

Protein Self-Organization

patricia.bassereau@curie.fr

Institut Curie, Paris 5e

Cells can Change their External Shape and Interior

Macrophage motion

From P. Matsudaira, MIT

Cell division

From A. Echard, Inst. Pasteur

Tunnel opening and healing

Boyer *et al., J. Cell Biol.* **173**, 809 (2006) E. Lemichez (Inst. Curie)

Traffic around Golgi

S. Miserey-Lenkei *et al.*, *Nat. Cell Biol.* **12**, 645 (2010) B. Goud (Inst. Curie)

Shape results from interplay between membrane and cytoskeleton

Constant Traffic in Cells

Bonifaccio and Glick

Cell (2004)

Toomre et al J. Cell Sci. (1999)

Red: Microtubules Green: Golgi (VSV-G) Overlap: yellow

Formation of small vesicles, tubes: requires to *strongly deform* membranes

Different Steps of "Vesicular" Transport

Bonifaccio and Glick *Cell* (2004)

- 1) Sorting (Proteins and lipids) + Budding
- 2) Fission
- 3) Transport (Microtubules)
- 4) Targeting-Docking
- 5) Fusion

Cell Envelop: the Plasma Membrane

K. Jacobson,B. Lagerholm, Cell (2019)

Lipid membrane reinforced by the actin cortex

Membrane Basis: Lipid Bilayer

Membrane – Lipid Bilayer

Chains: fully saturated or with unsaturations

Commonly found in lipid membranes:

Mixed saturated and unsaturated

Saturated chains: C12 to C20

Unsaturated chains: C16:1, C18:1, C18:2, C18:3, C20:2, polyunsat. C22, C24 etc...

Plasma Membrane: Heterogenous 2D-Fluid

Membrane: *Fluid*= 2D *liquid* (viscosity ~ 100 times water)

Membranes = 2-Dimensional Fluids

Single Particle Tracking

Heterogeneous Diffusion in the Plasma Membrane

Single Particle Tracking at the PM

4 5 µm K. Jacobson et al Cell (2019)

Markers are mobile

But heterogeneous mobility

Y. Yu, M. Li, Y. Yu ACS Nano (2019)

Plasma Membrane: Heterogenous 2D-Fluid

A. Kusumi et al., Annu. Rev. Cell Dev. Biol. (2012)

Lipids, high density of membrane proteins (inclusions, bound) *Inhomogeneities* (lipid rafts, protein clusters ...) *Confinement* due to cortical actin filaments

Lipid Membrane Mechanics

Objective: modeling cell membranes

W. Helfrich, E. Sackmann, E. Evans (>1973) etc...

Model membrane systems required to test theoretical models 1st model system available =Red Blood Cells

Still too complex.....

In the 80', first developments of giant liposomes with a single lipid type

Model Membranes

Some Technics to Study GUVs

≈ 10 µm and above

• Different media inside and outside the GUV (sugar, buffers + balance osmotic pressure)

Phase contrast microscopy

Measurements on a Single GUVs Same methods as in cell biology Perfect with *optical microscopy* But a bilayer: n=1.38-1.42, e= 5nm, in water (n=1.33)....

 Add a small fraction of fluorescent molecules (a few 0.1 % fluorescent lipids) Use CONFOCAL microscopy (quantitative measurements)

From: H. Robson Marsden et al, *Chem. Soc. Rev.*, (2011)

10 µm

Membrane Tension

Cell Volume Changes Due to Osmotic Pressure Differences

Red Blood Cells

Membrane Semi-Permeability and Water Flow

Permeability to water But not to solute

∆c: molar concentration difference between compartments

Glucose or sucrose(do not cross the membrane)

Osmotic pressure difference

 $\Delta \Pi = \Delta cRT$ (R= 8.31 J/K.mol)

Water flows to equilibrate the differences

GUV Membrane can be Stretched

Changing tension by changing the osmotic pressure

E. Boroske et al, Biophys. J. 34, 95 (1981)

GUV Membrane can be Stretched

Hypertonic

Hypotonic

Low σ High σ (10⁻⁸ - 10⁻⁶ N/m) (10⁻⁶ - 10⁻³ N/m)

Changing tension by changing the osmotic pressure

Excess area:
$$\Delta A = A - A_p$$
 Surface stored in fluctuations

Relative excess area:

$$\alpha = \frac{\Delta A}{A_p}$$

Lipid Membrane Elasticity

Free-energy for membrane stretching H_s :

K_a: stretching modulus

Controlled Membrane Tension: Micropipette Aspiration

Evan Evans UBC, Vancouver

(Kwok et Evans, 1981)

Giant Unilamellar Vesicle (GUV)

Micropipette Aspiration (Kwok et Evans, 1981)

W. Rawicz ... E. Evans Biophys. J. 79, 328-339 (2000)

Stretching moduli

W. Rawicz ... E. Evans *Biophys. J.* **79**, 328-339 (2000)

 $K_{a:}$ PC lipids: *insensitive* to chain length, unsaturations

Larger with Sphingolipids Increases with cholesterol

K _A	±	SD	(mN/m)
----------------	---	----	--------

System	32–35°C	
One component		
DOPC	_	
SOPC	290 ± 17	
1:1 Binary		
DOPC/CHOL	870 ± 141	
SOPC/CHOL	1130 ± 110	
SM/CHOL	2193 ± 209	
1:1:1 Ternary		
DOPC/SM/CHOL	610 ± 61	
SOPC/SM/CHOL	880 ± 130	
1:1:2 Ternary		
SOPC/SM/CHOL	1377 ± 172	

W. Rawicz .. E. Evans BJ 94, 4725-4736 (2008)

Lipid membranes:

Hard to stretch

(\approx 5 times harder/polyethylene)

Lipid Membranes: Fragile upon Stretching

Strain limited to $\approx 5\%$

E. Evans

W. Rawicz, et al *Biophys. J.* **79**, 328 (2000)W. Rawicz et al *Biophys. J.* **94**, 4725 (2008)

High Tension: Membrane Lysis

Numerical simulations

Lipid Membranes: Easily Bent

Allows for intracellular trafficking, endocytosis, exocytosis

Bending Energy of Fluid Membranes W. Helfrich P. Canham E. Evans (~1970)

Energy/unit area:

$$f_{bending} = \frac{1}{2} \kappa C^2$$

W. Helfrich, *Zur Naturforschung* **28c**, 693 (1973) "Elastic properties of lipid bilayers : theory and possible experiments"

\mathcal{K} : bending modulus

C: Mean curvature

$$f_{bending} = \frac{1}{2}\kappa C^2$$

Energy to form a spherical vesicle from a flat membrane:

Independent of vesicle size!!!!

For κ =10 k_BT F \approx 250 k_BT

Effect of Chain Length and Unsaturation Numbers on κ

Membrane Nanotubes

From Derényi et al, PRL (2002)
Membrane Nanotubes

Giant Unilamellar Vesicle (GUV)

Membranes can be Highly Bent : Nanotube

D. Cuvelier ... P. Nassoy Biophys. J (2005)

B. Sorre et al, PNAS (2009)

Membrane Nanotubes : Highly Curved

 $R \sim 7 \text{ nm to few } 100 \text{ nm}$

Nanotube Mechanics

Some references

- Evans, Yeung Chem. Phys. Lipids (1994)
- Bozic, Svetina, Zeks PRE (1997)
- Svetina, Zeks, Waugh, Raphael Eur. B. J. (1998)
- Derényi, Jülicher, Prost PRL (2002)
- Powers, Huber, Goldstein PRE (2002)

Theory: Force/Extension at Constant Tension

Experiments

Bending Membranes with Proteins

Clathrin-Mediated and Clathrin-Independent Endocytosis

From S. Mayor, R. Pagano, Nat. Rev. Mol. Cell Biol. (2007)

Formation of a Clathrin-Coated Vesicle

Fujimoto, L.M. et al. Traffic (2000)

Clathrin-Mediated and Clathrin-Independent Endocytosis

From S. Mayor, R. Pagano, Nat. Rev. Mol. Cell Biol. (2007)

Clathrin-Independent Endocytosis

• Shiga and Cholera toxin

W. Römer ... L. Johannes, Nature (2007)

ATP-depleted cells

 $5 \, \mu m$

• Activated receptors (GPCR, EGFR...) **FEME**

E. Boucrot... H. McMahon, Nature (2015)

Tubules in Intracellular Traffic

Narrow tubes (usually $\Phi \approx 50$ nm)

Golgi

Toomre et al J. Cell Sci. (1999)

Microtubules Golgi (VSV-G)

VSV-GFP

J. Lippincott Schwartz (CBMB-NIH)

Endosomes

Puthenveedu *et al., Cell* (2010)

Gold NP=9 nm

Spontaneous Membrane Bending due to Proteins

Conical inclusions

(Trans-membrane proteins)

P. Fribourg *et al.*, *J. Mol. Biol.* (2014)

W. Helfrich, Zur Naturforschung (1973)

Membrane Spontaneous Curvature

 C_0 depends on *protein surface fraction* on the membrane: ϕ

$$f_{bending} = \frac{\kappa}{2} \times \left(C - C_0(\phi) \right)^2$$

 C_0 depends on the depth of the insertion in the membrane

F. Campelo, H. Mc Mahon, M. Kozlov, Biophys. J.

Membrane Spontaneous Curvature

 C_0 depends on *protein surface fraction* on the membrane: ϕ

$$f_{bending} = \frac{\kappa}{2} \times \left(C - C_0(\phi)\right)^2$$

At low ϕ (<10%): $C_0(\phi) = \overline{C}_p \phi$

F. Campelo, H. Mc Mahon, M. Kozlov, *Biophys. J.* (2008)

; intrinsic spontaneous curvature of the *protein* in the membrane • Membrane curvature depends on insertion depth

F. Campelo et al, Biophys. J. (2008)

At High Concentration: Tubulation

50 nm

Liposomes (with PiP2)

M. G. J. Ford *et al.*, *Nature* **419**, 361 (2002)

300 nm

Membrane Curvature: A Physical Cue for Recruiting "Curved" Proteins

BAR-Domain Proteins: Dimers with Various Intrinsic Curvatures

Bind to *negatively-charged* membranes (PS, PI(4,5)P₂ etc...)

15 nm

M. Simunovic et al, Trends Cell Biol. (2015)

BAR-Domain Proteins on Membranes

Bind to negatively-charged membranes (PiP2, PS)

Locally: membrane bending

 \sim "mold"

Blood P et al Biophys. J. (2008)

Top view

\pm amphipatic helices N-BAR

Antonny, Annu. Rev. Biochem., 2011

Liposome Tubulation with HIGH Bulk Concentration

I-BAR

R=19 nm

P. Mattila et al., J. Cell Biol. (2007).

100 nm

GUV Tubulation at HIGH Bulk Concentration (>µM)

S-centennin

BAR-Domain Proteins and Endocytosis

S. Suetsugu, S. Kurisu, T. Takenawa, Physiol. Rev. (2014)

Membrane Spontaneous Curvature

$$f_{bending} = \frac{\kappa}{2} \times \left(C - C_0(\phi) \right)^2$$

(per unit area)

 C_0 depends on *protein surface fraction* on the membrane: ϕ

<u>At low ϕ (<10%):</u>

$$C_0(\phi) = \overline{C}_p \phi$$

 \bar{C}_p : effective spontaneous curvature of the *protein* (molecular)

F. Campelo ... M. Kozlov Biophys. J. (2008)

Membrane curvature

Protein enrichment "curvature sensing" Using Nanotubes to Investigate Curvature-Induced Protein Sorting

- Curvature-induced sorting of BAR domain proteins?
- Enrichment in tubes?

Curved: enrichment of proteins $C_p \neq 0$

With confocal microscopy:

Sorting coefft: versus

$$S = \frac{\phi_t}{\phi_{ves}} = \frac{I_t^{prot}}{I_{ves}^{prot}} / \frac{I_t^{lip^*}}{I_{ves}^{lip^*}}$$

Mean curvature

$$C = 1 / R_{tube}$$

at steady state

Small Liposomes of Various Curvatures

Dimitris Stamou (Copenhagen)

M. Simunovic et al *Trends Cell Biol.* (2015).

TIRF detection of the fluorescence (proteins) versus fluorescence of the liposomes (radius)

Lipids

Endo-NBAR

Sorting of Molecules Induced by Membrane Curvature

• Gain :

Reduction of the bending energy due to spontaneous curvature (C_0)

 Penalty : Mixing Entropy Membrane stiffening (inclusions)

Curvature Sensing - Modeling

A. Callan-Jones

 $\Delta \phi = \phi_{t} - \phi_{y}$

In the dilute limit: $F_{t} = 2\pi R_{t} L_{t} \left[\frac{\kappa}{2} \left(\frac{1}{R_{t}^{2}} - \frac{2\overline{C_{p}}\phi_{t}}{R_{t}} \right) + \frac{1}{2} \chi \Delta \phi^{2} + \sigma \right] - fL_{t}$ with $\chi = f_{m}^{"}(\phi_{v}) + \kappa \overline{C_{p}^{2}} \approx \frac{k_{B}T}{A_{n}\phi_{v}} + \kappa \overline{C_{p}^{2}}$

Sorre B., Callan-Jones A. et al, PNAS (2012)

Linearly proportional to curvature

$$S = 1 + \frac{1}{\overline{C_p}\phi_v} \frac{1}{R_t}$$

Sorre B., Callan-Jones A. et al, PNAS (2012)

Two Possible Geometries

Interaction/positive curvature

 \rightarrow *inject* protein

Interaction/*negative* curvature \rightarrow *encapsulate* protein

Measuring Curvature-Induced Enrichment

Low surface fraction on the GUV (1-5%)

5 µm

Amphiphysin 1 – Enrichment in Nanotubes

500 nm

K. Takei ...P. De Camilli NCB (1999)

Amphipatic helices dominant?

Sorre B., Callan-Jones A. et alPNAS (2012)

IRSp53 I-BAR Senses Negative Membrane Curvature

• Proteins *encapsulated* in the GUVs

EPC (57%), cholesterol (15%), DOPE (10%) PI(4,5)P₂ (8%), DOPS (10%)

• Pulling tube – Negative curvature induces IRSp53 enrichment

IRSp53 I-BAR Senses Negative Membrane Curvature

Not linear.....

C. Prévost et al, Nat. Comm. (2015)

Another Sorting Model

A. Callan-Jones

C. Prévost et al, Nat. Comm. (2015)

Optimal enrichment in tubes of radius 18 nm

Saarikangas et al., Current Biol., 2009

Amphiphysin 1 – New analysis

 $\rightarrow \overline{C_p} = 1/10nm$

R=11 nm

K. Takei ... P. De Camilli Nat. Cell Biol. (1999)

500 nm

F.C. Tsai et al Soft Matter (2021)

Sorting of BAR-Domain Proteins

 $\overline{C_p} = 1/10nm$

B. Sorre B., A. Callan-Jones et al, *PNAS* (2012) F.C. Tsai et al *Soft Matter* (2021)

M. Masuda et al EMBO J. (2006)

 $\overline{C_p} \sim 1/10nm$

O. Pylypenko et al EMBO J. (2007)

F.C. Tsai et all (in preparation)

BAR-Domain Proteins and Endocytosis

Very "curved" BAR proteins : last stage of endocytosis when *neck constricted* ($R \approx 10$ nm) Curvature matching mechanism

Curvature-Induced Sorting of Transmembrane Proteins

Liposome Tubulation

BmrA (ABC transporter)

Conical shape

Reconstituted in liposomes

100 nm

P. Fribourg ... D. Levy J. Mol. Biol. (2014)

Local Membrane Bending: "Fingerprint" of Membrane Proteins

V. Corradi....D. P. Tieleman ACS Cent. Sci. (2018)

Distinguishing Transmembrane Proteins Shape

• Voltage-gated K⁺ channel: KvAP

Lee et al PNAS (2006)

• Aquaporin 0 (from eye lenses): AQP0

cylindrical

Aimon S. et al, Dev. Cell (2014)

KvaP Bends Membrane - AQP0 Not

Coarse-grained simulations

AQP0

KvAP

D. P. Tieleman et al Biophys. Rev. (2021)

Curvature-Induced Trans-Membrane Protein Sorting

KvAP Sorting Theory A. Callan-Jones
G. Toombes
$$F_{bending} = \frac{\kappa(\phi)}{2} \times \left(C - C_0(\phi)\right)^2$$
2 orientations (equal)
$$C_0(\phi) = \sum_i \overline{C_{p,i}} \phi_i \quad \text{If } \phi^+ = \phi^- \quad C_0(\phi) = 0$$

Requires higher order term

• If proteins stiffer than the lipid membrane limits enrichment

$$\frac{1}{\kappa(\phi)} = \frac{1-\phi}{\kappa_{lipid}} + \frac{\phi}{\kappa_{protein}}$$

Mixing entropy •

• 2

Aimon S. et al, Dev. Cell (2014)

In the limit of low concentration and low curvature:

$$S \approx 1 + \frac{\left(\frac{A_p \kappa_l \overline{C}_p}{k_B T}\right)^2 - \frac{A_p \kappa_l \left(1 - \kappa_l / \kappa_p\right)}{k_B T} \times \frac{C^2}{2}}{\left(1 + \frac{\kappa_l \overline{C}_p^2 \phi_v^2}{k_B T}\right)^2} \times \frac{C^2}{2}$$

 A_p = 45 nm² (KvAP molecular area) κ_l : bending rigidity pure *lipid* membrane κ_p : effective bending ridity of the *proteins*

Aimon S. et al, Dev. Cell (2014)

Curvature and Protein Distribution

KvAP: enriched in tubes

R=14 nm $\Phi_v = 70 \text{ prot/}\mu\text{m}^2$

AQP0: no enrichment

R= 20 nm $\Phi_v \approx 100 \text{ prot}/\mu\text{m}^2$

R=18 nm

AQP0

R=64 nm

R=23 nm

Lipid Protein

KvAP Sorting

Aimon S. et al, Dev. Cell (2014)

KvAP Sorting

Aimon S. et al, Dev. Cell (2014)

Rainer Böckmann

C. Kluge et al Biophys. J. (2022)

MD + coarse-grained simulations

Message

Membrane *curvature* can induce membrane protein *sorting* protein "*effective shape*"
Linear coupling for insertions
Curvature-matching model for "curved" bound proteins
Molecular information (effective shape) can be deduced
from *macroscopic* measurements

in a *lipid* membrane environment

(not in detergent, or nanodisc)

Scissioning Fluid Membranes

Different Modes of Membrane Scission

- 1. Constriction by GTPases (i.e. dynamin)
- 2. *Constriction* by line tension

3. *Insertion* of amphipathic helices (spherical buds)

4. Friction-Driven Scission by pulling on scaffolded tubes (FDS)

Endophilin A2 and Shiga Toxin Endocytosis H.F. Renard, L. Johannes

Endophilin A2

- Colocalizes with STxB tubules
- Involved in scission !!!!!

H.-F. Renard, M. Simunovic, J. Lemière et al., Nature 517, 493 (2015)

siCtrl

siEndoA2

Scaffolding by Endophilin A2 (4 helices)

High density on the tube $\phi_t \approx 30 - 40\%$

H.-F. Renard, M. Simunovic, J. Lemière *et al.*, *Nature* (2015) M. Simunovic et al, *PNAS* (2016)

Protein Scaffolds at Molecular Resolution

Coarse-grained MD simulation (endophilin) on a tube (Ø 20 nm)

$$\phi_t \approx 40\%$$

Spontaneous helical arrangement

"Loose" scaffold constraining tube

M. Simunovic, G. Voth (U. Chicago)

Forms Stable Tubular Scaffolds from Liposomes

K. Farsad ...P. de Camilli *J. Cell Biol.* (2001)

100 nm

How proteins that **STABILIZE** membrane tubes

Can **SCISSION** membrane tubes ????

Role of Molecular Motors

A. Kenworthy

In vivo, microtubule motors contribute to STxB tubule extension

C. A. Day et al., Traffic (2015)

STxB/CTxB Endocytosis

Scheme from L. Johannes

Role of Molecular Motors

A. Kenworthy

In vivo, microtubule motors contribute to STxB tubule extension

C. A. Day et al., Traffic (2015)

Pulling on endophilin-coated tubes in vitro

Dynamic Scission of EndoA2-Scaffolded Tube

Elongating a tubule coated with EndoA2

Scission if V> 20-30 nm/s

H.-F. Renard, M. Simunovic, J. Lemière *et al.*, *Nature* (2015) M. Simunovic et al, *Cell* (2017)

Pulling on a Bare Tube

M. Simunovic et al, Cell (2017)

Flow of Lipids upon Tube Elongation

Often, only a *partial* scaffold on the tube

Important: scaffold remains *connected* to the GUV

M. Simunovic et al, Cell (2017)

Endo A2 Scaffold: Barrier for Lipids

• Diffusion blocked

Fluorescence recovery

• *Tension* between GUV and tube *not equilibrated*

FRAP

Endo A2 scaffold limits advection of new lipids in the tube

M. Simunovic et al, Cell (2017)

Friction-Driven Scission (FDS)

Theoretical model: **A. Callan-Jones** J. Prost

Friction ξ between Endo scaffold and the membrane

Creates *a difference of tension* between tube and GUV

 $\sigma(t) = \sigma_0 + \xi v_{\rm l}$

$\sigma \leftrightarrow$ Force
Friction-Driven Scission (FDS)

Theoretical model: **A. Callan-Jones** J. Prost

Force increase depends on elongation speed

- Short time: *elastic*
- Long time: viscous

Mutations

2 mutants : Endo $\Delta H0$ mut (E37K, D41) (Stronger binder)

M. Simunovic et al, Cell (2017)

High Tension: Membrane Lysis

Tension Increases up to Membrane Lysis

Pore nucleation

Rate-dependent pore nucleation at the edge

Cf. E. Evans, et al, *Biophys. J.* 85, 2342 (2003)

 $W(t) \simeq \pi \gamma r_{\rm s} - \pi r_{\rm s}^2 \sigma(t)$ Energy barrier

Kramer's theory Pore nucleation probability

$$\nu(t) = \nu_0 \exp[-W(t)/(k_{\rm B}T)]$$

Prediction: $f_{\text{break}} - f_0 \simeq (16\pi^3 \kappa^2 \xi / r_{\text{s}})^{1/3} V^{1/3}$

$$Ln(t_{\rm break}) \propto V^{2/3}$$

M. Simunovic et al, Cell (2017)

	ζ (Pa.s) - WT	ΔH0	mut
f increase	80 ± 30	<i>39</i> ±19	<i>112</i> ±27
f break	<i>30</i> ±12	1.4 ± 2	<i>66</i> ± 6

M. Simunovic et al, Cell (2017)

Mechanical Analogy

Viscous medium (honey)

M. Simunovic et al, Cell (2017)

Elastic material (overcooked spaghetti)

(Speed 1:6)