order induce flow.

Extensile — align along surface Contractile — align perpendicular to surface



Active anchoring
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Active anchoring and cell sorting

How do confluent cell layers move?

Are cells extensile or contractile?



Cell sorting

Saraswat Bhattacharyya



Sorting in cell monolayers
WT (30%) E-cad KO (70%)

P

Late stages of sorting

Sorting in cell spheroids

Pawlizak et al New Journal of Physics 2015


https://www.nature.com/nmat

Can mixtures of cells with different activities phase separate?

a WT (30%) E-cad KO (70%)

Experiment
Late stages of sorting

* An active two-fluid model with compressible components
* Centre-of-mass fluid behaves like an incompressible fluid
* Relative flows allow concentration field to change

e Viscous drag between component fluids keeps relative flows small



active + passive

no thermodynamic ordering

concentration difference
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Mechanism: flows + active anchoring

active anchoring

(c)
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starfish embryo

green: endoderm, red: ectoderm

Suzuki, Omori, Kuraishi, Kaneko,
Development, Growth & Differentiation 2021




