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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.
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of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.

II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19

ε εΔ = + ≈R L L L7
12

[( / ) ( / ) ] 0.009max
link 2

max
link 3 swim

where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.
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Active matter 

Meant to be out of thermodynamic equilibrium

Why is it interesting?

• to understand biological systems: biomechanics and self-assembly

• To create new types of micro-engines
       Internally-driven microchannel flow

• As examples of non-equilibrium statistical physics
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Swimmers have no net external forces or torques acting on them.
So, to leading order, the far flow field ~ 1/r2
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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.
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immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19

ε εΔ = + ≈R L L L7
12

[( / ) ( / ) ] 0.009max
link 2

max
link 3 swim

where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.
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Fig. 1. Low Reynolds number swimmers: (a) a sperm cell [13], the wave moving along the
flagellum defines a direction in time and allows motion at zero Reynolds number; (b) E. coli,
an example of a pusher, the far flow circulates outwards from the head and tail and inwards
to the sides; (c) Chlamydomonas, the ‘breast-stroke’ of the flagella leads to a contractile
(puller) far flow which circulates from the sides to the front and rear; (d) Euglena metaboly,
shape changes of the body result in propulsion; (e) Paramecium, the surface is covered by
beating cilia, these synchronise, and metachronal waves in the beating pattern move across
the surface of the organism; (f) a fabricated microswimmer, driven by a rotating magnetic
field [11].

bacteria and algae, and fabricated microswimmers, swim. For such tiny entities the
governing equations are the Stokes equations, the zero Reynolds number limit of the
Navier-Stokes equations. This implies the well-known Scallop Theorem, that swim-
ming strokes must be non-invariant under time reversal to allow a net motion, ideas
introduced in Sec. 2. Then, in Sec. 3, we define two model microswimmers and show
how to calculate their swimming speeds.

A concept that we stress in this review is that biological swimmers move au-
tonomously, free from any net external force or torque. As a result the leading order
term in the multipole (far field) expansion of the Stokes equations vanishes and mi-
croswimmers generically have dipolar far flow fields. Sec. 4 is a discussion of the
multipole expansion, and its application to microswimming, and we introduce the
stresslet and rotlet. Then, in Sec 5, we describe physical examples where the dipolar
nature of the bacterial flow field has significant consequences, velocity statistics in a
dilute bacterial suspension and tracer di↵usion in a swimmer suspension. A discussion
of open questions in Sec. 6 closes the paper. As this is a tutorial review we have aimed
to cite references which can be used as entries to the literature.

II. METHODOLOGY
A. Immersed Boundary-Lattice Boltzmann Method.

The swimmer and cilia reside in a fluid domain. The fluid flow
is computed using the lattice Boltzmann method,7 which is an
efficient numerical solver for the Navier−Stokes equations. The
size of the fluid domain is Lx × Ly × Lz = 60 × 40 × 60 in lattice
Boltzmann units, with periodic boundary conditions in the x
and z directions and no-slip conditions applied on the
boundaries y = 0 and y = Ly. To match the scales of recently
fabricated synthetic cilia and well-studied swimming micro-
organisms, such as the alga Chlamydomonas reinhardtii, we set
the lattice Boltzmann grid spacing Δx = 2.5 μm and the time
step Δt = 1 μs. This yields a cilium length and swimmer length
of 25 μm and biologically relevant swimmer speeds on the
order of 102−103 μm/s (see below).
In our simulation, the upper and lower walls lie 100 μm

apart. We will focus on swimmer dynamics near the lower wall,
where the cilia are located. Although the wall separation is only
4 times the swimmer length, we anticipate that our conclusions
also apply in the case that the upper wall is further away or even
absent. Notably, bacterial cell scattering experiments have
suggested that a wall has negligible hydrodynamic effect until
the swimmer collides with it, aligning with the wall and
remaining in close proximity.14 Once our model swimmer
reaches the ciliated lower wall, the upper boundary is
sufficiently far away to be inconsequential.
The flow field generated by the cilia also potentially depends

on the wall separation. Performing simulations with the wall
separation doubled, however, we found that the flow profile
within the ciliary layer was qualitatively identical. The main
difference was a reduced shear rate in the fluid above the cilia
(see Figure S1). Since for our analysis we are primarily
interested in the dynamics of swimmers that reach the ciliary
layer, the location of the upper wall is not critical, provided that
it is at least a few body lengths away from the lower wall.
The LB method is coupled to the dynamics of solid objects

using the immersed boundary method as follows.10 An object in
the fluid is defined by a collection of mesh nodes. At each time
step, internal forces and torques acting on each node are
computed using a constitutive model relating the stresses to
strains within the object. These forces and torques are
transferred to the fluid in accordance with local force and
torque balance. The resulting flow field is then used to advect
the object nodes, thereby satisfying a no-slip condition on the
object. An additional feature not present in traditional IBMs is
that nodes have an associated orientation, which is updated
using the fluid vorticity field.15 This is required for the elastic
filament model of the cilia (see Supporting Information text).
Although this method of advecting immersed boundaries

helps to prevent interpenetration of bodies,15 we reinforce
excluded volume effects around objects by imposing a short-
ranged repulsive force between nodes of swimmers and those of
cilia. The form of this force corresponds to the repulsive part of
a Morse potential interaction

= − − −V r D( ) (1 e )a r rMorse ( ) 20 (1)

where the maximal interaction range is r0 = 1.5Δx. The precise
details of the repulsive interaction are not expected to
qualitatively influence the outcomes of the model.
B. Swimmer Model. The swimmer that we simulate herein

is based on a theoretical model proposed by Najafi and
Golestanian.16 The body consists of three linked spherical

beads arranged along a line. The lengths of the links between
neighboring beads oscillate as illustrated in Figure 1A. The

stroke is nonreciprocal, which is a well-known prerequisite for
generating a net displacement from a cyclic sequence of body
deformations in the zero-Reynolds-number limit.17 This model
swimmer was chosen because it is one of the simplest that
captures the fundamental characteristic of self-propulsion in a
viscous fluid and is, as for many biological swimmers, attracted
to a surface in the absence of the cilia. (However, the approach
described here is sufficiently general that we can introduce
other types of swimmers, such as a flagellated organism;18 this
will be the subject of future work.)
In our three-dimensional numerical model, each bead of the

swimmer is advected with the local flow velocity. Linear elastic
forces and torques are employed to maintain a swimmer
configuration that is close to rigid and collinear. Using one
immersed boundary node for each bead gives an effective
hydrodynamic radius R = Δx. We choose the link lengths to
oscillate between Lmin

link = 4Δx and Lmax
link = 6Δx so that the

average total swimmer length is Lswim = 10Δx = 25 μm. We
investigate swimmers with two different stroke periods, Tswim =
200Δt and 1000Δt. In both cases, we determined the net
displacement after one cycle to be about 1% of the swimmer
length. This is consistent with the analytical result for the
displacement, Δ, given by Earl et al.:19
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where ε = (Lmax
link − Lmin

link).
Converting to physical units, the average speeds of the fast

and slow swimmers are vswim = 1250 and 250 μm/s,
respectively. By comparison, experiments have found swimming
speeds up to 240 μm/s for the 10 μm long C. reinhardtii,20

while bacteria and certain fish larvae are known to reach relative
speeds of 50 body lengths per second.21 Our simulated
swimmers are therefore representative of biological examples in
terms of speed. For a fluid with the viscosity of water, the
corresponding Reynolds numbers are Refast = 0.03 and Reslow =
0.006, indicating the dominance of viscous over inertial effects.

C. Cilium Model. Each cilium is modeled as an elastic rod
of length Lcil = 10Δx = 25 μm, discretized into N = 10
segments of equal lengths. The rod segments are characterized
by position and orientation vectors. Internal mechanics of the
rod are governed by linear elastic constitutive relations

Figure 1. Simulation setup and details of the individual components.
(A) A schematic of the swimming stroke cycle for the three-linked-
sphere swimmer. The darker sphere indicates the leading end of the
swimmer. One full cycle leads to a net displacement of about 1% of the
body length. (B) The simulation domain containing nine cilia and one
swimmer. (C) A superposition of configurations of a single cilium
showing the periodic stroke induced by the external driving force. This
stroke is animated in Movie S1.

Langmuir Article

dx.doi.org/10.1021/la402783x | Langmuir 2013, 29, 12770−1277612771

colloid flow field

swimmer flow field

nematic symmetry



z

r
r1

r2

ϑ



Swimmers have dipolar far flow fields because they 
have no net force acting on them



E-coli

Goldstein group, Cambridge



E-coli

Goldstein group, Cambridge

NB nematic symmetry



Extensile
pusher

Contractile
puller



Topological defects in nematic liquid crystalsNematic ordering

ordered nematic

Qij = hninj �
�ij
3
i

v(r) =
f

8⇡µ
·
✓
I

r
+

rr

r3

◆

vi(r) =
fj
8⇡µ

✓
�ij
r

+
rirj
r3

◆
⌘ Gij(r)fj

Gij(r) =
1

8⇡µ

✓
�ij
r

+
rirj
r3

◆

vi(r) =

Z
Gij(r� ⇠)fj(⇠) d⇠

Gij(r� ⇠) =
1

8⇡µ

✓
�ij

| r� ⇠ | +
(r� ⇠)i(r� ⇠)j

| r� ⇠ |3

◆
.

vi(r) =

Z ⇢
Gij(r)�

@Gij

@⇠k
(r)⇠k +

1

2

@2Gij

@⇠k@⇠l
(r)⇠k⇠l . . .

�
fj(⇠) d⇠

= Gij(r)

Z
fj(⇠) d⇠ �

@Gij

@⇠k
(r)

Z
⇠kfj(⇠) d⇠

+
1

2

@2Gij

@⇠k@⇠l
(r)

Z
⇠k⇠lfj(⇠) d⇠ + . . .

⌘ Gij(r)Fj +
@Gij

@⇠k
(r)Djk +

1

2

@2Gij

@⇠k@⇠l
(r)Qjkl + . . .

1

3
_
2



Topological defects in nematic liquid crystalsSmall and unimportant defects

localised distortion
easy to restore order



Topological defects in nematic liquid crystals 2

m =
1

2π

∫

dS

dθ (1)

m = +
1

2
(2)

m = −
1

2
(3)

First we describe the equations of motion, those corresponding to an active nematic, that

we use to model the active suspension. These are the standard equations of liquid crystal

hydrodynamics, written in terms of a tensor order parameter Q, together with an active

term which means that any gradient in Q will produce a flow field. Evolution of Q along

with the momentum ρu is given by [25, 26],

(∂t + uk∂k)Qij − Sij = ΓHij, (4)

ρ(∂t + uk∂k)ui = ∂jΠij. (5)

Here the generalised advection term

Sij =(λEik + Ωik)(Qkj + δkj/3) + (Qik + δik/3)(λEkj − Ωkj)

− 2λ(Qij + δij/3)(Qkl∂kul)

Here, the strain rate tensor, Eij = (∂iuj + ∂jui)/2

and the vorticity tensor, Ωij = (∂jui − ∂iuj)/2

describe where λ is the alignment parameter. We choose λ = 0.7 corresponding to tumbling

rods [8]. Rotational diffusivity is denoted by Γ and the molecular field
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. Here K is the elastic constant, A,B and C are material constants. The total stress

generating the hydrodynamics has 3 parts;

1. the viscous stress, Πviscous
ij = 2µEij
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FIG. 1: Snapshots of (a) quasi-2D, (b) transitional
and (c) 3D active turbulence in confined active

nematics. Upon increasing the channel height, the
dynamics change from a quasi-2D flow with straight
disclination lines for the channel height H = 15 in (a)
through a transition regime near H = 20 in (b) to 3D
flows with strongly contorted disclination lines for the
channel height H = 25 in (c). The planar colourmap
illustrates the magnitude of the nematic order S and
director field n (solid black lines) in the vicinity of the
lower bounding wall. Disclination lines are shown as
thick lines coloured by the characteristic disclination
angle ↵, from wedge-type disclination segments with
↵ = 0 (green) to twist-type segments with ↵ = ⇡/2

(purple).

of the disclinations (Fig. 1b,c; movies 2-3 [30]).

To simulate the crossover from 2D to 3D ac-
tive turbulence, we solve the nematohydrodynamic
equations [16, 31] of motion for an active nematic
confined between two parallel planar surfaces sep-
arated by a varying distance H. We summarise
the equations here and give their full form in the
SI [30]. The nematic order is described by the ten-
sor Q = 3S (nn� I/3) /2, with director field n and
scalar order parameter S, which can vary from Seq

in ordered regions to zero at the core of topologi-
cal defects. The nematic field evolves according to
DtQ�S = H/� [32], which describes the relaxation
of the orientation towards equilibrium at a rate de-
termined by the rotational viscosity � and the molec-
ular field H, which includes the Landau-de Gennes
free energy as well as a distortion free energy den-
sity term assuming a single Frank elastic coe�cient
K [33]. The rate of change of Q is described by the
material derivative Dt, and S, the co-rotational ad-
vection of the nematic tensor due to gradients of the
velocity field [31].

The velocity field u obeys the incompressible
Navier-Stokes equation Dtu = r·⇧/⇢, in which the
generalized stress ⇧ has viscous, elastic, and active
components [34]. The active stress is described by
�⇣Q [35] and thus the divergence of Q drives active
forcing. This work focuses on extensile active fluids,
relevant to microtubule/kinesin bundles [4, 5], for
which the activity parameter ⇣ > 0. We choose sim-
ulation parameters in a range that reproduces flow
patterns of 2D microtubule bundles under confine-
ment [36] (listed in the SI [30]). The impermeable
parallel surfaces impose strong planar anchoring [37]
on the nematic field and free-slip boundary condi-
tions on the velocity, unless otherwise stated.
The active nematohydrodynamic equations are

solved using a hybrid lattice Boltzmann and finite
di↵erence method [23]. The planar channel geome-
try, characterized by the plate separation H, com-
petes with the characteristic length scale of active
turbulence

p
K/⇣ [38, 39], resulting in the dimen-

sionless activity number A ⇠ H

p
⇣/K.

When the channel height H is su�ciently small
compared to

p
K/⇣, the active turbulence is quasi-

2D. In this limit, both flow and director fields are
height-independent, and topological defects form
straight disclination lines normal to the surfaces
that directly span the gap with translational invari-
ance across the channel (Fig. 1a; movie 1 [30]).
When observed from above, the disclination lines
appear as 2D point defects with half-integer charges
m = ±1/2. Disclinations are continuously created
and annihilated, such that in every plane parallel
to the channel walls the defect dynamics is e↵ec-
tively that of 2D active turbulence [16, 17]. Indeed,
our measurements reveal that velocity and vorticity
correlation lengths [40], and the number density of
defects in the observed quasi-2D turbulence, are con-
sistent with 2D behaviour (see Fig. 1 in the SI [30]).

As the channel height is increased, the system
starts to cross over from quasi-2D to fully 3D ac-
tive turbulence. At the onset of the 3D behaviour,
the disclination lines begin to contort (Fig. 1b;
movie 2 [30]) and the translational invariance



Active contribution to the stress

Gradients in the magnitude or direction of the 
order parameter induce flow.

Active stress => active turbulence 

4

Defects move with fluid velocity

we can use the scaling argument given above to write

v ∼ ζℓvelQ/µ.

At steady state, the rate of creation and rate of destruction of a pair of defects are equal.

Hence

If defect velocity ∼ fluid velocity, α ζ
K = β σζℓQn2

µ ⇒

ℓvel ∼ ζ/n2K, effectively ℓvel ∼ K−1

ℓn ∼
√
K/ζ1/4

v ∼ ζK

ω ∼ ζ

giving ℓ ∼ 1/n2K. Therefore the relevant length scale characterising the velocity field

is indeed independent of the activity. Moreover the dependence of ℓ on n and K gives the

data collapse demonstrated in Fig. 4.

At steady state, two characteristic length scales

(1) for the director field and vorticity ℓn ∼
√
K/ζ1/4 - controlled by defect density (2) for

the velocity field ℓvel ∼ ζ/n2K, effectively ℓvel ∼ K−1

ω = ∇× u

Q = 3q
2

(

nn− I

3

)

Πactive ∝ nn

Πactive = −ζQ

ζ > 0

ζ < 0
Linear stability analysis =>
nematic state is unstable to vortical flows

What happens instead is active turbulence

Hatwalne, Ramaswamy, 
Rao, Simha, PRL 2004
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FIG. 1: Snapshots of (a) quasi-2D, (b) transitional
and (c) 3D active turbulence in confined active

nematics. Upon increasing the channel height, the
dynamics change from a quasi-2D flow with straight
disclination lines for the channel height H = 15 in (a)
through a transition regime near H = 20 in (b) to 3D
flows with strongly contorted disclination lines for the
channel height H = 25 in (c). The planar colourmap
illustrates the magnitude of the nematic order S and
director field n (solid black lines) in the vicinity of the
lower bounding wall. Disclination lines are shown as
thick lines coloured by the characteristic disclination
angle ↵, from wedge-type disclination segments with
↵ = 0 (green) to twist-type segments with ↵ = ⇡/2

(purple).

of the disclinations (Fig. 1b,c; movies 2-3 [30]).

To simulate the crossover from 2D to 3D ac-
tive turbulence, we solve the nematohydrodynamic
equations [16, 31] of motion for an active nematic
confined between two parallel planar surfaces sep-
arated by a varying distance H. We summarise
the equations here and give their full form in the
SI [30]. The nematic order is described by the ten-
sor Q = 3S (nn� I/3) /2, with director field n and
scalar order parameter S, which can vary from Seq

in ordered regions to zero at the core of topologi-
cal defects. The nematic field evolves according to
DtQ�S = H/� [32], which describes the relaxation
of the orientation towards equilibrium at a rate de-
termined by the rotational viscosity � and the molec-
ular field H, which includes the Landau-de Gennes
free energy as well as a distortion free energy den-
sity term assuming a single Frank elastic coe�cient
K [33]. The rate of change of Q is described by the
material derivative Dt, and S, the co-rotational ad-
vection of the nematic tensor due to gradients of the
velocity field [31].

The velocity field u obeys the incompressible
Navier-Stokes equation Dtu = r·⇧/⇢, in which the
generalized stress ⇧ has viscous, elastic, and active
components [34]. The active stress is described by
�⇣Q [35] and thus the divergence of Q drives active
forcing. This work focuses on extensile active fluids,
relevant to microtubule/kinesin bundles [4, 5], for
which the activity parameter ⇣ > 0. We choose sim-
ulation parameters in a range that reproduces flow
patterns of 2D microtubule bundles under confine-
ment [36] (listed in the SI [30]). The impermeable
parallel surfaces impose strong planar anchoring [37]
on the nematic field and free-slip boundary condi-
tions on the velocity, unless otherwise stated.
The active nematohydrodynamic equations are

solved using a hybrid lattice Boltzmann and finite
di↵erence method [23]. The planar channel geome-
try, characterized by the plate separation H, com-
petes with the characteristic length scale of active
turbulence

p
K/⇣ [38, 39], resulting in the dimen-

sionless activity number A ⇠ H

p
⇣/K.

When the channel height H is su�ciently small
compared to

p
K/⇣, the active turbulence is quasi-

2D. In this limit, both flow and director fields are
height-independent, and topological defects form
straight disclination lines normal to the surfaces
that directly span the gap with translational invari-
ance across the channel (Fig. 1a; movie 1 [30]).
When observed from above, the disclination lines
appear as 2D point defects with half-integer charges
m = ±1/2. Disclinations are continuously created
and annihilated, such that in every plane parallel
to the channel walls the defect dynamics is e↵ec-
tively that of 2D active turbulence [16, 17]. Indeed,
our measurements reveal that velocity and vorticity
correlation lengths [40], and the number density of
defects in the observed quasi-2D turbulence, are con-
sistent with 2D behaviour (see Fig. 1 in the SI [30]).

As the channel height is increased, the system
starts to cross over from quasi-2D to fully 3D ac-
tive turbulence. At the onset of the 3D behaviour,
the disclination lines begin to contort (Fig. 1b;
movie 2 [30]) and the translational invariance
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Active nematics:

Gradients in the order parameter => stresses => flows

Active topological defects: the +1/2 defects are self-
propelled
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3D: Disclination Lines

cross section of disclination lines
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