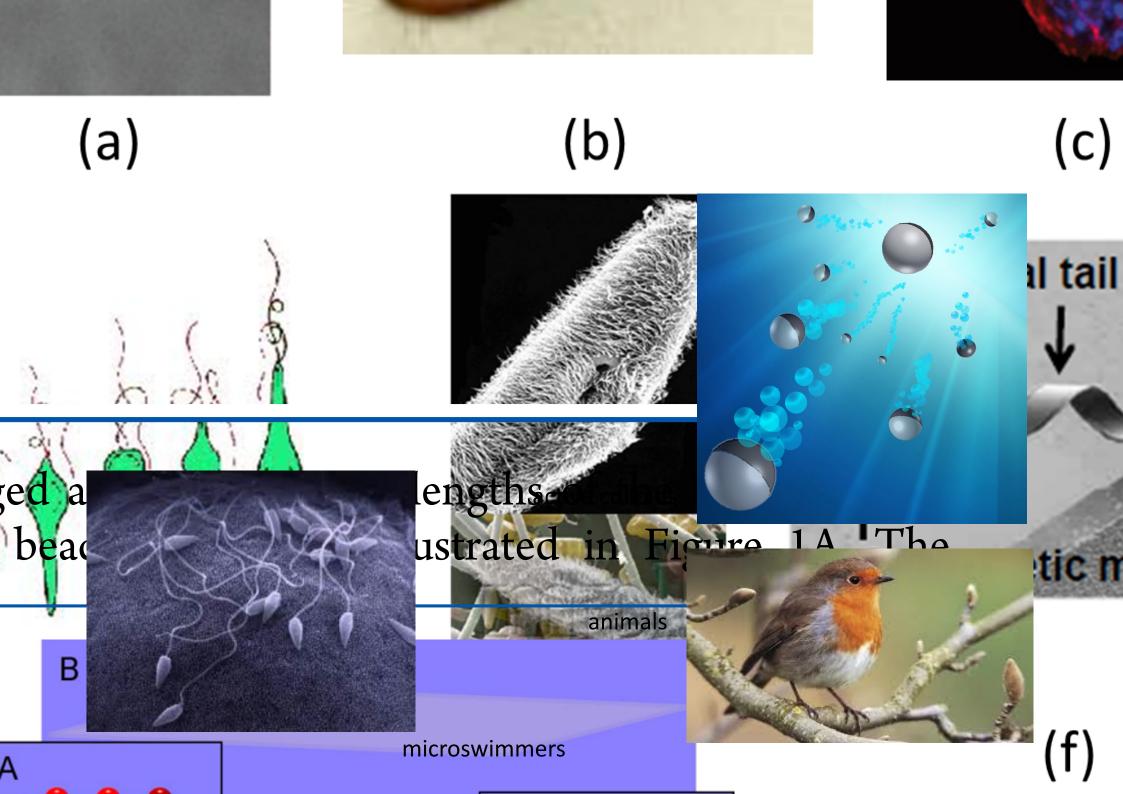
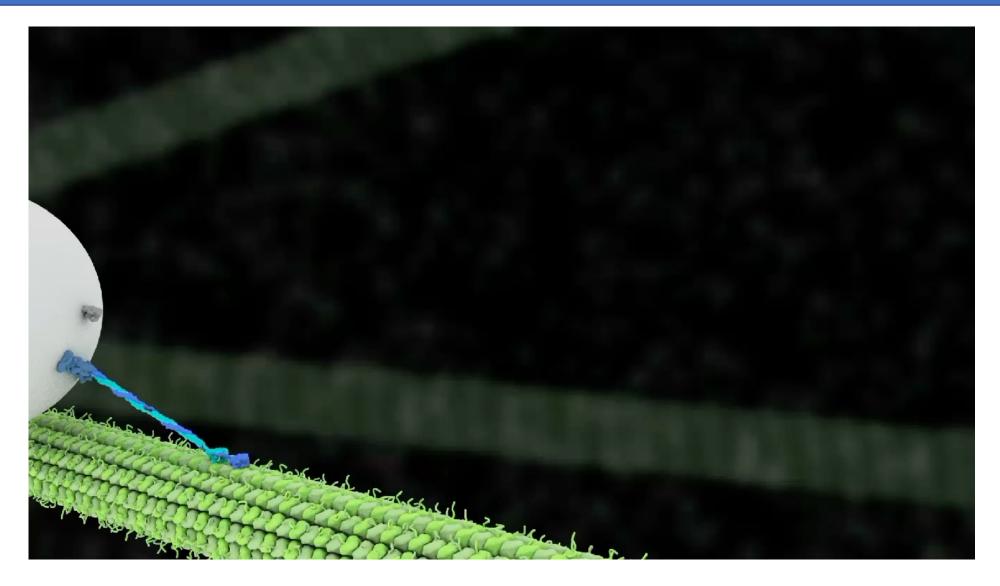


1. Introduction

- 2. Active turbulence: the basics
- Background 1: Swimming at low Re
- Background 2: nematic liquid crystals
- Active stress and active instabilities
- Active topological defects
- P. Mirabilis spreading
- 3D
- 3. Active turbulence: details (other instabilities, confinement)
- 4. Mechanobiology

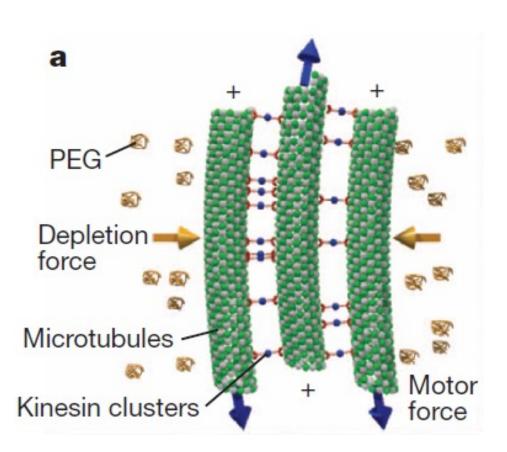


Molecular motors (kinesin)

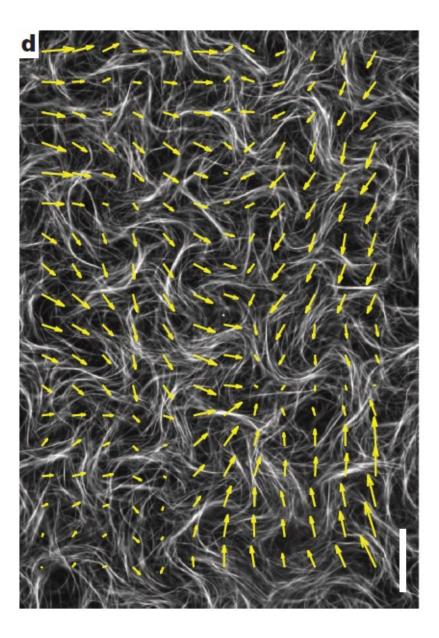


Erik Schäffer Lab Animation by Janet Iwasa

Microtubule-motor protein mixtures



Sanchez, Chen, DeCamp, Heymann, Dogic, Nature 2012



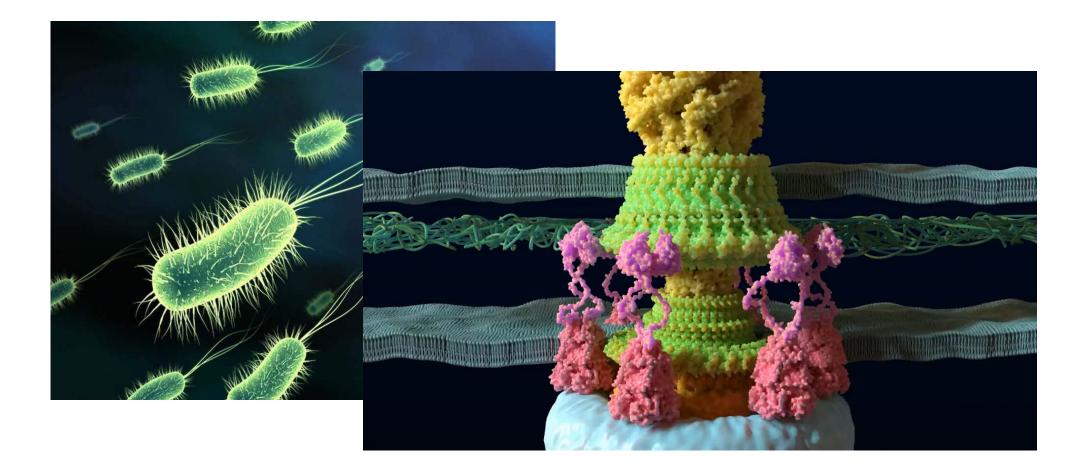
Microtubule-motor protein mixtures mixtures

Francesc Sagues Pau Guillamat Jordi Ignes-Mullol

Active turbulence

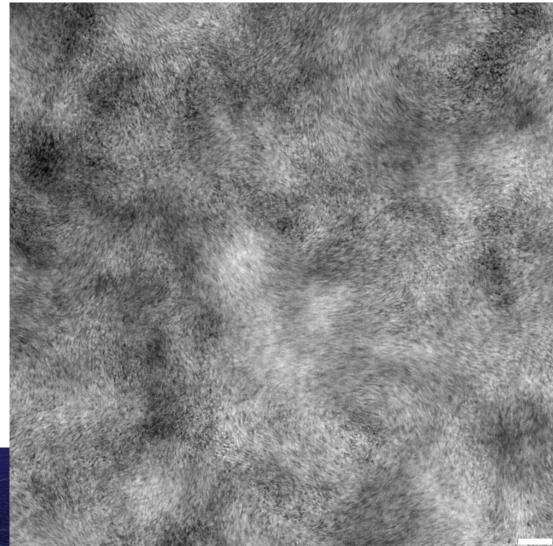
Fluorescence Confocal Microscopy

Bacteria



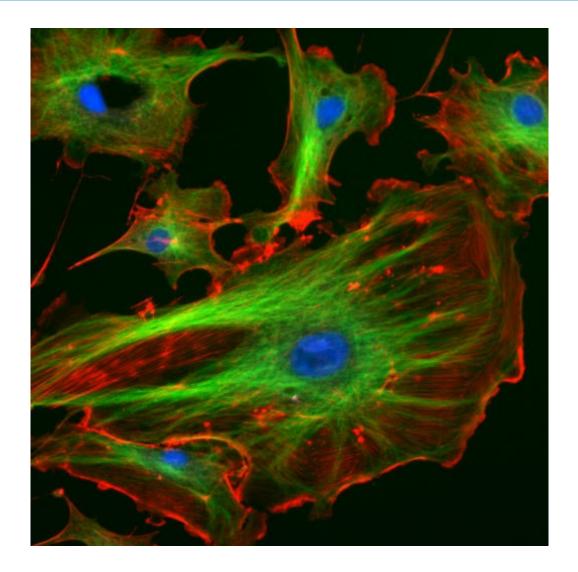
Animation by Matthew Clark, University of Oxford Richard Berry group

Active turbulence: bacteria



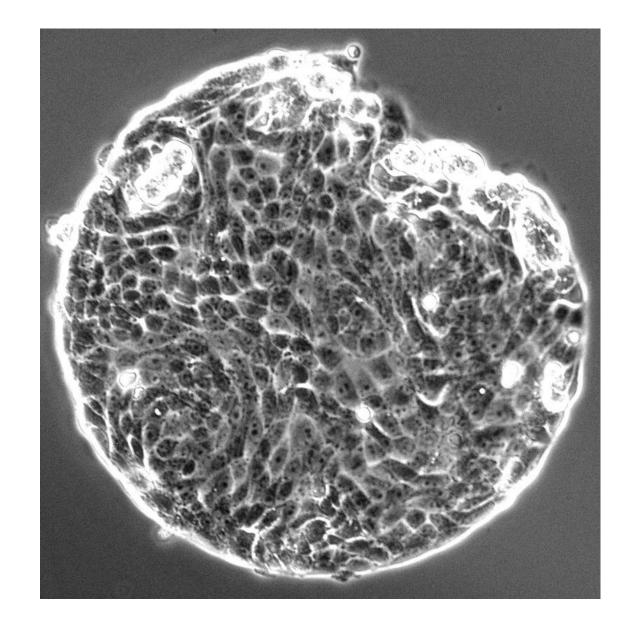
Dense suspension of microswimmers Yi Peng, Zhengyang Liu & Xiang Chen Science Advances 7, 2021

Eukarytic cells

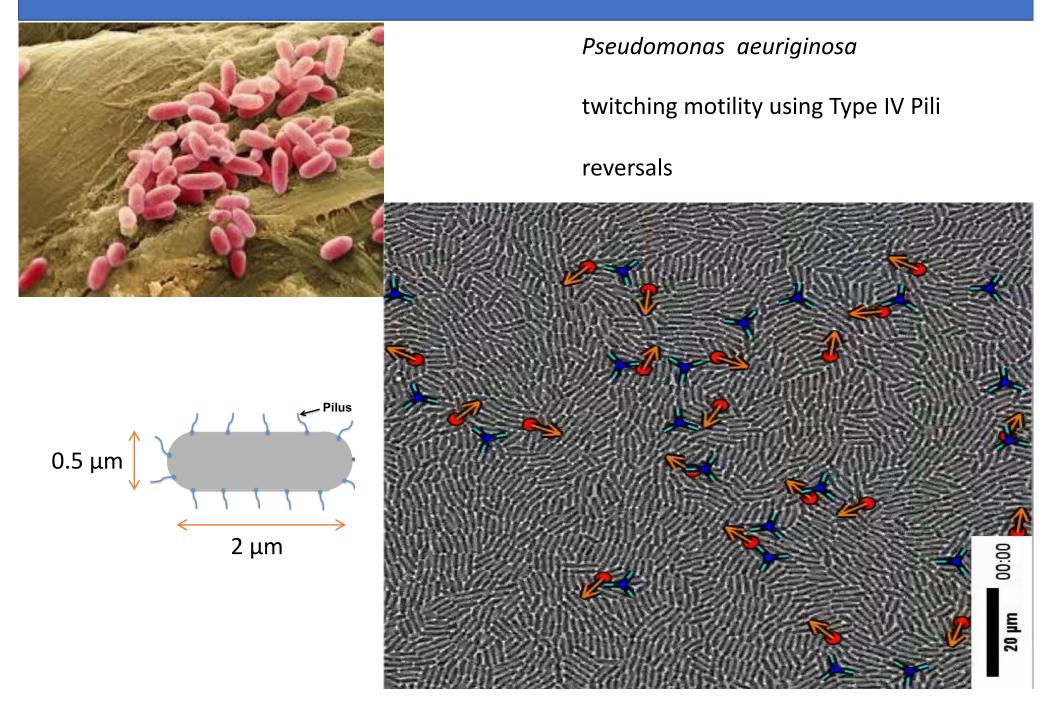


Ladoux and Nicholas Rep Prog Phys 2012

Eukaryotic cells: active turbulence



Bacteria: active turbulence



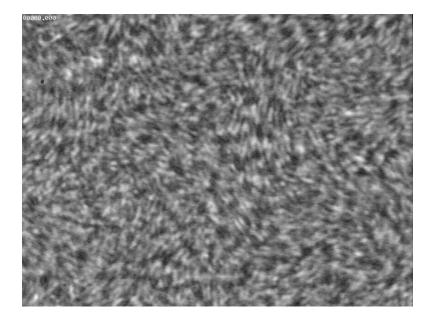
Active matter

Meant to be out of thermodynamic equilibrium

Why is it interesting?

- to understand biological systems: biomechanics and self-assembly
- To create new types of micro-engines Internally-driven microchannel flow
- As examples of non-equilibrium statistical physics

Active turbulence



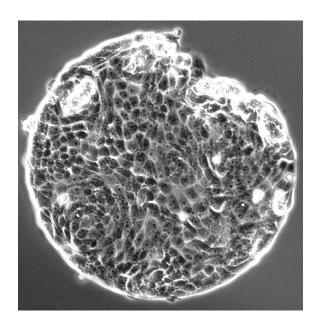
Dense suspension of microswimmers

Active turbulence

Fluorescence Confocal Microscopy

Microtubules driven by motor proteins

Confluent cell layer

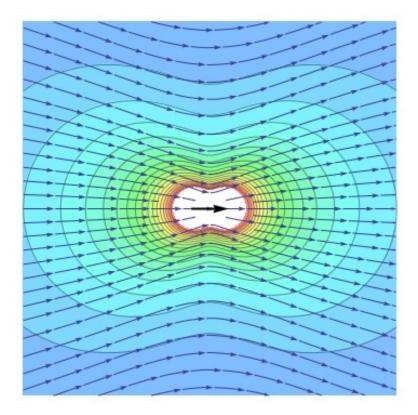


1. Introduction

- 2. Active turbulence: the basics
- Background 1: Swimming at low Re
- Background 2: nematic liquid crystals
- Active stress and active instabilities
- Active topological defects
- P. Mirabilis spreading
- 3D
- 3. Active turbulence: details (other instabilities, confinement)
- 4. Mechanobiology

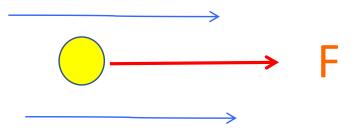
Stokes equations

$$\nabla p = \mu \nabla^2 \mathbf{v} + \mathbf{f}$$

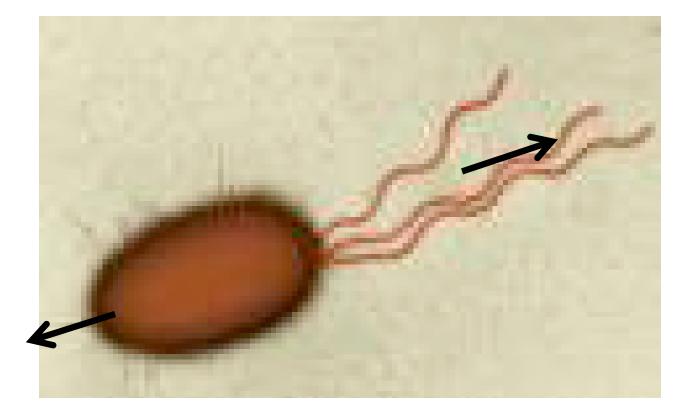


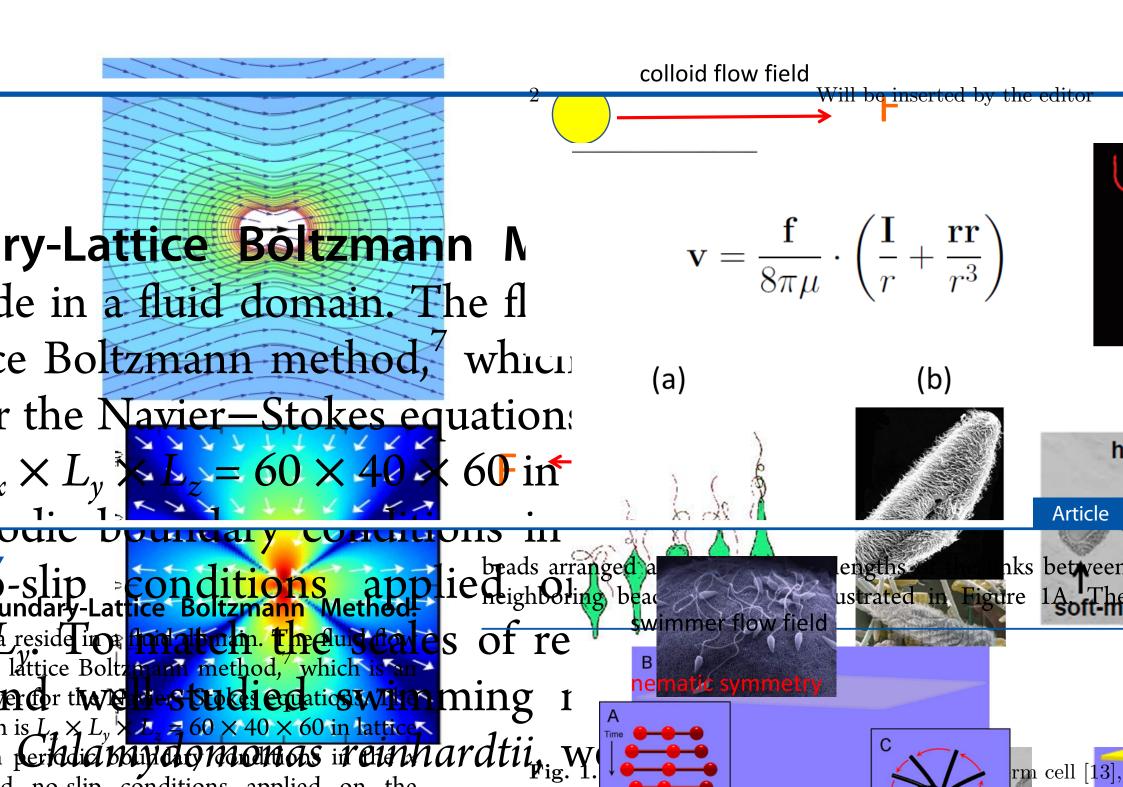
Stokeslet $\mathbf{v} = \frac{\mathbf{f}}{8\pi\mu} \cdot \left(\frac{\mathbf{I}}{r} + \frac{\mathbf{rr}}{r^3}\right)$

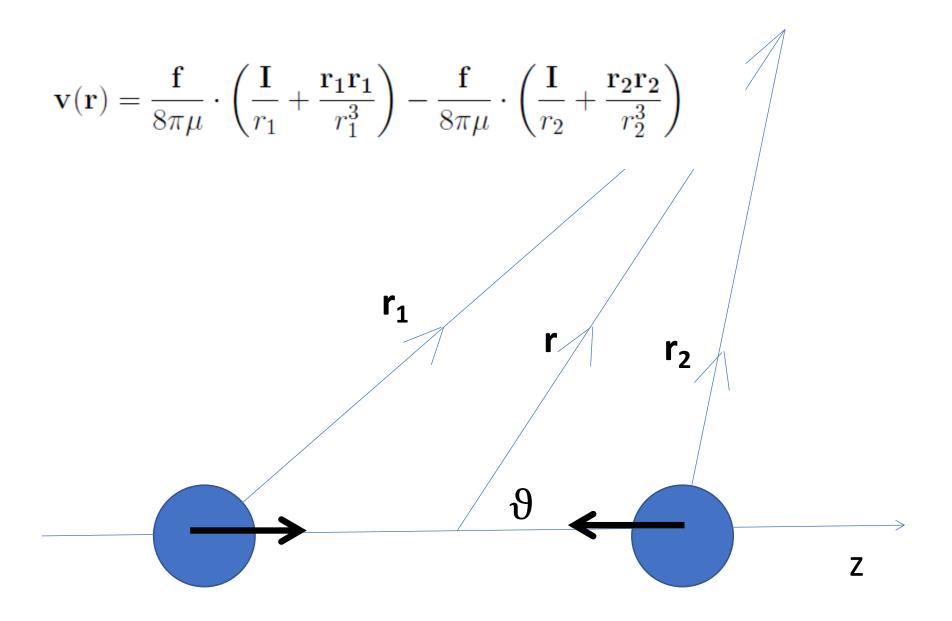
$$v_i(\mathbf{r}) = \frac{f_j}{8\pi\mu} \left(\frac{\delta_{ij}}{r} + \frac{r_i r_j}{r^3}\right)$$



Swimmers have no net external forces or torques acting on them. So, to leading order, the far flow field ~ $1/r^2$

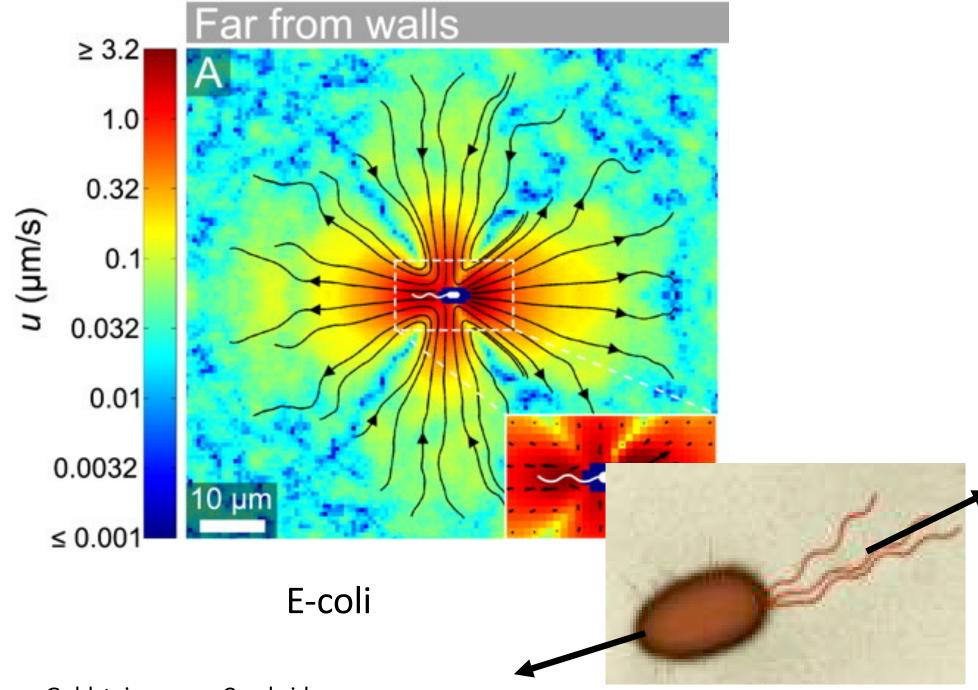




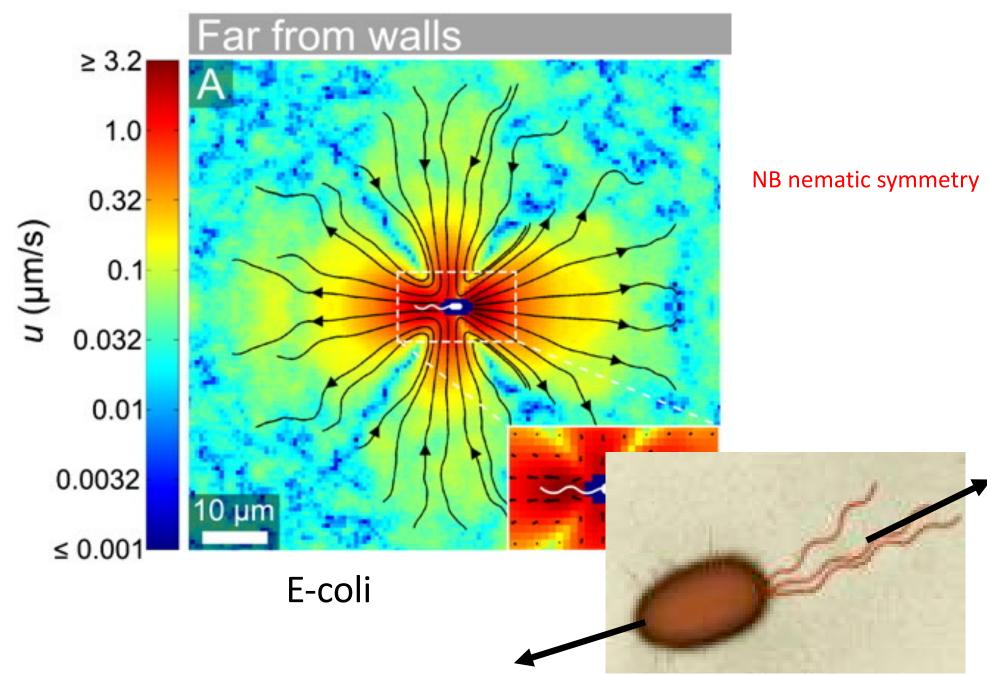


$$v_r = \frac{f}{4\pi\mu} \frac{L}{r^2} \left(3\cos^2\theta - 1\right)$$

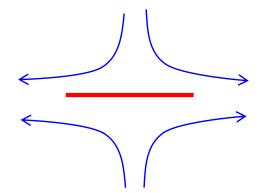
Swimmers have dipolar far flow fields because they have no net force acting on them

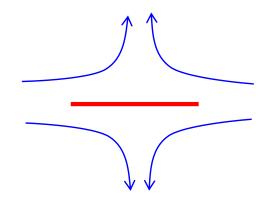


Goldstein group, Cambridge



Goldstein group, Cambridge





Extensile pusher Contractile puller

Nematic ordering

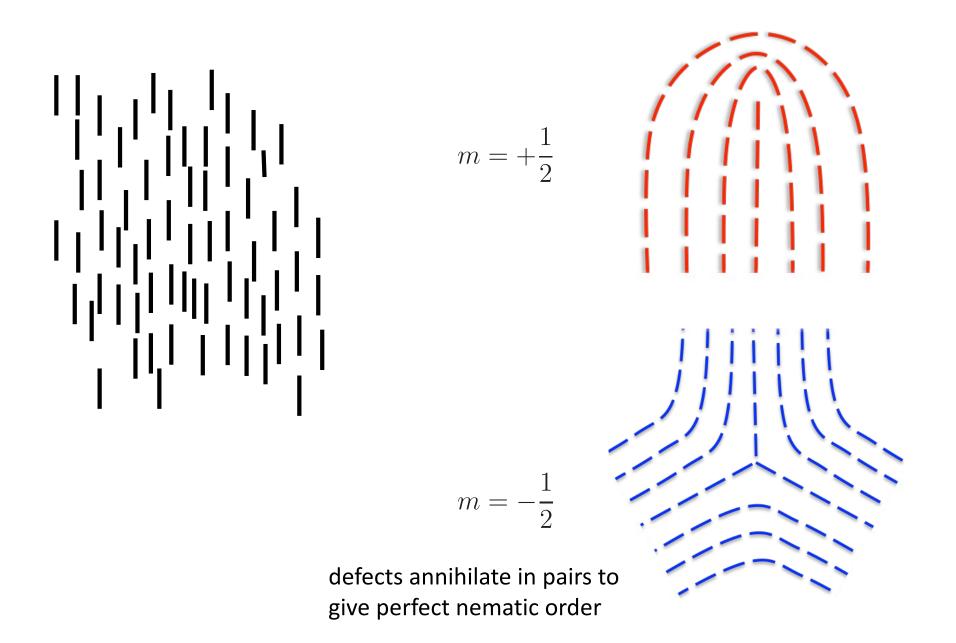
ordered nematic

$$Q_{ij} = \frac{3}{2} \langle n_i n_j - \frac{\delta_{ij}}{3} \rangle$$

Small and unimportant defects

localised distortion easy to restore order

Topological defects



Continuum equations of liquid crystal hydrodynamics

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$

$$S_{ij} = (\lambda E_{ik} + \Omega_{ik})(Q_{kj} + \delta_{kj}/3) + (Q_{ik} + \delta_{ik}/3)(\lambda E_{kj} - \Omega_{kj}) - 2\lambda(Q_{ij} + \delta_{ij}/3)(Q_{kl}\partial_k u_l)$$
$$E_{ij} = (\partial_i u_j + \partial_j u_i)/2$$
$$\Omega_{ij} = (\partial_j u_i - \partial_i u_j)/2$$

 $H_{ij} = -\delta \mathcal{F}/\delta Q_{ij} + (\delta_{ij}/3) \operatorname{Tr}(\delta \mathcal{F}/\delta Q_{kl})$ $\mathcal{F} = K(\partial_k Q_{ij})^2 / 2 + A Q_{ij} Q_{ji} / 2 + B Q_{ij} Q_{jk} Q_{ki} / 3 + C(Q_{ij} Q_{ji})^2 / 4$

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$

$$\Pi_{ij}^{viscous} = 2\mu E_{ij}$$

$$\begin{split} \Pi_{ij}^{passive} &= -P\delta_{ij} + 2\lambda(Q_{ij} + \delta_{ij}/3)(Q_{kl}H_{lk}) - \lambda H_{ik}(Q_{kj} + \delta_{kj}/3) \\ &-\lambda(Q_{ik} + \delta_{ik}/3)H_{kj} - \partial_i Q_{kl}\frac{\delta \mathcal{F}}{\delta \partial_j Q_{lk}} + Q_{ik}H_{kj} - H_{ik}Q_{kj} \end{split}$$
Tumbling parameter

Continuum equations of

liquid crystal hydrodynamics

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$
 couples nematic order and shear flows

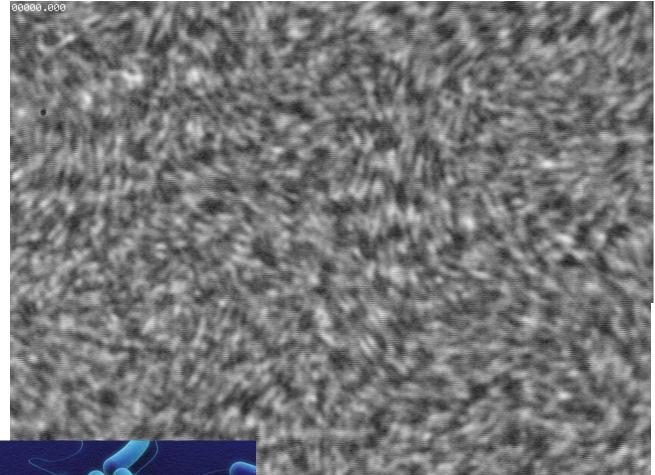
relaxation to minimum of Landau-de Gennes free energy

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$
viscous + elastic

1. Introduction

- 2. Active turbulence: the basics
- Background 1: Swimming at low Re
- Background 2: nematic liquid crystals
- Active stress and active instabilities
- Active topological defects
- P. Mirabilis spreading
- 3D
- 3. Active turbulence: details (other instabilities, confinement)
- 4. Mechanobiology

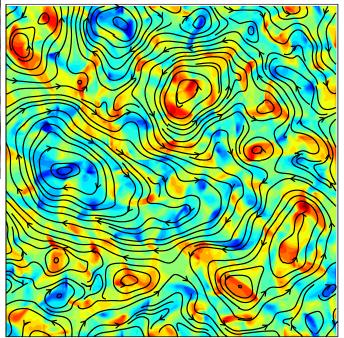
Active turbulence

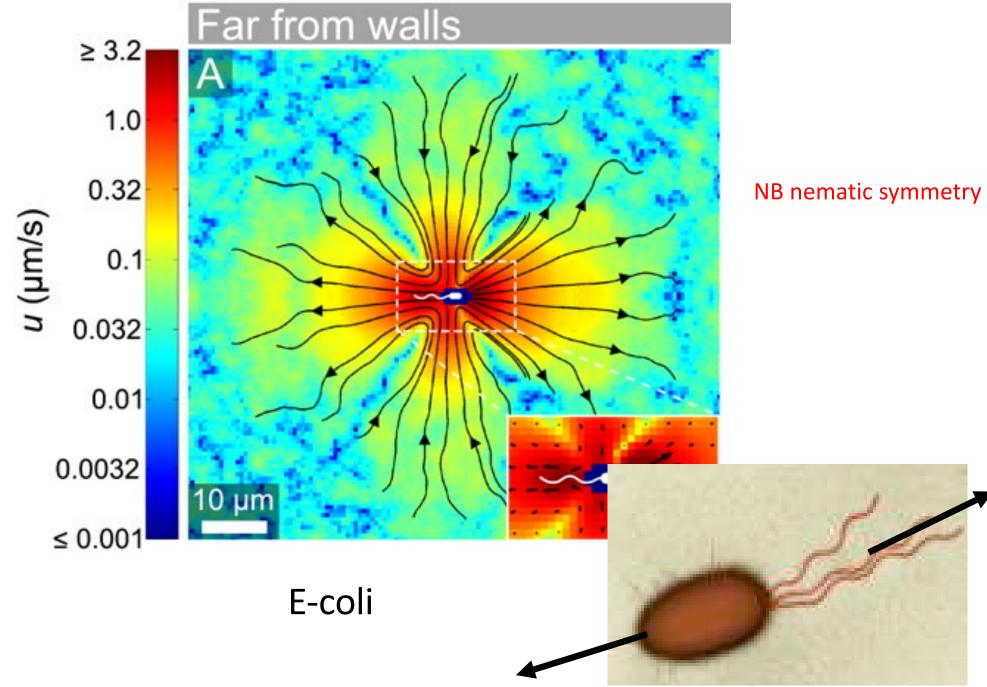


Vorticity field



Dense suspension of microswimmers





Goldstein group, Cambridge

Continuum equations of

liquid crystal hydrodynamics

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$
 couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \Pi_{ij}$$
viscous + passive

Continuum equations of active liquid crystal hydrodynamics

$$(\partial_t + u_k \partial_k) Q_{ij} - S_{ij} = \Gamma H_{ij}$$
 couples nematic order and shear flows

relaxation to minimum of Landau-de Gennes free energy

$$\rho(\partial_t + u_k \partial_k) u_i = \partial_j \prod_{ij}$$
viscous + passive + active stress
$$\Pi_{ij}^{active} = -\zeta Q_{ij}$$

Active stress

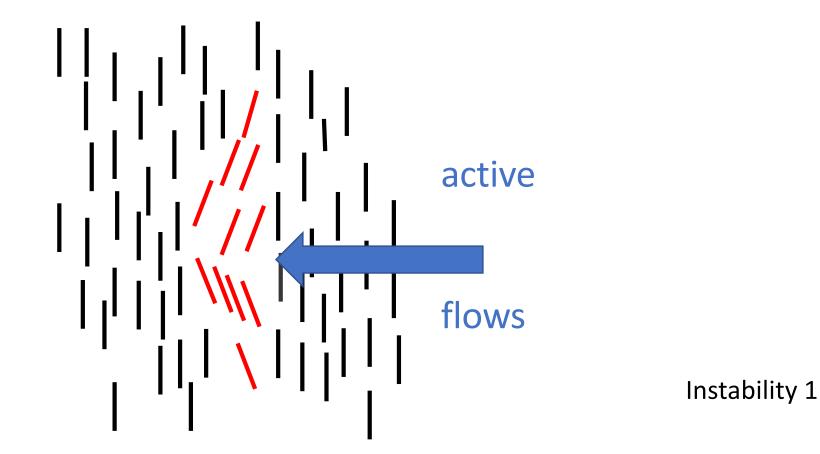
$$\Pi_{ij}^{active} = -\zeta Q_{ij}$$

Gradients in the magnitude or direction of the nematic order induce flow.

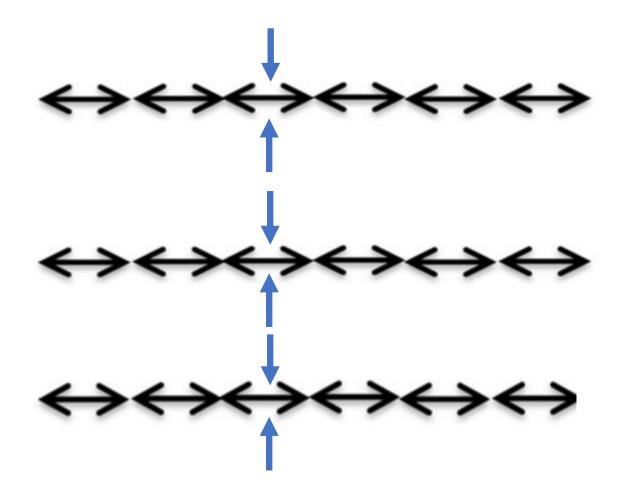
$$\zeta$$
 >0 extensile

Simha, Ramaswamy, 2001

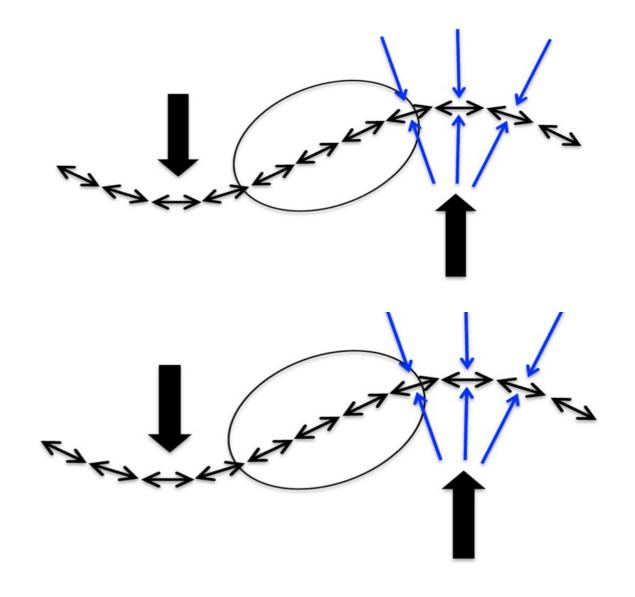
< 0 contractile</pre>

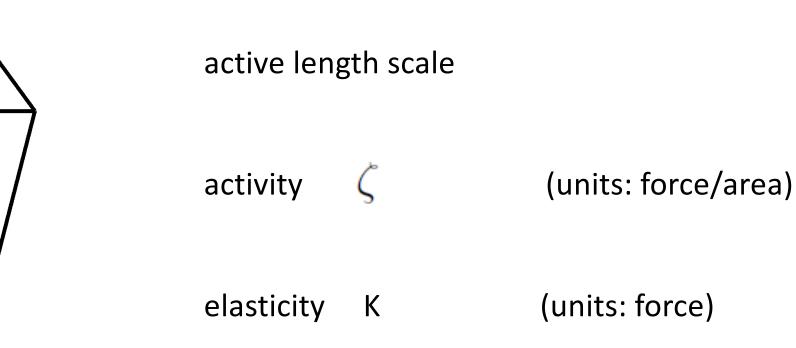


extensile uniform nematic no flow



extensile bend instability => flow





length scale

 K/ζ

Active stress => active turbulence

Active contribution to the stress

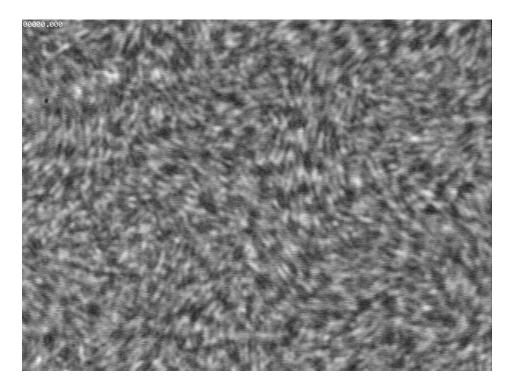
Gradients in the magnitude or direction of the order parameter induce flow.

Linear stability analysis => nematic state is unstable to vortical flows

What happens instead is active turbulence

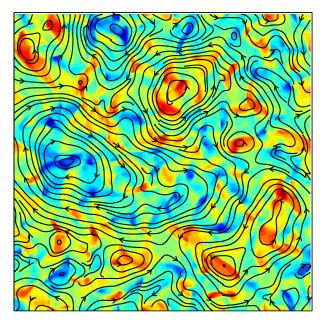
Hatwalne, Ramaswamy, Rao, Simha, PRL 2004

Active turbulence



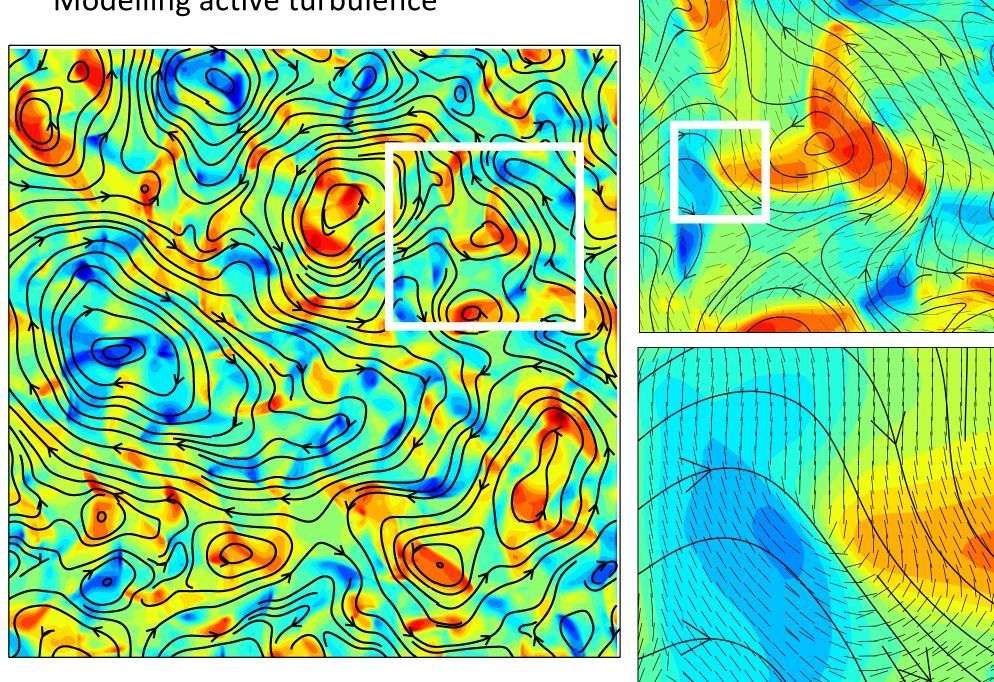
Dense suspension of microswimmers

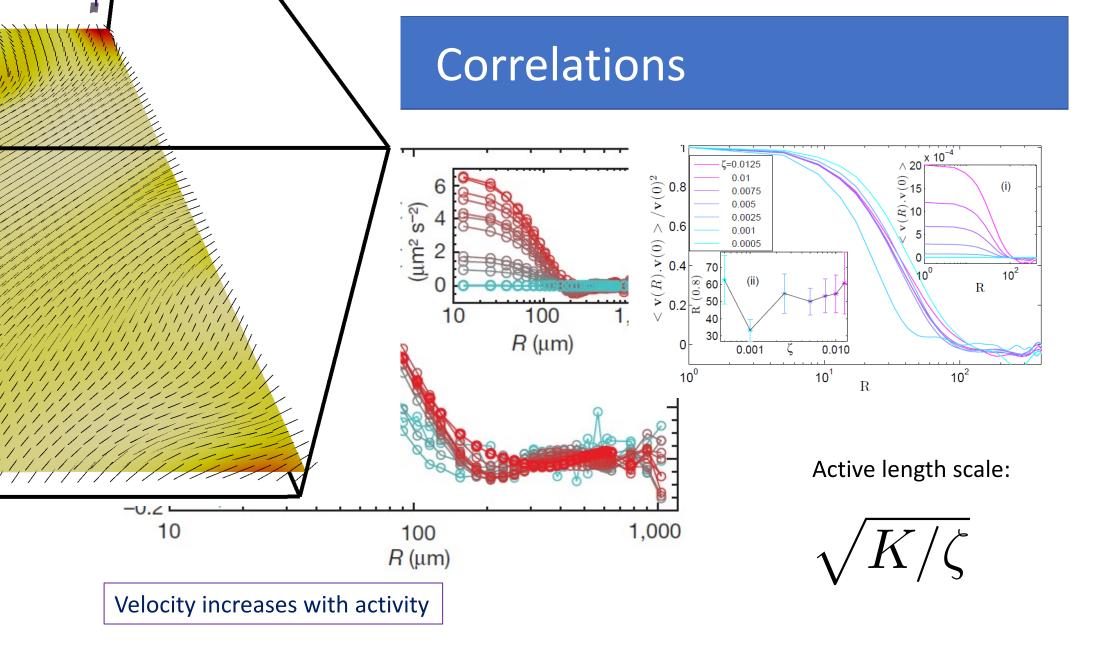
Flow field



Vorticity field

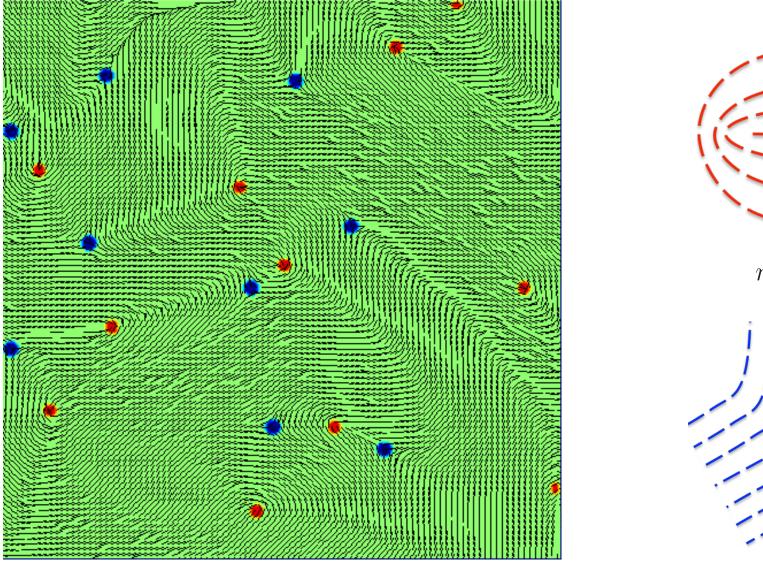
Modelling active turbulence

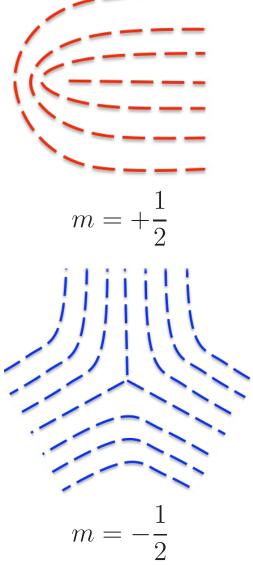




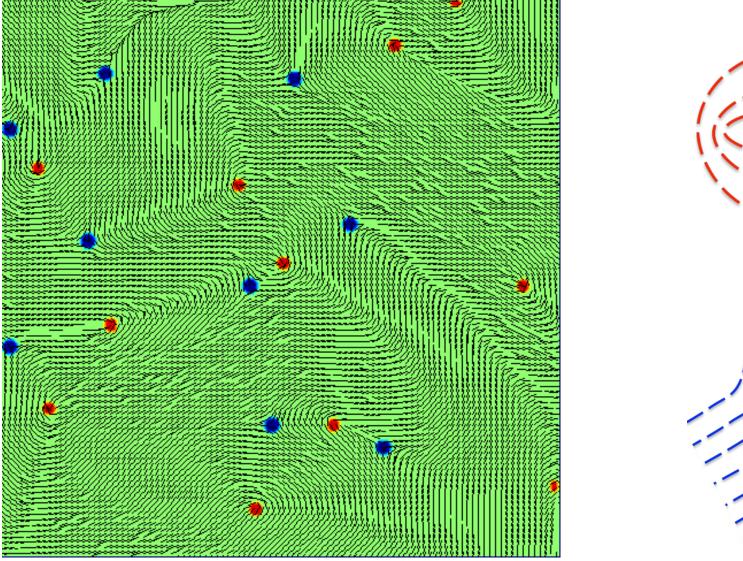
Sanchez, Chen, DeCamp, Heymann, Dogic, Nature 2012

Active turbulence: topological defects are created and destroyed

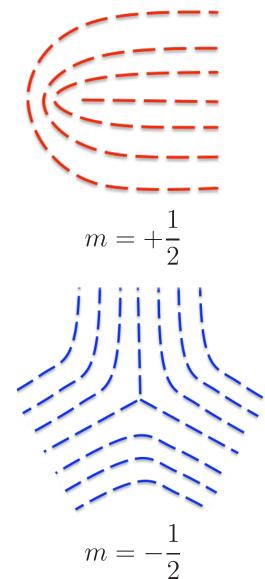


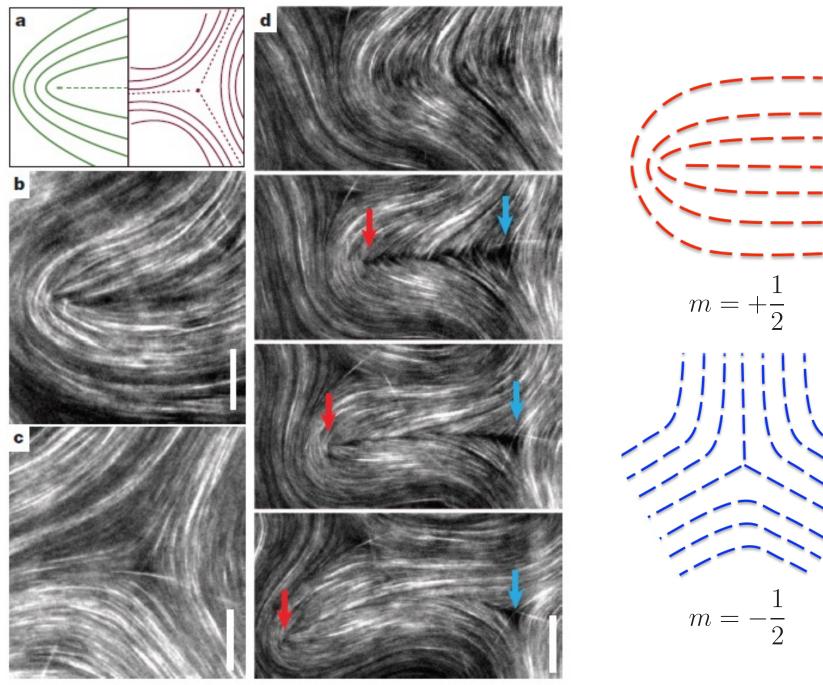


Active turbulence: topological defects are created and destroyed



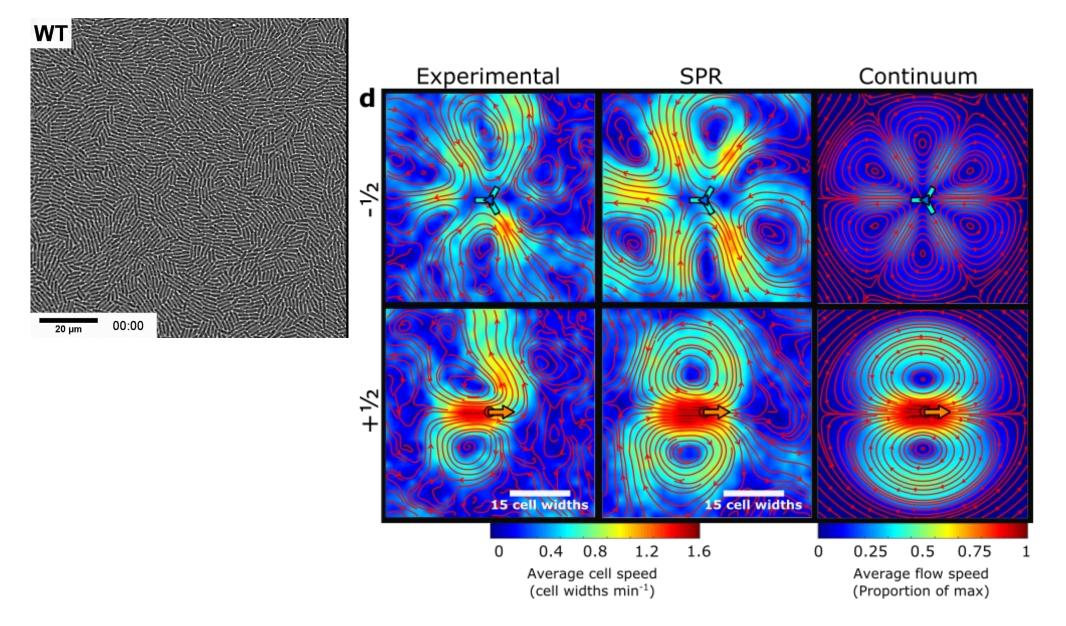
Topological defects are self motile





Sanchez, Chen, DeCamp, Heymann, Dogic, Nature 2012 L. Giomi, M.J. Bowick, Ma Xu, M.C. Marchetti, PRL 110, 228101

Flow field around defects

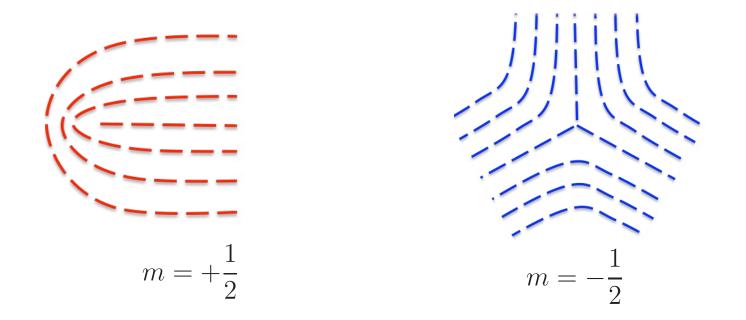


L. Giomi et al Phil. Trans. A: 372:0365, 2014

Active nematics:

Gradients in the order parameter => stresses => flows

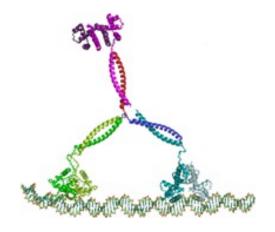
Active topological defects: the +1/2 defects are selfpropelled



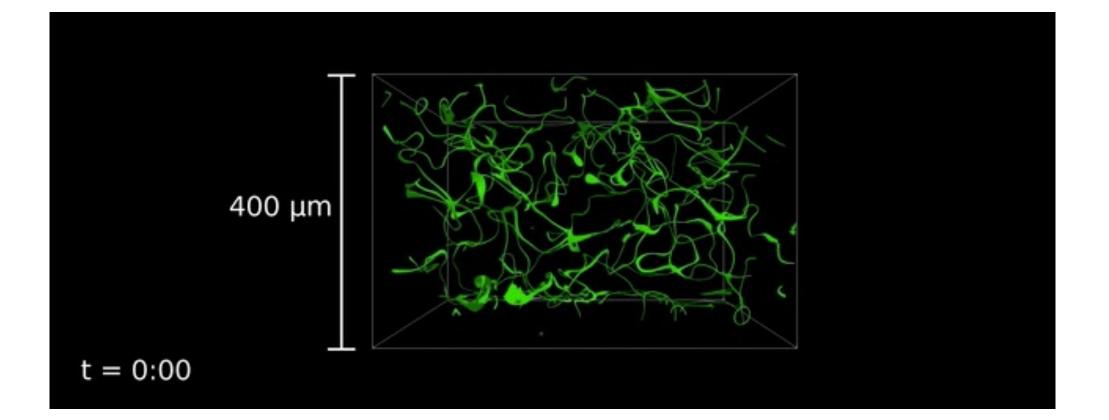
Active nematics review:

A. Doostmohammadi et al. Nature Comms. 9 3246 (2018)

The 2020 motile active matter roadmap G. Gompper et al 2020 J. Phys.: Condens. Matter 32 193001



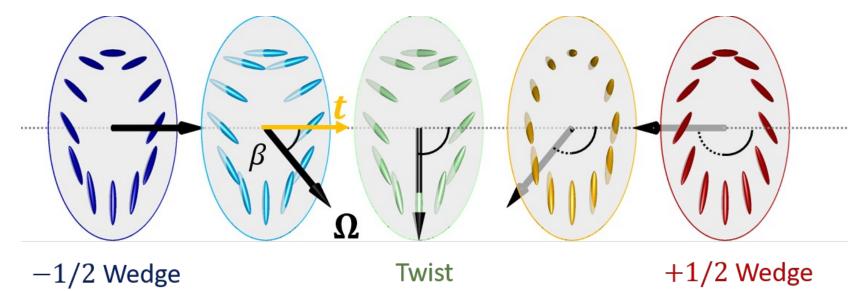
active microtubule bundles in a background of nematic colloids



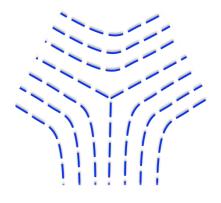
Duclos et al Science 2020

3D: Disclination Lines

cross section of disclination lines



Twist angle: 0



 $\pi/2$

