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I. INTRODUCTION

The name active matter refers to collections of entities that individually consume free energy
to generate motion and forces [1, 2]. Through interactions, these “active particles” (e.g., bacteria,
phoretic colloids) spontaneously organize in emergent large-scale structures with a rich range of
materials properties. The defining property of an active system is that the energy input that main-
tains the system out of equilibrium, whether truly internal or created by contact with a proximate
surface, acts individually and independently on each active particle.

A few remarks:

• Once the chemo-mechanical processes that convert fuel into motion are integrated out, the
dynamics of active particles breaks time reversal symmetry (TRS) in a local and sustained
manner.

• The TRS-breaking of active systems should be contrasted with more conventional nonequi-
librium systems that are displaced from equilibrium globally by an external force that picks
out a direction in space, such as an electric field, or as in sedimentation under gravity, or are
forced at the boundaries, such as through an imposed mechanical shear.

• Due to the breaking of TRS at the microscale, active systems do not obey detailed balance and
can generate self-sustained flows and cyclical currents. Thus, steady-state movies of active
dynamics run forwards and backwards do not look the same, as they would in Newtonian
mechanics.

• In contrast to the dynamics of, say, sedimenting particles, the dynamics of active particles is
“force free”.
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• Nonreciprocal interactions that evade Newton’s Third Law of action-reaction are ubiquitous
in active and living systems that break detailed balance at the microscale, from social forces
to promoter-inhibitor couplings among cell types in developing organs and organisms, to
antagonistic interspecies interactions in bacteria and prey-predator systems .

There are at this point many reviews focusing on different aspects of active matter [3–6], a few
books, and even a “review of reviews” that classifies various review articles [7].

I would like to add a warning: this set of notes is a bit of a one side view of a very broad
field of rapidly evolving research, and does not contains a complete and historically accurate set of
citations. For a complete set of citations, please consult suitable review articles.

A. Examples of active systems

For concreteness, let us consider a specific example: bacteria. For instance, E.coli is a rod-shaped
bacterium with a body about 2− 3µm long and 0.5µm in diameter and a long tail of flagella that
allows it to swim [8]. It composes about 1% of the gut flora.

• An individual E. Coli swims through run-and-tumble: It travels in a straight line at a speed
of 10−30µm/s and every second or so it spreads out its flagella and undergoes a tumble, i.e.,
a large change in direction [9]. Although we will see below that the dynamics is diffusive at
times large compared to the tumble rate, this is not a conventional Random Walk.

• A dense E. Coli suspension exhibits coordinated motion and spontaneous organization at
large scales:
- It behaves like a self-flowing fluid: in a nutrient-rich medium one observes a characteristic
swarming dynamics named bacterial turbulence.
- When starved, E.Coli self-organizes in a variety of patterns, such concentric rings of high
and low bacterial density or regular arrays of spots of high cell density.
- It can form solid-like biofilms.

There are many many other examples spanning a broad range of scales, including:

• Organization of chromatin inside the cell nucleus

• Inside a cell (e.g., cytoskeleton controlling cell division, motility)

• Many cells: biological tissue, wound healing, development

• Insect, fish, bird, people

• Collections of robots

• Phoretic colloids, engineered microswimmers

• Reconstituted suspensions of motor proteins (myosins, kinesins) and cytoskelatal filaments
(F-actin, microtubules).
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B. Classes of active matter

Active systems spontaneous organize in a variety of collective phases with properties and behavior
controlled by the symmetry of both the active “particles” and their interactions. Four important
classes are [2, 6]:

• Scalar active matter. Spherical active particles (e.g., colloids driven by a variety of phoretic
effects) with radially symmetric interactions and no alignment can undergo motility induced
phase separation (MIPS) even in the absence of any attractive interactions. This is called
scalar active matter because the order parameter that describes the transition is the density
difference between the dilute and the dense phases, hence a scalar. A local number density
field can be generally defined as

ρ(r, t) =
〈∑

n

δ(r− rn(t)
〉
, (1)

where rn is the position of the n-th particle.

• Polar active matter. Active particles with a head and a tail, such as many bacteria, birds
or fish, are polar and can organize in states with polar order quantified by a vectorial order
parameter. This can be defined as a polarization density field in terms of unit vectors νn

identifying the polarization of each unit ,

p(r, t) =
〈∑

n

νnδ(r− rn(t)
〉
, (2)

where the brackets denote an average over the system. An example is flocking agents where
the polarization (up to a factor of propulsive speed) is also is the mean velocity of the flock.
Polar active particles can also antialign, in which case they may organize in a state with
nematic (apolar) order.

• Nematic active matter Apolar active particles have no head and tail and exert force dipoles
on their surroundings. Examples are microtubule-kinesin bundles or melanocytes, the cells
that shake the pigment in our skin. They can organize in states with nematic order, which is
quantified by a tensorial order parameter, defined as (see below for explanation)

Qij(r, t) =
1

ρ

〈∑
n

(
νniνnj −

1

d
δij

)
δ(r− rn(t)

〉
, (3)

where d is the dimensionality of the system. Here and below i, j, k, ... are used for Carthesian
components.

• Chiral active matter. Active particles may be chiral and organize in states with microscopic
chirality. An example are colloidal spinners in a fluid. In two dimensions, chirality is captured
by a psuedoscalar that quantifies the rotation frequency and can be deifned as

Ω(r, t) =
〈∑

n

Ωnδ(r− rn(t)
〉
, (4)

wher Ωn is the spinning rate of particle n.

This is not an exhaustive list. For instance, it is of course possible to have chiral polar and chiral
nematic states, as well as active solids that can exhibit translational order.
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Figure 1. Various classes of active matter. (a) Scalar active matter composed of isotropic particles self-
propelled at speed v0 along an axis ν̂i that undergo MIPS. (b) Polar active matter composed of selfpropelled
polar aligning active particles that undergo a flocking transition. (c) Nematic active matter of eleongated
particles that extert force dipoles on their environment. (d) Chiral active matter composed of particles that
self-spin at a rate Ωi in two dimensions. The images in the bottom row are, from right to left: MIPS in
a fluid of active Brownian particles (adapted from Ref. [10]); a flock of colloidal polar particles (adapted
from Ref. [11]); a microtubule-kinesin active nematic (adapted from Ref. [12]); a fluid of colloidal spinners
(adapted from Ref. [13]).

C. A bit of history of the field

In 1995 the Hungarian physicist Tamás Vicsek proposed a minimal model of bird flocking inspired
by the physics of magnetism [14]. He showed that a collection of flying spins - self-propelled point
particles traveling with fixed speed in a direction updated by alignment with neighbors in a noisy
environment - can undergo a phase transition from a disordered state where the spins fly randomly
in all directions to an ordered state of collective motion. Just a few months later, Vicsek presented
his work in a seminar at IBM Yorktown Heights. John Toner and Yuhai Tu realized that they
could turn Vicsek’s agent-based model into a field theory and formulated what are now known as
the Toner-Tu equations of flocking [15].
Truth be told, what physicists now know as the Vicsek model had effectively been previously

formulated by Craig Reynolds, a computer scientist working for the animation industry, who in
1986 created Boids [16] – an agent-based simulation of collective motion that he employed, for
instance, to generate the animation of flying bats in the 1992 feature Batman Returns. Indeed the
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model appears even earlier in the literature, in theories of fish schools by Aoki [17] and Partridge [18].
While these contributions remained unnoticed by the physics community for some years, Reynolds,
a leader in the development of three-dimensional animation, was awarded a Scientific and Technical
Award by the Academy of Motion Picture Arts and Sciences in 1998. In the intervening years, the
notion introduced by Vicsek that the collective dynamics of self-driven entities can be described as
a nonequilibrium phase transition gained enormous popularity among physicists and was shown to
provide a powerful framework for describing spontaneous organization on many scales. For their
key contribution to the creation of the field of active matter, Vicsek, Toner and Tu received the
Lars Onsager prize of the American Physical Society in 2020.
The first published use of the term Active Matter appears to be in Ref. [19]. Active Membranes

appear a little earlier in the physics literature [20, 21]. The term “active” in reference to fuel-driven
transport across a membrane, against a concentration gradient, is standard in biology [22]. Active
stresses in a fluid medium suffused with sustained energy conversion make their first appearance in
Ref [23].

II. ACTIVE DYNAMICS VERSUS BROWNIAN DYNAMICS

To understand the key role of motility in driving self-organization, it is useful to begin by contrast-
ing the dynamics of an active or self-propelled particle to that of a familiar Brownian particle. At
least three types of active dynamnics are commonly considered in the literature: Active Brownian
Particles (ABPs), Active Ornstein-Uhlenbeck Particles (AOUPs), and Run-and-Tumble Particles
(RTP). Here we will mainly focus on ABPs and briefly mention the connection to this other com-
monly considered dynamics. A comprehensive review can be found in Ref. [3].

A. Brownian motion

Let us start with a brief summary of how we describe Brownian motion - the herratic motion
of a colloidal particle of mass m in a fluid in thermal equilibrium at temperature T . An excellent
description of Brownian morion can be found in Ref. [24]. We write a stochastic equation of motion
or Langevin equation for the velocity v of the particle as

m
dv

dt
= −γv + f(t) . (5)

The right hand side of Eq. (5) represents the forces due to the fluid. The first term is the mean drag
from the surrounding fluid. The second term represents the random kicks that the colloid receives
from collisions with fluid molecules that drives the motion of the Brownian particle. The effect of
such collisions is modeled as a stochastic force with Gaussian distribution and zero mean, i.e.,

⟨f(t)⟩ = 0 ,

⟨fi(t)fj(t′)⟩ = 2∆δijδ(t− t′) , (6)

where i, j denote Carthesian components and the variance ∆ will be determined by requiring the
Brownian particle to be in thermal equilibrium with the fluid at long times. The δ(t) correlations of
the random forces corresponds to the assumption that successive kicks/collisions are uncorrelated
in time. Note that this equation contains a characteristic time scale τ = m/γ that represents the
relaxation time of the mean velocity, ⟨v(t)⟩ = v(0)e−t/τ . Importantly, here the equilbrium ambient
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fluid generates both the dissipation and the drive. Since we have in mind a micron-size colloid, the
drag or friction coefficient γ can be calculated in the low Reynold number limit. For a spherical
particle of radius R in 3D it is given by the Stokes expression γ = 6πηR, where η is the shear
viscosity of the fluid.
To determine ∆, we formally integrate Eq. (5). Assuming for simplicity v(0) = 0, we find

v(t) =
1

m

∫ t

0

dt′e−(t−t′)/τ f(t′) . (7)

It is then easy to show that

⟨|v(t)|2⟩ = ∆

mγ
d
(
1− e−2t/τ

)
. (8)

We require that at long time (t ≫ τ) the Brownian partcile be in thermal equilibrium with the fluid.
This means that ⟨|v(t → ∞)|2⟩must be the equilibrium value from equipartition ⟨|v(t)|2⟩eq = dkBT

m .
This gives

∆ = γkBT . (9)

The dynamics of Brownian particles is generally quantified in terms of the Mean-Square Dis-
placement (MSD). This is easily obtained from the Langevin equation as

⟨[r(t)− r(0)]2⟩ = 2d
kBT

γ

[
t− τ

(
1− e−|t|/τ

)]
. (10)

It is useful to consider two limiting cases of this expression. Letting ∆r = r(t)− r(0), we find

⟨[∆r]2⟩ =

{
dkBT

m t2 for t ≪ τ ballistic

2dDt for t ≫ τ diffusive
(11)

where

D = lim
t→∞

⟨[∆r(t)]2⟩
2dt

=
kBT

γ
(12)

is the diffusion coefficient. Equation (12) is known as the Einstein relation and is the simplest
example of fluctuation-dissipation theorem (FDT). It also provides a useful metric for quantifying
the rheological state of a system. By inserting the Stokes expresison for the drag γ we obtain
D = kBT

6πηR which is known as the Stkes-Einstein relation.

Problem 1: Green-Kubo formula
Show that the diffusion coefficient can also be written as

D =
1

d

∫ ∞

0

dt⟨v(t) · v(0)⟩ . (13)

This is the simplest example of a Green-Kubo formula that expresses a transport coefficient in term
of an equilibrium time correlation function.

Note that if we consider from the outset the overdamped limit where t ≫ τ , we can neglect
inertia in Eq. (5), which reduces to

γ
dr

dt
= f(t) . (14)
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In this limit the MSD is always diffusive, with

⟨[∆r]2⟩ = 2dDt . (15)

Finally, an equivalent description of Brownian motion (or in general stochastic dynamics) is in
terms of the probability distribution P (r,v, t) of finding the particle in a neighborhood (dr, dv)
of (r,v) at time t. One can show that the probability distribution of a particle with dynamics
described by Eq. (5) is described by a Fokker-Planck equation [24]. Here we are mainly interested
in situation where the velocity relaxes very quickly and the dynamics is overdamped. For this
reason we will simply consider the distribution P (r, t) of particles’ positions. For concreteness, it
is, however useful to consider the case of an overdamped particle subject to a force Fe = −∇Ve.
The Langeving equation is then given by

γ
dr

dt
= Fe + f(t) . (16)

One can then show that the probability distribution of positions satisfies the following Fokker-Planck
equation (usually referred to as Smoluchowski equation in the overdamped limit)

∂tP (r, t) = − 1

γ
∇ · (FeP ) +D∇2P . (17)

B. A single Active Brownian Particle

A minimal models of an active or self-propelled particle is obtained by adding to the particle’s
dynamics a sustained energy source that embodies the microscopic conversion of energy stored in
the environment into directed motion. The resulting propulsion force is subject to fluctuations
which are generally not thermal in origin. For simplicity, we neglect inertial effects and restrict
ourselves to particles in 2D. An ABP is then described by the position r of its center of mass
and a unit vector ν = (cos θ, sin θ) that denotes the direction of self-propulsion. The translational
dynamics is governed by the balance of propulsion, possibly an external potential U , and noise, and
is described by the Langevin equation given by

γṙ = f0ν −∇U + (2D)1/2η(t) , (18)

where f0 denotes the propulsive force and v0 = f0/γ is the propulsion speed, assumed constant.
Here D = kBT/γ is the thermal translational diffusion coefficient introduced earlier. Since the
variance of thermal noise has been scaled out, the stochastic force η(t) is Gaussian distributed
with zero mean and unit variance, ⟨η(t)⟩ = 0 and ⟨ηi(t)ηj(t′)⟩ = δijδ(t − t′). The direction of the
propulsive force changes stochastically according to

θ̇ =
√
2DR ηR(t) (19)

where DR is a rotational diffusion coefficient and ηR(t) a Gaussian random force with zero mean
and unit variance.
This model captures the directionality of the self-propulsion, namely the ability of the orientation

to stay constant during a typical persistence time τp = D−1
R and corresponds to an exponential decay

in time of the correlations of the polarity ν,〈
νi(t)νj(0)

〉
= δij

v20
d
e−|t|/τ . (20)
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Figure 2. Sketch of an Active Brownian Particle (left) and two particles repelled by soft forces upon
overlapping a distance δ.

In other words, an ABP can also be thought of as a Brownian particle with colored noise, in addition
to δ-correlated thermal noise. Of course colored noise alone would not break detailed balance as
the fluctuation-dissipation theorem (FDT) would still hold if the friction were chose to be nonlocal
in time. What breaks detailed balance and FDT in this minimal model is the fact that the friction
is constant, while the effective noise is correlated in time.
The MSD of a single ABP is given by

〈
∆r2(t)

〉
= 2d (D +Dsp) |t|+ 2(v0τ)

2
(
e−|t|/τ − 1

)
=


2dD |t|+ v20t

2 for t ≪ τp,

2d (Dt +Dsp) |t| for t ≫ τp.

(21)

with Dsp = v20τp/d. For a micron-size colloid suspended in water at ambient temperature, the
translational diffusion coefficient is of the order of D≃0.1µm

2/s−1, whereas the active diffusion
coefficient of self-phoretic colloids is of the order of Dsp ≃ 102 µm2/s−1. For this reason in the
following we will neglect thermal translational diffusion.
The ABP exhibits ballistic dynamics for t ≪ τp and diffusive dynamics for t ≫ τp. Therefore,

the dynamics of an isolated self-propelled particle at times and distances larger than, respectively,
the persistence time τp and the persistence length ℓp = v0τp can not be distinguished from a “hot”
Brownian Particle at temperature Teff = γDsp).
ABPs were introduced to mimick the dynamics of self-phoretic colloids with asymmetric chemical

and/or physical properties [25, 26]. Other models of self-propulsion have been considered that
differ by the assumptions made on the higher order cumulants of the noise statistics. Here we
just briefly describe two other models. The run-and-tumble motion is inspired by the dynamics of
bacteria [27, 28]. It alternates between an active state when the particles moves at constant speed
v0 in a given direction (“run”), and a passive state when the center of mass of the particle stays
constant while reorienting its direction (“tumble”). In practice, the change of direction is taken as
instantaneous and completely isotropic, occurring with a given rate α, so that typical trajectories
are made of straight lines with random length of typical size v0/α.

The dynamics of AOUPs was originally proposed as an approximated treatment of ABPs [29, 30].
It consists in neglecting the non-Gaussian nature of the self-propulsion statistics, which amounts to
allowing the amplitude of self-propulsion to fluctuate. In practice, such an approximation captures
the emergent behavior of ABPs with a better accuracy in three dimensions than two. The self-
propulsion dynamics can be described as an Ornstein-Uhlenbeck process

τpν̇ = −ν + (2Dsp)
1/2χ, (22)
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where χ is a Gaussian noise with correlations
〈
χα(t)χβ(0)

〉
= δαβδ(t) completely uncorrelated

with η. Comparing this to the dynamics of an underdamped passive Brownian particle, we see
that the effect of the noise persistence amounts to introducing (i) an effective inertia controlled by
the persistence time τp and (ii) a velocity-dependent mobility. Moreover, in the limit of vanishing
persistence at fixed Dsp the original dynamics given in Eq. (18) reduces to the one of an overdamped
passive Brownian particle at a temperature γ(D+Dsp). Therefore, the persistence can be regarded
as the only parameter monitoring the nonequilibrium properties of an AOUP [31].
The MSD has the same form for the three models of self-propulsion presented above, since it only

depends on the two-point correlations of the fluctuations.

Problem 2: MSD of a single Active Brownian Particle.
Consider a single APB with dynamics described by the equations

∂tr = v0ν +
√
2D η ,

∂tθ =
√
2DR ηR ,

where r is the center of mass of the particle. The ABP moves with a speed v0 along a unit vector
ν = cos θx̂ + sin θŷ that is pinned to its body axis. The self propulsion is not perfect in that it
meanders a bit. This is captured by the θ equation where ηR is a stochastic white noise that causes
the direction to fluctuate. η is the translational white noise that gives rise to diffusion. The noise
has zero mean and correlations

⟨ηi = (t) ηj (t
′)⟩ = δijδ (t− t′)

⟨ηR (t) ηR (t′)⟩ = δ (t− t′)

and all higher cumulants are zero, i.e., the noise is Gaussian. Our goal is to compute the MSD of
the partcile, i.e., derive Eq. (21) of the notes.⟨rα (t) rβ (t)⟩.

1. Show that

⟨ν (t)ν (t′)⟩ = 1

2

 cos 2θ0 exp (−DR [t+ t′ + 2min (t, t′)])
+ exp (−DR [t+ t′ − 2min (t, t′)])

sin 2θ0 exp (−DR [t+ t′ + 2min (t, t′)])

sin 2θ0 exp (−DR [t+ t′ + 2min (t, t′)])
− cos 2θ0 exp (−DR [t+ t′ + 2min (t, t′)])

+ exp (−DR [t+ t′ − 2min (t, t′)])


2. Now compute ⟨ri (t) rj (t)⟩ (assume r(t = 0) = 0). You can average over the initial angle θ0.

3. Now analyze the form of the mean square displacement at short times i.e., t << 1
DR

and at

long times, i.e., t >> 1
DR

.

4. Write a program to evaluate numerically the MSD of a single APB neglecting the translational
noise and compare your numerical result to your calculation, as well as to the MSD of a single
overdamed Brownian particle.

5. Define an effective temperature Teff for your ABP. Research the literature to find suitable
parameters for, say, a typical Janus active colloid and evaluate Teff .
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C. Adding Interactions

Interactions are of course essential for self-organization. We can classify the type of interactions
that have been considered as follows:

• steric interactions: play a key role in driving MIPS and active jamming, but also nematic
order if the particles are rod-like;

• aligning interactions: can be polar or apolar in nature, driving flocking or active nematic
states;

• shape-based interactions, as in Vertex and Voronoi models used to describe confluent epithelial
tissues, which are topological in nature;

• quorum sensing, where microbes interact by secreting some chemical molecules to which other
cells respond, or react to the density of their neighbors.

Here we will focus on the first two.
Once interactions are present, it is of course much harder to construct theories capable of pre-

dicting the behavior of the system. Most common tools are:

• numerical simulations, either agent-based or particle models;

• continuum theories.

Here we will focus on continuum theories. So let me tell you a bit more about how these can be
constructed.

a. How to construct a continuum theory. Often the complexity of the dynamics, inherent to
the large number of degrees of freedom, can be reduced by using a continuum description of the
system at large scales in terms of a small number of coarse-grained fields. The resulting description
is an effective field theory often referred to as hydrodynamics. The first step in constructing a
hydrodynamic theory is identifying the fields. To do this, we rely on the notion of separation of
time scales: most fluctuations decay on microscopic, short time scales; some, however, are “slow”,
in the sense that fluctuations of wavelength ∼ 2π/q decay at a rate s(q) that vanishes when q → 0.
A familiar example is diffusion that describes how a local density inhomogeneity or fluctuation
δρ decays to eventually reach a state of homogeneous density. This dynamics is governed by the
diffusion equation

∂tδρ = D∇2δρ , (23)

where D is the diffusion coefficient. The q−Fourier amplitude of a density fluctuation then decays

as δρq(t) ∼ e−Dq2t. The decay rate s(q) = −Dq2 vanishes at large wavelength because density is
a conserved field (

∫
drρ = N , with N the number of particles in the system) and fluctuations can

only decay through material being rearranged from one location to another.
In general, hydrodynamic fields, defined as those whose relaxation rate vanishes when q → 0,

are those associated with (i) conservation laws and (ii)spontaneous broken symmetries. If we wish
to describe a phase transition, however (as opposed to just the properties of an ordered state), we
often include in continuum models the full order parameter even if its magnitude is not strictly a
hydrodynamic mode.
Once the relevant fields are identified, the corresponding continuum theory can then be con-

structed from four different routes:
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1. based on phenomenological arguments, such as the symmetries of the system [15, 32];

2. by introducing constitutive equations between the fluxes and the forces identified from the
entropy production rate close to equilibrium [33, 34];

3. via explicit coarse-graining of the microscopic dynamics [35–37]. The latter provides explicit
expressions for the kinetic coefficients appearing in the theory, whereas such coefficients are
unknown a priori from the two other methods. Yet, the coarse-graining procedures generally
need to be combined with some approximations (e.g., low density, weak interactions) to arrive
at some closed form for the dynamical equations.

4. Recently the combination of (i) high resolution imaging that has made available large amount
of detailed data, and (ii) machine learning aproaches and data-driven algorythims has provided
a new path for learning continuum models from data [38, 39].

Here I will generally just introduce the continuum models with no derivation, but with some justi-
fication.
Finally, we should keep in mind that biological systems may be guided by completely different

rules, such as the need to optimize information transmission, evolution and survival of the fittest, the
development of structures designed to perform specific functions. The notions of broken symmetries
and conservation laws inspired by condensed matter physics are very useful, but we must to keep a
fresh and open mind in the search for new principles that may govern biology.

III. SCALAR ACTIVE MATTER: MOTILITY INDUCED PHASE SEPARATION
(MIPS)

The name scalar active matter is used to describe systems of isotropic motile particles with
radially symmetric interactions. The simplest case is when the interactions are purely repulsive.
Even in this simple case, motility can have profound effects on the collective behavior, driving two
nonequilibrium phase transitions:

• MIPS: a type of liquid-gas condensation that occurs in the absence of any attractive interac-
tions [10, 25, 26, 28, 40];

• glassy/jammed states at high density, with dynamical heterogeneities and behavior typical of
glassed, observed for instance in confluent biological tissue [41–44].

In this lectures I will focus on MIPS. If you are intersted in active jamming, there are some excellent
reviews, such as Refs. [42, 44].
To examine the remarkable behavior of a minimal model with just motility and purely isotropic

steric interactions, we consider a collection of N disc-shaped ABPs in two dimensions interacting
with pairwise repulsive forces. Interactions, even just steric ones, reveal the nonequilibrium nature
of ABPs and how motility alone can engender self-organization not possible in equilibrium.
The microscale dynamics is governed by a set of coupled Langevin equations, given by

ṙn = v0ν(θn) +
1

γ

∑
m ̸=n

fnm , (24)

θ̇n =
√
2DR ηn, (25)

12



where ηn are uncorrelated Gaussian noises with zero mean and correlations

〈
ηn(t)ηm(0)

〉
= δnmδ(t). (26)

and we have neglected translational thermal noise. The forces fnm = −∇nV (rm − rn), with
V (rn−rm) the pair potential, are purely repulsive. The results described below do not qualitatively
depend on the specific form chosen for the interaction potential. A common form used in the
literature are soft repulsive forces fnm = fnmr̂nm, with r̂nm = (rn − rm)/rnm, rnm = |rn − rm|,
and fnm = k(an + am − rnm) if rnm < an + am and fnm = 0 otherwise. Here an is the radius of
the n-partcile. For monodisperse systems an = a independent of n.

Useful dimensionless parameter to describe N ABPs in a 2D area A are the packing fraction
ϕ =

∑
n πa

2
n/A and the rotational Péclet number defined as the ratio of the particle persistence

length, ℓp = v0τp, to its size a as Pe = ℓp/a. Numerical simulations of this model show that
repulsive ABPs phase separate into a dilute and a dense phase. This is surprising because in
equilibrium phase separation requires attractive interactions. For monodisperse particles the dense
phase can be hexatic or even crystalline. For polydisperse particles it is glassy. An example of the
phase diagram for monodisperse discs from Ref. [45] is shown in Fig. 3.

The transition occurs because crowding slows down the particles’ motility, and particles in turn
accumulate where they show down, resulting in a runaway effect that leads to a spinodal instability
or “antidiffusion”. More precisely one can carry out a perturbative (in the density ρ of ABPs)
calculation of the effect of interactions on the propulsive speed and show that, to leading order,
v0 → v(ρ) = v0 + µ⟨νn ·

∑
m ̸=n fnm⟩ ≃ v0(1 − λρ), with λ > 0. The phase separation can also be

understood via a nice kinetic argument due to Redner et al. [26] that clearly shows that the persistent
dynamics of ABPs breaks detailed balance: the flux of particles into a cluster (Jin ∼ ρgasv0) is
different from the flux out of the cluster, which is controlled by the rate at which particles turn
their nose outward (Jout ∼ (τpa)

−1). A simple estimate for phase separation is then given by
Jin ∼ Jout, which gives ϕ ∼ Pe−1. This also corresponds to the statement that τp > τmf , with
τmf ∼ (2av0ρ)

−1 the mean free time between collisions. In other words, aggregation occurs when
colliding particles do not have time to turn their nose away before experiencing more collisions.

The key simplifying feature of this model is that particles do not exert torques on each other
nor on the surrounding medium. The angular dynamics of each particle is unaffected by that of
the others and by interactions. In fact, as shown at the single particle level, the angular dynamics
can be eliminated at the cost of turning the noise in Eq. (24) into colored noise, correlated over a
perisistence time τp = D−1

R . It is then evident that the model breaks detailed balance in a minimal
way because the constant mobility is not balanced by the colored noise.

A. Mean-Field-Theory of MIPS

To construct a simple Mean-Field-Theory of MIPS, we use Eq. (17) to write down the Smolu-
chowski equation for the probability distribution P(r,ν, t) for an active particle to be at r with
orientation ν at time t

∂tP = −∇ · (v0νP) +DR∂
2
θP (27)
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Figure 3. Left: Snapshot from simulations of MIPS. Right: Phase diagram of monodisperse ABPs in the
plane of Péclet number Pe and packing fraction ϕ showing the coexistence region (gray), hexatic liquid
(purple) and hexatic solid (yellows) regions (from Ref. [45].

The angular moments of P (r,ν, t) describe the local properties of ABPs as follows

ρ(r, t) =

∫
dν P(r,ν, t) density (28)

p(r, t) =

∫
dν ν P(r,ν, t) polarization density (29)

ρ(r, t)Qij(r, t) =

∫
dν

(
νiνj −

1

d
δij

)
P(r,ν, t) nematic alignment tensor (30)

etc. (31)

We can obtain equations for these moments by integrating Eq. (27) over angles, with the result (for
d = 2)

∂tρ = −∇ · (v0p) (32)

∂tp = −Drp− 1

2
∇(v0ρ)−∇ · v0Q (33)

∂tQ = −DrQ−∇(...) (34)

Each moment equation couples to higher order moments. To obtain a closed set of equations we
neglect Q and higher moments and assume that for t ≫ D−1

R the polarization density can be slaved
to the conserved density, i.e., p ≃ − 1

2Dr
∇(v0ρ). Substituting in Eq. (32), we obtain

∂tρ = ∇ ·
(

v0
2DR

∇(v0ρ)

)
=

v20
2DR

∇2ρ . (35)
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Clearly this is just the diffusion equation with diffusion coefficient Dsp = v20/(2DR). It predicts
that any fluctuation of the density from its homogeneous equilibrium value δρ = ρ − ρ0 decays in

time, with δρq(t) ∼ e−Dspq
2t for the decay of the corresponding Fourier amplitude.

As we argued earlier, interactions renormalize v0 to a v(ρ) < v0. Our MFT is obtained by
replacing v0 in Eq. (35) with v(ρ), with the result

∂tρ = ∇ · D(ρ)∇ρ (36)

where

D(ρ) =
v(ρ)

2Dr
[v(ρ) + ρv′(ρ)] (37)

and the prime denotes a derivative wrt ρ. If v(ρ) is a sufficiently strongly decreasing function of
ρ, then one can have D(ρ) < 0 and density fluctuations will grow in time signaling, as we will see
below, spinodal decomposition and phase separation. Explicit perturbative calculations give, to
leading order in the density, v(ρ) = v0(1− τc/τmf , where τc is the mean duration of a collision and
τmf the mean free time between collisions [10].

Equation(36) can be derived by explicit coarse graining of the microscopic dynamics. Here we will,
however, follow a more generic approach based on field theory ideas and will discuss the implications
of the equations in that context. Before doing this, it is useful to review the equilibrium description
of phase separation in the context of the so-called Cahn-Hilliard equation or Model B.

Problem 3: Run-and-Tumble in 1D.
Consider N particles undergoing run-and-tumble dynamics in one dimensions. These particles
tumble at a constant rate α, but their run speed v(x) is spatially varying. Such a situation can be
achieved experimentally using, for instance, photokinetic E.coli [see G. Frangipane et al., Dynamic
density shaping of photokinetic E. coli, eLife 7:e36608 (2018)]. Denote by R(x, t) and L(x, t) the
density of right-moving and left-moving particles at time t.

1. Write Smoluchowski equations for the time evolution of R and L.

2. Reformulate the dynamics in terms of the total particle density ρ = R + L and their polar-
ization p = R− L.

3. Show that the dynamics can be recast in the mean-field form given in Eqs. (36-37) and identify
the expression for D. Clearly state the approximations you need to make to obtain this form
and discuss whether you think they may apply to the experiments of Frangipane et al..

4. Find the steady state solution ρss(x) of the equation you obtained in item 3 and contrast it
to the steady state solution in the case where v = v0.

Problem 3 highlights the difference betweew diffusion and the spontanoeus aggregation that
drives MIPS. In equilibrium density inhomogeneities decay via diffusion and the steady state is
homogeneous, with ρ = constant. The persistent dynamics of ABPs, in contract, traps particles
when their nose points towards high density regions and builds up density inhomogeneities.
The statistical physics of repulsive ABPs has been studied extensively, with the goal of construct-

ing an effective thermodynamics for this system, including defining the pressure of an active gas,
an effective surface tension, effective chemical potential, etc. [46].
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MIPS has been seen in countless numerical simulations, but has it been seen in experiments?
Experimental active systems, living and not, ubiquitously show aggregation in clusters and at
surfaces. But are these really examples of MIPS? In general the interpretation of experiments in
active colloids is complicated by a variety of phoretic effects, as well as hydrodynamic interactions.
Experiments in bacteria are also complicated by hydrodynamic interactions, as well as chemotaxis,
quorum sensing and more. The condensation of protein in membrane-free organelles inside living
cells and their nucleus is presumably mediated by a variety of chemical reactions. In all these
cases one observes arrested (as opposed to bulk) phase separation with the formation of dynamical
clusters of well defined mean size. Nonetheless ABPs and their cousin models have allowed us
to make great strides in the undertsanding the statitical physics of collection of particles whose
dynamics breaks TRS. In fact ABPs have sometimes been referred to as “the Ising model” of active
matter.

There are various mechanisms that can arrest phase separation, resulting in the selection of
patterns or finite-size clusters. A generic one which is important in biological settings is the breaking
of number conservation, as arising from cell division and death. This is achieved for instance by
adding a logistic growth term to our MFT of MIPS to obtain dynamics described by the equation

∂tρ = ∇ · [D(ρ)∇ρ] + αρ

(
1− ρ

ρ0

)
− κ∇4ρ , (38)

where ρ0 is the fixed uniform density of the model and the term proportional to interfacial tension
κ is added to ensure stability at short scales. This model, studied for instance in Ref. [47], yields
regular lattices of high density spots and concentric high density rings in 2D, and captures some
of the patterns observed in certain bacteria and usually explained by invoking chemotaxis. Pattern
formation arises because reproduction and stabilizing surface tension compete with the destabilizing
negative diffusivity from crowding, selecting a length scale ∼

√
|D(ρ0)|/α.

B. Mapping MIPS onto Cahn-Hilliard-type theory: Model B+

The phase separation of two immiscible fluids is a common phenomenon in everyday life (just
think of oil and vinegar) used for the engineering of a variety of soft material and with impor-
tant implications in biology. Generally a binary fluid consists of two fluid of A and B molecules
that can exist in a well mixed homogeneous state at high temperature and in a demixed state of
coexisting A-rich and B-rich phases separated by a fluid-fluid interface at low temperature. In
equilibrium the demixing requires interspecies attractive interactions. A related phenomenon is
gas-liquid condensation, where condensation again requires attractive interactions.

1. Cahn-Hilliard theory of Phase Separation - a brief review

Phase separation and its kinetics in equilibrium are well described by what are known as Model
B and the Cahn-Hilliard equation. There are excellent reviews of this (e.g., Ref. [48]) and I will not
spend a lot of time on it, but it is useful to review a few basic notions.

The continuum theory is formulated in terms of a scalar concentration field ϕ that describes
the local composition of the binary fluid mixture (hence proportional to the difference between
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Figure 4. Left: the homogeneous free energy density f0 is shown as a function of ϕ above (a > 0), at (a = 0)
and below (a < 0) the transition. Center: The region ϕs ≤ |ϕ| ≤ ϕb is known as the binodal. In this region
the homogeneous state is globally unstable, but locally stable, in the sense that a critical size fluctuation
(critical nucleus) is required to initiate phase separation. The kinetics in the region proceed via nucleation
and one must include noise for a description of the corresponding activated dynamics. The region |ϕ| < ϕs is
known as the spinodal region and is locally, as well as globally, unstable, i.e., any infinitesimal perturbation
grows and destabilizes the homogeneous state. To describe the dynamics in this region we can neglect noise
(but of course one must include some noise in the initial condition when simulating the dynamics). Right:
the steady state profile of the interface.

concentration of A and of B molecules 1) or the difference between the densities of the dense and
dilute phases in the case of gas-liquid condensation. An approximate free energy for the system can
then be written in the usual Landau fashion as an expansion in powers of the order parameter and
its gradient. It can also be derived by coarse-graining. It is written as

F [ϕ] =

∫
dr

[
f0(ϕ) + κ(∇ϕ)2

]
, (39)

with

f0(ϕ) =
a

2
ϕ2 +

b

4
ϕ4 , (40)

where b > 0 and a can change sign as a function of the parameter (say, temperature) that tunes
the mixing-demixing transition. The homogeneous free energy F0 = V f0, with V the volume of the
system, is the usual ϕ4 energy used to model continuous phase transitions. For a > 0 it has a single
minimum at ϕ = 0. For a < 0 it has two minima at ϕ = −1 (B-rich or dilute phase) and ϕ = +1
(A-rich or dense phase). In other words, at a = 0 there is a transition from a homogeneous or well
mixed state to a demixed or phase separated one (see Fig. 4). The energy scale κ is a stiffness and
controls the surface tension σ = (−8κa3/9b2)1/2 and the thickness ξ = (−κ/2a)1/2 of the interface.
The profile of the interface is easily obtained analytically by solving

δF

δϕ
= aϕ+ bϕ3 − κ∇2ϕ = 0 (41)

1 Here we consider the simplest case of a symmetric mixture where AA and BB interactions are the same.
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with boundary conditions ϕ(±∞) = ±ϕb, with the result

ϕ(x) = ϕb tanh

(
x

ξ

)
, (42)

where we have chosen the midpoint of the interface at x = 0.
Note that Eq.(41) sets the exchange chemical potential

µeq =
δF

δϕ
= aϕ+ bϕ3 − κ∇2ϕ (43)

equal to zero. The exchange chemical potential is the difference in the chemical potentials of the
two phases.

Problem 4:
Find the solution of Eq. (41) with the given boundary conditions.

The coarsening dynamics is described by an equation for the conserved field ϕ known as the
Cahn-Hilliard equation, given by

∂tϕ = −∇ · Jϕ , (44)

Jϕ = −M∇µeq , (45)

where M is the mobility. This is in general a nonlinear function of ϕ but here for simplicity it will
be assumed to be constant, with M = 1. Explicitely, the Cahn-Hilliard equation is then given by

∂tϕ = ∇2
(
aϕ+ ϕ3 − κ∇2ϕ

)
(46)

where without loss of generality I have scaled ϕ to eliminate the coefficient of the ϕ3 term. To exam-
ine the coarsening in the spinodal region, we linearize Eq. (46) about the homogeneous value ϕ0 and
examine the dynamics of the Fourier amplitudes of the fluctuations δϕ = ϕ− ϕ0 =

∑
q δϕq(t)e

iq·r,
given by

∂tδϕq = −q2
(
D + κq2

)
δϕq , (47)

where D = a + 3ϕ2
0. Fluctuations decay/grow at the rate r(q) according to δϕq(t) ∼ er(q)t. The

dispersion relation r(q) is shown in Fig. 5. For D > 0, r(q) < 0 and fluctuations decay diffusively.
For D < 0, there is a band of wavenumbers where r(q) > 0 and fluctuations grow exponentially.
Eventually nonlinearities kick in and stabilize a sharp interface. The system shows a bicontinuos
structure and coarsens all the way to bulk phase separation. Late stage coarsening is driven by
diffusive fluxes through a process called Ostwald ripening where small droplets shrink and large
droplets grow. The scale L(t) of the pattern is set by the wavenumber of the most unstable mode
L(t) ∼ 1/q∗. This grows in time with a characteristic exponent L(t) ∼ t1/3 and the pattern coarsens
all the way to the system size. The 1/3 growth law is easily understood by assuming that growth

is controlled by a single length scale L moving at velocity v so that L̇ ∼ v. If the dynamics of
the system is dominated by diffusive currents, we estimate v ∼ ∇µeq ∼ Mσ/L2, where σ is the

interfacial tension and I have restored the mobility M for clarity. Then L̇ ∼ Mσ/L2, which gives
L(t) ∼ t1/3.
In equilibrium the change of sign of a is controlled by the interplay of interaction energy versus

entropy of mixing, the ϕ4 term saturates the pattern amplitude, and the κ term cuts off the
instability at short scales.
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Figure 5. The dispersion relation obatined by lienarized the Cahn-Hilliard equation about a homogeneous
state. For D > 0 the homogeneous state is stable and fluctuations decay diffusively (red curve). For D < 0
the homogeneous state is unstable and fluctuations grow exponentially in a band of wavnumber. The
dispersion relation has the characteristic spinodal shape. The wavenumber q∗ describes the fastest growing
modes.

2. A field theory for MIPS

One can constructt a field theory of MIPS by mapping the dynamics onto a Cahn-Hilliard-type
model [49, 50]. In this mapping the scalar field ϕ is proportional to the difference between the
densities of the dense and dilute phases. The MFT introduced earlier would give a coventional CH
model, where the change of sign of a is controlled by the slowing down of motile particles upon
crowding. It has in fact been shown that the effect of motility suppression due to crowding can
be mapped onto an effective attractive interaction. The lack of detailed balance in collections of
ABPs, however, allows for new terms that are forbidden in equilibrium. The current takes the
form [50, 51]

J = −∇µeq − λ∇(∇ϕ)2 + ζ(∇2ϕ)∇ϕ (48)

When combined with the continuity equation for the ϕ field, Eq. (48) gives what is known as Model
B+. The first term on the right hand side is simply the gradient of the chemical potential obtained
as a gradient of the free energy. This term alone preserves TRS and provides the MF description of
MIPS given in the previous section. When only this term is retained, one finds that ABPs always
coarsen to complete (bulk) phase separation. The other two terms, proportional to λ and ζ, break
TRS and cannot be written as derivatives of a free energy. Both these TRS-breaking terms have
little effect on the spinodal instability as they do not contribute to linear order. Additionally, the λ
term has only a quantitative effect on the phase diagram by shifting the spinodal line to the right or
left depending on the sign of λ. The ζ term, however, has qualitative new effects as it can arrest the
coarsening via a process dubbed reverse Ostwald ripening, resulting in microphase separation [51].
For more details on these field theories I refer you to the work by the group of Mike Cates and to
a review, Ref. [50]. The precise microscopic origin of this terms remains an open question.
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C. Nonreciprocal Phase Separation

Multispecies systems with effective cross-interactions that are non-reciprocal, that is evade New-
ton’s third law of action-reaction, have received a lot of interest in recent years [5, 52, 53]. At the
microscale, nonreciprocity is intrinsically rooted in the breaking of detailed balance. At a mesoscopic
scale, it manifests itself in effective dynamical cross couplings that correspond to non-conservative
forces and cannot be obtained as derivatives of a Hamiltonian or free energy. Such non-reciprocity
is ubiquitous in active and nonequilibrium systems [54]. It occurs, for instance, in predator-prey
systems [55], active solids with odd elasticity [56], protein-based pattern formation [57], mixtures of
active and passive particles [52, 58], directional interface growth [59], and non-Hermitian quantum
systems [60]. Such systems can spontaneously organize in dynamical steady states with nontrivial
temporal order, such as traveling and oscillating states.
In the context of our discussion, a minimal system that highlights the consequences of NR in-

teractions is a mixture of active and passive Brownian particles. The active particles can undergo
MIPS, and in MF their dynamics can be described by a Cahn-Hilliard-type equation. The passive
particles are simply diffusive. The two are additionally coupled by cross-diffusivities. If we denote
by ρA and ρP the conserved densities of active and passive particles, their coupled dynamics can
be described by the following set of equations [61]

∂tρA(x, t) = ∇2(DAAρA + ρ3A − κ∇2ρA +DAP ρP ) , (49)

∂tρP (x, t) = ∇2(DPP ρP +DPAρA) . (50)

These equations can be derived by coarse-graining the microscopic dynamics [52, 58]. In general, all
the diffusivities Dab are found to be nonlinear functions of the densities. For simplicity, here we will
assume them constant. Since these fields are conserved, the dynamics of fluctuations is controlled
by soft or hydrodynamic modes, defined as those where a fluctuation of wavenumber q decays (or
grows) at a rate σ(q), with limq→0 ℜ[σ(q)] = 0. In the absence of cross couplings, fluctuations in ρP
decay diffusively, while DAA can become negative in a range of densities and Péclet numbers as the
persistent dynamics of ABPs drives MIPS. Therefore fluctuations in ρA exhibit the characteristic
dispersion relation of a spinodal instability, with largest growth at a characteristic length scale
controlled by |DAA| and κ. Cross-diffusion couples the two hydrodynamic modes, but the dispersion
relation branches do not cross for cross diffusivities that are equal or obey Onsager’s rules (Fig. 6(a)).
On the other hand, active particles are slowed down by both other active particles, as well as by
passive particles. For this reason, the cross diffusivity DAP can also be negative in a range of
densities. Passive Brownian particles, in contrast, undergo conventional diffusions, hence DPP ,
DPA > 0. There is therefore a regime of parameters where the two density fields are coupled
not just non-reciprocally, but antagonistically, i.e., DAP < 0, DPA > 0. One can show that
nonreciprocal cross-diffusivities cause the two modes to cross, where the two eigenvectors align at
the crossing point, resulting in the appearance of an imaginary part of the dispersion relation [green
dashed lines in Fig. 6(a)]. In other words, nonreciprocal couplings lead to mode coalescence and
transform the static phase separated state into traveling [Fig. 6(c)] or oscillating domains [52, 53].
Again here a linear stability analysis of the homogeneous state provides much insight. If we

linearize the equations about a global steady state, (ρA, ρP ) = (ρ0A, ρ
0
P ), for perturbations of the

form eiqx+σt we find that the modes governing the time evolution of fluctuations are the eigenvalues
of the Jacobian

J = q2
(
−DAA − 3(ρ0A)

2 − κq2 −DAP

−DPA −DPP

)
(51)
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Figure 6. (a) Dispersion relations for the cases DAP = DPA = 0 (left), DAPDPA > 0 (center) and
DAPDPA < 0 (right). (b) A kymograph showing the coarsening of the two densities all the way to bulk
phase separation for reciprocal couplings. Here ϕ ≡ ρA and ψ ≡ ρP . (c) A kymograph showing the arrested
coarsening of the two densities and onset of traveling waves for non reciprocal couplings.

In the uncoupled case (DAPDPA = 0), the dispersion relation has two independent branches given
by the diagonal entries in the Jacobian [see Fig. 6(a), left frame]. A band of unstable modes [0, q+]
emerges in the first branch when DAA < −3(ρ0A)

2, where q2+ = (−DAA − 3(ρ0A)
2)/κ. This is the

spinodal decomposition instability that drives phase separation. Cross-diffusive couplings cause the
branches of the dispersion relation to interact near their intersection point, giving rise to a band of
propagating modes (Im[σ] ̸= 0) in the anti-reciprocal case DAPDPA < 0; see Fig. 6(a), right frame.
For sufficiently strong anti-reciprocal coupling, the band of propagating modes begins to overlap
with the band of unstable modes [0, q+]. For DAPDPA = −D2

PP , the marginal mode q+ touches
the band of propagating modes. At this point, the Jacobian has two vanishing eigenvalues and is
non-diagonalizable, i.e., its eigenvectors coincide. This marks an “exceptional point” [54, 60].
On the basis of the linear stability analysis one can construct a phase diagram (see Fig. 7) that

reproduces well the reuslt of numerical integration of the equations.
Note that the traveling waves break both TRS and parity (r → −r). Hence this is referred to as

a PT-breaking transition.
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Figure 7. Left: Linear stability diagram in the DPP -DAP parameter plane where we set DAP = |DPA|,
such that the sign of DAP determines whether the coupling is reciprocal (DAP > 0) or anti-reciprocal
(DAP < 0). Along the purple line (E) an “exceptional point” appears in the dispersion relation, where the
band of unstable modes touches the band of propagating modes. When the diffusion of ρP is fast (large
DPP ) pattern formation is suppressed and the homogeneous well mixed state is again stable. Middle:
traveling waves (TW) in 2D. Right: undulating traveling waves in 2D.

There are two new findings here. First, while TW and oacillations are ubiquitous and well
understood in nonlinearly dynamical systems with activator/inhibitor couplings through models
with with few degrees of freedom (e.g. FitzHugh–Nagumo equations [62, 63]) they are unexpected
in purely diffusive systems and generally less explored in spatially extended systems. On the other
hand, the appearance of TW may not be so suprising as it is the result of the antagonistic cross-
diffusivities: active particles are effectively attracted to passive ones, but passives one are repelled
by active ones through steric effects. This leads to a chase-and-run dynamics where the two fields
eventually settle into a state where they travel at a relative constant velocity. More suprising,
however, is that one also gets patterns (not just bulk phase separation) of well-defined wavelength.
This is suprising becasue the model itself only contains one length scale (the interface width). The
mechanisms for wavelength selection are still under investigation [61]. There are also secondary
instabilities, such as traveling undulations that travel along stripes, that are very intriguing.
A similar mechanism is at play in the antagonistic coupling of two groups of flocking agents de-

scribed for instance by non-reciprocally coupled Toner-Tu equations [54]. In the absence of coupling,
each population undergoes a phase transition to a state of finite mean motion that spontaneously
breaks polar symmetry [15] - the nonequilibrium analog of a finite magnetization in interacting
XY spins. When the two populations A and B are coupled antireciprocally (A wants to align with
B, but B wants to antialign with A) the system is dynamically frustrated and organizes into a
state of chase-and-run motion, where birds chase each other tails, that breaks chiral symmetry [54].
Both sets of results have opened up a flurry of activity on the role of non-reciprocity in dynamical
pattern formation [5] and the search for generic models of nonequilibrium transitions from static
to time-ordered states [64].
There are two additional important points to be made. First, the structure of the linear fluctua-

tion spectrum seen in the NRCH model (merging of the real part of the two hydrodynamic modes
and simultaneous emergence of a finite imaginary part, associated with the non-diagonalizable form
of the matrix that governs the linear dynamics of fluctuations and degenerate eigenvectors → ex-
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ceptional point) is a distinct signature of temporal organization, hence provides a criterion for
identifying a new class of dynamical pattern formation (see also [64]). This mechanism is analogue
to the one responsible for the onset of chiral states in antagonistic flocking models [54]. There is,
however, a difference between the two systems. In NRCH the hydrodynamic nature of the fluctu-
ations guarantees that for strong enough nonreciprocity the merging will occur for all parameter
values, hence it is generic. In flocking models the velocity order parameter is not conserved. In-
stead, the spontaneously broken rotational symmetry of the flocking state is associated with the
emergence of a Goldstone mode with relaxation rate that vanishes at long wavelength. The mode
coalescence therefore happens globally instead of locally.

Second, there are a number of experimental systems where TW and oscillations have been ob-
served that can all be recast in the NRCH framework. In addition to the active/passive particles
mixture discussed earlier, other examples are mass-conserving reaction-diffusion systems, viscoelas-
tic gels and active interfaces [61].

Open-ended Problem:
A very recent press release by Ramin Golestanian in Europhysics News hihglights the rapidly grow-
ing interest in nonreciprocal interaction in non-equilibrium systems (https://www.europhysicsnews.
org/articles/epn/pdf/2024/03/epn2024553p12.pdf).

Research the literature to identify an experimental system where traveling and/or oscillating
states are observed and the dynamics can be mapped onto the NRCH model. Address the following
questions:
(i) Which are the coupled hydrodynamic fields at play in the system of your choice?
(ii) Why are they “hydrodynamics” (conserved fields, Goldstone modes, other)?
(iii) What are the physical mechanisms that engender effective NR interactions?
(iv) What are the experimental observation?
(v) Do you think the system you have identified is a promising candidate for observing some of

the predictions of NRCH models? What would you measure to establish the connection?

[1] Sriram Ramaswamy, “The mechanics and statistics of active matter,” Annu. Rev. Condens. Matter
Phys. 1, 323–345 (2010).

[2] M Cristina Marchetti, Jean-François Joanny, Sriram Ramaswamy, Tanniemola B Liverpool, Jacques
Prost, Madan Rao, and R Aditi Simha, “Hydrodynamics of soft active matter,” Reviews of Modern
Physics 85, 1143 (2013).

[3] Clemens Bechinger, Roberto Di Leonardo, Hartmut Löwen, Charles Reichhardt, Giorgio Volpe, and
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