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1 Setting the stage

1.1 Bonds

How many types of chemical bonds are there?

Those of us who have ever been exposed to a course in chemistry will
recall the eagerness with which this kind of classification is sometimes
pursued. There are, of course, covalent bonds, ionic bonds, and metallic
bonds. But that’s not all: covalent bonds can be polar and hence have
an ‘“lonic component.” They can also be “single,” “double,” or even
“triple” (but we are also admonished not to take these numbers too
seriously). Down the road we learn of other things, such as hydrogen
bonds, which are usually first explained as an oriented electrostatic
dipole interaction (so we start to think of them as essentially ionic in
nature), until we later learn that there’s also a bit of electron sharing
happening and hence there’s just a wee bit of covalent flavor. Then
there are van der Waals interactions, which are usually not called bonds
at all, but they still somehow can bind things together, and they rely
on fluctuating charges—so maybe they are ionic in nature?—but with
some quantum origin due to the nature of the fluctuations.

In short, the more you know, the more this gets a real mess.

Far be it from me to belittle the attempts of chemistry to system-
atize what really is an outstandingly complicated quantum-multibody
problem. Nevertheless, overly eager classifications into neat distinct
man-made classes are almost never useful in a world where most any-
thing is a matter of degree. Often a more meaningful way to proceed
is to focus on a particular property, one that’s continuously varying,
and then assess how it compares to other quantities of the same dimen-
sion that are, somehow, relevant to the problem at hand. We should
then contemplate “regimes” and “cross-over regions,” but not pristine
boundaries.



1.2 Energy scales

A very obvious continuous quantity for “bonding” is to look at the
bonding strength: a quantity of dimension “energy” that tells us how
much energy is needed to separate the two things that are bonded.
What other quantity of dimension “energy” could we compare this to?
Well, bonds that are based on quantum mechanical electron sharing all
somehow scale with an energy that derives from the quantum mechan-
ical treatment of electrons electrostatically bound to a nucleus. For
instance, the Bohr energy—the ground state energy of the hydrogen
atom—is given by Epon, = —%O&QTl’LeCQ, where a = e*/4meghc ~ 1/137
is the fine structure constant and mec® ~ 511keV is the rest en-
erqy of an electron. We find Ego,, ~ —13.6eV. Once we look at
molecules, of course we can hardly do any exact calculations, but some
approximate variational calculations have been tried early on (James
and Coolidge, 1933), finding that the answer is some fraction of this,
maybe like a third, about 4.5eV. And thus “a few electron-volts” is
a good reference point for a binding strengths that involves bonding
based on quantum-mechanical “sharing” of electrons. Whenever some
other energy of comparable magnitude arises, chemical bond-making
or -breaking is happening. For instance, the energy of a UV photon
of A = 300 nm wavelength is F3ppnm = he/A = 4.1eV. This can break
important chemical bonds in your body and this is why you should put
on sunscreen—especially in places as high up as Boulder where more
UV radiation from the sun reaches you.

But there are other scales of interest. Here’s one: the thermal energy
kgT, which at room temperature has the approximate value

1
kgTroom ~ 4.1 x 10721 J ~ 4.1 pNnm ~ 4—OeV

~ 0.6 kcal /mol ~ 2.5kJ/mol ~ 200 cm™" .

Can energy of that magnitude break chemical bonds? Hardly. This is
why increasing the temperature typically does not make chemicals fall
apart. But we very well know that there are things that come apart at
lower energies. Why? Maybe because they are held together by weaker
forces, weaker “bonds,” whose characteristic strength is measured in
kgT,oom and not in eV. What are these types of materials?



1.3 Moduli

Here’s a nice pointer to this, which involves yet another cheap-but-
great physics scaling argument: the rigidity of materials is measured
by elastic moduli, such as the shear modulus G, and this modulus has
dimension energy per volume. In the absence of any other knowledge,
the easiest guess we can make about the modulus of a material is there-
fore to take its characteristic energy scale and divide it by the cube of
a characteristic length. For instance, for materials bound together by
chemistry, that scale is the electron volt. For metals, it’s the Fermi
energy, which is again in the electron volt range. For ionic crystals, we
again end up having electron volts. Moreover, all these materials have
typical distances between atoms or molecules in the couple-of-Angstrom
range. So we can estimate that their modulus is of the magnitude

few eV eV 16X 107 Nm

(few A)g feWZ(A)B 10 x 10_30 m? tens of GPa

G ~

What stuff has moduli in that range? Stuff that you would ordinarily
call solids. Many metals, hard plastic, glass, bone, concrete. Solids are
congealed quantum mechanics.

What do we get for thermal scale interactions? Things that are held
together by the strength of thermal energy, or which are “fluffed up” by
the strength of thermal fluctuations, also happen to have slightly larger
length scales: larger molecular constituents (polymers, colloids, ...) or
at least intrinsic scales (say, a polymeric entanglement length). These
scales are often in the few nanometer range, but can be significantly
larger. What are typical moduli for stuff of that type?

few kgTroom 4.1 X 1072 Nm

(few nm)3 few?(10~9m)3

G ~ ~ few hundreds of kPa . (1.1)

Matter of that type is quite squishy—soft rubbers, gels—and might
easily start to flow if external forces are applied (foams, emulsions, bi-
continuous lamellar phases), unless beyond some strain the deformation
is arrested because stronger chemical bonds kick in (like in rubber, a
vulcanized polymer network). Soft matter is congealed thermal energy.

Whether we need eV-scale energy to separate two particles or kgT-
scale energy makes a big practical difference for people who live at
room temperature.! Without doing any chemistry (and, fingers crossed,

LAt around 12000K these two scales are the same, so beings at that scale don’t
have to worry about the distinction. But then, the existence of that scale sepa-
ration is hugely important for life as we know it.

Heads up 1

“Few" ~ /O(10) is a sneaky
number that lets you aim for a
slightly higher precision in order-
of-magnitude estimations. It fol-
lows useful rules such as

1+ few = few
few + few = few

few x few = 10



without really having to ponder too much quantum mechanics!) we
can make or break things by exploiting the energy available in thermal
fluctuations. “Making things” then often means “having things come
together spontaneously,” and this is what’s typically called “self as-
sembly.” To be sure, people seem to have a predilection to restrict this
word to things that do not just assemble into formless three-dimensional
blobs or chunks. The energy between solvated ions in water is very
much on the kgT' scale, thanks to water’s huge dielectric constant, but
the formation of ionic crystals out of a salty solution is typically not
regarded as self assembly.

But wait, there’s more: Given how small the thermal scale is com-
pared to forces we can readily apply to materials without breaking a
sweat, it is very easy to drive soft matter out of equilibrium. Hence,
a lot of non-equilibrium thermodynamics most readily happens in the
arena of soft matter physics.

1.4 Roadmap for this set of lectures

My goal is to pick one specific example from soft-matter self assembly
and show you how to climb the hierarchy from the assembly process
itself all the way to the emergent physics of the resulting aggregates—
lipid membranes in this case—and how to reason about them. In the
first lecture I will therefore discuss assembly of amphiphiles (such as
surfactants or lipids), and how depending on their resulting geometry
we do get aggregates whose “size statistics” is very different. In the
second lecture I show how in the case of 2d-assemby we can develop
a marvelous coarse-grained theory of the resulting aggregates and de-
scribe them not in terms of molecules and interaction forces but in terms
of geometry and elasticity. In the third lecture I then walk you through
some fun applications in the field of membrane-biophysics, especially
some thoughts on the recent and quite interesting topic of membrane
asymmetry.

1.5 Things to think about

1. T claimed that chemical reactions happen at the eV scale and
are thus not bothered by temperature. Does that strike you as
plausible? If so, why do you think chemistry labs have Bunsen
burners? Let’s think a bit harder.

Consider a chemical reaction that requires crossing an energy bar-



rier Fpamier- 10 be specific, let’s say Eparrier = 1€V = 40 kgTro0m-
Thermal energy is too small to cross it (in a sense, we're 39 kgTroom
“short”), but there’s a small chance that a pretty enormous ther-
mal fluctuation kicks you over it, and we expect that chance to be
proportional to the Boltzmann factor e Pvamier/¥87  That’s teeny-
tiny, but if we have a mole of material, we get lots of opportu-
nities to try. Now: what happens if we change the temperature
from 300K to 600 K? Instead of 39 kgTioom we're now “only”
38 kp'Tioom short—it doesn’t seem we made much headway. But
that’s of course the entirely wrong way to think about it. Doing
it properly, how much more likely is it that the same chemical
reaction is now triggered by a thermal fluctuation?

(You also just learned something deep about cooking.)

. The interaction energy between two ions in solution is given by
U(r) = q1qz2/4mege,r, where ¢ and go are the ionic charges, r is
their separation, and ¢, is the dielectric constant.

a) The so-called Bjerrum length (g is defined as the distance at
which two monovalent ions in solution have an interaction
energy equal to kgT. Find a formula for it and calculate its
value for water at room temperature!

b) The dielectric constant of water actually depends a bit on
temperature. A good approximation between 0°C and 100 °C,
due to Malmberg and Maryott (1956), is

e(T) ~ 102-48151-0.001972(T/K) - ,5.71388—0.004541(T/K) (1.2)

Show that this implies that the strength of electrostatic in-
teractions in water increases with temperature. Does that
strike you as weird?

c) That the dielectric constant e, depends on temperature is
a stark reminder that the electrostatic interaction in water
is really a free energy. As such, it has an energetic and an
entropic “component:” (r) = g(r) — Tig(r), if you will.
Leaning on some standard thermodynamic lore, such as F' =
E—-TS,or S =—0F/JT, calculate {g(r)/¢(r) and show
that for the specific temperature dependence from Eqn. (1.2)
the energetic part of the interaction has the “wrong” sign
(meaning, two like charges in water would attract, if inter-
action energy were the only thing that matters. (The fact
that they still repel means that the entropic part, ¥g(r),
must overcompensate this blunder. This puts a new spin on



the discovery that electrostatic interactions in water become
stronger as the temperature increases.)

3. Later in these notes, you will (maybe...) derive in a homework
problem (Chapter 3, Problem 6c¢, specifically: Eqn. (3.83)) an ap-
proximate formula that relates the bending rigidity of one leaflet
of a lipid membrane, k,,, with its thickness d and the elastic mod-
ulus Y of the material from which it is made:

Yd?
= 1.3
Fim = 5 (1.3)

(In case you're wondering: the whole lipid bilayer has a rigidity

that’s just twice that: kK = 2ky,.)

a) If I tell you that s, ~ 15kgT and d ~ 2nm, what value for
the elastic modulus would you predict? Google! What type
of matter does this suggest?

b) A membrane’s bending rigidity & is not of order kgT. And
it’s not of order of hundreds of kg7 either. Ponder why the
few-tens-of-kgT value might be biophysically attractive!
(Hint: throwing another energy scale into the mix: the en-
ergy released by the hydrolysis of a single ATP molecule
under physiological conditions is around 20 kgT', sometimes
also a bit more.)

¢) What if modern nanotechnology buffs decided to build such
membranes out of steel? We’d like to keep the bending rigid-
ity at the value I told you, for the reasons you hopefully un-
earthed in the last part, but we replace it with a modern-era
material that has a modulus of 200 GPa. What thickness
would it have to have? Does this strike you as realizable?
What does it say, maybe in retrospect, about the fact that
all of us are squishy beings?

4. 1 said that soft matter systems are particularly easy to drive out
of thermal equilibrium. Can you imagine arguments that would
show how they would also be great examples where the concept
of active matter arises?



2 Self assembly of amphiphiles

As promised, the topic of this chapter is to understand the thermal
equilibrium physics of self assembly—specifically that of amphiphilic
molecules such as surfactants or lipids. As it turns out, the size-
statistics of the resulting aggregates massively depends on their ge-
ometry, and their geometry in turn is heavily influenced by the shape
of an individual surfactant molecule. Now, what precisely we mean by
“the shape of an individual surfactant molecule” is a very dicey ques-
tion about which we could (but will not) talk a lot more. Suffice to say:
it’s subtle, easily misused, but not entirely silly. We take that as a suffi-
cient reason to proceed. With caution. What makes this so interesting
is that extremely minor molecular changes can, via the lever arm of the
aggregation mechanism, make huge differences in the morphology and
properties of the resulting aggregates. This is an incredibly lucrative
game to play if you are a chemical engineer. (And a vital one, if you
are nature.) So let us in a first step explore the question of aggregate
shape, from which we will then transition in a second step to statistical
properties of the aggregates.

Full disclosure: this chapter is a minimally revised excerpt from lec-
ture notes I had prepared a few years back for a summer school in Udine,
Italy (Terzi and Deserno, 2018), and it mostly channels the highlights
from the groundbreaking paper by Israelachvili et al. (1976). Good
discussions can also be found in textbooks on soft condensed matter
physics, such as (Jones, 2002; Witten and Pincus, 2004).

2.1 From surfactant shape to aggregate
geometry

Surfactant molecules are amphiphiles: they comprise different chemi-
cal moieties that are soluble in different solvents. Since they are linked
together chemically, this requires nature to grapple with an interesting
problem: how best to lower the free energy, given that no matter what
the solvent conditions are, some chemical moieties will likely be “un-
happy.” Nature’s solution to this is self assembly—a process by which
larger scale structures form cooperatively, such that unfavorable sol-

10
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Figure 2.1 | Hlustration of the morphology of a lipid molecule. Panel (a) shows a
typical physicist’s cartoon—a hydrophilic head group with two schematic tails; panel
(b) takes this sketch serious and translates it into a highly coarse grained model
(Cooke et al., 2005); panel (c) illustrates a lipid on the MARTINTI level (Marrink
et al., 2007), where the number of beads is increased, but still each bead accounts for
approximately 3-4 heavy atoms; and panel (d) displays a united-atom lipid model
of a very particular lipid, DMPC (dimyristoylphosphatidylcholine) (Berger et al.,
1997), in which every atom (except non-polar hydrogens) are explicitly accounted
for. Adapted from (Wang and Deserno, 2016).

vent contact is largely avoided. Self assembly is an amazing and hugely
important example of an emergent phenomenon, in that it creates new
physical entities (namely, the aggregates) which can be much bigger
than the individual molecules they are made of.

2.2 Morphology

Amphiphiles are molecules which are typically divided into a “head”
and a “tail.” The head is hydrophilic (water soluble), for instance
because it has polar groups (e.g., hydroxyl or carbonyl groups), or
because it is charged (e.g., amino, carboxyl, or phosphate groups).
The tail, on the other hand, is hydrophobic (water insoluble), and for
lipids generally consists of two aliphatic chains. They typically contain
between 12 and 22 carbon atoms, usually connected by single bonds,
but sometimes with one or more double bonds (in the latter case one
speaks of “unsaturated lipids”). Figure 2.1 gives a simple illustration
of this, by showing pictures of lipids using some commonly employed
computational models for studying them. Notice that only one of these
models strives for a detailed chemical resolution. The others simplify
the chemical architecture more or less drastically, but they all keep one
key aspect: lipids are amphiphiles.

11



Figure 2.2 | Simplified shape-description of a surfactant as a blunted cone.

The key effect on which self assembly relies is a cooperative aggre-
gation of surfactants that tries to bury the water-insoluble tails in the
interior of the aggregate, shielding them from the aqueous solvent by
a layer of hydrophilic head groups. Interestingly, there are numerous
different morphologies in which that could happen, and this depends
on the shape of the surfactant. For instance, if the lipid has a relatively
large head group and a thin tail—if it looks like an ice cream cone—
then we can imagine these surfactants packing together to form little
spheres. But if the shape of a lipid is less obviously pointed, then lower
curved structures seem more likely—such as cylindrical aggregates or
even planar sheets. As we will now see, Israclachvili et al. (1976) have
developed a beautifully simple way to make this intuition quantitative.

Let us represent a lipid schematically as a building block that is
approximately cylindrical, but with a somewhat tapered tail region, as
illustrated in Fig. 2.2, so that it looks like a blunted cone. The area of
its head-group surface is a = 772, its volume is v, and its length is [.

2.2.1 Spheres

Imagine we need N of these object to piece them together into a sphere
of radius Repn. It is then obvious that we must have

4
Nv =V, = gngph , (2.1a)
Na = Agn = 4TR2,, . (2.1b)

Dividing these two equations, N cancels, and we get an equation for
the radius of that sphere:

v 1

— =Ry - 2.2

a 3 ph ( )
At the center of the sphere we cannot have any empty space. Hence the
radius Rg,n which we found cannot be larger than the length [ of the
amphiphile—imagine for instance that there is a largest length to which

12



the tails can stretch, and that limits the sphere’s radius: R, < . This
results in the condition

spheres: Yo p <=, (2.3)

al

Wl =

where we defined the important dimensionless packing parameter P.
We hence find that if this condition on P is satisfied, these lipid building
blocks will indeed like to aggregate into spherical objects, which go
under the name spherical micelles.*

2.2.2 Cylinders

We can repeat this argument, but now instead consider packing the
building blocks into a cylinder of radius Ry and length Lcy; Assuming
that L.y is large enough to ignore end effects, we then get

Nv =V = WRzylLCyl , (2.4a)
Na = Acyl = QWRcychyl . (24b)

Again dividing these two equations cancels not just N but also L.y (as

it should) and yields
v 1

o~ fte
Once more, requiring that the resulting value for the cylinder’s radius
is not larger than the lipid length [ leads to the condition

(2.5)

from last section

1 1
cylinders: 3 < P < 5 (2.6)
——

from this section

where the lower cutoff comes from the previous case: if P is even smaller
than %, we already know that we get spheres!

'The more skeptical among you might worry that if all those surfactant heads
happily sit on the surface of a sphere and send their hydrophobic tails straight
towards that sphere’s center, it would get awfully crowded at the center! Abso-
lutely true. It would. A perfectly radial arrangement of tails is inconsistent with
a uniform liquid-like density. But then, not all tails really go to the center, for
exactly that reason. Some have to bend back, possibly all the way to the surface
of the sphere. If one wants to be quantitative about such packing issues, one
needs to go beyond such naive pictures as the one we’re using here, and people
have done so. See for instance Dill and Flory (1981).

13



2.2.3 Planes

Three time’s the charm. So let’s now pack the amphiphiles into a planar
bilayer structure of area Ay; and thickness by, leading to

Nv = Vi = b Ay 27&)
Na = Abil = 2Abi1 . (27b)
Dividing these two equations cancels both N and Ay; and gives
v 1
- = —b il - 28
a 20 (28)

Again, the thickness of each individual leaflet (i. e., half the bilayer’s
thickness) cannot exceed the length [ to which the lipid can stretch,
%bbﬂ <[, and so we find

from last section

1
;<P <1 . (2.9)
N——

from this section

bilayers:

The argument, as presented, is remarkably simple; [sraelachvili et al.
(1976) look at the situation in a fair bit more detail, but the key findings
nevertheless hold up. In fact, this line of reasoning works well even for
building blocks that are very simple and not very pliable—such as the
lipid model from Fig. 2.1b. Cooke and Deserno (2006) showed that by
simply changing the head-group size of the three-bead lipid, one can
drive the entire morphological transition from spheres over cylinders to
bilayers; if one pushes the packing parameter even larger, the lamellar
phase becomes unstable. This is illustrated in Fig. 2.3.

Of course, the transitions themselves do not yet tell whether the sim-
ple packing-parameter theory works; but this theory makes a prediction
that can be tested. Taking the area per lipid from a flat bilayer as the
value for a, and using one of the transitions (say, spheres to cylinders)
to pinpoint v/l, one can write the packing parameter as a function
of the head group size of the lipid. This then gives a prediction for
the head group size where the other transition (cylinders to bilayer)
happens Cooke and Deserno (2006) show that this prediction indeed
works.

14
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Figure 2.3 | The different morphologies of amphiphilic aggregates are controlled
by amphiphile shape, even for models as simple as that from Fig. 2.1b. Reprinted
from Cooke and Deserno (2006).

2.2.4 From packing parameter to spontaneous
curvature

The geometrical picture we have in mind by now is that a smaller
packing parameter P corresponds to a more cone-like shape, while for
a larger P the lipid becomes more cylindrical. This intuition can be
verified (and made more precise) by a simple calculation: if Q is the
solid angle of the blunted cone, then its volume can be written as

1 1
v = 59 [RP—(R-1°] =0 [RQZ — RI* + 513} : (2.10)
Since its head surface is a = QR?, we find P = 1 — % + % (é)Q, a
quadratic equation that can be solved for R, from which we get the
solid angle. Since, furthermore, Q = 27 (1 — cos £) &~ rp?, where the
last approximation is good for small ¢, we arrive at the opening angle

(2.11)

%) 4
— ~3|1l—4/1—-—=(1-P
r/l [ 3( )

This relation is illustrated in Fig. 2.4. The characteristic ratio r/l
defines an angle, and the actual opening angle ¢ is some multiple of
that—twice as big for cones at the boundary between spheres and cylin-
ders, and about 1.3 times as big at the boundary between cylinders and
planes. Of course, the angle vanishes at P = 1. Notice that we can
alternatively also calculate the lipid spontaneous curvature, defined as
Jom = 2/R. For P close to 1 we find for this parameter

2
J0m1z2(1—P)+§(1—P)2+--- (2.12)

This provides a (fairly heuristic!) link between the parameter Jou
from continuum Helfrich theory, which we will meet in chapter 3 (see
Eqn. (3.42)), and a parameter from the self assembly problem, P.

15



Figure 2.4 | Relation
between the opening an-
gle of the blunted cone
from Fig. 2.2 (measured
in units of r/l) and the
packing parameter P.
Around P = 1 we have
P QI—T(I — P).

@ [r/l]

o=

2.3 Statistical thermodynamics

Knowing the shape of the aggregate is only the beginning. We surely
also want to know, under what conditions such aggregates form, and
if they come in different sizes (say, what’s the length of a cylindrical
micelle?), we want to know what that is, too.

The problem is interesting, because entropy plays a key role. Were
it only a matter of energy, any kind of amphiphile would aggregate to
any other amphiphile, no matter how weak any attractive interaction
is. But when we consider entropy, we realize that aggregation strongly
reduces the translational entropy of amphiphiles. To understand this
energy-entropy balance better we again follow Israelachvili et al. (1976).

Let us therefore define

€, : energy per molecule in n-aggregate (2.13a)
¢n : concentration of n-aggregates (2.13Db)
X, : concentration of monomers in n-aggregates, = n¢, , (2.13c)

where an “n-aggregate” or “n-mer” is a self-assembled aggregate of
molecules consisting exactly of n molecules (or monomers or 1-aggre-
gates). You may think of X, in the following way: consider only the
n-aggregates in solution (mentally remove all the others) and now ask,
what is the overall concentration of all amphiphiles left in the system?

The total energy of one n-aggregate is of course F,, = ne,. Observe
that this does not imply that E, « n, since €,, also depends on n. The
energy density due to n-aggregates is therefore

en = OnE, = opne, = X, e, . (2.14)

For the (translational) entropy density of n-aggregates we will simply
assume an ideal gas law, so that we get

Sn = —kp ¢n(log ¢, — 1) . (2.15)

16
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The total free energy density is then the sum of the energetic and
entropic terms over all aggregate sizes:

S

i {en . Tsn} (2.16a)

n=1

N
X X
3 {ann + kT 2 (log e 1)} , (2.16D)

n=1

. J

where N is the total number of molecules, and hence also the biggest
aggregate we can get.

We are interested in the distribution function of aggregate sizes, X,,,
subject to the constraint that the total amount of material in the system

is fixed, meaning
N

ZX” =: X = fixed , (2.17)
n=1
where X is the total monomer concentration in the system. We can
calculate this by minimizing Eqn. (2.16b) subject to the constraint,
which we enforce by means of a Lagrange multiplier p:

X — iv: Xm] } . (2.18)

m=1

0

This readily gives

G, = e~ PEnT) (2.19)

where as usual § = 1/kgT. From this we in particular also get the
monomer concentration ¢;, and so we can eliminate the Lagrange mul-
tiplier p from the expression:

b = [p1 2] (2.20)

This is a very important general result. How it plays out in reality
depends entirely on ¢,,, which in turn depends crucially on the geometry
of the aggregate—spherical cylindrical, or planar. Regardless: we see
that if €, < &1, meaning that it is favorable for a monomer to be in
an n-aggregate compared to being isolated in solution, the exponential
factor becomes large and the concentration of n-aggregates goes up.
But let us now specifically look at the individual geometries.
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2.3.1 Spherical micelles

What is the energy of a monomer in a micelle consisting of n monomers?
This is potentially a difficult question, but we will circumvent it by
looking at the physics: packing monomers of some particular curvature
into a spherical aggregate will likely result in some particular size—say,
m—at which they fit best, and deviations away from that size will be
suboptimal. Let us hence assume that, to lowest order, the energy is
simply quadratic in the deviation from that particular optimal state:

1 2

Inserting this into Eqn. (2.19) leads to

¢n=wmp{—5n(an+%5%n—nn2—u)}, (2.22)

where £ needs to be determined from the normalization condition (2.17).
Notice that this distribution is cubic in the exponent. However, we can
simplify it by expanding the exponent around its maximum, up to
quadratic order, and hence find an approximate Gaussian distribution
that describes ¢,, reasonably well. To do so, we need to calculate

0 1
which leads to the solution n* at which the function peaks:
ﬁ:ﬂ2+¢yfgﬁﬁzzm—%_ﬂ, (2.24)
3 e*m? em

where the approximation results from expanding the square root to
first order, since the term 6(g,, — p)/€*m? is small. We then find the
quadratic expansion

1 1 6(c,, —
n (€m + Ee*(n —m)? — u) ~ const. + §e*m\/1 — %(n — n*)?

*

~ const. + - m(n —n*)?, (2.25)

where we again expanded the square root. This shows that the micelle
distribution can be approximated as a Gaussian,

Gn & const. X exp {—M} ) (2.26)

202
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with the mean value n* given in Eqn. (2.24) and the variance given by

kT
o? =22 (2.27)

€*m

Observe that the distribution widens at larger temperature and is nar-
rower for bigger micelles.

The effects on the structure on a single micelle are curious but minor
in the spherical case; what is truly remarkable and very important is
the overall aggregation thermodynamics which this model implies. In
order to not get bogged down in tedious math (chiefly from dealing with
the normalization condition (2.17)), let us instead look at a two-state
system, in which we only have monomers coexisting with m-aggregates,
and the normalization condition becomes X = ¢ +me,,. Furthermore,
we have ‘

Om 2 (eI = (gre) (2.28)
where we defined a = (g1 — €,,,) > 0 (we know the sign because we
know that it is energetically favorable to form an m-aggregate). The
normalization condition then becomes

X = ¢1 +me™ 7" . (2.29)

This must be solved for ¢;. Uh oh. It’s an m™ order polynomial
equation—how could we possibly do this in generality? True, this looks
exceedingly troublesome, but it in fact becomes simple to get an approx-
imate solution if we remember that m is likely large: recall from Sec. 2.2
and Fig. 2.2 that the number of surfactants in a spherical micelle can
be written as N = 4nl?/a = 4xi?/7r? = (21/r)?, and with a reasonable
estimate of a ~ 0.5nm? (and hence r ~ 0.4nm) and ¢ ~ 2nm, we
find N =~ 100. We then see that the second term in Eqn. (2.29) stays
extremely small for sufficiently small ¢; and then very rapidly picks up
and completely dominates the value of X—see the left hand graph in
Fig. 2.5. The crossover happens where the two terms on the right hand
side are approximately equal, leading to

N
b1 = Mg = ¢1=(—) CEEme . (230)
m

where the approximation is very good because m >> 1 (recall in partic-
ular that (1/m)Y™ ~ 1 — (Inm)m™" + O(m=?)).

We just discovered something hugely important: a critical concen-
tration exists, ¢eme = €7, at which an important change happens in
the solution: up to that concentration, the normalization condition is
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Figure 2.5 | The left plot shows the total surfactant concentration in all aggregates
combined, X, as a function of the concentration of single monomers, ¢;. Since X
emerges as a sum of ¢; and a second term m(¢1/Pemc)™ with a large m (in the
graph we chose m = 50), there is a sharp crossover near ¢, = @emec = €~ <. The right
picture simply flips the axes and shows the monomer concentration ¢; as a function
of the total surfactant concentration. Initially, the monomer concentration grows
linearly with the amount of added amphiphiles—up to the concentration ¢, at
which point it essentially stays constant.

dominated by ¢, and this means that the solution exists almost ex-
clusively of monomers. But at ¢.,. the second term takes over, and
from now on adding extra material will almost exclusively go into ag-
gregates. This is very visible if we plot the inverse of the normalization
condition—see the right hand side of Fig. 2.5: the concentration of
monomers initially grows linearly with the amount of added material,
but it levels off quite abruptly at ¢cme, meaning that from now on any
additional material will form micelles, which so far did not exist. The
concentration ¢.n. is called the critical micelle concentration, usually
abbreviated as “cmc”, and it is a fundamentally important quantity for
any aggregation problem. We will soon see that the concept remains
relevant beyond the case of spherical micelles we have discussed just
now. Notice that o = (g1 — &,,,) is not just positive, but can be a fair
amount bigger than 1, since the energy which an amphiphile gains in
an aggregate compared to being in isolation can be many kg7'. This
implies, in turn, that the cmc can be very low: not much material needs
to be added before micelles form. For instance, the cmc for the stan-
dard surfactant sodiumdodecylsulfate (SDS) is about 8 mM in water at
25°C, at which point the aggregation number of the micelles is m ~ 60
(Turro and Yekta, 1978).

To be clear: the micellization transition is not a phase transition in
the classical sense: there is no discontinuity or non-analyticity in any of
the thermodynamic functions; the transition is always rounded, since
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m is large but finite. Regardless, it is a very pronounced change in the
system’s behavior, and as such it dominates aggregation physics.

2.3.2 Cylindrical micelles

The difference between the spherical and the cylindrical case enters via
the energy per monomer in an aggregate, €,. For spheres we made the
reasonable assumption in Eqn. (2.21) that there is a typical size for a
micelle, and that the energy will deviate quadratically as we move away
from that value. This cannot be true for cylindrical micelles, though,
since they have an unspecified length: we can easily make cylindrical
micelles longer by simply adding more amphiphiles to the linear part.
The aggregation energy of these amphiphiles will be always the same,
for they cannot know how long the cylindrical aggregate is of which
they are a part. However, amphiphiles at the two end caps of the
micelle must have a different energy, and it must be larger than the
energy of amphiphiles in the wormlike middle, for if that were not so,
spherical micelles would form in the first place. It is hence reasonable
to write the total energy of a cylindrical micelle of n monomers as
E, = nes + 2E.,p, and hence the energy per monomer is

2By akgT

En = €00 + =:€x + ) (2.31)
n n

Notice that the dimensionless number o must be large: it is the excess
energy (in units of kg7') of all end-cap monomers. Since these caps
consist of two semi-spheres, they together make up essentially one full
spherical micelle, whose aggregation number is O(100), and it seems
fair to estimate that the excess energy for each monomer stuck in the
wrong local geometry is at least a sizable fraction of kgT.

Inserting this ansatz for €, into Eqn. (2.20), we get

b = [¢1 8,3(61—600—04 kBT/n)}n _ [¢1 eﬁ(m—&w)} " e % — [¢1 ea]n e ¢ .
(2.32)
The last step follows since this equation must also be true for n = 1.

It is now highly useful to define the scaled concentrations ¢, = ¢,e?,
because in these variables Eqn. (2.32) becomes

b = P} . (2.33)

The distribution of the qgn is exponential, which is remarkably wide
(we will make this more precise below) and thus very different from
the spherical case, where the distribution was sharply peaked around
an optimal size. Notice that in order for it to be normalizable, we
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must have ¢, < 1, implying that the monomer concentration can never
exceed e”“—a concentration we will soon recognize as the cmc for the
cylindrical case.

If we define the scaled total concentration of monomers as X = Xe®,
the normalization condition (2.17) becomes

Zn¢n—z @?;uf—;ﬁw (2.34)

n=1

where in the last step, at *, we used an identity whose proof you will
walk through in problem 1. We also took the limit N — oo.

This relation between X and gb is a quadratic in qb, which we can
therefore easily solve for ¢(X):

. 1+2X £v1+4X
P14 = % : (2.35)

Since we know (51 < 1, the minus sign is the correct choice. Expanding
the solution for small and large X, we find

N { X +0(1) for X <1
b1 =

(2.36)
1-1/VX +0(X) for X > 1

As promised, we can again define a cmc, ¢ee = €7, such that below
the cmc the monomer concentration in our solution is proportional to
the amount of added material, while for concentrations larger than
the cmc any added material goes into micelles, leaving the monomer
concentration below ¢cye, and approaching it with a very slow 1/ VX
asymptotics. This is illustrated in Fig. 2.6.

We already know that the distribution of micelle sizes is exponential,
but we might also want to know what the mean and the variance are.
These are easily calculated by working out (weight-averaged) moments
of n. For the first one, we find

Zn 1 n‘< Zn 1 n2¢n ko 1 + ¢1 # /1
<n> E n=1 X E n—=1 71(25” 1-— (251 ( )

where at * we again used the fact that the sums can be done exactly,
as you should verify in problem 1, simplified a la N — oo, and at #
we inserted the solution (2.35). The average micelle length therefore
grows like the square root of the concentration: (n) ~ 21/X/¢pcme-
The second moment of n is given by
(n2) = D onet n2~Xn _ Dot ng?n L4 ¢1(4~+ $1) 7 (2.38)
>t Xn D et P (1—¢1)?
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Figure 2.6 | Monomer concentration for the case of a cylindrical micelle ag-
gregation scenario. The dashed and dotted curves indicate the small- and large-
concentration limits from Eqn. (2.36). The full solution shows a cross-over at the
cmc.

where at * we used for a third time some knowledge about these types
of sums, to be proved in problem 1, and again took the limit N — oo.
The variance of n hence turns out to be

20 -
o2 = (n?)— (2= 0 tox (2.39)
(1—¢1)?
where at # we again used the solution (2.35). This answer is important,

because it shows that the width of the distribution essentially scales
with its mean, and hence

on [ 2X 1 o
@‘M+M_ﬁ OX1. (2.40)

Distributions of cylindrical micelles are hence “wide” no matter how
large the micelles are; there is no “law of large micelles,” or a 1/y/n
like asymptotics towards a sharp mean. As remarkable as this is, it is
of course not unexpected, for that is what exponential distributions do.

2.3.3 Planar bilayers

Again, the first question to address is: what is ¢, for an aggregate that
assembles in a planar fashion? To make headway, though, we need to
make further assumptions about its geometry. We will assume that it
stays flat, and that it will be circular. The latter follows because the

23



amphiphiles at the bilayer disc’s edge will have a higher free energy per
molecule than the one in the flat region (for reasons analogous to the
elevated free energy of monomers at the ends of cylindrical micelles).
This excess free energy per unit length acts as a line tension (in this
case usually called edge tension), and minimizing it at constant overall
area of the aggregate means that the shape has to be a circle.

If the circular aggregate has area A = wR?, its circumference is
C = 27R = 2V/7A. The excess free energy of the edge is Eegge =
2m Ry = 2v/m A7, with v being the edge tension—a material parameter.
Since the number of lipids in the aggregate is approximately n = 2A4/ay,
with a, being the area per lipid, we get A = %nag, and hence Eggge =
v27mnagy. The replacement for Eqn. (2.31) is hence

FEeage V2 kgT
gn:goo+ dg :8OO+M:€OO+Q B y (241)
n n Vn

where o« = /2mwa,[7 is a dimensionless number that’s again a fair bit
larger than 1. To estimate it, let’s take the DOPC values of a; =~
0.7nm? (Kucerka et al., 2006) and v ~ 20pN (Portet and Dimova,
2010), from which we get o ~ 10. Notice that the only difference
between the cylindrical and the planar case is that in the latter the
excess term is proportional to 1//n instead of 1/n. We will see that
this changes the physics in a big way.

Inserting this expression for the energy per monomer into the general
form of the aggregate distribution, Eqn. (2.20), we get

Xp=n¢,=n [(;51 eﬁ(sl_sw—akBT/\/ﬁ)]n
=n [¢1 eﬁ(al_a‘x’)}ne_“‘/ﬁ
=n[¢e*]"e V", (2.42)

where the last step again follows because this equation must also be
true for n = 1. The normalization condition (2.17) then becomes

N N
X=> X.=) nfpe e, (2.43)
n=1 n=1

The term e~*V™ decreases with n, while for the term [¢; ®]” the asymp-
totic behavior depends on whether ¢;e® is bigger or smaller than 1.
Assume it is bigger than 1. Then this term grows with n, and it asymp-
totically grows faster than e~*V™ decreases. This might get us worried,
for if we again replace N — oo (because N will be macroscopically big),
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the sum in Eqn. (2.43) would diverge. So let us assume that, instead,
the expression ¢e® is smaller than 1. In that case, we can calculate

- > 0 12
X:Z”W)lea]neaﬁSZneaﬁz/ dnne *Vn = =
n=1

0 ot

(2.44)
This is a pretty disastrous finding, though: apparently, the total amount
of material we can add to the system is bounded from above. What if
we wanted to add more material—who’s stopping us? (Not excluded
volume—that wasn’t part of the model!)

The solution to this conundrum is subtle: the assumption that N can
be replaced by infinity is wrong—despite the fact that N could really
be an Avogadro number of molecules. But large is not the same as
infinite, and the normalization condition only enforces ¢;e* < 1 if we
really sum all the way up to infinity. If the sum is finite, there is no
reason to demand that ¢;e* < 1, because finite sums cannot diverge!
More specifically, even if this term would ultimately outcompete e V",
if ¢1e” is only ever so slightly bigger than 1, this will only happen near
the upper bound of the sum—showing us that the value of this sum
will likely depend very critically on just how much ¢ie® exceeds 1.

Unfortunately, it is quite tricky to see how this plays out analytically,
because the normalization sum (2.43) turns out to be an extremely
delicate interplay between very small and very large terms. To brace
ourselves for what is actually happening here, we shall first look at a
numerical example. Let us assume that a = 10, that we have N =
10,000 molecules in the system (really an incredibly small number by
experimental standards, but this might be a typical number to be used
in a simulation), and let us demand that we want to ultimately gain
a total concentration of X = 1072 (notice that this is larger than the
erroneous upper bound of 12/a* = 1.2 x 1073). If we abbreviate ¢y =
$1e®, then we have to numerically solve the following equation for ¢r:

n=1

10,000

1072 =) ndpe 'OV, (2.45)
n=1

Fig. 2.7 plots the right hand side of this equation as a function of the
parameter gz~51 in the interesting range.” Up to ¢~51 ~ 1.1025, the right
hand side grows linearly with $1, but at around this point a big change
happens, and the sum picks up extremely rapidly—becoming a power

2This sum is a tricky mess of precision. I used MATHEMATICA®, defining it
as S[x_]:=Sum[n*x"n*Exp[-10*Sqrt[n]],{n, 1, 10000}]. To illustrate how
finicky this is: if you replace 10 by 10.0, you get completely wrong answers.
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Figure 2.7 | The solid curve is the right hand side of Eqn. (2.45) as a function
of ¢1, for @ =10 and N = 10,000; the dashed curve is the large-n-approximation
from Eqn. (2.47). Observe the tiny ¢;-range on the horizontal axis!

law with an exponent of about 10,000. (This also shows why it is
very hard to treat this problem numerically with even bigger values of
N.) The value 1072 is reached at (51 ~ 1.10330764 and hence X; =~
5.009 x 1075,

Inserting this value for ¢~>1 into the distribution function for X,, from
Eqn. (2.42), we can plot it over the entire range of permissible n values:
from n = 1 to n = 10,000; this is done in Fig. 2.8. Initially, the
distribution function drops precipitously: one finds X, ~ 1.756x1076 ~
X1/30 and X3 &~ 1.211 x 1077 &~ X;/400. But at n = 2566 the function
attains a minimum, after which it again begins to rapidly grow. At its
largest n-value it becomes X go0 ~ 4.696 x 10~* ~ 10X,, showing it is
about 10 times more likely to find a lipid in that aggregate than to find
it in isolation! Another way of looking at this is the following: 99% of all
monomers are found in aggregates with a size of at least 9, 890. And yet
another illustration is the following: Look at the cumulative normalized
distribution of X,,, namely, f(m)=X"13""  X,. It rapidly rises from
0 to about 0.0052 when m rises from 1 to 10. However, after that it
stays virtually constant, until about 9, 800, when it begins to rise again.
In other words, with the exception of about half a percent of small
oligomers, virtually the whole system forms one giant aggregate.

[ wish to strongly emphasize what this means: surfactants that pre-
fer to assemble two-dimensionally are prone to form macroscopic ag-
gregates. Macroscopic! Their size is no longer limited by their shape
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Figure 2.8 | The solid curve is the distribution function X, = n¢, from
Eqn. (2.42), using the numerical parameters « = 10, N = 10,000, and X = 0.01,
which implies the numerical solution q~51 ~ 1.10330764 and hence X; ~ 5.009 x 1072,
The dashed curve is the approximate distribution from Eqn. (2.46), using the

value for ¢, determined via the first-order approximation in Eqn. (2.50), q@ﬁl) ~

1.10330882. Using (551) in the full distribution (instead of the exact q~51) leads to a
curve that is indistinguishable from the exact one on this plot, with a normalization
that is about 1% off.

(unlike spherical micelles) or the vagaries of a strongly fluctuating size
distribution (unlike cylindrical micelles). Instead, they form large en-
tities that could easily consists of thousands, millions, or hundreds of
millions of individual molecules. They form emergent and persistent
entities that can be described as new objects that deserve an effective
description on their own, one that may not need to refer to their un-
derlying microscopic reality as two-dimensional oceans of amphiphiles.
It is this amazing “quirk” of two-dimensional self-assembly that gives
lipid membranes their identity as “things to be reckoned with.”

What follows from here on is more or less just a clean-up of the math.
It goes beyond what you can find in (Israelachvili et al., 1976), but it
is not strictly necessary. It is cute, though, and I encourage everyone
interested in some fun math to go through it. You do not day-in-day-out
encounter situations in which an Avogadro number of objects cannot
rightfully be considered effectively infinite, and it is quite nifty how this
plays out in the actual math. So, for those curious to be entertained
with some really fun distribution functions—here we go!

With these observations we are now in a better position to develop a
decent approximate solution for the normalization condition (2.43). No-
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tice that we need to analytically describe the region in that sum which
strongly increases (the “uptake” in Fig. 2.7), and that this comes from
the aggregates—meaning, the large-n part of the distribution function.
Hence it is probably a good idea to expand the summands in Eqn. (2.43)
around the upper end, n = N, and preferably in such a fashion that we
can perform the sum. But given the exponential variation of X, it is
wise to do that expansion in the exponent:

X, = ng?)’fe_o‘\/ﬁ = qz~571‘ exp {—a\/ﬁ +1In n}

:q@ﬁlexp{ —a {JNJF 2\}N(n—N)]

+1nN~|—%(n—N) +o((n_N)2)

~ Ne @VN/2 <<51 e*a/z‘/ﬁ)n . (2.46)

This expansion permits us to do the sum, since it turns into a simple
geometric series:

N o yNtl 1 ~
Z n¢’fe_o“/ﬁ ~ Ne_“‘/ﬁm—y 7 with vy = ¢ e~/2VN
n=1

(2.47)
Since y is slightly larger than 1, but N is huge, yV*' will be very
large compared to 1. (In our above numerical example we would find
y ~ 1.0494987 and hence yV ! a2 1.0494987'0001 ~ 6.92 x 10%%°.) We
can hence neglect the “—1” in the numerator, but of course not in the
denominator.

The normalization condition now becomes
N+1
Yy

X eVN/2
N N Cy—1"

— .
—_—

(2.48)

but this is again impossible to solve analytically. However, we can get
increasingly good approximations by iteration. First, recall that the
right hand side really emerged as a geometric series, and so it is given
by yN +yN "t + ¢V "2 4 ..., Let us take the dominant term, 3", and
solve the equation. We then get

[1]
=

y = (2.49)

Even though only approximate, this already looks remarkably good,
since it gives ¢; = 1.103645 for our numerical example, about 0.03%
off. And yet, inserting this value into the normalization condition gives
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a value about 20 times too big. We need to do better. In fact, we can
improve the solution by iterating the defining equation, a la y(*+? =
[E(y® — )]V where y©@ = ZYN is our initial simple result. At
first order we get

Y o/2VE )

Yy
_ oo/2VN r (51/N _ 1)}1/(1\7“)

—
—

N 1/(N+1)
— oo/2VN [{ cVN/2 ((E) e®/2VN _ 1)] . (2.50)
N N

With the numerical example from above (X = 0.01, « = 10, and
N = 10,000), this gives ¢\ = 1.10330882, which differs from the exact
numerical solution only by 1 part in 10°, and now the normalization
condition is only 1% off. Unfortunately, further iterations do not gain
us much anymore, because we are still solving an approximate equation,
not the exact one.

There is more to be learned. Even the simplest solution becomes
exact in the thermodynamic limit N — oco. Performing it, we get

aVN/2 /N
—e [ a/2VN Xe— — o
p1=e J\P_r}r;o e/ =V ( I ) e ", (2.51)

showing that—again—we have a critical “micelle” concentration. Since
bilayer patches are usually not viewed as “micelles,” this is more com-
monly called the critical aggregate concentration and abbreviated as
“cac”: Qeac = €%

The scenario looks superficially similar to what we have seen in the
spherical case: the normalization condition becomes a polynomial with
a constant term, a linear term, and one term with a large power (com-
pare Eqn. (2.29) and Eqn. (2.48)), and the “largeness” of that power
makes the transition. However, in the spherical micelle case that power
was given by the micelle size, and hence it was mesoscopic—of order
102. In the bilayer case that power is macroscopic—the total number of
molecules in the system, conceivably of the order of Avogadro’s num-
ber, but more importantly: extensive. It will by definition diverge in
the thermodynamic limit. It hence follows that the aggregation transi-
tion for bilayers is a true phase transition—at least in the model we
have studied here.

Alas, our model is defective. Or at least incomplete. The 1/+/n cor-
rection to ¢, (see Eqn. (2.41)), on which the whole scenario hinges,
comes from the \/n divergence of the edge energy for increasingly large
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flat circular aggregates. But bilayer patches do not have to stay flat.
Once they exceed a critical size, it is preferable for them to close up,
make an edgeless spherical vesicle, and pay bending energy instead, be-
cause bending energy does not scale with size. This was first discussed
by Helfrich (1974a). Hence, vesiculation caps the edge energy, moving
the correction term back to a 1/n form, for which we expect a wide
exponential distribution function like in the case of cylindrical micelles.
Unfortunately, in reality things are now a lot more complicated, be-
cause we can no longer ignore kinetics. In any case, we still encounter
an aggregation transition once the amphiphile concentration in solution
exceeds a critical aggregate concentration.

2.4 Things to think about

1. While deriving the size distributions for cylindrical micelles, we
encountered some nontrivial sums, which I claimed have closed
forms. Let’s derive them. Our goal is to evaluate expressions of

the type
Sp(x) = Zk”$k with |z| <1 and n € Ng . (2.52)
n=1

The way to solve this is, curiously, by exploiting a tiny bit of
calculus and some slick notation.

a) Remind yourself that you (hopefully) already know Sy(z).

b) Define the differential operator D= x%. Now observe that
2 is an eigenfunction of that operator with eigenvalue k.
Use this to rewrite the sum S (x) using So(z) and the dif-

ferential operator D.

c) Realize that this trick can be generalized into a formal ex-
pression for S, (z) that involves Sy and powers of D.

d) Explicitly evaluate S, (z) for n € {1,2,3}, which we need in
Eqns. (2.34), (2.37), and (2.38), respectively.

2. Chemists might describe linear aggregation of monomers into
chains as follows. We have monomers, which we denote as “X;”
and n-mers, which we denote by “X,,”. And we assume that there
are chemical equilibria that describe the addition of a monomer
to an n-mer to create an (n + 1)-mer, which look like this:

X+ X; == X (2.53)
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The key to a simple analytical answer is assuming that the chem-
ical equilibrium constant K is the same for all these reactions.
Using the law of mass action, show that this leads ezactly to the
same type of condition (2.33) that gave us all the results we found
for the size distribution functions of cylindrical micelles.

. The mystery around the paradoxical result in connection with
Eqn. (2.44), and its resolution, bear some striking resemblance
to a similar conundrum (and its solution) in quantum mechan-
ics, that typically arises when one first encounters Bose-Einstein
condensation. Those of us who have learned about that material:
ponder these two cases and narrate the similarity and differences!
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3 Geometry and Elasticity of
lipid membranes

The previous chapter has prepared the groundwork for a very impor-
tant insight: surfactants that prefer to assemble into two-dimensional
aggregates form macroscopic persistent entities. Such surfactants are
typically called “lipids”, and the aggregates are called “lipid bilayers”
or “lipid membranes.” An enormous amount of science has been done
about this subject, and it seems hopeless to even scratch the surface.
And yet, that’s why we’re here, and so I'll try to give it my best shot.

3.1 A super quick overview of some
membrane properties

The critical micelle (well: aggregate) concentration (cme/cac) of lipids
is very low: the lipid DPPC has a cmc of 4.6(5) x 107! M in water
(Smith and Tanford, 1972); in fact values in the 107'° M range seem
typical for most common two-tailed lipids. Let’s make sure we under-
stand what that means: water has a molarity of about 55M, so in
an aqueous solution in which a solute is present at a concentration of
1071 M, water molecules outnumber the solute by about half a trillion
to one. Or stated differently, the mean linear separation between two
solute molecules is about 2.5 pm (cubically thinking. . . ), which is about
8000 water molecules apart (again, linear distance, cubic lattice think-
ing). There are virtually no free lipids. They are basically all part of
membranes.

Since individual lipids in a membrane are not chemically bonded
(recall: we've got binding at kg7 scale, not eV scale!), they can laterally
pass one another. Of course, the same is true for water molecules,
but we know that this doesn’t guarantee fluidity—solid ice really does
exist. In other words: it is conceivable that the lipids in a membrane,
even though not chemically bonded, are still locally stuck because the
membrane is “frozen” into some sort of “solid” phase. However, it turns
out melting and freezing in two dimensions is a rather tricky thing, and
rigorously solid phases don’t actually exist. All the same, there is
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DPPC:
1,2-dipalmitoyl-sn-glycero-3-
phosphatidylcholine

DOPC:
1,2-dioleoyl-sn-glycero-3-
phosphatidylcholine

DMPC:
1,2-dimyristoyl-sn-glycero-3-
phosphatidylcholine

POPC:
1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphatidylcholine

POPE:
1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphatidylethanolamine
POPS:
1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphatidylserine



a phase transition in membranes where lipids go from the commonly
studied fluid phase into a far more ordered “gel phase” in which lipid
tails wiggle less, lipids pack better, hence the area per lipid is smaller,
and the diffusion constant of lipids drops by at least two orders of
magnitude. Do such phases matter in nature? Rarely. In your body,
there’s only one location where they are common: the stratum corneum
(the outermost layer of your epidermis). To be fair, there are people
who are deeply interested in it: cosmetics companies want to make your
skin look nice, or want to deliver all kinds of beneficial substances into
deeper skin layers, and so they expensively worry about what’s in the
way. But if you are instead interested in lipid bilayers because you
care about the membranes that surround cells or compartmentalize a
variety of organelles inside cells, then you can usually ignore gel phases.

So, we have reached the point where we wish to think about lipid
bilayers in their fluid phase. Given the size of lipids, these are something
like 4 nm thick, but can laterally extend over many micrometer. That’s
an aspect ratio of something like 10 000:1, which is more extreme than
the aspect ratio of a sheet of paper. Because of that, it seems like a
pretty excellent idea to describe such membranes as two-dimensional
surfaces embedded in three-dimensional space. How far down in scale
this description still makes sense is of course open at this point, but as
usual, we will discover that it works far better than it seemingly has
any right to, even at the tens of nanometer scale. Also, we might worry
that paper is indeed solid, but membranes are fluid, and whether this
makes things more complicated. Turns out it actually makes things
simpler because—in technical terms—the absence of a fixed reference
shape also means there is no fixed reference metric we need to keep
track of.

3.2 The geometry of fluid membranes

Our first task towards a continuum elastic description of lipid mem-
branes is to find a way of representing two-dimensional surfaces em-
bedded into three-dimensional space. There are many ways for how to
do this; in fact, an entire field of mathematics—differential geometry—
was born from the interest in this subject (and then vastly outgrew its
original motivation). For the purpose of these lecture notes, I do not
have the time to go into much detail, so I will restrict myself to some
vignettes, chosen for being common or useful (ideally: both). Along
the way I will make quite a few claims that I will not prove, but you
can find these things easily in the literature (Kreyszig, 1991; do Carmo,
1976; Willmore, 2012; Spivak, 1970, 1975a,b; do Carmo, 1992; Lovelock
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Figure 3.1 | Describing a surface via “Monge gauge”: panel (a) shows a surface
that can be represented as a function f(z,y) above some reference plane. This is
not possible for the surface in panel (b) since it has overhangs. In this specific case,
the surface in (b) could also be described in Monge gauge after a 90° degree rotation
about the y-axis, but it is not always possible to find such a simple fix.

and Rund, 1989; Frankel, 2004; Schutz, 1980; Darling, 1994; Flanders,
1989). I would also like to shamelessly draw your attention to a re-
view article I wrote some years back in which I very specifically deal
with a slightly more sophisticated differential geometric description of
membranes, with the specific aim to discuss membrane stresses more
efficiently (Deserno, 2015). It goes into much more detail, but still does
not offer proofs of the type you expect in math books (because I am
not a mathematician). It does try hard, though, to create physical
intuition.

3.2.1 Monge gauge

The by far most common parametrization for membranes is called
“Monge gauge.” This sounds fancy (to be fair, anything with a name
sounds fancy), but it really is the most straightforward twodimension-
alification of the concept of plotting a function f(x): just add another
axis and plot the function f(z,y) over some portion of a horizontal base
plane into the third vertical direction. That’s it. Panel (a) in Fig. 3.1
illustrates the idea.

A moment’s thought reveals that this, of course, cannot describe ev-
ery possible surface—for the same reason that a function f(x) cannot
describe every curve drawn in the two-dimensional plane. Most obvi-
ously, we will not be able to handle “overhangs” —surfaces with multiple
“sheets” at some given (x,y) position—see panel (b) in Fig. 3.1. More
sophisticated parametrizations can deal with this, and we will look at
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one of them later, but even such more fancy approaches generally need
to describe a surface as a collection of multiple patches. Since each
such patch is a mapping (or “map”), the collection of all such maps
is aptly called an “atlas”, and of course one now has to define quite
carefully how we can change between maps, or how we can transform
coordinates from one map into another one, if these two maps happen to
cover the same region on our surface.! The point is: even after cranking
up mathematical sophistication we may still have to describe a com-
plicated surface as a collection of multiple patches. Now observe that
each individual patch, if small enough, might also be simple enough for
Monge gauge to work! Why? Because near any point p a sufficiently
smooth surface does not strongly deviate from its local tangent plane
T,, and if we rotate the surface so that 7}, becomes horizontal, then in
a vicinity of p the surface is perfectly describable by a height function
f(z,y). Long story short, Monge gauge is not as clumsy as it might
initially sound.

Let’s now measure some important things on the surface. The most
basic one is area. If we have a little infinitesimal rectangular area
element dz dy on the base plane, this maps to a distorted parallelogram
on the surface, and it is no longer flat. What is its area dA? By carefully
generalizing a simple thought that works for curves (see problem 1 at
the end of this chapter), we find that

dA = \/1 + (V(z,y) dedy (3.1)

where V = (0/0z,0/0y)" is the gradient operator in the flat cartesian
base plane.

Next, the other thing we really care about in a surface is its local
shape. Given the key word “local”, the obvious thing to try here is
to just Taylor-expand the parametrization f(z,y) near some point of
interest and see what we get. To be able to write things down a bit

more nicely, let’s not talk about “z” and “y” but about z; and w,
which together make up a vector » = (x1,75)". In components, a local

'Deep down, the real challenge is this: maps are arbitrary, but our surface is
not. We need to make sure that we drag as little as possible of that arbitrari-
ness into our description. This recognition of the arbitrariness of coordinates is
foundational to both the mathematical and the physical description, and both
mathematicians and physicist will emphasize its importance. But they will use
rather different words for doing so.
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Taylor expansion of f near r(® = (ngo), xéo))T is then:

2
florm) = J ) + 30 0L
=1 ¢

(z; — 2"
7r(0)
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+ higher order terms .

Written ever so slightly more compactly in vector notation, we get

Fr) = Fr) 4 V| e b SO H] @)
' " (3.3)
where H is the Hessian matrix
0*f *f
ax% 037181'2 fll f12
H= ) ) = : (3.4)
of o’f S fa

0x1015 013

which in Eqn. (3.3) we of course need to evaluate at the actual expansion
point 7.

It seems eminently plausible that the Hessian matrix, consisting of
second derivatives, has something to do with “curvature.” This is true,
but there are still a few subtleties hiding here. First, let’s briefly recall
the 1d situation, where a function f(x) would be expanded as

flz) = @)+ f'(@?) (z —2) +%f”($(“)) (w =2+ (3.5)

Is the second derivative at some point equal to the curvature at that
point? Sadly—mno. A quick way to convince ourselves that this cannot
be so is to recall that for a parabola, f(z) = 2%, the second derivative
is a constant, 2, and yet a parabola clearly does not have constant
curvature—it’s not a circle! Instead, the curvature is largest at its apex
and then gets smaller and smaller the further we go along any of two
branches. Again, one way to get some intuition about this is to work out
what the curvature actually is for the 1d case, for some smooth function
f(z), and problem 2 at the end of the chapter walks you through an
elementary calculation for doing so. This exercise shows that, indeed,
the local slope matters when calculating the local curvature via Monge
gauge. But it also shows that if the local slope vanishes, then the
second derivative really is the curvature.
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Figure 3.2 | The two functions defined in Eqn. (3.6). The left one in panel (a)
is fi(z,y) = %(x2 — y?), the right one in panel (b) is fo(x,y) = ry. The yellow
curves illustrate cuts along the two orthogonal principal directions, of each surface,
illustrating the lines of curvature. The black lines show that between those two
there are also directions along which the curvature vanishes. This can of course
only happen if the two principal curvatures have opposite sign (i.e., one bends
up, the other bends down). These so-called “asymptotic curves” generally do not
intersect each other at right angles; that they do so here is simply due to the high
symmetry.

So if we specialize to calculating the curvature at points where V f =
0 (we can always rotate the surface to make that happen), then maybe
the Hessian H also describes the curvature. This is true, but we still
need to figure out precisely in what way, because there sure are many
curvatures at some point. What is “the” curvature?

It is no coincidence that the curvature state of a surface is indeed
not described by a single number but by a matrix: at any point p,
there are infinitely many direction along which we could ask how much
the surface bends, and a matrix is what’s needed to at least locally
describe that. But we can do a bit better: notice that the Hessian
in Eqn. (3.4) is symmetric, and as such it can be diagonalized. It has
two eigenvectors {v1,v2} and two associated eigenvalues {c1,co}. The
eigenvectors point in what’s called the two “principal directions,” and
their associated eigenvalues are the “principal curvatures” associated
with these two directions. If they are different, the principal directions
must further be orthogonal.

Let’s look at two examples. Take the two functions

1

filz,y) = 5(352 — y2) and folz,y) =2y . (3.6)

These are plotted in Fig. 3.2. Their gradient vanishes at the origin,
so the Hessian suffices to characterize their curvature properties there.
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Let’s calculate it:

H bo d H vl (3.7)
1 0 —1 f2 1 0

Obviously, Hy, is already diagonal, showing that the z- and y-axis
are the principal directions and the associated eigenvalues are +1 (the
surface bends “up” along x) and —1 (the surface bends “down” along
y. This checks out with Fig. 3.2.

In contrast, Hy, is not diagonal, but we can easily guess two orthog-
onal eigenvectors: v; = (1,1)" and vy = (1,—1)T. We evidently also
have

| !
11 = Hfzv]. = Vq and CoVUg =— Hf2v2 = —Vs3 . (38)

This shows that the curvature along the (1,1) direction is 1 and the
curvature in the (1,—1) direction is —1, which again tracks what we
see in Fig. 3.2. Observe also that these are the same curvatures as
those for the surface for f;, just along directions that are rotated by
45°. Indeed, this is because the surface corresponding to fs is just the
surface corresponding to fi, rotated by 45 degree—as you are asked to
confirm in problem 3 at the end of this chapter.

Once you know the principal directions and the principal curvatures,
you know all curvatures along all directions. Say you care about the
curvature along a direction that makes an angle ¢ with respect to prin-
cipal direction vy. Then the curvature along that direction is

c(p) = c1cos? o + cysin® ¢ . (3.9)

This is called “Euler’s Theorem,” a name that is not particularly helpful
when you search for it, because so much else in mathematics is also
named after Euler. (He was a pretty sharp fellow.)

The curvature is related to the Hessian, and its eigenvalues are the
principal curvatures. However, they by themselves are not yet good
measures of the local surface curvature, because they still depend on
the coordinates. Think about it: if we rotate the surfaces belonging
to the functions f; or fo by 90°, we swap the principal directions and
hence the eigenvalues, but nothing about the surfaces changes (other
than their orientation in space). To get something that is independent
from these remaining arbitrary coordinate choices, i.e., independent
from the choice of a local basis, we need to look at invariants. For
instance, the sum of the eigenvalues is the trace of the Hessian, and we
know from linear algebra that traces are invariant under basis changes
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(i. e., invertible linear coordinate transformations, such as for instance
rotations). Another invariant of a matrix is its determinant, which is
the product of the eigenvalues. These two invariants are extremely
important and are given special names:

Ji=c+c (total curvature) (3.10a)

K:= c¢c (Gaussian curvature) . (3.10Db)

I’d like to point out one little subtlety, related to the sign of the total
curvature. As defined so far a surface such as f(z,y) = %(x2 + 4?)
would have positive total curvature J = 2 (check it!). Looking at the
shape, this would mean that if you stand at the center of that parabola,
and everywhere around you the floor bends up, that’s positive curva-
ture. Some like that convention, but others prefer that the curvature
is positive when you stand on a hill, not when you stand at the bottom
of a pit. But if you want hilltops such as —%(xQ + y?) to have pos-
itive curvature you need to flip the sign; meaning, you need to work
with the eigenvalues of the negative Hessian. Moving forward, this is
also the sign convention we will follow, such that for instance the total
curvature at a horizontal point in Monge parametrization is given by

a2f  _f
_ ox2 010z
JVE T [—H] = Tr |- LT (3.11a)
_r 2f
Ox10x2 01‘%
0*f  0*f
= | 4+ L) = _Af. 3.11b
(890% + c‘h%) / ( )

In words: the total curvature at horizontal points is the negative of the
Laplacian of the height function.

If you were to do the calculation in full glory, even for a surface that
is not horizontal at the point you care about, you instead find the much
more complicated (since nonlinear!) expressions

2 . 2
J:_V_< \Zi ):_(ny)fm 2fufyfoy + L+ f2) fuy

V1+ (V)2 [1+ (V)2 ’
(3.12a)

9 1+ (V2]
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In particular, Eqn. (3.12a) is the 2d generalization of what you (hope-
fully) worked out in 1d in problem 2 (up to possibly a sign that is—you
now know—a bit of a convention.

While Monge gauge is intuitively straightforward, it nevertheless
leads to pretty nonlinear expressions down the road—for instance be-
cause the occurrence of these square roots. However, there is a way
to simplify the expressions for area and curvature by expanding them
up to quadratic order in V f, because this, it turns out, will then later
lead to linear shape equations. These approximate expressions are then
referred to as “linear(ized) Monge gauge:”

dA ~ ll + %(Vf)ﬂ dzdy , (3.13a)
J~—Af, (3.13Db)
K= foufy — (fur)? - (3.13c)

What are the next order corrections to these results? For the area
element and the Gaussian curvature this is pretty straightforward, since
it merely amounts to Taylor expansions of expressions like [1+ (V f)?]
with a = % for the area element and a = —2 for the Gaussian curvature.
The mean curvature is a bit more tricky. Some patient expansion work
shows that the next term is cubic in f, and we get

Jr~—Af+VfTIH+ iTr(H)1| V f + (quartic order) , (3.14)

Of course, Tr(H) = Af, so the quadratic form is written a bit more
fancily than it needs to be written. (But you gotta admit: it looks so
cute that way!) At any rate, we again see that the corrections become
sizable once (V f)? is no longer small compared to 1, which of course
is the same condition we find for the next order expansion in the area
element. All this is a bit easier to see in 1d, where the two conditions
for area and curvature become

dA = {1+%(f’)2[1—i(f’)%---]}dxdy, (3.15a)
J= = [1—;(f')2i...] | (3.15b)

This also shows that, relatively speaking, the first correction in the
curvature term is 6 times bigger than in the area term, suggesting that
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curvature expressions will deteriorate more rapid in linear Monge than
mere area expressions. This argument of course doesn’t say whether
the same is true in 2d.

3.2.2 A more general parametric surface
representation

To show you one possible way for how to go beyond Monge gauge,
and to take the first mini steps towards a more general differential
geometric treatment, let us look at a parametrization that is a fair deal
more general than Monge. Like essentially any parametrization, it will
not free us from the need to explain what to do if we wish to describe
a given patch of surface using different coordinates. In fact, this is a
feature, not a bug, of every way of describing a surface (or, really, any
geometric object): our ability to disentangle our discussion from any
specific quirks of any given parametrization lies at the heart of doing
proper geometry: coordinates are always arbitrary, and so we need to
distill which bits and pieces are ultimately independent of them.

This section opens the door to a lot more differential geometry. But
we will only be able to take a short peek, and we will not be able
to look at all the many fun things that could be explored. We'll just
whet the appetite. Those of you interested in more might find my
review (Deserno, 2015) a helpful bridge between these notes and proper
differential geometry books.

With that being said, consider the following way of describing a sur-
face in 3d space:

X (ut,u?)
(u',u?) = X (u',u?) = | Y(u',u?) | €R?. (3.16)
Z(u?, u?)

A first heads-up: the superscripts “1” and “2” are not exponents! They
are the (1,2) index pair that distinguish the two coordinates we use to
describe a two-dimensional parametrization. You can legitimately ask:
why don’t we write this as u; and us, though? Answer: because it
will turn out in the process of getting coordinate invariance right, that
there will be two different types of two-index-objects showing up, which
transform differently under coordinate changes, and the standard (and,
it turns out, miraculously sleek) way of distinguishing them is by the
placement of indices: upstairs versus downstairs. Of course, to sound
less childish, we don’t speak of “upstairs” and “downstairs” indices
and components, but of “contravariant” and “covariant” components,
respectively. More to follow. For now, look at Fig. 3.3 for two examples
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Figure 3.3 | Two examples of surfaces accessible via more general parametrizations.
Panel (a) shows the “inner portion” of a surface called “Enneper’s surface.” It is a
so-called “minimal surface” for which the total surface curvature J vanishes at every
point. Observe that if we were to “continue” this surface beyond its current “rim,”
it would start to develop self-intersections—something which we cannot easily see
from a local parametrization. Panel (b) shows an example of a surface plotted
in “spherical Monge gauge”. The specific example shows a surface whose wobbles
follow the spherical harmonic Y (9, ¢).

of a surfaces that can be nicely expressed using this parametrization
that we would struggle to get in conventional Monge gauge.

Let us make two examples that show how this works. As a first
example, let us show that Monge gauge is actually a very special case
of this parametrization:

1
u
(uh,u?) — X (u',u?) = ( 1;2 ) €R? (Monge) ,  (3.17)
G

where we see that u! and u? can be viewed as the cartesian coordi-
nates x and y of some base plane. Instead of three general func-
tions X (u',u?), Y (u',u?), and Z(u',u?), we only have a single one,
Z(u',u?) = f(u',u?), since we chose the other two to just be the iden-
tities for u! and «?. This is why Monge gauge is not as general and has
far more limitations.

Here’s another example:

sin(u') cos(u?)
(u',u?) = X (u',u*) =r [ sin(u!)sin(u?) | € R? (sphere) .
cos(ut)
(3.18)
This is not a generic parametrization of a surface but a particular
choice for a specific one: this describes the surface of a sphere of radius
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r. I trust you will recognize this as standard spherical polar coordinates
(but at fized values of ), or at least when I tell you to rename u* —
and u? — . You can make it more general by also letting r depend on
u! and u?, in which case you can look at a surface of spherical topology
whose radius depends on the direction:

sin(u') cos(u?)
(u', u?) = X (u',u?) = r(u',u®) | sin(u!)sin(u?) | € R®*  (spherical Monge) .
cos(ut)
(3.19)
This is extremely useful when describing surfaces that only deviate
weakly from spheres—in the same sense that Monge gauge is extremely
useful for describing surfaces that deviate weakly from a plane. Fig. 3.3b
is in fact an example of this parametrization.

Moving on. The two examples illustrated in Fig. 3.3 show a grid of
curves plotted on the surface. What are these curves? Answer: these
are curves of constant u! (or constant constant u?) values. They are
called “coordinate lines” or “coordinate curves.” If you fix u? to some
permissible value ¢ and then only vary «!, then you are walking on the
coordinate curve called “u? = ¢”. Notice that small variations in u'
now define the “tangential direction” of that coordinate line. We can
use this to set up a coordinate system for the local tangent plane to
the surface by defining the two tangent vectors e; and es:

0X 0X
= w and €y = w s (320)

or more compactly written:

€1

00X
Cout

€; (3.21)

As you have undoubtedly noticed, we now use downstairs indices for the
two different objects. This is because these objects genuinely behave
differently under a change of coordinates than objects with their index
upstairs. Problem 4 at the end of this section will give you a chance to
explore this in more detail—if you're interested.

We can use the tangent vectors e; as a basis for any other tangent
vector V' defined at that local point, thereby giving that tangent vector
coordinates (V*, V?):

2
V=Ve +Ve=> Vie=Ve. (3.22)
=1
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We dropped the summation sign in the last step—something that’s
called “Einstein summation convention:” whenever we see a repeated
index pair, one upstairs and one downstairs,” then we sum over that
pair over the permissible range (which here is of course just from 1
to 2). We'll introduce this here and immediately use it, because it’s
so convenient. As it turns out, differential geometry is a lot of local
expansions in local coordinate systems, and so there’s a lot of these
sums. The notation massively brightens up once we drop all these sum
symbols. The repeated index is called a “dummy index,” and it is
immaterial which letter we use for it—as long as it is different from any
other index-letter already occurring in our expression.

Observe that these tangent vectors are generally not normalized:
Their scalar products e; - e; and e - e; are generally not 1. We will
insist, though, that they have to be at least nonzero, because otherwise
something singular and obviously bad has happened. If this is not the
case, our parametrization is sick.

Observe also that the two tangent vectors are generally not orthog-
onal: e; - e5 does not have to vanish. If it does, the coordinates are
called “orthogonal coordinates,” but this is something we are generally
not guaranteed.

Since all these scalar products are obviously interesting, it turns out
to be useful to define an object that collects them all in one place. So
here we go:

gij ‘= ¢€;-¢€; . (3.23)

Observe from the definition that g;; is symmetric under exchange of ¢
and j.

The object g;; is called the “metric tensor,” or just short the “met-
ric.” It is fantastically important in all of differential geometry. For
instance, it is the object that is used to define scalar products of vectors.
Say you have two tangent vector V- and W on the surface expressed in

the local tangent coordinate system. Their scalar product is
V-W = (Vi) (Wie;)=VWi e e)=VWiyg;. (3.24)
And now that we have a scalar product, we can also define a length:
V|=VV .V with V.V =VVig, . (3.25)

Moreover, it is extraordinary useful to define the “inverse metric”, an-
other tensor g%, with its indices upstairs rather than downstairs, basi-

2Sorry: one contravariant and one covariant.
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cally as being the inverse matrix of g;;, such that

. 5i 1iti=k (3.26)
9°- 95k = = e ) :
’ g 0if ¢ #k
where the object 0 is called the “Kronecker symbol” (which I trust
you've seen before, maybe just not yet with its indices in upstairs-

downstairs placement).
The tensors ¢ and g;; can be used to raise and lower indices, re-
spectively. For instance we have

V= gijVj and e = gijej , (3.27)

showing that if you “dislike” the placement of any index, you can easily
change it. Observe that this is not a moot procedure: the numbers
associated with (V1 V?) are obviously not the same as the numbers
(V1, Va), because the two objects g;; and g are not just unit matrices.
If we ever encounter an object that happens to have more than one
index, we can do the same. In that case, though, we will have to be
careful to say which index we raise or lower—meaning, whether it’s
the first, second, third, etc. index. So we need to make sure that
the horizontal placement of indices is not affected. Here’s a terrifying
looking example:

gmpT%jklmn = T‘Z'jklpn . (328)
With this index raising and lowering gymnastics we can also nicely

rewrite scalar products:
V- W =V'Wg,=V'W,=V,W (3.29a)
...or lengths:
V.-V=VVig,=VV. (3.29b)

Knowing lengths, we can also calculate areas. The most important
example would be the area of a tiny little coordinate patch—one of the
small parallelograms you can see on the gridded surface in Fig. 3.3.
Convince yourself that these patches are locally “spanned” by e; and
ey. If we want to consider infinitesimal area elements that correspond
to an infinitesimally finely sliced coordinate mesh, then their area can
be expressed as

dA = |dX aiong 1 X d X aiong 2| = |€1 X e2] du' du® (3.30)

where we used the fact that the area of a parallelogram spanned by
vectors V and W is |V x W|. Using the well-known vector identity

(axb)-(ecxd)=(a-c)(b-d)—(a-d)(b-c), (3.31)
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we can now calculate the following:

2
‘61 X 82‘ = (61 X 62) . (81 X 82)

=(e1-e)(ex-ey) — (e -e)(ezx-er)
S~ Y~ N~ Y~
g11 922 g12 921

=det(g;j) = ¢, (3.32)

where g = det(g;;) is the so-called metric determinant. Combining this
with Eqn. (3.30), we arrive at the important result

dA = /g du' du? . (3.33)

The prefactor /g is something you have seen before in another context—
just under a different name: “Jacobian.” Think for instance about
spherical polar coordinates. The area element on the surface of a sphere
is obviously not just d de. That wouldn’t even make sense dimension-
ally! Instead, you know you need to include the Jacobian for spherical
polar coordinates, finding dA = R?sin v dv de.

It is obviously useful to extend the local coordinate system for the
tangent plane, {e;, es} into a complete coordinate system for 3d space,
which just happens to be locally pinned to the surface. All we need to
do so is include the normal vector m, which is given by

n— e; X ey :€1X€2 ‘ (334)
‘leeg‘ \/E

Notice that unlike the two tangent vectors, the normal vector is nor-
malized to length 1. It just turns out to be more useful that way.

Now that we “have” a normal vector, we can finally discuss the crucial
notion of curvature. When is a surface curved? One way to say so is
that if the normal vector changes direction as we move along the surface.
Since n is, well, a vector, we still need to re-express this as something
that is surface based, and the right thing to do is to project the change
of the normal vector back onto the surface. Let us hence define another
tensor, K;; as follows:

on Oe; ?X
Ky=e:- ow " aw " duiow (3.35)

The second identity follows from differentiating n-e; = 0, and it is often
easier to work out, because it lacks the additional normalization factor
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1/,/g tacked onto the normal vector that tends to make calculating
its derivatives more cumbersome. The last expression shows that the
curvature tensor K;; is symmetric in its indices. It also shows that it is
a second derivative of the embedding function X (u!,u?), which indeed
smells a lot like curvature. However, it generally doesn’t have the right
units yet: If the coordinates u’ are dimensionless (think for instance
of angles), and X is the position in space, which must have units of
length, and the normal vector is by construction dimensionless, then
K;; does not have the dimension of curvature. Turns out, one thing is
still missing: We need to raise one of the indices in order to turn the
tensor K;; into the matrix K7:

K = Kyg" | (3.36)

7

and this object now has the right dimension. It is called the “shape
operator,” because it is a linear operator that maps tangent vectors
to other tangent vectors in a way that’s informative about the shape
(more specifically: the local curvature). Of course, here, we only have
it in components, but we see that we can write

KIVi=W7 (3.37)

so that the components V? of the tangent vector V' = V'e; are mapped
to the components W7 of the tangent vector W = W/e;. Being a linear
map, we can ask what it’s eigenvalues are—meaning which vectors V'
are mapped onto themselves, with at most a scaling of length? Answer:
these vectors exactly correspond to the principal directions of curvature
of the surface at that point, and the corresponding eigenvalues are the
principal curvatures. Because of that, and recalling Eqns. (3.10a) and
(3.10b), the trace and the determinant of the shape operator are the
total and the Gaussian curvature, respectively:

J =Tr(K)) (3.38a)
K = det(K}) . (3.38b)

This means we now have a pretty general way to compute the key cur-
vature invariants of a surface in a parametrization that’s fairly general.

3.3 The elasticity of fluid membranes

3.3.1 Some big-picture words

Elasticity quantifies the ability of a body to reversibly resist deforma-
tions. You squish it, with some force, leading to some deformation,
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and when you stop squishing, the body returns to its original shape.
Elasticity is hence thought of as a property of solids, but whether some
squishing is reversible or not might also depend on the type of defor-
mation. For instance, the compression of gases can very well be done
reversibly: think of increasing the pressure from P = Py to P = P, > P,
and subsequently decreasing it back to P;. Gases and liquids indeed
have a bulk modulus. Of course, all the molecules of the gas will have
arrived at a different position, but the macrostate is unchanged. In con-
trast, when we shear a fluid, no force is required for the deformation
(if done slowly enough—we’re not talking about dissipation due to a
finite shear rate). But then, while we change the position of molecules
upon shearing, we don’t change the macrostate. So are we even doing
anything?

Oh dear. It seems like we're running into semantic issues as to what
we even mean by elasticity already in the first paragraph. Maybe we
need some expert back-up. Landau and Lifshitz (1986) start their entire
elasticity volume by saying “The mechanics of solid bodies, regarded as
continuous media, forms the content of the theory of elasticity.” OK,
solids. Also: a continuum point of view. That’s nice, but what about
membranes? Haven'’t we said that the lipids are not chemically bound?
So aren’t membranes fluid? How can they also be elastic?

A better (but more formal) way to approach the problem is to listen
to what Chaikin and Lubensky (1995) have to say in their book—
specifically chapter 6 on “Generalized Elasticity.” They take the very
broad approach of reminding us that phase transitions break symme-
tries of disordered phases. For instance, going from a fluid to a crys-
talline solid breaks the translation symmetry of the system, because
translations now only transform the system into an identical copy if they
happen along a lattice vector. Things are really interesting when the
broken symmetry is continuous, because even though some arbitrary
but uniform continuous symmetry transformation 6 generally doesn’t
map the system back onto itself (say, when you translate a crystalline
lattice by half a lattice vector), it is still true that such a deformation
doesn’t change the free energy. However, what happens if the transfor-
mation is non-uniform, i. e., what if (r) depends on position? What
if we translate the system at each point, but a little bit more here and
a little bit less there? If we do that, then we are obviously squishing
the system, and that might cost an additional free energy. It is then
reasonable to expect that we can expand the free energy density in
gradients of the deformation, V(r), especially if these gradients are
slowly varying compared to any microscopic structure of the system
itself—which is what will give us the permission to describe this in a
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continuum language. This type of gradient expansion of the free energy
is what we mean by (general) elasticity theory. For every continuously
broken symmetry we can then write down a suitable set of gradients
that end up giving us scalar expressions (because the free energy den-
sity must be a scalar) and that still satisfy any remaining symmetry
of the system. This definition has the advantage of permitting a much
more fine-grained discussion of elastic responses. For instance, a fluid
membrane might indeed have all its molecules diffusing in the mem-
brane plane, but a nonuniform stretching or bending deformation will
still cost energy, and hence there are deformations against which a fluid
membrane elastically resists.

3.3.2 Membrane stretching

With those preliminaries out of the way, let’s think about the easi-
est deformation we can do to membranes that should elicit an elastic
response—the equivalent of a uniform stretching or compression that
we could even do for liquids and gases: a uniform stretching or com-
pression of the area of a membrane.

Upon second thought: let’s be careful with compressing. As we can
easily imagine, the absence of a bulk third dimension gives the mem-
brane the opportunity to escape into the third dimension upon com-
pression (something that’s called “buckling”), and that doesn’t look
like a pure stretching deformation. So let’s for now stick with pulling.

So consider a membrane that in its relaxed state (no pushing, no
pulling) prefers a flat state of area Ag. What if we pull it to a slightly
larger area A > A7 The associated (dimensionless) strain is given by
s = (A—Ay)/Ap, and we expect our free energy to be a function of that.
It cannot be a linear function, since it must have a minimum at Aq,
and so we know that, to lowest order, the energy density is quadratic
in the strain:

1 1
€stretch = _KA 32 + = _KA (

(3.39)

A— A 2+
2 2

Ao

The prefactor % is convention, and the material parameter K 4 is called
the stretching (or compression) modulus. Recall that for now we just
think of this strain to be homogeneous across the entire membrane, and
so if we want the total stretching energy of the membrane, all we need
to do is to multiply it by the (relaxed, reference-state) membrane area
Ap. At quadratic order, which is what physicist-level elasticity theory
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typically restricts to, this gives the total stretching energy

1., (A— Ap)?

Estretch = §KA A (340)
0

The value of the modulus K4 has been measured for many cases. It
turns out that for most “standard” membranes its value is—within
about 10%—somewhere in the ballpark of 240 mN/m (Rawicz et al.,
2000). What does that mean? Imagine a spherical membrane vesicle
of radius R whose area is perfectly relaxed. Now increase the radius by
a small fraction p. The area increases by (1 + p)? and so the strain is
(14+p)? —1 = 2p+ p* ~ 2p. That means we accumulate the stretching
energy AEgoien = pKa(4mR?). For vesicles with a diameter of 100 nm,
this gives AFgpoten ~ p X 1.8 x 10T, meaning a change in radius by
0.1% increases the energy by about 1800 kgT'. This is quite a bit.

If you pull membranes a lot, then at some point they will rupture.
When? Turns out, this depends on how quickly you increase the area
strain. The faster you do this, the more strain you can put in before it
fails. The reason is that the membrane needs some time for a fluctuation
to open a pore, and if you're pulling quickly, you can keep increasing
the strain while the system is waiting for that lethal fluctuation to
happen (this is also the basic idea behind dynamic force spectroscopy).
Applied to membranes, you find details in (Evans and Heinrich, 2003).
A rough rule of thumb is that membranes will rupture under a stress
in the few-to-ten mN/m range, which corresponds to a strain of a few
percent—but details depend on the lipid and the conditions.

3.3.3 Membrane bending

Just like the free energy can depend on area strain, it can also depend
on local curvature, and if we are in the business of writing free ener-
gies as expansions of gradients (or higher order derivatives), then we
can take the scalar invariants we discovered in the previous section as
legitimate ingredients for such an expansion. Up to quadratic order
in the eigenvalues of the curvature tensor (or, equivalently, the shape
operator), we get something like

e =co+c1J + cpJ? + c3K + higher order terms . (3.41)

The first term is just a constant, and after integrating over the whole
membrane, you can view it in a number of ways: surface tension, La-
grange multiplier that fixes the area, chemical potential of lipids. The
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precise interpretation of this easiest-looking term is fraught with sur-
prisingly many subtleties, but in this introduction we have to delegate
them to a nice spot under the carpet.

The next term, linear in J, has the interesting property of changing
sign if we flip the direction into which a membrane bends. The two
height functions fi(z,y) = i%c(a:z +19?) differ in the sign of their J. Is
this reasonable? That depends on the membrane! If the membrane does
not change its structure upon flipping it upside down—meaning, if it is
up-down symmetric—we would not expect its energy to change either,
and then we would not expect such a term to exist. In other words, the
prefactor ¢; would have to be zero. However, for a membrane that is
not up-down symmetric, no such argument holds, and so we generally
expect that term to be present. This shows that the existence of this
term depends on an important symmetry property of the membrane.
Specifically, since lipid membranes are bilayers, we expect this term to
be present if there is any physically relevant difference between the two
leaflets.® The remaining two terms are both quadratic expressions in
the principal curvatures, and as such we clearly expect them to express
some genuine curvature elasticity.*

While the expansion in Eqn. (3.41) is perfectly fine, physicists have
decided to rewrite it slightly differently and give the constants slightly
different names. Of course, even what I'm writing here is not universally
agreed upon:

1
€hend = 0 + §I€<J — J0b>2 + kK . (342)

Here, o is the called the (bare) surface tension (which is related to co
from Eqn. (3.41) and hence inherits all the subtle caveats I mentioned
and then refused to talk about); x is called the bending modulus; Jop
is called the spontaneous bilayer curvature; and % is called the Gaus-
sian curvature modulus. Notice that Jy, is nonzero if and only if ¢; is
nonzero, i. e., if and only if there’s something that breaks the up-down
symmetry of the bilayer.

Since this is just the energy density, and its value depends on the

3In fact, to show signs of asymmetry it even suffices if there is a seemingly benign
difference in the embedding solvents (Lipowsky and Dobereiner, 1998).

4You might wonder whether there are other quadratic invariants. We have J? =
(c1+c2)? and K = cjco, but what about ¢24c2? We would first have to convince
ourselves that this is actually an invariant. It is, because it’s the trace of the
square of the curvature tensor. But it is not independent, because evidently
c? +c3 = J> — 2K. More generally, one can prove that for any n-dimensional
square matrix M, there are only two quadratic expressions that are invariant
(under all rotations, meaning under SO(n)), and these are [Tr(M)]? and Tr(M?).
Every other quadratic invariant is a linear combination of those two.
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position on the membrane (unless the membrane is a plane, a sphere,
or a cylinder), we get the total energy by integrating over the whole
membrane:

Byend[S] = /SdA {0 + %/{(J — Jop)? +EK} : (3.43)

Here “S” is not just the surface area of the membrane, but the actual
surface—i. e., the thing that has a shape. This means that the energy
15 a functional of the shape, and hence a functional of a geometric
object. Observe that “dA” is the area element on the surface, not on
some Monge-flavored base-plane. In terms of the differential geometric
language we have developed in Sec. 3.2.2; it is area element given in
Eqn. (3.33). Within the simpler Monge-gauge from Sec. 3.2.1, it is the
one given in Eqn. (3.1)—which is still not equal to the base-plane area
element dx dy.

This energy functional is typically referred to as the Helfrich energy,
after the original massively influential paper by Wolfgang Helfrich (Hel-
frich, 1973) and a lot of groundbreakign follow-up from there; but peo-
ple also sometimes add the names of Peter Canham (Canham, 1970)
and Evan Evans (Evans, 1974), since they, too, clearly had been inde-
pendently on the right track, and especially Evans has later contributed
in many important ways to the experimental development of the field.

Let’s count the number of “parameters” entering this expression: We
have o, Jop, Kk, and . That’s four numbers we need to know before we
can calculate the energy of a particular shape. But in practice it’s often
less. The spontaneous curvature for instance often vanishes for symme-
try reasons. And the Gaussian curvature modulus % is often irrelevant
(even though it by no means vanishes) due to some piece of magic com-
ing from differential geometry, called the Gauss Bonnet theorem. This
theorem states that the integral over the Gaussian curvature of some
surface S can be taken apart into two contributions, a boundary term
and a topological invariant (do Carmo, 1976):

/dA K+/ ds kg = 2mx(S) . (3.44)
S oS

Here, k, is the geodesic curvature at the boundary,” and x(S) is the
Euler characteristic of your surface—a topological invariant that does

Picture driving along that boundary with a car such that your car stands flat on
the surface, but super close to its edge. As you drive along the edge, aiming
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not change under smooth deformations that do not rip things off or
glue things together.”

What this remarkable theorem states is that the only way to make the
Gaussian curvature term contribute nontrivially to the Helfrich energy
is if your membrane either has a boundary that somehow changes, or if
you change the topology of your surface (say, you fuse two vesicles into
a single one). Since often neither happens, the Gaussian term is just a
constant that can be ignored—and therefore very often is. This is good
news and bad news. It’s good news whenever you have the opportunity
to drop a term that you know doesn’t matter. It is bad news if you are
facing one of these rare situations where it does matter, and now you
not only have to worry about handling all the mathematics associated
with it, but you also need to actually know the numerical value of the
Gaussian modulus k. How would you measure it if you have to? Well,
you have to consider experiments that change either the boundary or
the topology of your membrane in order to be sensitive to it. But those
tend to be difficult experiments, because it is very difficult to control an
open edge of a membrane, and it is also difficult to monitor topological
transformations in such a way that you can also measure the energy
changes associated with them.

If you are lucky enough to be able to ignore Gaussian curvature
shenanigans, and you have a symmetric membrane, then there are only
two parameters left: the tension o and the bending modulus . The
tension is not a material parameter and instead controlled by the setup:
how inflated are vesicles, what does a cell do to its plasma membrane,
etc. It can for instance be measured in a variety of ways that push or
pull the membrane, or monitor the pressures needed to inflate vesicles.
The bending rigidity can also be measured in many ways, and it is a
genuine material parameter (which depends on environmental condi-
tions such as temperature, ionic strength, or pH). A ball-park number
for its value is a few tens of kg7, often between 20 kgT" and 30 kgT'. It
depends quite a lot on the type of lipid, whether you have mixtures, or
other solutes (such as small peptides or alcohols) in the membrane. It’s
a busy field, producing many numbers, not quite as many error bars,
and surely some interesting controversies. Happy googling.

to stay stay super close, but also not to fall off, you will generally have to turn
your steering wheel. The associated curvature with this turning is called the
geodesic curvature. For instance, if the surface is a circular disk of radius R,
then k; = 1/R. But if your surface is a hemispherical cap of radius R, then
driving around what now basically amounts to the equator, you do not need to
turn the steering wheel at all, and so kg = 0.

SFor example, y(disk) = 1, x(sphere) = 2, y(torus) = 0.
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Since we will subsequently do a lot of work in the linearized Monge
gauge, it is worth finding out what the Helfrich energy looks like in this
approximate parametrization. This means we need to expand every-
thing to the right hand side of [ up to quadratic order in f. Notice that
I didn’t say we need to expand “the integrand”; there’s also a “dA” we
must expand! But we know how to do this—that’s just Eqn. (3.13a).
For the curvature we will take Eqn. (3.13b), which is admittedly only
linear, not quadratic, but we know that the next order adds a cubic (see
Eqn. (3.14)), and so we stick with the linear term. Actually, we're going
to square it up, so we get something quadratic anyways. Well, but we
have (J — Jop)?, which will also create linear and constant terms. We
might be tempted to selectively multiply some quadratic terms from
the area element into the constant Jg, term, which we would of course
not have to do with the J? term, but people prefer to keep everything in
the curvature term at the same order of expansion. Doing this, and for
simplicity ignoring the Gaussian term by chanting “Gauss-Bonnet!”,
we find

Ebend ~ /Rdx dy [1 + %(Vf)2:| {U + %R(-Af — JOb)Q}

R~ /Rdxdy {0[1 + %(Vf)z} + %R(—Af— J0b)2} . (3.45)

Observe now that the “14” term in the tension part will just add a
constant, namely o0 Ay, where Ay is the area of the base plane region R.
This is typically dropped out, as a shift in the zero of the energy, so
that the tension contribution really measures any ezcess energy accrued
from the membrane not being just horizontal.

If we finally simplify to the frequent case Jy, = 0, then the linearized
Monge Helfrich functional looks as follows:

By / dz dy {%J(Vf)2+%m(Af)2} | (3.46)
R

I suspect this is by far the most common form in which you will en-
counter the Helfrich expression for a membrane’s bending energy. But
please recall that we have dropped a whole bunch of things along the
way. It is not too hard, though, to add them back, if for whatever
reasons you do not want to set Jy, = 0, or if you want to keep the
Gaussian term in (Eqn (3.13c) will be your friend), or if you don’t
want to linearize. Of course, it’s harder to work with the more general
equations, especially if you don’t linearize, but at least you know in
principle what you’d have to write down.
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3.3.4 Shape equations

An archetypal question in any Physics 101 course is the following:
Here’s a spring. Its spring constant is k. We pull it with a force F.
How far does it extend?

We'll now basically ask same type of question, just for a membrane:

Here’s a membrane. It has rigidities x and k. We apply some bound-
ary conditions to it. What shape does it take?

Of course, this is significantly harder, because we do not just have a
single degree of freedom (the spring’s elongation) but a whole surface.
Yet, problems of this type are what variational calculus has been in-
vented for. If you've never seen this before, I cannot adequately prepare
you for the wonders that come with it, and you just have to valiantly
hang in there for a wide eyed ride. If you know what this is, you can
probably immediately write down the solution to this problem. I will
opt for a presentation that will revisit some of the key steps, paying
particular attention to something even most cognoscenti of this tech-
nique might not have seen before, namely, what to do with boundary
terms.

I should also say that I will only show how this is done for linearized
Monge gauge—specifically, Eqn. (3.46). It can, of course, also be done
for the more general parametrizations, but then we really need to un-
pack a fair bit more differential geometry than I have time to develop.
But it’s OK. The gist of the idea will also become clear this way, and
a lot of the work people do in this field is still done with the linear
Monge shape equations. Rest assured these are definitely not just the
baby versions of the real thing. They are used.

The basic idea is this. Assume we actually know the optimal shape
that the surface would take—let’s call it f*(x,y). If we plug this into
the Helfrich energy functional, it will minimize it. How do we know that
it’s minimized? Well, how do you know when you have a function f(z),
and someone claims there’s a minimum at x = z(, that this is actually
true? You could shift x a tiny bit away from the minimum, x — zo+dz,
and if z( really was a minimum, then the value of f(z) should increase.
Even more basic: if you are at a differentiable minimum, then to first
order the value of f(x) should not change at all, because at a minimum
the Taylor expansion of f(z) should start with the quadratic term.

Our goal is to translate this thinking to our variational problem,
but what we need to shift around is the whole surface. And by “shift
around” we don’t just mean moving it up and down; we mean smoothly
deforming the surface a little bit at each point: f(z,y) — f*(x,y) +
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df(x,y). Pay close attention to a very important change in perspec-
tive: “f” switches meaning in an important way. In the motivational
“minimize f(x)” story, f was the function to be minimized, and we wig-
gled its argument . Now the function to be minimized is the Helfrich
functional, E[f], and its argument is the entire function f(x,y).

Let’s start modest and look at the tension term in the Helfrich energy
from Eqn. (3.46), inserting our variation:

crenion = 30[V ]” = 30 [V (f* +61)]”

1
50

=—o[(Vf)+2V [ -Vif+(Vsf)?] . (3.47)
The first term on the right hand side is the value which this tension
expression takes at the supposed minimum. Furthermore, the last term
is quadratic in 0 f, and our goal was to only expand the Helfrich func-
tional to linear order in the variation ¢ f, since this should be sufficient
to identify the “no change at linear order” condition. That means, we
can now work out, to linear order, the variation déiengon in the tension
part of the energy:

1 1
5etension = §U[Vf} = 50- [Vf*} i
=oVf-Vif+0(5f?) . (3.48a)

By exactly the same reasoning, we can also work out the variation of
the bending part in the Helfrich energy:

1 1
6ebending = 5’% [Af] ? - §H [Af*:| ’

=rAf*ASf +O(5F?) . (3.48b)

Let’s insert this into the functional and see what we get:
0 Fona — / da dy {an* VS +RAS Aaf} . (3.49)
R

What do we do with this? Our goal from here on is to rewrite the
integrand in the form [---some stuff---]df and then argue as follows:
we have enormous freedom in our choice of §f, and no matter what
we pick, we want the variation of the energy to be zero (at first order
in 0f). This can only work out if the [---some stuff---]| contribution
identically vanishes. This should give us some expression from which
we can determine the equilibrium surface shape f*.
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Notice that in Eqn. (3.49) 0 f does not occur by itself, but with one
or two derivatives. How do we get rid of them? We integrate by parts!
But how do we do this if we have gradients and stuff? Here’s how.
First, observe the following identity, which simply is a product rule:

V. (vg)=(V-v)g+v-(Vyg). (3.50)

Solving this for either one of the terms on the right hand side, and
reordering just a tiny bit, we get

v-(Vg)=V-(vg) = (V-v)g, (3.51a)
g(V-v)=V_-(gv)—(Vyg)-v. (3.51Db)

This shows that a terms of the form “vector times gradient of scalar”
and “scalar times divergence of vector” can be rewritten as the differ-
ence between two terms: a total divergence, and a term in which the
derivative got suitably “swapped” from one factor to the other.

Obviously, the first term in the integral (3.49) is exactly of the first
form, Eqn. (3.51a), and the second term in the integral (3.49) is exactly
of the second form, Eqn. (3.51b).” We can therefore rewrite the two
parts in the integral (3.49) as follows:

oV -Vof =0V -(VfOof)—a(V-VfI)of (3.52a)
RAf*AOf =kV - (Af*Vf) = r(VAf-Vof) . (3.52Db)

Our goal was to “peel oft” the derivatives from the § f terms, possibly
at the expense of creating extra divergence terms. And we succeeded
with the tension term! But we did not yet succeed with the bending
term, unsurprisingly, because in that case two derivatives were hitting
0f. Indeed, if you look at the second term on the right hand side of
Eqn. (3.52b), you find an occurrence of V¢ f that we still need to work
on. But of course we now know how to: we use the helper formula
(3.51a) a second time:

—K(VAS* - V5f) = —kV - (VAF* §f) + k(V - VAF)Sf . (3.52¢)

Putting everything together, we have now rewritten the terms occurring
in the variation of the Helfrich energy so that they take either of the
following two forms: a total divergence, or a term that has no derivative
left on the variation ¢ f.

If you don’t see the latter, recall that Ah = V - Vh, because a Laplacian is a
divergence (of a gradient).
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Figure 3.4 | A surface in Monge parametrization, f(x,y), defined over some region
R with boundary OR on the base plane. The boundary has a local normalized
tangent vector T' and an outward pointing unit normal L.

What do we do with the divergence terms? That’s the fun part: we
use Gauss’ theorem (in two dimensions) to push it to the boundary,
using the following identity:

/RdxdyV‘v(:z:,y) :ngdSL"U(LE,y) : (3.53)

In this expression, R is again the region on the base plane over which
we integrate, OR is its boundary, ds is the line element on that bound-
ary, and L is the outward-pointing unit vector that is normal to the
boundary curve and lies in the zy base plane. Fig. 3.4 should help with
an illustration.

If we insert all our rewritten terms from Eqns (3.52a), (3.52b), and
(3.52¢) into the variation Eqn. (3.49) we arrive at the expression

0 Foond = /Rdx dy{fiAAf* _ O—Af*} 5f (3.54a)

+7§ dsL~{[an*—mVAf*]6f+[nAf*]V&f}. (3.54b)
IR

This is how the energy of our assumed optimal shape f*(z,y) changes
if we wiggle it a little bit out of shape with some smooth but other-
wise arbitrary function 0f(z,y). Now remember: if f* really is the
optimal shape, then 0 FEye,q must vanish! Since 0 Fyeng consists of two
contributions—one that “lives” in the interior R and another one that
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lives at the boundary 0R—and we can vary these contributions in-
dependently, the first and the second line of Eqn. (3.5/) must both
independently be zero.

Let’s start with the first line, Eqn. (3.54a). It is exactly of the form
we hoped to achieve: an integral over [- - -some stuff---]df. Since this
integral has to vanish for any choice of  f, the [- - - some stuff- - -] term
must be zero. It is easy to see why: Assume it doesn’t—meaning, there
is some point (xg,yo) where the term in square brackets is nonzero.
Without loss of generality, let’s say it’s positive. Because we will insist
on our solution f*(z,y) to be sufficiently smooth, we can be sure that
the expression in square brackets must therefore also be positive in a
small region Rg around (xg, ). Let’s now pick a particular variation
d fo(z,y) which vanishes everywhere outside of Ry but smoothly rises
to some positive value inside Ry. With this choice of ¢ f, our integral
must be positive. This is a contradiction, and thus our assumption that
we can find a point (xq,yo) where the term in square brackets does not
vanish must be wrong. 0

Ponder now what’s actually inside that square brackets: a bunch of
derivatives hitting our optimal solution f*(z,y). The fact that this
must be zero therefore amounts to a differential equation our opti-
mal solution must satisfy—the so-called Fuler—Lagrange equation of
the variational problem:

RAAf (x,y) — o Af*(z,y) = 0. (3.55)

This is the shape equation we must solve in order to find the opti-
mal shape for our surface, the one that will minimize elastic costs due
to bending or an externally applied tension. Three things are worth
noticing here:

1. this is a partial differential equation in two variables—zx and y;
2. it is of fourth order in derivatives of the shape function f*(z,y);

3. it is linear in the shape function f*(x,y).

It turns out that (1) and (2) hold more generally, even if we go to
more fancy parametrizations. This is true because surfaces are two-
dimensional, and so we must get partial differential equations in two
variables—(u', u?) in our more general parametrization; and the varia-
tion of a curvature-squared functional requires two integration by parts
cycles to peel off the two derivatives from our shape variation, which
will dump two more derivatives onto a curvature term, leading to a
fourth order equation.

29



Lamentably, (3) is not generally true. It came out like this because
we used the quadratic expansion of Monge gauge, not the actual Monge
gauge with all its awkward nonlinearities. This means that, generally,
the shape equation is a nonlinear fourth order partial differential equa-
tion. Such a beast is exceptionally hard to solve. And because of that,
it is really nice if we can get away with the linearized version (3.55),
for which an enormous arsenal of solution strategies exists.

It is instructive to slightly rewrite the differential equation (3.55) in
a way that makes it more transparent what’s going on. First of all,
realize that the two parameters x and o differ in dimensions, and that
their ratio is a squared length. Let’s in fact give that length a symbol:

K
A= /—. 3.56

. (3.50)

Using this so-called “elasto-capillary length,” and “factoring things

out” a bit, we can write

[ (A=X2)A f*(z,y) = 0. ] (3.57)

Any function for which Af* = 0 will obviously solve this equation.
Hence, harmonic functions (i. e., eigenfunctions of the Laplacian with
eigenvalue 0) are a subset of all solutions. Next, the two operators
A — X2 and A clearly commute, and so we could have swapped them
when writing the equation. But then solutions of A f* = A\72f* are also
solutions to this equation, and those are eigenfunctions of the Laplacian
with eigenvalue A\72. This in fact exhausts the possibilities, because
we've arrived at a four-dimensional solution space. Miraculously, what
might have looked like a fourth order differential equation can actually
be factored into two second order differential equations, and that makes
things a bit easier. So the upshot is: the solutions to the linearized shape
equation (3.55) or (3.57) are the eigenfunctions of the Laplacian with
eigenvalues 0 and \~2.

Speaking of solutions to this differential equation: we will need bound-
ary conditions to pick the correct solution out of the four-dimensional
solution space. Where do they come from? They come from the second
line, Eqn. (3.54b)! This expression “lives” on the boundary, and we
need to make it vanish, and to do so, some conditions must hold at
that boundary—the boundary conditions.

Permit me to vent just a little bit: when I was a budding physicist
I surely have seen many instances of variational problems, discussed
in courses, lectures, textbooks, and whatnot. In virtually all cases the
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instructor presenting the material was obviously vastly more interested
in deriving the Euler-Lagrange equation, and so they short-circuited
the discussion of the boundary terms that invariably arise from the
integration by parts step, mumbling magic incantations like “we’ll as-
sume they vanish,” or “if we push the boundaries to infinity, then these
terms of course vanish”—or any other such rubbish. Boundary terms
do not vanish automatically. You must make them vanish, and this
is where the boundary conditions come from. Where else would they
come from?

OK, stepping off my soap box, let’s look at the boundary terms and
see how, indeed, we can make them vanish. To slightly clean up our
notation a little bit more, we first define the directional derivative

V, =L -V, (3.58)

which is the derivative (in the base plane) along the outward pointing
unit normal L. Using this, we can ever so slightly simplify the boundary
term as follows:

5Ebend

= 7{ ds{ [a V.- mVlAf*] Sf + [m Af*} vﬂs,f} .
oundary Jom L § s

(.

position slope

The integrand contains two contributions: one that is proportional to
df (i.e., the variation of the position of the surface anywhere on the
boundary OR) and one that is proportional to V,§f (i. e., the varia-
tion of (basically) the slope of the surface anywhere on the boundary
OR—more precisely, the derivative along the local normal direction).
Observe that at the edge of a surface we can clearly vary position and
slope independently, so these two terms are in fact separate contribu-
tions that will give rise to two separate boundary conditions.

Let’s begin with the first one. How can we make it vanish? This
term is a product of two factors, and setting either one of them to zero
will do. We could for instance demand that §f = O0—but what does
this mean? It means that we do not permit the position of the surface
to vary at the boundary. What could stop us? The physical situation
might, if for whatever reason we happen to know that the surface must
approach some specific position at the boundary. Say we know that at
the boundary the surface must reach the value f = 0, that it’s pinned
there. If so, all the shapes we're trying out when testing out all possible
variations must have in common that f = 0 at the boundary. But if
we're not allowed to change the position at the boundary, then § f = 0,
and then—hey prestol—this boundary term vanishes.
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But not all physical situations enforce a specific position at the
boundary of a surface. Picture a piece of paper lying on your desk
in such a way that it partly dangles over the edge. What shape does
the hanging portion take? Calculating it is exactly the type of bend-
ing energy minimization problem we should be able to tackle with the
theory we're developing here.® What boundary condition should we
prescribe at the paper edge that hangs over the table? We do not know
how far the paper droops, so we have no way to prescribe this. It might
droop more, it might droop less. We should try out how much drooping
is best, energetically speaking. This means we want to vary the paper’s
position at the boundary, and then § f # 0 at this edge. To nevertheless
wipe out the boundary term, we must demand that the term in square
brackets multiplying the 6 f vanishes instead. And that’s our alterna-
tive boundary condition! Sure, it looks more complicated, involving a
first directional derivative of the shape, and another first directional
derivative of the Laplacian of the shape. But so what, that stuff is
zero, and it will help us to determine our integration constants. One
thing is clear, though: this does not look like a boundary condition we
would have easily guessed. So a big shout-out to those boundary terms
that had the grace to pop out for free out of the functional variation.

We're only half way done, though. There is a second term, the “slope
term,” that also needs to be zero. But now we know how to think about
it. This term is again the product of two factors. One of them, V 0 f
is the derivative of the variation along the outward pointing normal. It
vanishes if we have decided not to change that derivative at the edge,
meaning, if for some reason the slope of the membrane at the edge is
fixed. The proper lingo here is: “the membrane is clamped.” It could
for instance be adhering to a substrate of given orientation, and the
slope of the substrate sets the slope of the membrane. Alternatively,
if the slope of the membrane is not fixed, and so we should try out
different slopes, then the factor that multiplies V0 f must vanish at
the edge, and that is A f*.

In analogy to a similar case many of you are familiar with from elec-
trostatics (i. e., solving Poisson’s equation A¢(r) = —p(r)/eo), we can
refer to the conditions that relate to the vanishing of 0f or V_ df as
Dirichlet boundary conditions and those that hold when 6f or V 4§ f
are free and so the prefactors in square brackets needed to vanish as
Neumann boundary conditions.” Table 3.1 summarizes your options.

8Strictly, a piece of paper is a solid membrane—it has a shear resistance. That
makes a crucial difference, but not if we only bend along one direction.

9Fun fact: Neumann boundary conditions are not named after the famous math-
ematician and physicist John von Neumann, but rather after the slightly less
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Dirichlet condition Neumann condition

first condition fix f require (RA — o)V, f =0

second condition fix Vo f require Af =0

Table 3.1 | Possible choices of boundary conditions for the differential equation
(3.55). For each of the two rows one condition needs to be fulfilled, but it is not
necessary that the same condition is picked over the entire boundary.

Everywhere on the boundary you must enforce two conditions, and for
each of these you can choose either the Dirichlet or the Neumann vari-
ant. You can even mix them—say, on some boundary stretch Dirichlet
for the §f condition, on some other stretch the Neumann conditions
corresponding to the § f condition. It’s all fine—as long as everywhere
a choice is made for each of the two independent conditions.

Example: This is all very nice, but let’s look at a worked-out specific
case to see how to crank this machine.

Assume we want to calculate the shape of a membrane that smoothly
covers a step-edge of height hy and touches the lower level a distance L
away, as illustrated in Fig. 3.5. Since the membrane shape changes only
in z-direction, we have a one-dimensional problem, i. e., a function f(z)
to find, and the Laplacian A is simply equal to the second derivative
d®/dz?. The shape equation (3.55) becomes f"'(x) — f"(x)/\? = 0.
Two independent eigenfunctions belonging to the eigenvalue 0 are 1
and z, and for the eigenvalue A= we conveniently take cosh(z/\) and
sinh(z/\). Defining the scaled variables Z := x/\ and ¢ := L/\, we
can write the general solution as

f(z) = A+ BZ + C cosh(z) + D sinh(z) , (3.59)

where the integration constants A...D are determined by the four
obvious boundary conditions

ho = f(0) = A+C, (3.60a)

0 =Xf(0) =B+D, (3.60b)

0 = f(L) = A+ B+ C cosh({) + D sinh(¢) , (3.60c)

and 0 =\f(L) = B+ C sinh(¢)+ D cosh(() . (3.60d)
From Eqn. (3.60a) follows A = hy — C, and from Eqn. (3.60b) follows
B = —D. Inserting this into the remaining two equations (3.60c) and

famous mathematician Carl Neumann, who was born 5/7/1832 in Kénigsberg
(Prussia) and died 3/27/1925 in Leipzig.
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Figure 3.5 | A membrane traverses a step-edge of height hy and attaches to the
lower lying substrate a distance L away from the step. What shape does it take?

(3.60d) yields a simple matrix equation for C' and D,

cosh(¢) — 1 sinh(¢) —¢ C B —hg (3.61)
sinh(¢)  cosh(f) —1 D N 0 ’ '
which can be readily solved by matrix inversion. We thus find the

solution of our shape problem. It can be expressed in the following
way—not fully simplified, but this way it’s a bit more revealing:

@ L [Cosh(f) — 1} [COSh(:i‘) — 1} — sinh(?) [sinh(f) — i]

ho [ cosh(€) — 1] [ cosh(¢) — 1] — sinh(¢) [sinh(¢) — ]
(3.62a)
201 3 (%)2 +2 (%)3 . (3.62b)

For nonzero tension, ¢ > 0, there are two characteristic length scales in
the problem: A and L, and the shape looks slightly different depending
on which of these two is the bigger one (i. e., whether ¢ is small or large
compared to 1), as the interested reader might want to check.

What determines L? In the simplest case the substrate becomes
“sticky” a distance L away from the step and pins the membrane there.
A more complicated situation arises when the substrate has a uniform
adhesion energy w per area, and the membrane can decide at which
distance L to detach. For small L much adhesion energy will be gained,
but the membrane has to bend a lot. Conversely, if L is chosen very
large, bending will be weak, but a lot of adhesion energy is sacrificed. At
some optimal distance the energy is minimal. It can be shown'® that
this leads to another boundary condition—this time for the moving

0This is actually a practice problem in (Landau and Lifshitz, 1986), namely §12,
prob. 6. But the question what type of boundary conditions ought to be applied
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boundary L—that in the present situation reads f”(L) = 1/p., where
pe = \/K/2w is the contact radius of curvature. Using Eqn. (3.62b)
this results in the transcendental equation ¢ coth% — 2 = hope/N\? for
¢, whose solution is easily determined numerically. For ¢ — 0 (i.e.
A — 00) it can be solved exactly: L = /6hqp..

3.3.5 Membrane fluctuations

I opened these notes by reminding you that the central energy scale of
soft matter physics is kgT'. It sets the strength of the interactions that
give rise to self assembly, and together with the (possibly emergent)
characteristic length scales it sets the typical magnitude of moduli—
hence “soft.” It should therefore not be a surprise that thermal fluc-
tuations also reign supreme in this field. They are often not just small
corrections to the fluctuation-free energetic side of the story; they may
rule the relevant physics.

In the context of membranes, my goal is to show you how to treat
fluctuations in the continuum language we have developed so far, re-
stricting to the case where this is actually doable. Like always in Sta-
tistical Thermodynamics, we will have to calculate thermal averages,
which means that one way or another we need to sum over some sort of
phase space. But what are the degrees of freedom of a continuum sur-
face? This is not too hard when we consider small fluctuations around
a simple reference state, but in general this can be quite tricky. I will
therefore restrict to the simple case.

The problem we will now consider is of significant interest both for
experiment and for simulation: what is the power spectrum of ther-
mal undulations of a membrane that is on average flat? For ease of
calculation it is convenient to consider this membrane to be subject
to periodic boundary conditions—which is actually exactly right for
the type of computer simulations commonly done. Since we will only
be concerned with small fluctuations (and we can—and should—later
check that this assumption is self-consistent), we will be “allowed” to
work in linear Monge gauge.

Consider therefore a membrane above the square base plane patch
O =0, L] x [0, L], defined by the height function f(z,y), as illustrated
in Fig. 3.6. We will assume periodicity, i. e., f(z+nL,y+mL) = f(z,y)

when membranes adhere to substrates (or other membranes), in the absence of
any symmetry, is a really interesting one, and it can be solved rather elegantly
using differential geometric techniques only slightly more refined than those we
started to develop here (the material in (Deserno, 2015) is definitely sufficient).
The reader will find this worked out in (Deserno et al., 2007).
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Figure 3.6 | Snapshot of a fluctuating membrane under periodic boundary condi-
tions. The magnitude of fluctuations is exaggerated for visual clarity—typically, it
is considerably smaller, as we will soon see.

for any integer values n and m. Given this, it seems natural to Fourier
expand:*!

Ny

Ty

f(r) = qu 47 with ¢q= 2% ( ) and (ng,n,) € Z* .
' (3.63)

A few comments are in order

1. The permissible g-vectors come from a discrete lattice, because
the function we wish to represent is periodic with period L in
both z- and y-direction.

2. At this point, theory does not force any obvious large-|g| (“ul-
traviolet”) cutoff on us, since theoretically we can imagine the
membrane wiggling on smaller and smaller scales. Yet, we know
that in reality wavelengths shorter than the nanometer scale make
no sense. We could decide to set the small length cutoff such that
the total number of Fourier modes matches the total number of
degrees of freedom (as counted at the particle level), but it turns
out that the continuum approximation is not valid down to that
scale. In practice, if we need to pick a large-|q| cutoff, we’d rather
let it demarcate the edge of continuum-land.

HLOf course, there are tons of opportunities for a basis expansion, even if we insist
on periodicity. What makes the Fourier expansion special? I'm glad you asked.
Hang in there, it will become clear very soon!
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3. We use a complex expansion, since this is mathematically easier
to handle. But of course the membrane itself needs to be real.
You should verify that this forces the following condition on the
Fourier coefficients:

Fra=1Ta- (3.64)

4. Admittedly, mode counting is a bit of a drag in complex notation.
We know that sin(x) and cos(z) are independent Fourier modes
with the same frequency, but here we only have a single function
e, However, it is complex. More importantly the expansion co-
efficients for its amplitude are also complex, and thus have a real
and an imaginary part. So two degrees of freedom per complex
mode. Except, they also need to satisfy Eqn. (3.64). I will add a
little clean-up note for those interested in it after we’ve done the
calculation.

The energy we will work with is the Helfrich Hamiltonian in linear
Monge gauge, as written in Eqn. (3.46). It contains integrals over
(V f)? and (Af)*—let’s see what happens to those after we insert the
Fourier transform. Start with the first one:

/D d*r (Vf)? = /D d2r [VZ fa ei‘”} : {Vz fa eiq"’“} (3.65a)
— /D a2r {Ziq fa eiq"‘] : {Ziq’ fa eiQ"’“l (3.65b)

q qa
= Z(_q : q/)quq/ / d>r ellata)r (3.65¢)
9,9’ =
Ponder the integral: if ¢ = —q’, then the exponent of the exponential
vanishes, and the integral simply picks up the box area, yielding L2.
But if g # —q’, then we integrate some integer number of oscillations,
which cancels to zero. So the integral is equal to L? 64 4.
OK, maybe that’s a bit too fast for some. Let’s do it by hand:

L L :
/d27° eila+a)r — / d:zc/ dy exp {@ (nm i n%) ' (x>}
o 0 0 L \ny +nj Y
1 1 / /
— 1 / da’ / dy' exp {2m (” +”7’> : (x)}
0 0 Ny + 1, Y
1

1
—J2 / dz’ eQﬂ'i(anrn;)x / dy/ eQﬂi(nern;)y
0 0

-~ -~

9 / J

/
ng,—Ng ny,—ny

=L g - (3.66)
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In the second step we substituted ' = x/L and y' = y/L, and the

“underbraced identities” follow because when n, + n/, is a nonzero in-

teger n, then the integral covers exactly n oscillations of the complex

exponential, which average to zero. 0]
Putting this result into Eqn. (3.67), we get

/D @ (V1) =123 (=q @V faly bag = 125 @l (3.67)

.9’

where in the last step we used f_, = f;; and thus qu; = | fql*.

The calculation for the second (Af)? term in Eqn. (3.46) proceeds
identically. Putting things together, we now have the linearized Monge
Helfrich energy expressed in Fourier space:

1 _
Epena = §L2 Z | fal*(06® + Kq") . (3.68)
q

This is a pretty nice result! Why did this work so well? The key reason
is some piece of magic that happened in the step from Eqn. (3.65a)
to Eqn. (3.65b): Vel?™ = ige?™ (or the equivalent magic that would
happen during the rewriting of the (A f)? term). We could replace the
differential operator by a simple prefactor, because the function €97 is
an eigenfunction of that differential operator. And this explains why
expanding our surface in Fourier modes is actually a good idea: it is an
expansion in the eigenfunctions of the differential operators V and A
that feature in our energy expression! We often just “autopilot” into
Fourier transforming things, because it often works; but the reason
for that is that gradient operators and Laplacians are ubiquitous. If we
ever come across a problem where a different operator characterizes the
physics, we should remember why certain types of magic incantations
work and maybe search for eigenfunctions of our new operator instead
of Fourier expanding things as we “normally” do.

Eqn. (3.68) is also exceptionally nice from a Statistical Thermody-
namics point of view: if we think of the set of Fourier modes, labeled
by {q}, as our degrees of freedom, then we have discovered that these
transformed degrees of freedom decouple: none of the amplitudes fq
for some mode g couples to any other mode ¢'! Since furthermore each
amplitude enters quadratically (| fq|2”), each degree of freedom is just
a simple harmonic oscillator with some g-dependent spring constant. In
other words, a fluctuating Helfrich membrane is a sum of independent
harmonic oscillators in Fourier space!

We know a lot about the thermodynamics of simple harmonic os-
cillators; so much in fact that we do not even have to do a partition
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Figure 3.7 | Log-log plot of the power spectrum of membrane undulations, plot-
ted in the rescaled fashion suggested in Eqn. (3.71). There is a crossover from
tension-dominated fluctuations at large length scales (i.e., small ¢) and bending
dominated fluctuations at short scales. The crossover happens when the g\ = 1,
where A = /k/0 is the elasto-capillary length from Eqn. (3.56). In both experimen-
tal and computational applications it is usually advantageous to make the tension
as small as possible, so that the region in g-space where the bending energy sets the
undulation spectrum is as large as possible.

function to calculate what we are now interested in, namely, the power
spectrum. All we need is a special case of the equipartition theorem,
which says that the average energy of every quadratic degree of freedom
is %kBT.12 Using angular brackets (- - - ) to denote thermal averages, we
find for each undulation mode

1 /1 ~ 1 ~

§I€BT = <§L2|fq|2(aq2 + "fq4>> = 5 L2(0q2 + ’{94) <|fq|2> , (3.69)
—_———
“spring constant”

from which we get the classical Helfrich power spectrum

R
(1fal*) = Blod T rd) (3.70)

Since the fluctuations are excited by temperature, it is not surprising
that they scale with kgT. Observe also that they decrease with ¢,

12A simple example as a reminder: say the degree of freedom is z, and it enters
the Hamiltonian in the form %Aa;Q. Then the equipartition theorem says that
sksT = (3A2?) = L A(2?), from which we immediately get the mean squared
amplitude (z2?) = kgT/A.
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meaning higher spatial frequencies are rapidly suppressed. The different
scaling of tension and bending parts can be illustrated quite well by
rescaling the wave number by the characteristic elasto-capillary length
introduced in Eqn. (3.56), and we find

/Bli L2 <|fq|2> _ 1
At (Aq)* + (Ag)*

(3.71)

where 5 = 1/kgT is again the inverse thermal energy. This scaled
version of the spectrum is shown in Fig. 3.7.

Sidenote for the curious about mode counting: There’s a little bit of magic going

on under the hood that is worthwhile bringing into the light. The constraint f_q = f;‘
(which we needed to ensured that f(z,y) € R) implies that the amplitudes fq and f_q are
not independent degrees of freedom. In fact, they describe the same degree of freedom.
Are we falling victim to a counting problem here?
We’ve glossed over this, but here’s a way to do it properly: evidently only half the g-
vectors in g-space describe independent modes—say, those with a positive g,. Or more
precisely, the set of g-vectors that’s the union of the sets {g- > 0 A ¢y = 0} and {g, > 0},
illustrated in Fig. 3.8. Let’s in a slight abuse of notation call this the set “q > 0.” The
Hamiltonian in g-space can then more properly be written as

SNl o +ra') = PP ) (372)

q>0

Notice that when we dropped half the g-vectors, we also dropped the prefactor %

Something else is going on, though: fq isn’t just a single degree of freedom. It’s two
degrees of freedom, stored in the real and imaginary part of the complex amplitude. All
this trouble arises from our use of a convenient but subtle complex notation. Had we in-
stead decided to stay real, we could have expanded the shape into sine- and cosine-modes,
showing that for every wave vector there are two independent modes.

Let us write Rq := R[fq] for the real part and I := 3[fq] for the imaginary part of our
complex amplitude fq. The Hamiltonian can then be written as

Elfg) = L*Y_ (B3 +13) (0d” + rq") . (3.73)

q>0

For each ¢ > 0 we then get two independent quadratic modes, and by the equipartition
theorem each has a thermal average of %kBT. This leads to

3 kT
- 2L%(0¢? + kqt)

2 2 ksT

d 1)) = —F——77—~ . .74
<Rq> an < q> 2L2(0q2+f€q4) (37 )
Pay attention to the crucial difference with respect to Eqn. (3.70), though: there’s an ex-

tra factor of 2 in the denominator on the right hand sides, because the prefactor % in the
expectation value no longer cancels with a matching prefactor % in the Hamiltonian—we
got rid of the latter when we realized we should not overcount the modes.

Let’s now come back to the complex amplitude, and discover that after unearthing two
forgotten factors of 2, both of them conveniently cancel:

B kpT . knT B ksT (3.75)
T 2L2(0q® + k) 2L2(0q* 4+ kqt)  L2(0q® + kgt T

(Ifal*) = (Rg) + (I3)
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Figure 3.8 | The blue dots represent a set of discrete wave vectors g = (gz, ¢,) in
two-dimensional Fourier space. Since a real functions f(r) has Fournier components
that satisfy f,q = f;, the wave vectors g and —qg do not label independent modes,
and so it suffices to pick one of them. The green shaded region is a possible choice
for how to do that: pick the union of the sets {g, > 0 A ¢, = 0} and {g, > 0}.
Observe that we exclude g = 0, since the average height of the surface is fixed and
not a degree of freedom. We will sloppily denote the green region as “q > 0”.

and so Eqn. (3.70) is correct after all!

This all boils down to the following: If we use a complex notation, then the real and
the imaginary part of the amplitude are independent degrees of freedom. But on the other
hand, we must take the condition f_4 = fg seriously and only sum over half of g-space.
It now turns out that both from a mode-counting and from a final-prefactor point of
view, we get the same answer if we stick with a sum over the entire g-space and pretend
that the complex amplitude f4 really only describes a single degree of freedom. We have
just explicitly seen that this comes down to the same thing—at least for the particular
calculation we did here. Care should be taken once other types of calculations are done,
just to be sure.

So we now know the (mean squared) amplitude as a function of
wavenumber in Fourier space. What is the mean squared amplitude
in real space, (f(r))? Due to translation symmetry it cannot depend
on position, but it turns out to be convenient for the calculation to
nevertheless write the result as an average over the box:

=g [ =g [ (S ) (S de))
q q

-1 ; Nop ~ kT
=§mmpéymwwzzmmzzﬂmimw

q q

again: =6q’_q/

(3.76)

The pleasantly clean formula arising as the second-to-last step is maybe
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not quite unexpected: it’s high-dimensional Pythagoras!

How do we evaluate such a sum? Difficult. A quite common work-
around is to replace the sum by an integral, using effectively a smeared-
out density of states in Fourier space: D(q) = (L/2m)?. Furthermore
introducing a minimum and a maximum wave number, we get

dmes L\ kT
e [ ) L
‘ 2r) L?*(0q? + kq?)

‘min

B kBT /'Qmax dq q kBT /‘)\Qmax dx
B i @ T N2 2o/

2o dmin T+ 3
min

k T Agmax
_ B {1 L } (3.77)

0
g\/1+a:2

An easier special case is the limit of vanishing tension, in which A —
oo, and so we need to evaluate the term in the square brackets at
r — oo, where it approaches —1/2z%. Setting ¢ma., — oo will make
that contribution vanish entirely, and setting ¢ui, — 27/ L yields

1 kgT kgT

2y o0—0 2
> x L* ~0.002—— x L 3.78

27TU )‘Qmin

showing that the root mean square surface roughness (f2)!/2 scales with
system size:

2\1/2
()Y 0.002 LIEIN ~ 1% , (3.79)
L K
where in the last step we assumed typical values of s in the range of
20kgT ...30kgT. This finally explains why the caption in Fig. 3.6
warned you that the undulations are a bit overdone.

Incidentally, the zero-tension case can also be done numerically, mean-

ing, without the need to approximate the sum with an integral. Since

g = 27rn“ we find
kT <~ 1 kT [ L)' < 1
) kB - S el YACEIIY)
(f >exact,0'=0 T 2k Z g L2k (27?) Z (nZ + anJ)Q
q nz,ny
kBT
() S X
~6.026812 ”
kgT ,  6.026812 9
= — L _— = continuum 1.92 ’ 3.80
P L2 S () i X (3.80)
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showing that the exact value is about twice as big as the approximate
one coming from the >~ — [ approximation.’ In other words, the rms
surface roughness of a typical lipid membrane under vanishing lateral
tension is about 2% of its lateral dimension.

3.4 Things to think about

1. Consider a smooth function f(z). Given two close points z and
x + dz, as well as their two associated function values f(x) and
f(x+dz), find a simple heuristic argument for calculating the arc
length ds which the function covers between these two points, and
from there write down an expression that mirrors Eqn. (3.1) in
this simpler one-dimensional case!

2. Consider again a smooth function f(z), and construct the local
normal at some point (xg, f(zo)). Now also construct the normal
at the slightly displaced point (g + dx, f(xg + dx)). These two
lines (generally) intersect at some point (xp,¥ym). In the limit
0x — 0 this point becomes the center of a circle that, if it touches
the curve at the original point (zg, f(xo)), does not merely match
the slope but also the curvature, and indeed the inverse radius of
that circle is called the curvature of the curve at that point. Use
this reasoning to calculate the curvature of f(z) at a given point.
Compare against the exact 2d result from Eqn. (3.12a).

3. The principal curvatures for the two surfaces described by the
functions f; and fs from Eqn. (3.6) turned out to be identical, and
the two principal directions were rotated by 45°. I claimed this
happend because the entire surfaces are identical, just rotated
with respect to one another by 45°. Show that this is true.

4. The upstairs-downstairs business with coordinates seems a bit
odd. This problem strives to demystify this situation by explain-
ing that two types of single-index objects exist which are fun-
damentally different in the way they transform under coordinate
changes. And while this sounds like a big nuisance, this is re-

BTotally irrelevant fun fact: the lattice sum can actually be done analytically. The
value 6.026812. ..is equal to 4¢(2)5(2) (where ((z) is Riemann’s Zeta-function
and f(z) is Dirichlet’s Beta function), which further evaluates to 272G, where
G is Catalan’s constant. Who knew. "

T The internet did: https://math.stackexchange.com/questions/197496/
series-involving-catalan-and-zeta.
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ally awesome, because it means we can construct scalars that are
completely independent of the choice of coordinates.

a)

Say we have chosen a set of local coordinates {u'}. Now we
get second thoughts and rather take a different set, {w/}. To
be able to translate back and forth between these choices, we
must require there to be a relation of the form @ = w/(u?)
(i. e., the new coordinates are functions of the old ones),
and also an inverse, u’ = u*(w’) (i.e., the old coordinates
can also be written as functions of the new ones). More-
over, these functions have to be sufficiently smooth, so that
higher derivatives, if needed, also translate properly. (Tech-
nically, they are diffeomorphisms.) Now, these functions can
be scarily nonlinear, but at any given point on our surface,
we can expand these coordinates and recognize that the local
relation is linear. To see this, simply look at the differential:

dw’ = %dui = M du’ . (3.81)
Now here comes the fun bit: the differential du’ is an object
with an upstairs index, and it happens to transform from old
to new coordinates with a matrix that describes the deriva-
tive of the new coordinates with respect to the old ones. But
check out the tangent vectors e;. Show that when we trans-
form those, we get the inverse transformation behavior, 1. e.,
a transformation with the inverse matrix: the derivative of
the old coordinates with respect to the new ones!

Let’s now say we have an object that arises as the contraction
of one upstairs index with one downstairs index. Something
like U ZVl Show that if we change our coordinates, such that
Ui — U and V; — V;, then the contracted object UZVZ- has
numerically the same value as the old one, 1. e., it remains
mvariant under a change of coordinates. In other words, it
describes a piece of geometry that is finally free of the id-
iosyncrasies of a specific parametrization.

Hint: use what you have just discovered about the transfor-
mation matrix for objects with an upstairs vs. a downstairs
index. Observe in particular that the entire magic depends
on the existence of the two transformation laws, and that
it is hence essential that when we create these index con-
tractions via the Einstein summation, one index is upstairs
and the other one is downstairs. For instance, an object
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Figure 3.9 | Illustration of a thin plate bent along the “L-direction” into a circular
arc of radius R. Set up a local coordinate system that measures the radial displace-
ment from the mid-surface of the plate, but its origin lies at that mid-surface.

such as ., U'V" would not be invariant under coordinate
transformations.

5. Let’s get some practice with the more general X (u!, u?) parame-
trization!

a)

Recall that equation (3.17) is Monge gauge, just in the more
fancy language. Use the definitions you find in Sec. 3.2.2 to
work out the tangent vectors e;, metric g;;, inverse metric
g%, metric determinant ¢, normal vector n, curvature tensor
K;; (which will look nice) and the shape operator K7 (which
will unfortunately look less nice). By patiently working out
the derivatives in Eqn. (3.12a), show that this boils down to
the same expression as the trace of the matrix K7 you just
evaluated.

Same game, but now for the spherical surface in Eqn. (3.18).
Find e;, and g;;. Observe that g;; is diagonal and hence
spherical coordinates are orthogonal. Calculate g and rec-
ognize /g as the spherical Jacobian. Explicitly calculate n
and see that, as hopefully expected, it is equal to X /| X|.
Finally, calculate ¢”, K;;, and K7. When the dust has set-
tled, you should find that K7 = ¢ /r, showing that the two
principal curvatures are identical and always equal to 1/r,
which we would of course expect for a sphere of radius 7!

6. Consider a thin elastic solid plate of length L, width w, and thick-
ness d. Imagine bending it, as illustrated in Fig. 3.9, such that its
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mid-plane now assumes a constant curvature of radius R. This
will cost bending energy. In this problem our goal is to work out
how this bending energy is related to the stretching energy of lit-
tle volumes inside the plate because, clearly, pieces of the plate
on the “outer side” of the mid-plane are stretched, while pieces
on the “inner side” are compressed.

a) Let’s set up a radial coordinate system such that z = 0
sits at the plate’s mid-plane. Slice up the plate into lots
of thin concentric shells of thickness dz and let us make two
critical assumptions: first, the mid-plane does not change its
length along the “L-direction”; second, stretching any one
of these thin slices will not change its thickness or width.'*
Given that, what is the length change of a thin slice that is
a distance z away from the mid-plane?

b) If the resulting volume change of any such infinitesimal slice
costs an infinitesimal elastic energy of the form

(dV — dVj)?

3.82
o (382)

1
dE ==Y
2
where Y is the so-called “Young modulus” (this is quite anal-
ogous to Eqn. (3.40)), calculate the total elastic deformation
energy of the bent plate by integrating up the infinitesimal
costs of all slices.

c¢) Show that your result from (b) can be written as a bending
energy density, e = $x(1/R)?, where the bending constant
is given by

Y& K

k(thin plate) = 5 = 13

(3.83)

where K4 = Yd simply defines a 2d stretching modulus from
the 3d Young modulus Y.

d) If you picture a lipid bilayer of thickness d as two elastic
plates of thickness d/2 and use the bending energy results
you've derived so far for these individual leaflets, show that
the bending constant x of a bilayer relates to the bilayer
stretching constant K 4 in the following way:

K4 d?
48

r(bilayer) = (3.84)

4 Technically, this means we assume that the Poisson ratio of the material is zero.
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The number “48” in the denominator is not quantitatively
correct in real life. People have derived alternatives based on
better models (including Poisson ratio corrections, account-
ing for the polymeric nature of lipid tails, etc.). Overall,
my feeling is that this argument is too crude to be trusted
quantitatively, and efforts to make it more precise are maybe
misguided; but it gives you a good order-of-magnitude idea.

7. Let’s think about the surface of water. It has a surface tension o,
and we already know how to account for this. But water also has
a density p, and raising or lowering some small packet of water
above or below the resting level f = 0 under a gravitational accel-
eration g will cost energy (at sufficiently large scales). Convince
me that within linear Monge gauge this can be accounted for by
the energy

1 2 1 g 2 2
B = [er{5o (0 goart} =5 [er{ o0+ (110)7)
(3.85)
where ¢, = \/0/pg is the so-called capillary length.

a) What is the Euler-Lagrange equation satisfied by f(r)? What
are its solutions in one dimension (i. e., for functions f(x))?

b) Calculate the numerical value of /. for water and convince
yourself that this, combined with your finding from part (a),
makes sense in light of everyday experience.

¢) In analogy to Eqn. (3.70), calculate the power spectrum
(| fq*) for the thermal fluctuations of a water surface.

d) Transform your result into real space and calculate the root-
mean-square roughness (f2)1/2 of such a water surface. You
may use a continuum approximation for the sum over g-
modes, but you will need to make some reasonable assump-
tions about the largest and smallest ¢g-value.

8. Consider a rectangular paper strip of width w lying on a table
such that a piece of length L reaches over the edge and sags
under its own weight—see Fig. 3.10. Our goal in this problem
is to calculate the shape of that strip in the limit of small sag,
predict how much it sags, and from there determine the paper’s
bending rigidity.

a) If k is the bending rigidity of the paper, p its mass per unit
area, and ¢ is the gravitational acceleration, argue that the
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Figure 3.10 | Illustration of a piece of paper extending over the edge of a table,
“clamped down” such that it initially extends horizontally over the edge but then
begins sagging under its own weight.

energy of a paper described by the shape f(z) is given by

o w/OL du {%/@[f”(:v)f +pgf(x)} L (3.86)

There are a few approximations going on here—list them
carefully and argue why they are permitted in the limit of
small sag. (What in fact is “small sag” in the first place?

b) Perform the functional variation and show that the differen-
tial equation from which we will get f(x) is

() + 472 =0 (3.87)

with some characteristic length /. What is ¢ in terms of our
given parameters?

¢) What are the boundary conditions we need to apply at the
two ends? The ones at x = 0 are fairly obvious, but the ones
at x = L are not, and you need to revisit our more careful
thinking from Sec. 3.3.4.

d) Now solve the differential equation—finding, as usual, a gen-
eral solution and a particular solution. Show that in terms
of the scaled variables & = x/L, { = {/L, and f = f/L, the
solution can be written as the universal shape

~ Tt — 473 + 622

f(z) = Sy (3.88)

e) Calculate the sag s = | f(L)]| as a function of all parameters,
and solve this equation to determine x in terms of parameters
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Figure 3.11 | An experimentalist pulls a thin long tether of radius R out of
a cellular membrane; holding it requires the force F. Suitably set up, such an
experiment can be used to measure the tension ¢ in the membrane, but a lot more
is possible when you pull ingenious extra tricks.

in the problem, as well as s. Now do a literal “table top”
experiment: measure s and determine x for some paper.

Making some reasonable estimate about the thickness of
your piece of paper, and using Eqn. (3.83), estimate its
stretching modulus K 4. Does its magnitude strike you as
“large”? (Well, it has dimensions, so what would be a good
point of comparison?)

9. A famous biophysical measurement on cells is to determine their
surface tension. This works by attaching a microbead to them
(somehow. ..) and then pull that bead away (many microns) in
such a way that we can measure the force—see Fig. 3.11. Let us
assume we can describe the cell’s biomembrane with the Helfrich
model, meaning we ascribe a tension ¢ and a bending rigidity s
to it. We now wish to learn how these parameters relate to one
another, and how we can use that to measure interesting things.

a)

How much energy E is needed to pull a tether of radius R
and length L out of a cell?

(Hint: the calculation will show, and experimentalists know
very well, that R < L, and so you do not need to worry
about the ends of the tether.)

The experimentalist controls L, but not R. The tether ra-
dius will adjust such that the energy of the whole tether is
minimal. From this, find an equation that gives R in terms
of o and k. Using typical values for those that I have hid-
den in these notes, calculate typical R values. Could you
optically resolve them?

¢) The force to hold the tether is the derivative of the energy
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with respect to the length (at constant value of R). Show
that it is given by

F =27v2ko . (3.89)

That means: if we know F and k, we can determine o
without having to know R. What are typical values for F'?
Google and convince yourself that this is exactly the right
range for optical tweezers.
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4 Membrane asymmetry

As a relatively straightforward (but also relatively recent) application
to the elasticity considerations we have explored in Sec. 3, I would now
like to explore one specific aspect of biomembranes which—at least at
first sight—seems to have little to do with elasticity and more with
individual lipids. But we will quickly see how it rather strongly affects
almost every aspect of a membrane’s physical behavior, including ge-
ometry and elasticity: membrane asymmetry. I have opined on some
aspects of this topic in a recent short review (Deserno, 2024), which
addresses a good fraction of this chapter’s content (but more tersely).

4.1 Background: asymmetry preliminaries

4.1.1 Discovery and simple facts

Many practicioners develop a sense of history for the field they are
working in. The urge to regale others with the origins of present day
thinking, and certainly with anectodes from the days of yore, defi-
nitely increases with age. (I'm sorry if I'm telling on myself here.)
At any rate: biomembrane history is fascinating, and it is at times
shocking how much of the foundational work is also surprisingly old.
For instance, the “Helfrich Hamiltonian,” which we developed in the
last chapter, and which really underlies almost anything in continuum
membrane theory, is more than 50 years old (Helfrich, 1973). Even one
year older is the so-called “fluid mosaic model” (Singer and Nicolson,
1972), which argued that experimental evidence points towards what
we today take as obvious: that a biomembrane is a lipid bilayer with
inserted transmembrane and attached peripheral proteins.’

Maybe even more remarkable: just 12 days after the fluid mosaic
model got published, another important paper saw the light of day, in

IThis looks slightly less mundane if one recalls what types of models were the
competing view at the time, for instance the one by Danielli and Davson (1935),
later refined by Robertson (1959), which imagined a pristine lipid bilayer sand-
wiched between two protein layers, or the model by Benson (1966), in which
proteins “soak up” lipids to form lipoprotein condensates, and these then later-
ally aggregate into membranes.
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which Bretscher (1972) suggested that the lipid content in human ery-
throcytes is unevenly distributed between the inner (“cytosolic”) and
the outer (“exoplasmic”) leaflet. It was well appreciated that biomem-
branes contain many types of lipids, but these were assumed to partition
evenly between the two leaflets. Bretscher instead argued that the ma-
jority of what’s called phosphatidylcholine and sphingomylelin lipids
reside on the outside, while the majority of phosphatidylethanolamine
and phosphatidylserine (a negatively charged lipid) reside on the in-
side. A year later, Verkleij et al. (1973) put some tentative numbers on
the extent of this asymmetry. Three years later similar numbers were
published for human platelets (Schick et al., 1976), and before the end
of the decade for fully nucleated cells (mouse LM fibroblasts) (Sandra
and Pagano, 1978).2

Bretscher’s basic conjecture, first quantified by Verkleij et al., has
held up remarkably well, as much more modern work shows: Lorent
et al. (2020) have recently revisited the asymmetry of the human red
blood cell and—while adding an incredible amount of detail—have con-
firmed all the basic points. Importantly, they also added a (technically
not very arduous) bioinformatics study in which they looked at all
transmembrane proteins held in place by a single alpha-helical anchor
and showed that the area of the inner leaflet portion of that helical an-
chor is statistically bigger than that of the outer portion. Why is this
interesting? Because they repeated this analysis for several organisms
all across the phylogenetic tree—fungi, plants, insects, worms, reptiles,
and amphibia—and found the same imbalance. This strongly suggests
that membrane asymmetry is evolutionarily conserved across all of eu-
karya. Something about it seems to be really important to all those
eukaryotes. Wouldn’t it be nice to know what?

4.1.2 Passive flip-flop and active flippases

How is lipid membrane asymmetry even possible, you might ask? We
have learned that biomembranes are self-assembled structures in which
lipids are not held in place by chemical bonds. A lipid that sits in
one leaflet might well transition into the other one—a process slightly
facetiously called “flip-flop.” Nothing prevents this in principle, except

2Tt is worth reminding that as far as lipidomics is concerned, human red blood
cells are far easier to work with than most other cells, because the only lipid
membrane of a red blood cells is in fact the plasma membrane. Trying to
learn anything about the plasma membrane composition of cells which have a
rich endomembrane system seriously limits the kind of experiments you can do.
Anything that would for instance lyse the cell risks mixing up plasma membrane
content with any of the other membranes.
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it would involve intermediate states that have a somewhat larger free
energy (for instance because a hydrophilic head group will have to pass
through the hydrophobic bilayer interior, which results in a free energy
penalty that will presumably affect the rate with which such processes
happen.

Let’s look at this. Say, there are N4 lipids in the 4+ or — leaflet, and
a lipid in the + leaflet can flip out of it into the other one with a rate
r4. This gives rise to the following set of two coupled differential rate
equations:

N+ == —T+N+ + T,N, ; (41&)
N_= r,N.—r_N_. (4.1b)

Obviously, Ny 4+ N_ = N is conserved, and hence N = N — N.. This
permits us to decouple the set:

Ny = —2FNi 4+ rzN | (4.2)
with the average rate 7 = (r, + r_)/2. This has the solution

zﬁ@:J@@:m—gNeW%+%N, (4.3)

N

TV
vanishes as t — oo limit

which among many other things shows that random lipid identity scram-
bling due to lipid flip-flop happens with the rate 2r = r, +r_. As it
turns out, typical flip-flop times for common phospholipids under most
ordinary circumstances is in the hours-to-days regime (Sperotto and
Ferrarini, 2017), which poses the question why cells, which live longer
than that, are in fact asymmetric.

The answer is: because they actively pump certain types of lipids
towards a specific side, counteracting the random scrambling. Let us
work out a very simple model for that. Assume we have M “flippases”
in the system which with a rate of F, can flip a particular type of
lipid (which we’ll count with the variable P) into the + leaflet. Such
flippases really exist, and they turn out to be slow. This in particular
means they are not limited by the available “substrate,” and so their
transport rate is not proportional to how many flippable lipids they
find in the — leaflet. Our specific lipid species will therefore satisfy the
following flippase-corrected set of differential equations:

P+:—T+P++T,P,+MF+ ; (44&)
P = r.,P.—r_P_—MF, . (4.4b)
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We again have P, + P_ = P = const., and the solution is once more
easy to work out:

Pi(t) = |Pe(t =0
2(t) = [Pt =0) 27 o

(&

, (4.9)

TV
vanishes as t — co limit

where the “+ MF,” terms are new compared to Eqn. (4.3). Observe
that their impact is to ensure that the + leaflet will get more lipids and
the — leaflet will get less. In particular, the fraction of special lipids in
the + leaflet in the limit ¢ — oo is

Pi(t) rePEMF, M Fy

lim L

— = . 4.
twoo P 2r P 2r P 2r ( 6)

Notice that once Fy — r, x (P/M), the sorting becomes perfect: all
lipids are in the + leaflet.* Without taking our model too seriously, a
very simple high-level conclusion is that flippases can clean up scram-
bling if they are faster than the spontaneous flip-flop rate of individual
lipids, and the factor by which they need to be better is the extent to
which they are outnumbered by the lipids they are responsible for. For
instance, if they are 1000 times less abundant than those lipids, they
have to operate a 1000 times faster than those lipids flip in order to
clean up. Are they?

It seems that typical flippases operate at the glacial-seeming speed of
about 10 lipids per minute (Shukla and Baumgart, 2021). And yet, this
is still around 4 orders of magnitude faster than the spontaneous flip-
flop rate. In other words: only one sluggish flippase per 10000 lipids
can housekeep its substrate lipid’s asymmetry, because spontaneous
flip-flop is simply so very slow. It’s for that reason that lipidomic
biomembrane asymmetry is even a thing.

4.2 Differential stress

4.2.1 Setting the stage

This is probably more than enough background on “classical asymme-
try” for us. We have seen that the two leaflets of a bilayer can harbor
a different lipidome, a situation which nature creates by spending en-
ergy on certain types of transport proteins that sort lipids across the

3This is of course a limit in which our theory breaks down: once the flippable
lipids become that rare in the — leaflet, our flippase becomes substrate limited,
unlike what we assumed when we wrote Eqns. (4.4).
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Figure 4.1 | Simple illustration of an asymmetric membrane. Different head group
species are indicated by different colors, while different tail saturations are indicated
by how wiggly the tails are (more wiggly, more double bonds). The gray beasts are
cholesterol molecules, about which we will learn a bit more in Sec. 4.3.

leaflets. The resulting membranes may then look something like what’s
shown in Fig. 4.1, where the colors of the head groups and the different
wigglienesses of the tails are cheap ways to distinguish lipids of dif-
ferent build. Pictures of this type do a great job in reminding us of
the obvious, but also a terrible job of helping us see the less obvious,
namely: there are many ways for how to be asymmetric that go beyond
mere lipid type.

After all, a bilayer consists of two leaflets, and therefore any observ-
able that is defined on a leaflet level could be different on the two sides.
Many examples come to mind. Structurally, we have area per lipid,
thickness, or charge density; mechanically, we should consider elastic
moduli (bending, stretching, tilting, twisting, ... ), spontaneous curva-
ture, and leaflet tension; and dynamically, one could think of diffusion
constants, membrane viscosity, and any number of relaxation rates.

Furthermore: it is reasonable to expect that all of these observables
somehow “talk” to one another—in the sense that if we change one,
this will likely have implications for the others. But if so, then this
also means that if we make one of these observables asymmetric, this
might very well lead to asymmetries in other observables, too. A very
physicsy way of saying is: if you break one symmetry, others will likely
break as well.

My goal in this chapter is to get you curious about one specific ob-
servable: the difference between the mechanical tensions in the two
leaflets, something my group has proposed to call differential stress
(Hossein and Deserno, 2020; Foley et al., 2023).

4.2.2 An innocent change of variables

Let us hence consider a membrane, maybe like the one in Fig. 4.1, and
define the lateral mechanical tensions >, and X_ of its two leaflets.
How would we measure those. Ooh, that’s really difficult in experi-
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ment, and as best as I know there’s no reliable method yet. But op-
erationally, we would have to imagine somehow grabbing only one of
the two leaflets and measuring how much it laterally pulls or pushes
against us holding it at some given area strain. In a simulation this is
far easier: we basically just need to measure a spatially resolved stress
tensor, from it the excess lateral tension, and then only integrate it
over the leaflet of interest. This is not really important here, so let
me gloss over it with the appropriate air of nonchalance.* The point is
that for various reasons it is useful to not just work with the individual
leaflet tensions but instead with their symmetric and antisymmetric
linear combinations, defined as

net tension: X =X, +X_

— B =-(T+AY) .

N —

differential stress: AYX =3, —¥_
(4.7)
The reason is that, as I will soon argue, we often are in a situation
in which ¥ = 0 or at least very small compared to AX¥. The two
leaflet tensions are then equal (or close to equal) in magnitude, but
opposite in sign, and much of the bilayer’s response is then driven by
AY.. Another way of saying this is: formulas that describe the way in
which the stresses affect the system will then only depend on AX, not
individually on >, and > _.

Just a few lines up I have admitted that at the moment we do not
really know how to measure leaflet tensions. Hence, we also cannot
explicitly check whether they are different. It seems therefore quite
bold to claim that AY # 0 is an interesting scenario to ponder. Why
should we care if we cannot measure it?

“Not yet measured” and “not yet measurable” are no reasons to
not look at something theoretically. The really poisonous situation is
if something is in principle not measurable, but this is not the case
here.® AY is very much measurable. In fact, it turns out that some
simple physical considerations not only suggest that, often, A # 0,

40K, if you insist: check out the following references for a bit more detail: Rézycki
and Lipowsky (2015); Hossein and Deserno (2020); Foley et al. (2023); Lipowsky
(2024); Foley and Deserno (2024).

SThink of gravitational waves: Einstein predicted them in 1916, and we measured
them in 2015. Theoretical physicists did not stop working on the subject just
because it was really hard to find them. In contrast, quantum mechanics insists
that the values of two non-commuting observables cannot be simultaneously
measured precisely, and now it would be quite bad to pretend that they have
some definite but unknown values, because this opens the door to quantum
paradoxes.
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Figure 4.2 | There exist (at least) two conceptually different mechanisms that cre-
ate a torque (density) in a lipid membrane. (a) If the bilayer prefers a spontaneous
curvature Jy, because the lipids have a shape that is happier in that arrangement,
then —kJgp, is a “bending-derived” torque. (b) Alternatively, if the two leaflets have
different leaflet tensions ¥, # ¥_, and hence a differential stress AY, then AX z
is a tension-derived torque, in which the lever arm zy is the position of a suitable
reference surface in the leaflet. Illustration adapted from (Deserno, 2024).

but that the value can be quite large. I will give you two examples for
this. One we can do right now, the other one I need to postpone until
we have covered cholesterol—very much towards the end of these notes,
in Sec. 4.3.2.

The first example refers to something called “torque balance”. A
Helfrich membrane with a spontaneous curvature wants to bend. There
is an internal driving force that compels it to assume a curved state.
The better word for “internal driving force to bend” is torque. In a
slightly simplified way,® we can define the bending torque (density) as

TK _ aebend (522) /’i(J . JOb) : (48)
aJ
where we ignored the Gaussian curvature term. For instance, if such a
membrane is flat, then the torque is —xJy,, and if it already has the
curvature J = Jyp,, then the torque vanishes. I tried to illustrate this
in Fig. 4.2a. Notice the (maybe slightly awkward) sign convention that
follows from this: a positive Jy, bends the membrane down, and that
gives rise to a megative torque.

Observe now that a bending-derived spontaneous curvature is not
the only way a torque can arise in a bilayer. Consider the situation
illustrated in Fig. 4.2b: the upper leaflet is under compressive stress
and pushes outward. The inner leaflet is under tensile stress and pulls
inward. Where does it push? Well, across its entire thickness. But

5Torque is really more complicated, since in a funnily shaped membrane it might
locally act with different strength in different directions. What does “differ-
ent strength in different directions” even mean? To make this precise, we’'d
need to talk about a torque tensor, which is the curving partner in crime of a
stress tensor. For the case of membranes the reader will find this sussed out in
considerable detail in (Deserno, 2015).
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in order to work with such situations more easily, it is useful to create
the notion of a (“Gibbs”) reference surface, picked such that force and
torque balance work just the same if we pretend that a delocalized force
density that acts all across the thickness of a leaflet (conceivably even
with different strength) is subsumed into a single force at a single dis-
tance. There are subtleties involved with the choice of such surfaces,’
but these are often not all that important. Let us therefore just pre-
tend that we have such a surface, and it has a distance zy from the
bilayer midsurface. In our present context, we need a surface that’s
typically called the “neutral surface.”® As the illustration shows, this
quite literally results in a force couple that creates the torque

7—2 = Z+ZO — Z_ZO =AY 20 - (49)

Let’s make sure the sign convention works out: we previously discovered
that in order to bend the membrane down we need a negative torque.
This expression is negative if the differential stress is negative. Since
tensions pull and hence have the opposite sign of forces, down-ben-
ding means the upper leaflet needs to be under compression and hence
negative tension, which in turn implies a negative differential stress, as
required. Phew.

With these definitions under our belt, let us consider the following
experimental fact: we know that scientists can create asymmetric mem-
branes that have two different types of lipids on the two sides.” For
instance, Elani et al. (2015) produced asymmetric giant unilamellar
vesicles (GUVs) in which one leaflet contains a lipid called “POPC”
and the other side contains a lipid called “DOPC.” Because we know a
fair amount about spontaneous lipid curvatures (and how bilayer curva-
tures arise from those of their underlying leaflets), we know that such a
bilayer has a bending derived spontaneous curvature Jo, ~ 0.017 nm™~1.
The spherical curvature at which such a vesicle would have its torque
relaxed is Ry = 2/Jg, &~ 120nm. And yet, the vesicles which these
authors created had radii around 20 pm, which is about two orders of

"There’s more than one way to do this, depending on what you want your reference
surface to do. I'm afraid I'll have to skip that here, too.

8Definition: the reference surface where at quadratic order bending and stretching
decouple, so that we do not get a bilinear term of the form “stretch times bend.”

9Highly nontrivial statement! For the longest time, scientists did not know how to
do this. Luckily, the state of affairs has vastly changed in the past couple of years.
In fact, Krompers and Heerklotz (2023) have recently published a review in
which they list approximately 70 individual experimental protocols, grouped into
4 general strategies. Without doubt, the ability to reconstitute clean artificial
asymmetric model membranes is a major reason for the renaissance of membrane
asymmetry.
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magnitude larger than the relaxed Ry value we just calculated. This
raises the urgent question: why are these GUVs stable? Why don’t
they fall apart, for instance by spitting thin tubules out (or, maybe,
in, depending on which way the POPC/DOPC asymmetry points). A
possible answer is that the bending torque might well want to do that,
but it’s not the only torque in town. If these vesicles were also un-
der differential stress, there would be a second source of torque, and
these two torques could balance in such a way that the much weaker
curvature of the GUV is stable.

Let us work out the required differential stress. Assuming, for sim-
plicity, that torque balance is perfect, and taking J = 0 as a good proxy
for these huge GUVs, we get

OéT:TK—l—Tz:—HJOb—i-AZzO = AZ—%. (4.10)
0
Observe that the sign makes sense: if the spontaneous bending-related
curvature Jy, is positive, so the + leaflet bends like the outside of a
sphere, we need a tension in the outer leaflet to pull it back flat, and
this means a positive differential stress.

We're ready for the punchline: inserting numbers! Everything on
the right hand side of Eqn. (4.10) is known. A typical bending rigidity
for either POPC or DOPC membranes is about 30 kg, the sponta-
neous curvature was Jy, ~ 0.017nm™!, and a very typical value for
the neutral surface is zyp =~ 1nm. Plugging in these numbers, we find
AY ~ 2mN/m.

How much is 2mN/m? Here are two possible points of comparison.
Sec. 3.3.2 mentioned that the net bilayer tension needed to rupture
membranes tends to be in the few-to-ten mN/m range. Hence, the
differential stress we just estimated is getting uncomfortably close to
bilayer tensions that might destroy membranes. Second, typical bilayer
tensions for relaxed biomembranes are much lower—fractions of mN/m
(Morris and Homann, 2001). This shows that even if a membrane might
look fairly relaxed (it’s measured tension is “quite small”), it could
actually experience sizable internal stress. This matters for anything
that would notice this internal stress, such as the phase behavior in
each leaflet, the distribution of cholesterol, the diffusion of lipids, or the
functioning of transmembrane proteins whose mode of action requires
any type of depth-dependent area change (mechanosensitive channels
or transporters would be prime examples to watch out for).

~
~

~

~
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Figure 4.3 | Illustration of the notion of a parallel surface. A “central” surface is
defined via the parametrization X (u',u?) (see Sec. 3.2.2). At each point on that
surface we have a normal vector, n(u!,u?), and we can therefore define a so-called
parallel surface by locally displacing the central reference surface by some amount
Sh along n(u',u?) that does not depend on the coordinates {u!,u?}. (The two
examples shown here are an “up” and a “down” displacement.) Fun fact: this
creates a local coordinate system (u',u?,8h) of 3d space near our central surface,
but this usually does not extend to arbitrary values of §h, because in concave regions
of the original surface the normal vectors all come together and can create cusps.

4.2.3 Differential stress as preferred curvature

A difference in lipid packing density on the two sides of a leaflet can give
rise to differential stress. This, as we have seen, creates a torque which
wants to bend the membrane. Conversely, if we bend the membrane
such as to reduce the differential stress, then there should be a special
curvature at which the packing density difference relaxes, because the
“outside” has gained enough area, and the “inside” has lost enough
area, such as to exactly accommodate for the imposed area difference.
This is true, and it offers a way to rephrase the notion of differential
stress (or strain) in terms of curvature. It’s not necessary to do so, but
it provides some nice intuition, and it might help to express different
concepts in the same framework. To do so here, I first need to tell you
about a very nifty result from differential geometry, called the “parallel
surface theorem.”

Consider Fig. 4.3, which looks like a stack of three surfaces. What
we look at here is a central surface X (u!,u?) (using the more gen-
eral parametrization discussed in Sec. 3.2.2) sandwiched between two
cousins, called “parallel surfaces.” These are defined by locally displac-
ing our initial reference surface by some fixed amount dh along the local
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normal vector:
X'(u',y*) = X(u',u®) + dhn(u',u?) . (4.11)

For small enough &h, the new surface X'(u',u?) is again nice and
smooth, and so we can define everything for it that we can also define
for X (u',u?), such as area elements, normal vectors, curvatures, etc.
In fact, we can express these objects as changes of the corresponding
objects on the reference surface. Three particularly remarkable formu-
las show how area element, total curvature, and Gaussian curvature on
the primed surface change into

dA’ = dA 1+J5h+K5h2] , (4.12a)
, J+2K6h
14+ Jéh+ Koh2’ (4.12b)
, K
T 1t Joh+ Kom? - (4-12c)

You might think these are maybe expansions in dh, but they are not.
These expressions are exact! Proving them is an exercise of playing
around withe more general surface parametrization from Sec. 3.2.2.
Indeed, do Carmo (1976) poses it as an exercise. Absent a proof, you
might at least want to convince you that this gives the correct result
for spheres and cylinders.!”

With these preliminaries settled, let us now look at a curved piece of
membrane, such as the one illustrated in Fig. 4.4. It has an “outside”
and an “inside” leaflet, with an area that’s larger or smaller than the
bilayer midsurface, respectively. And by “area” we mean the area as
measured some reference distance zp, displaced towards the outside
and zyp_ towards the inside (the numbers might differ since, after all,
we assume our membrane to be asymmetric). This is obviously where
the parallel surface theorem comes in. We would like to know what
these displaced areas are, because this will tell us how many lipids we
can fit onto the two sides—with or without extra stress. Making use of
Eqn. (4.12a), we immediately find

dA, = dA |14 J s + Kzgi] . (4.13)

10To Dbe fair, this theorem is a lot more than what we need right now, but in my
career | have found it to be useful on so many occasions that I felt it doesn’t
hurt if I tell you about this particularly beautiful spell.
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Figure 4.4 | Illustration of a
small piece of a curved mem-
brane, which has a midsur-
face of curvature J, corre-
sponding to a radius of curva-
ture R = 2/J. Each individ-
ual leaflet has its own refer-
ence surface (say, the neutral
surface we encountered in the
previous section), which is
parallel displaced from the bi-
layer’s midsurface by some
amount +zp4. The parallel
surface theorem quickly tells
us the areas of these two neu-
tral surfaces.

Given this, we can now calculate the area strain si on the two surfaces:

dA, —dA
ST

If we have a membrane which is packed in such a way that it experiences
no area strain in either leaflet when it is flat, then such a strain will
build up upon bending. Conversely, if we have a membrane that does
experience an area strain, we can reduce it by suitably bending it away
from the more crowded side. In fact, at linear order in zp4 we are guar-
anteed that there is a J at which As = s, — s_ takes whatever values
is needed to relax a pre-existing area strain difference. At quadratic
order this is also possible, because we can choose J and K any way
we want, even though now the specific choice for J and K might not
be unique. This doesn’t matter, though, because it will turn out later
that all we need is expressions that are quadratic in the strain, which
to lowest order turns out to be quadratic in zp+, and for such terms it
is actually enough to take Eqn. (4.14) up to linear order in zg.

Let’s take one step after the other, though. Assume we have a bilayer
that is unevenly packed on the two sides such that there is an area
strain. We know we can pick (possibly not unique) values Jos and Ko
for total and Gaussian curvature, respectively, such that this strain
is canceled. However, at any other values a strain remains, which
integrated over the whole membrane surface is given by

=+J 24 + K 25, . (4.14)

(s.) = %/SdA [i (J — Jos) 20s + (K — Koy) zgi] (4.152)

= £((J) — Jos) 20+ + ((K) — Kos) 204 (4.15D)
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where A is the area of the whole membrane patch on its midsurface,
and where (J) and (K) are the total and Gaussian curvature averaged
over the patch. These area strains in the two leaflets of course come
with an elastic stretching energy, following an energy expression a la
Eqn. (3.40):

1 1
Estretch =A 5 Am+33_ + §KAm_S2_ (416&)
1
= A5 (K2, + Kan-23) () = o))"+ O(:) |, (4.16b)

where K z,,+ are the area expansion moduli in the + leaflets and where

we expanded up to quadratic order in zp+ (and hence also up to quadratic
order in curvature (differences). As mentioned earlier, we realize that

at that order the quadratic term in Eqn. (4.14) is indeed irrelevant, and

we do not need to know Ky after all.

This is a bit of a curious energy. At first sight, it looks like a bend-
ing energy, just like the k-term in Eqn. (3.42). But notice that since
we needed to first integrate over the whole membrane in order to get
the total area strain, and only then did we square up to get an elastic
energy, we ended up squaring the average curvature of the patch. In
contrast, the usual bending energy arises from squaring up local curva-
tures and then integrating over the whole membrane. This swapping
of “squaring” and “integrating” creates an expression that is genuinely
nonlocal: we need to know something about the curvature everywhere
on the membrane to calculate (J), and only then do we enter this av-
eraged expression into our quadratic elastic energy.

Having done so, we can then make the expression at least superfi-
cially look like a bending energy, namely by renaming the assemblage
of prefactors out front (and dropping the higher order O(z3) terms):

ES retc 1 3
tAt t = §/€nl(<']> _JOS)2 with ky = KAm+Zg++KAm*Zg— , (4.17)

where k1 can be viewed as a nonlocal bending modulus. Expressions like
this have in fact been proposed numerous times before (Evans, 1974;
Helfrich, 1974b; Evans, 1980; Svetina et al., 1985; Seifert et al., 1992;
Miao et al., 1994).

Besides the local — global nuisance, we have succeeded in rewriting
the stretching energy that is associated with uneven leaflet packing,
and how it changes when we curve the surface more or less, into an
effective nonlocal bending energy. To do so, we re-expressed the area
strain by some effective curvature Jos. For completeness, let us also
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calculate what that curvature is in terms of the areas Ay which the
two sides would prefer to take individually in order to get rid of area
strain, and how these two areas related to the midsurface area A. Since
to linear order in zp+ we have Ay = A(1+ 2o+ Jos), we can divide these
two equations to eliminate A and then solve the result for Jys. We can
then subtract them, insert whatever we just found for Jys, and then
solve for A. Doing so yields

A+ — A_ A+ZO_ + A_ZO+
= and A= .
Avzo- + A_zo4 204 T 20—

Jos (4.18)

We would now like to reap the benefits of our rewriting. But in
order to keep things manageable, we want to get rid of the local/global
nuisance. We can rather cheaply do so by agreeing to only talk about
surfaces of constant total curvature. This might seem like a serious
restriction, but it does cover the by far most common cases of planes,
spheres, and cylinders.

We have at this point encountered two elastic energies: a genuine
bending energy, Eqn. (3.42), and a stretching energy that arises from
packing differences in the two leaflets, the associated stress this causes,
and how it changes upon additional bending—FEqn. (4.17). For a gen-
eral elastic description, both of these terms must be present, since they
account for subtly different physics. In the case of constant total cur-
vature surfaces, we can write this combined energy density as

1 1
egend = 5'%(‘] - l]0b>2 + éﬁnl(t] - JOS)2 s (419)

where for simplicity we ignore the net tension and any Gaussian terms.
This expression contains two bending moduli (a local and a nonlocal
one) as well as two spontaneous curvatures: one due to lipid shape
(i. e., a material parameter), and one due to a pre-existing area strain
(i. e., a condition created when the membrane was made).

This generalized curvature-stretching elastic energy permits us to ac-
count for the two torque contributions we have discussed in the previous
sections in one go. All we need to do is differentiate this energy with
respect to the curvature to get the torque density:

*
aebend

7=k

= li(J — ng) + Iinl((] — JOs) . (420)

Tic Ts

The first term is of course again the torque density from Eqn. (4.8); the
second term does not look like the stretching-based torque density from
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Eqn. (4.9), but of course has to be equal to it. We see that it is—taking
J = 0 as the reference state—by inserting the known expressions for
K (Eqn. (4.17)) and Jos (Eqn. (4.18)), respectively. If for simplicity
we take 2oy = zo_ = 29, we get

A A A — A
_ - K 2 + K +
Ts Kn1Jos A% Azt Az AZ0 A, 1A
A, —A A-A_ *
= 2KAm +2A oA 20 = —KAm(—8+ + Sf)ZO
= <Z+ZQ — Z_ZQ) =AY 20 (421)

which is exactly the answer we expected from Eqn. (4.9). The only
nontrivial thing happened at %, where we strangely pretended that
(A;—A)/A s the negative of the strain in the + leaflet. Why? Because
we decided to take J = 0 as the reference state, not Jys. If Jos > 0,
then the surface wants a positive curvature and so its outer surface
A, must be bigger than its inner surface A_, or their suitably defined
average A—exactly in line with Eqn. (4.18). But that also means that
in the flat state, J = 0, the upper leaflet is compressed, even though
(Ay — A)/A is positive—showing that it’s the negative of that value
which is the actual strain present in the leaflet (and similarly for the
other side).

If you get the feeling that keeping track of the signs of torques is
tricky, you might be on to something. But then, this is also a (minor)
reason why rewriting the combined bending-stretching energy as two
curvature terms is helpful: our visual intuition about what the signs of
Jos and Jg, mean is clear, and we’re comparing apples to apples here,
so the possibility of confusion is minimal.

Now that we have the total torque density in Eqn. (4.20) we can
ask at what special curvature it will vanish-—meaning, what (constant
curvature) shape the membrane wishes to take. Setting 7 = 0 and
solving for J leads to:

J*:M (4.22)
0 K+ Kn '

showing that the relaxed curvature is the rigidity-weighted average of
our two characteristic curvatures, Jg, and Jys, each weighted with their
respective modulus.

There’s something conceivably unexpected about a membrane in its
relaxed state with curvature Jj: it is generally under differential stress.
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You might think that in the final equilibrium state all forces vanish, but
that is not so. In fact, if you look at the energy in Eqn. (4.19), you can
picture this as a sum of two (harmonic) springs (in fact, two springs in
parallel), each of which has a rest length. But these rest lengths are not
the same! This means that both springs have to come to a compromise,
and Jj is exactly that compromise. Obviously, in the resulting state
neither spring is perfectly relaxed; in other words, neither the bending
torque nor the tension torque vanish, their nonzero values just balance
one another. And since the tension torque goes along with a differential
stress, that differential stress cannot be zero.

Since to linear order in zy the leaflet strain is sy = +(J — Jos) 2o+
(see Eqn. (4.15b)), the differential stress is

AS = Koams 204 (J — Jos) — [— Kamszoo(J — Jos)| . (4.23)

Taking the simple case where 2y, = z9_ = 2p, we find that the differ-
ential stress in the torque-balanced state is

A = 2~ o) =

K
20 20

(J5 — Job) (4.24)

where the second equation follows from using Eqn. (4.22). Multiplying
the first expression by s and the second by k) and adding them up, we
can eliminate Jj and write the answer purely in terms of our original
characteristic spontaneous curvatures:

* Rharm
AYF = ;ZO (Job — Jos) (4.25)

where Kparm = 26601/ (K+ knp) is the harmonic mean between k and ry.
This expression shows rather vividly that if the bending term and the
leaflet packing term do not agree on the same relaxed curvature, then
the bilayer will be under differential stress. This is yet another reason
for why we should generally expect such a stress to exist.

4.3 Cholesterol

Among the many lipids contained in biomembranes, cholesterol is a
particularly strange fellow (Mouritsen and Zuckermann, 2004; Nes,
2011). Unlike most “normal” lipids, which contain some hydrophilic
head group and usually two aliphatic chains, cholesterol is a rigid ring
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POPC Cholesterol

(1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) (cholest-5-en-3B-ol)

Figure 4.5 | Hlustration of two very common lipids in mammalian plasma mem-
branes: POPC and Cholesterol. Observe that POPC has the “typical” structure
we associate with lipids: a hydrophilic head group (here: phosphatidylcholine)
attached via a glycerol backbone via ester bonds to two fatty acid chains (here:
palmitic acid and oleic acid), one of which happens to be “unsaturated” (i.e., it
has a double bond). In contrast, cholesterol is a complicated ring system and has
as its hydrophilic moiety a single hydroxyl group. [The chemical structures were
taken from (Cheng et al., 2006), the 3D models come from the webpage of Avanti
Polar Lipids, https://avantilipids.com/.]

system that is a fair bit smaller than the size of a typical phospholipid,
and its only hydrophilic moiety is a small hydroxyl group—see Fig. 4.5.
Cholesterol is contained in the cell membranes of all higher animals
and reaches its largest concentration in the plasma membrane, where
it typically amounts to 20 — 40 mol%. Many other organisms contain
similar “sterol” molecules, which the unaided (i. e., non-chemist) eye
cannot easily distinguish from cholesterol; for instance, fungi contain
ergosterol,!' plants contain phytosterol.

4.3.1 Cholesterol flip-flop

Cholesterol is responsible for a huge set of cellular phenomena in gen-
eral, and membrane phenomena in particular. Too much to go into
now. For the purpose of these notes I will largely restrict to a first

HUFun fact: sterols are clearly important for these organisms, and taking them
away is lethal. Since fungi use a different sterol (ergosterol) than humans, whose
biosynthesis relies on proteins which we humans do not have, those proteins are a
primary target for antifungal drugs, because they are then less likely to interfere
with human biochemistry. Clotrimazole and fluconazole are great examples.
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discussion on how cholesterol impacts the phenomenon of lipid mem-
brane asymmetry. Everything starts with the observation that, being
such a small molecule with such a miniscule hydrophilic moiety, it has a
much larger flip-flop rate than phospholipids. While (as usual) precise
values depend on the specific conditions, flip-flop rates seem to be so
fast that the inferred results tend to be limited by the time resolution
of the experimental technique that was applied. Leventis and Silvius
(2001) conclude that the flip-flop time is shorter than a minute, Steck
et al. (2002) underbid this by claiming it is shorter than a second, and
Hamilton (2003) argues it can be as fast as milliseconds. Much larger
times (200 min at 50 °C) have been claimed by Garg et al. (2011) and
subsequently been criticized by Steck and Lange (2012). My (a theo-
rist’s. .. ) impression is that such large times are not widely accepted in
the community. If we take the between-seconds-and-milliseconds range,
then it’s fair to say that cholesterol’s flip-flop rate appears to be be-
tween 5 and 6 orders of magnitude faster than that of phospholipids.
Why does this matter?

In Sec. 4.1.2 T had argued that the flip-flop rate of phospholipids is
slow enough for cellular flippases to sort them between the bilayer’s
leaflet to the cell’s liking. The asymmetric lipid distribution is a non-
equilibrium steady state, whose very existence is only possible because
even “sluggish” flippases are fast enough to out-shuffle random flip-
flop. But this sorting is no longer possible for a fast-flipping species
like cholesterol. The product of abundance and shuffling rate of any
hypothetical cholesterol flippase would have to be those 5 to 6 orders of
magnitude larger, and that just seems biochemically impossible. Steck
and Lange (2018) in fact point out that such a machinery would com-
pletely exhaust a cell’s energy budget.

The upshot is: cholesterol cannot be placed in some particular asym-
metric arrangement as part of a cell’s overall lipidomic asymmetry. It
goes where it wants to go. And since (at least in the plasma membrane)
the mole fraction of cholesterol is fairly sizable, this must affect every-
thing we have so far discussed in terms of lipid packing, area strain,
and differential stress. How do we need to adjust our thinking?

One conceivable deduction is that cholesterol, if sufficiently abun-
dant, will eliminate differential stress. The reasoning being, if there is
a crowded leaflet and a depleted leaflet, giving rise to compressive and
tensile strain, respectively, which in turn creates elastic energy due to
the resulting differential stress, then we can lower that energy by shuf-
fling cholesterol from the side that is crowded to the side that still has
space. The lowest energy state we can achieve this way is the one where
the differential stress vanishes. Indeed, it has been claimed that bilayer
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membranes with frequent flip-flops have tensionless leaflets—which is
in fact the title of a paper by Miettinen and Lipowsky (2019). Besides
the brief argument I just outlined, these authors further bolster their
findings with Molecular Dynamics simulations (coarse-grained, MAR-
TINT level), in which the differential stress in an asymmetric membrane
relaxes to values indistinguishable from zero after replacing 10 POPC
lipids on each side with cholesterol molecules.

Hence, considering the abundance of cholesterol in cellular mem-
branes, it would seem that everything I have said in Sec. 4.2 about
differential stress only applies to artificial cholesterol-free model sys-
tems, and you might get worried I'm wasting your time with conceptual
niceties that are irrelevant in the real world. Have 17

Fear not—I haven’t. And the reason is that, like virtually anything
concerning cholesterol, things are always just a little bit more subtle.
For a start: if I had asked you how a fast flipping species would dis-
tribute between the two leaflets of a bilayer before you even knew any-
thing about asymmetry, you would most likely have said: 50:50. Why?
Because of entropy. One of the archetypal thought experiments I am
certain you all have encountered at the beginning of your first course
in Statistical Physics is the distribution of gas molecules between two
compartments of equal volume. The 50:50 answer simply comes about
because this yields the largest number of microstates (the logarithm of
which is proportional to the entropy). Here, the compartments are the
two leaflets, and the entropy is largest if we put half of our cholesterol
into one, and the other half into the other.

Which part of that argument becomes wrong in the presence of asym-
metry? Clearly, thermodynamics teaches us that entropy maximization
is a far more general idea—it basically underlies the extremalization
principles of all thermodynamic potentials. But we learn that addi-
tional energetic considerations can compete with entropy (which is of
course why we introduce all those other thermodynamic potentials in
the first place). And indeed, differential stress is such a competing ef-
fect: it is energetically better to shufie cholesterol around such as to
lower the elastic energy, but it will come at the cost of also lowering the
entropy. So what will happen? A compromise, generally. The stress
will be somewhat reduced, and the entropy will be somewhat lowered,
but neither side fully gets its way. Slightly more precise: from energy
E and entropy S we can define a free energy G = ' — T'S, and rather
than exclusively minimizing E or exclusively maximizing S, we will
compromise by minimizing G. This obviously means that a differential
stress will remain.

How in fact do we minimize G? Imagine that each leaflet has its
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free energy—say, Gy and GG_. and what we're doing now is to shuffle
cholesterol around—i. e., change its number in each leaflet—until any
further shuffline no longer changes G (to first order). As an equation:

oG  9(G,+G) 090G, 0G_ ,9G, OG-

0=56.""9oc.  ~ac. Tac. oo, oo (420

(' is the number of cholesterol molecules in each leaflet and at “x”
we used dC, = —dC_, which follows from C, + C_ = C' = const.
Since the derivative of the free energy with respect to particle number
is the chemical potential, we have arrived at the proper thermodynamic
equilibrium condition that must hold for a fast flipping species:

[ s = fi— ] (4.27)

In some sense, this of course also holds for all the other lipids—for suffi-
ciently long times and when we switch the non-equilibrium flippases off.
But surely on time scales larger than the flip-flop time of cholesterol and
shorter than time scales over which even dead model membranes equili-
brate their phospholipids, the cholesterol distribution is determined by
an equilibration of cholesterol’s chemical potential between the leaflets.

Notice that this condition is not badly in conflict with the origi-
nal idea by Miettinen and Lipowsky: it is not wrong that differential
stress is a driver of the cholesterol distribution. It’s just not the only
driver. Rephrased in thermodynamic language: there are multiple con-
tributions to the chemical potential of cholesterol, one of them being
differential stress. It’s just not the only one.

Our musings have actually paved the way to being more quantitative
about this situation and trying to predict the cholesterol distribution.
We need to find its drivers and account for them in a suitably con-
structed free energy of the situation. As usual, the gold standard here
would be to write down a Hamiltonian for this situation and then do
the partition function. And also as usual, this is completely impracti-
cal.'? The far more common approach is to patch together plausible
terms using a variety of well understood model calculations. While not
necessarily quantitatively accurate (and sometimes not even qualita-
tively. ..), this almost always provides a deeper conceptual insight into
this situation. Towards the end of these lectures, let me show how one
might do this for the case in point here.

12Except: this is ezactly what Molecular Dynamics simulations do. Admittedly,
though, this is not an attempt at an analytical answer.
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4.3.2 A simple model for cholesterol’s trans-leaflet
distribution

The model I'm about to describe has been developed by Malavika
Varma and myself (Varma and Deserno, 2022). It accounts for the
two drivers already mentioned—entropy and differential stress—as well
as a third important one: preferential partitioning. It is well known
that cholesterol’s free energy of insertion into a membrane depends on
the lipid composition of that membrane. More specifically, it prefers to
associate with more saturated phospho- and sphingolipids and less so
with unsaturated lipids,” as is known from both experiment (Silvius,
2003) and simulation (Bennett et al., 2009).

The model I will show you has the redeeming quality of being simple,
and so its predictions can be physically interpreted. It does not account
for the complete physical situation, though, because it neglects quite a
number of things. Two rather notable disinvites to the party are cur-
vature and condensation effects. The former means we will not account
for curvature elastic energies that arise—even in flat membranes!—
because cholesterol can change the spontaneous curvature of the phase
it embeds in, which has important energetic effects as recently exam-
ined by Allender et al. (2019). The hard part here is not so much
including a curvature term but to figure out how cholesterol changes
the spontaneous curvature, which is not just a matter of contributing
its own intrinsic curvature to that of the lipids it mingles with (Sodt
et al., 2016). This is also related to the second effect, condensation.
It is generally true that the area of a lipid membrane is not just the

13«Saturation” is a measure for the absence of double bonds in the aliphatic chain
of a lipid. The term “saturation” is rather widely used in organic chemistry to
denote a compound (or part of a larger chemical structure) that resists addition
reactions, such as hydrogenation (addition of hydrogen atoms). A hydrocarbon
chain that only consists of single bonds is “saturated,” since there is no place
where we could easily add anything. Conversely, a double bond is more reactive
and lends itself to a variety of additions. These double bonds interrupt what
could be a regular zig-zag configuration of the aliphatic chain, thus making it
more difficult for them to pack and order. As a consequence, such unsaturated
fatty acids “melt” at lower temperature than their “high-melting” saturated
counterparts. For instance, the major fatty acid in olive oil is oleic acid, which
contains a double bond between carbon atom 9 and 10 (it’s exactly the right
“0” chain in the POPC lipid shown in Fig. 4.5), while the most common fatty
acid in butter is palmitic acid (the left “P” chain in the POPC lipid shown in
Fig. 4.5), followed by myristic acid and stearic acid—all of which are saturated.
Hence, butter is solid at room temperature, while olive oil is a liquid. Moreover,
the more reactive double bond in olive oil makes it more prone to oxidation,
especially in the presence of light (“photo-oxidation”), which is why olive oil
comes in darkened bottles.
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sum of the molecular areas of its individual lipids,'* and cholesterol is
a particularly notable outlier in this regard: its planar polycyclic ring
structure can order neighboring lipids so much that they pack better,
leading to an overall area that can even be smaller than what it was
before cholesterol was added, giving cholesterol effectively a negative
differential area. This was especially vividly demonstrated in recent
simulations by Leeb and Maibaum (2018).

OK, let’s get going before you run out of steam. The three drivers
we wish to include come in two different flavors, elasticity and mixing.
The first we can write down as follows: Take a membrane of area A,
whose individual leaflets rather wish to have areas A.. The elastic part
of the free energy is then of the form

1 (A-A)2 1 (A—A_)?

G = ~Kaps My g, AT 02 4.28
1= g Mmoo i A (4.28)
which I trust we will by now feel immediately comfortable with. If
we were to only account for this term, the membrane tension would be
given by ¥ = 9(G,/0A), which we can solve for the equilibrium bilayer
area: . K
ay o . Am+

= — 4+ — th = —

A A TA MW TS

leading to the area-relaxed but tension-dependent elastic free energy

(4.29)

1 (A, —A )2 1 2
== += . (4.30)
A A_ Kam Kam—
2 KA;+ KAm, 2 2++ + 27

Gel(z)

Notice that this is a quadratic that is minimal when ¥ = 0 and when the
imposed differential area strain vanishes, i.e., if A, = A_. Moreover,
even if the net bilayer tension vanishes, the leaflet tensions are not zero
as long as a differential area strain remains:

aGe] A+ - A,
Y= = FK . 4.31
0 ( 0A )g Acq R Ama AL+ A ( 3 )

We now need to determine how these areas are supposed to be con-
nected to the lipid content in the leaflets. This we will do in the sim-
plest possible way: just assuming area additivity. In this spirit, let us

14This is true far beyond membranes: molecular areas or volumes are fraught with
failed intuitions, because what really matters is how molecules locally pack, and
that depends on the neighbors they are packing with. A well known illustration
of this is that 500ml of water and 500 ml of (anhydrous!) ethanol do not add
up to 11 of an ethanol-water mixture but to about 10% less in volume.
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then define the following variables:

relaxed leaflet areas : Ay = Liay + Ciae (4.32a)
Ca,
cholesterol area fraction : hn = Lot Lila, O
(4.32b)
phospholipid area difference: AA_ =L a, — L_a_, (4.32c)
c, —C_
cholesterol asymmetry : dc = ﬁ : (4.32d)

where Ly and Cy are the number of phosphoLipids and Cholesterol
in the two leaflets (and C' = C + C_), and where a, are the areas of
the phospholipids and a. is the cholesterol area. Using these definitions,
and the leaflet stresses defined from Eqn. (4.31), we find the differential
stress at zero net tension

AA
AEO = E_f_’[) - 2_70 = _KA¢a |:E A (SC:| c (433)

This nicely shows the two effects contributing to it: the total phos-
pholipid leaflet areas can differ, AA # 0, or cholesterol can distribute
unevenly between the leaflets, dc # 0.

So much for the elastic part. How about mixing? For this, we use an
approximate description that accounts for an ideal gas entropy of mix-
ing and a non-ideal interaction term that is proportional to the product
of the two concentration of the species that mix. This is moderately
straightforward, because in each leaflet we only have two components:
whatever phospholipid species was put there in the first place, and
whatever amount of cholesterol happens to end up there. If for such
binary mixtures (component ¢ € {1,2}) we call the molecular numbers
N;, areas a;, total area Aj5 = Njaj;+ Naag, area fractions ¢; = N;a; /A,
the non-ideal solution free energy can be expressed as

JaLa
BGsol = Nilog ¢1 + Nalog ¢a + x N1 Ny A; 2, (4.34)

where the dimensionless coupling constant “x” multiplying the non-
ideal part is usually called the “Flory-Huggins mixing parameter.” In
our situation, we will end up with two such parameters, x4, one for the
nonideal mixing between cholesterol and the phospholipids “native” to
each leaflet. It will then be useful to consider a situation where we
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describe the extent to which the leaflets are different by how strongly
their y-parameters differ. This is most naturally done by defining

X =350+ +x-) 1
— x+=x= 55)( . (4.35)
X=X+~ X-

The next steps are conceptually easy but algebraically very tedious.
The complete free energy is simply the sum of the elastic term (4.30)
and a mixing term of the form (4.34) for each leaflet. It is already
area minimized, so the only other equilibrium condition we need to
impose is the equality of cholesterol’s chemical potential between the
leaflets, a la Eqn. (4.26). Sadly, though, the presence of the log-terms
makes the resulting algebra terribly unwieldy, and in order to come up
with manageable formulas that we can stare at and say “aha,” we need
to expand around small deviations from the symmetric state. What
follows in (Varma and Deserno, 2022) is some tedious gymnastics that is
straightforward, boring, and unfortunately tends to hide the simplicity
of the underlying idea. I will skip it entirely. Instead, I will show you
a few highlights you find if you have the patience to slog through it by
hand or, more advisable, let MATHEMATICA® help you with all those
tedious expansions.

In fact, I will make one more approximation, which is not very good,
but massively cleans up all formulas. It gives rise to results that are
almost surely quantitatively off in the real world but still capture most
qualitative effects—which shall be good enough for now. This approxi-
mation is the “equal area assumption,” which takes the area of all lipids
to be the same: a, = a_ = a. = a. It is not too bad for the phos-
pholipids, but evidently highly dubious for cholesterol. Recall, though,
that we have already been quite slap-dash with cholesterol’s area, as-
suming additivity, which we know to be wrong. Still, I will put the
reminder “e.a.” above equations relying on this approximation, just to
be extra clear.

If areas are the same, some of the definitions in Eqns. (4.32) become
simpler, and it also makes sense to define two others:

C
cholesterol mole fraction : o= il 10 (4.36a)
hospholipid t 5o = e L (4.36D)
ipi mmetry : = :
phospholipid asyminetry L.+ L °
scaled stretching modulus : Kj=fKaa, (4.36¢)
scaled differential stress : AY = ALK, . (4.36d)
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Notice that if we again take K4 ~ 240 mN/m (Rawicz et al., 2000) and
pick a ~ 0.55nm? as a “compromise” for all lipid areas, we find that
K4~ 32.

One of the key questions we wish to answer is: where is the choles-
terol? In terms of our newly defined variables: how does the cholesterol
asymmetry dc depend on the imposed phospholipid asymmetry 6¢ and
a possible cholesterol partitioning bias dx between the leaflets? After
some serious cranking and approximating, the answer turns out to be

Sc(dx, 00) 5 — (1 — ¢)20x + (K4 —2)(1 — ¢)5¢
. 2+ (K4 —2)¢ '

(4.37)

Increasing dx (which yanks cholesterol into the — leaflet) and increas-
ing d¢ (which puts more phospholipids into the + leaflet) both pushes
cholesterol out of the + leaflet. Both effects are linear in the drivers,
which is a consequence of all the expansions leading up to this point.
The two effects can compensate if dy and 6/ have opposite signs, and
they compensate “fully” (meaning: cholesterol now distributes evenly)

when dx /0l = —(Ka —2)/(1 — ¢). At 25% cholesterol this means an
extra 0.4 kgT free energy difference for cholesterol between the sides
for every extra percent of phospholipid asymmetry. Also notice that
this equation has a very simple limit in the case where elasticity com-
pletely outcompetes the other two drivers, 7. e., where differential stress
is the only thing that matters: all we need to do is to set K4 — 0o
and find dc = (¢! — 1)6¢, which you can easily check corresponds
to Ly +Cy = L_ + C_. This means that lipids will distribute such
that both leaflets take the same area, and hence the differential stress
vanishes.

The second key question to ask is: what is the differential stress in
the system, at a given phospholipid asymmetry and partitioning bias?
Here, the answer turns out to be

(1 —¢)ox — o

1

e.a. —Cb

AX(5y, 00) =~ K2 K
(9x; 98) A 1+§KA—1i’¢

(4.38)

Just like the cholesterol asymmetry, the differential stress again de-
pends linearly on the two drivers dy and 0/, and the directions make
sense. The stress vanishes when dy /3¢ = 2/[¢(1 — ¢)], which unlike the
asymmetry diverges at ¢ = 0 because we have so little cholesterol to
repair the situation.
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Figure 4.6 | Differential stress in a membrane with no area imbalance (AA = 0) as
a function of cholesterol mole fraction ¢. We assume K4 = 240mN/m and éx = 1
(i. e., a 1 kgT preference for cholesterol to go into the lower leaflet). The thick red
curve is the equal area approximation from Eqn. (4.38), taking ¢ = 0 as “no area
imbalance” and an average lipid area of a = 0.55nm?, which gives K4 = 32. The
thinner blue curve instead uses the more precise answer using the unequal lipid
areas ay = a_ = 0.6nm? and a. = 0.35nm?.

An interesting prediction is that even in the case of no packing im-
balance, ¢ = 0, when the differential stress vanishes in the absence
of cholesterol, the addition of cholesterol can create differential stress
if there is a partitioning bias dy # 0. This is literally the opposite
of the original expectation that adding cholesterol would always can-
cel differential stress; here it creates stress that wasn’t there to begin
with. How big is this effect? Fig. 4.6 plots this for the parameter
choices we have been working with all along. At ¢ = 0 the differential
stress indeed vanishes, but the moment we add cholesterol, it shoots
up rather rapidly. In the limit ¢ — 1 the stress again goes back to
zero.'® The interesting thing is how much it shoots up in between. At
15% it reaches a remarkably large value in excess of 4mN/m, even if
there’s just a 1 kgT difference in cholesterol’s free energy of partitioning
between the leaflets. If we do the calculation a bit more carefully and
forgo the equal area approximation, the effect is a bit smaller (because
the cholesterol molecules we yank from one leaflet into the other one
are smaller and hence create less strain), but it is still in the few mN/m

15This is a bit unphysical, because membranes cannot be made from 100% choles-
terol; but the theory doesn’t know about this, and we are allowed to be happy
about the fact that it makes a reasonable extrapolation to what would happen if
such membranes were stable (or, maybe more realistically, what if one particular
lipid species would be able to flip flop rapidly, possibly with the assistance of
some enzymes (“scramblases”)).
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ballpark. And, obviously, it gets proportionally larger if dy increases.
This, at long last, is my other argument I promised for why we should
expect differential stress to be nonzero.

4.4 Things to think about

1. A bending energy of the form 1x(J — Jop)* can also be defined
on the leaflet level, with individual monolayer bending rigidities
km+ and spontaneous monolayer curvatures Jop,+. Unlike Jyp,
the monolayer values Jy,,+ are generally nonzero, because there’s
no up-down symmetry in a single leaflet that would enforce this.
Assuming that the two leaflets can slide past each other when
the bilayer is bent, and ignoring stretching issues for this pure
bending question, show that the bending-associated spontaneous
curvature Jg, can be written as a function of the monolayer elastic
parameters!

(Hints: (1) The subtle difference in curvature a distance z, out or
in from the bilayer midplane will turn into a higher order effect,
so you can ignore it for this question. (Or you can check that
this is in fact so.) (2) There is a subtle minus sign hiding in this
question. As a control: do you get the expected answer when

Jom+ = Jom-"7)

2. One of the hallmarks of membrane asymmetry are the two mea-
sures of spontaneous curvature appearing in Eqn. (4.19), Jy, and
Jos, and the fact that they can be different from one another.
Show that, sadly, both of them drop out of the physics in linear
Monge gauge under periodic boundary conditions. This for in-
stance means that a standard fluctuation analysis would not be
able to learn anything about either of these values.

3. Consider an asymmetric membrane which has the lipid POPC
on one side and the lipid POPE on the other. From the com-
puter simulations of Venable et al. (2015) we take that they
have virtually identical monolayer bending moduli x,, ~ 15 kgT
but very different leaflet spontaneous curvatures: Jo, (POPC) =
—0.032nm ™! and Jo, (POPE) = —0.213nm ™. Using the formula
you might have derived in problem 1, this gives a bilayer curva-
ture of Jg, = 0.09 nm ™! using the convention that POPC is “up”
or “outside”. Let’s think a bit about vesicles we could make from
such strongly asymmetric membranes.
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Figure 4.7 | Transmembrane protein embedded in a differentially stressed mem-
brane. The indicated conformational change, which flips the truncated cone angle
from +a to —a, requires work to be done against the differential stress.

a) What’s the radius of a vesicle in which both the overall

torque and the differential stress are relaxed? On which
side is POPE?

b) Eicher et al. (2018) succeeded in making vesicles with this
type of lipidomic asymmetry, but with radii of R ~ 60 nm.
In fact, they made them in both variants: POPC°"/POPE™
as well as POPE°"/POPC™. If we assume that the forma-
tion process selects the number of lipids on both side such
that the overall bending rigidity from Eqn. (4.19) is minimal,
what would be the differential stress for these two types of
vesicles? Which side is under tension?

4. Some transmembrane proteins (such as ABC transporters) un-
dergo conformational transitions that change their cross-sectional
area in a way that differs between the two leaflets. As a toy ex-
ample, consider the situation illustrated in Fig. 4.7: a protein
shaped like a truncated cone “pivots” its orientation at the bi-
layer midplane in such a way that the cone angle changes from
+a to —a. If the membrane is under a differential stress AY,
what work needs to be done (or is done) due to this motion?
Pick numbers for all the relevant parameters of the problem that
strike you as biophysically plausible and express this free energy
change in units of kgT'. Do you think this could be relevant?
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