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1 Introduction

From a physical point of view, the spontaneous emergence of flows and topological point de-
fects through the internal conversion of chemical energy are among the most exciting features
of the cytoskeleton and of filament-motor systems in general [1, 2]. In contrast to convention-
ally studied polymer solutions, these phenomena are not due to the application of an external
field, but result from processes within the material. Specifically, the free energy released in
the process of Adenosine-Triphosphate (ATP) hydrolysis generates conformational changes of
motor proteins and affects filament assembly. The resulting force dipoles produce an ”active
stress”, which drives the aforementioned processes.
Various physical approaches have been pursued to describe cytoskeletal dynamics. The most
detailed descriptions are agent-based stochastic processes that are usually studied numerically.
A prominent example of this approach is given by the Cytosim package, which includes a broad
variety of cytoskeletal elements [3]. To give but two examples, it has been used to study the
self-organization of microtubules and kinesins into asters and vortices [1] and to investigate the
conditions under which an actomyosin network contracts [4]. In addition, stochastic simulations
are developed with the specific purpose to study a concrete phenomenon, for example, the
emergence of actin polymerization waves [5] or cortical actin length distributions [6].
Kinetic descriptions can be seen as mean-field theories of the stochastic processes just men-
tioned. They are continuum descriptions, where the expressions for the currents and the reac-
tions are motivated by known molecular processes. However, they typically neglect molecular
details and focus on the (hopefully) essential aspects of the molecular interactions and dynam-
ics. Such approaches have been used to study possible mechanisms of stress generation in
filament-motor networks [7, 8], the possible role of actin-polymerization waves for cell migra-
tion [9], and pattern formation in contractile rings [10].
Finally, phenomenological descriptions for macroscopic cytoskeletal dynamics have been de-
veloped [11]. Non-equilibrium thermodynamics, which is also known as generalized hydro-
dynamics, provides a framework for the systematic derivation of the corresponding dynamic
equations if the material is close to thermodynamic equilibrium [12, 13]. This condition is
expressed by the requirement that the system is locally at equilibrium. Non-equilibrium ther-
modynamics is purely based on symmetries and conservation laws. The material properties are
captured by constitutive equations that are obtained from a systematic expansion of the currents
in terms of thermodynamic forces. The latter are in turn expressed in terms of the state vari-
ables, such that a closed set of equations is obtained. Notably, the active stress is written as
a linear function of the difference between the chemical potentials of ATP and its hydrolysis
products. Hydrodynamic equations depend on a number of phenomenological constants, for
example, the viscosities of simple fluids. Their values either have to be measured or can be
related to molecular parameters by using a kinetic or agent-based description.
The hydrodynamics of active gels – or active gel theory – has been used to study generic phys-
ical properties of the cytoskeleton, for example, the dynamics of topological point defects or
the spontaneous emergence of flows [11, 14, 15]. In addition, it has been employed to anal-
yse subcellular and tissue dynamics. For example, the retrograde flow in lamellipodia [16],
the formation and contraction of cytokinetic rings during cell division [17], or the spreading of
epithelia during embryonic development were analyzed in this framework [18].
In this chapter, we will sketch the ideas underlying general hydrodynamics and use it to derive
the dynamic equations of an active gel permeated by a solvent. We will then apply the equations
to study a possible mechanism for generating the retrograde actin flow in lamellipodia. Finally,
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we will study the contraction dynamics of an active poroelastic gel.

2 Generalized hydrodynamics of active gels
Generalized hydrodynamics or non-equilibrium thermodynamics provides a general framework
for describing systems that are close to thermodynamic equilibrium. In this context, ”close to
thermodynamic equilibrium” means that the system is locally at thermodynamic equilibrium,
but not globally. As a consequence, one can define a free energy density and locally use the
powerful concepts and tools of thermodynamics. In this section, we will sketch the application
of this approach to active gels. For a detailed introduction into this topic see, for example,
Refs. [12, 13]. A self-contained derivation of the hydrodynamic equations of a one-component
polar active gel is given in Ref. [19].

2.1 Hydrodynamic modes
As a consequence of the condition that the system should be locally at thermodynamic equilib-
rium, only long-lived degrees of freedom are considered within non-equilibrium thermodynam-
ics. These ”hydrodynamic modes” satisfy the condition that their characteristic relaxation time
decreases with an increase of the associated wave-number, τ ∼ k−2. An example is provided
by a particle density c that obeys the diffusion equation, ∂tc = D∂2

xc. A Fourier-transform in
space leads to d

dt
ck = −Dk2ck, such that ck ∝ e−Dk

2t and τ = D−1k−2.
Typically, hydrodynamic modes result either from conservation laws as in the above example or
from a broken continuous symmetry. For active gels, one typically considers the particle num-
bers of the gel and the solvent (cytosol), of ATP, ADP, and Pi, and momentum as the conserevd
quantities. The possible macroscopic orientational order of the actin network is a hydrodynamic
mode emerging from a broken continuous symmetry. In the following, we will only consider
isotropic cases and do not account for a polar or nematic order parameter. Furthermore, we
will consider only systems coupled to a heat bath, such that temperature is constant and energy
is not conserved. Finally, we will assume that the concentrations of ATP and of its hydrolysis
products are constant in space and time. This is probably appropriate for many reconstituted
systems in vitro, in case they are endowed with an ATP-regeneration system or for living cells
that metabolize nutrients to create ATP. Even if there were spatial or temporal fluctuations in
these concentrations, they would be irrelevant as long as the availability of ATP is not rate
limiting.
Under these conditions, the relevant dynamic equations for the hydrodynamic modes are

∂tρgel + ∂αρgelvgel = 0 (1)
∂tρsol + ∂αρsolvsol = 0 (2)

∂tgα + ∂βσ
tot
αβ = 0. (3)

In the two continuity equations for the gel and solvent mass densities, ρgel and ρsol, respec-
tively, vgel and vsol denote the local gel and solvent velocity. In the balance equation for the
total momentum g = ρgelvgel + ρsolvsol, the total momentum flux tensor σtot is the same as
the mechanical stress tensor. For simplicity, we have set all source and sink terms equal to
zero, which amounts to neglecting any bulk exchange between the gel and the solvent and to
assuming that there are no bulk external forces. This does not exclude the application of forces
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or exchange of matter at the surfaces, which are accounted for by boundary conditions. Fi-
nally, we have used in these equations Einstein’s summation convention for identical indices,
for example, ∂αvα =

∑3
α=1 ∂αvα. Cellular processes typically occur at low Reynolds number,

such that inertial terms can eventually be neglected in the momentum balance equation; it then
expresses force balance. However, for the time being, the inertial terms are kept to couple the
mechanical stress tensor to the dynamics, as we will see in the next section.
To close the dynamic equations, one still needs expressions for the currents. In the framework
of non-equilibrium thermodynamics, pairs of conjugated generalized fluxes and forces are iden-
tified by considering the entropy production rate. At constant temperature T on can equivalently
consider the dissipation rate. The fluxes are then expanded up to linear order in terms of the
forces.

2.2 The dissipation rate

At constant temperature, the dissipation rate Θ̇ can be expressed in terms of the free energy:

Θ̇ = − d

dt

∫
dr

{
g2
α

2ρ
+ f (ngel, nsol, nATP, nADP, nP)

}
. (4)

Here, f is the free energy density and ni denotes the particle number density of species i with
ρgel = mgelngel and ρsol = msolnsol, where mgel and msol are, respectively, the molecular masses
of the gel and the solvent. Here, all components are assumed to be liquids or gases. The
cytoskeletal filament network really is a viscoelastic material, such that the free energy density
should also depend on the strain tensor u, see below, when the case of a poroelastic gel is
treated. The general case of a viscoelastic active gel has been considered in Refs. [20, 21].
For the cytoskeleton in live cells, though, the stress relaxation time is on the order of 10 s.
On longer times scales, which are relevant for many cellular processes, it is appropriate to
describe the cytoskeleton as a viscous fluid. Returning to Eq. (4), exchanging the time derivative
and the spatial integration, using the conservation laws (1)-(3) as well as the Gibbs-Duhem
relation dP =

∑
i nidµi, where P is the hydrostatic pressure and µi = ∂f/∂ni are the chemical

potentials of the various components, we finally arrive at

Θ̇ = −
∫

dr
{
σdαβvαβ + jα∂αµ̄+ r∆µ

}
, (5)

where only the relevant terms have been kept. In this expression, σd is the deviatory stress
with components σdαβ = σtot

αβ − Pδαβ , where we have now neglected inertial terms and where
δαβ = 1 if α = β and zero otherwise. The components of the symmetric part of the strain rate
tensor v are vαβ = (∂αvβ + ∂βvα) /2, where v is the center-of-mass velocity, (ρsol + ρgel)v =
ρgelvgel + ρsolvsol. The diffusion current j is defined through ρgelvgel = ρgelv + mgelj and the
reduced chemical potential µ̄ = µgel/mgel − µsol/msol. Finally, r denotes the ATP-hydrolysis
rate and ∆µ = µATP − µADP − µP.

2.3 The constitutive equations

From Equation (5), we identify the generalized fluxes σd, j, and r as well as the respective
conjugated generalized forces v, ∇µ̄, and ∆µ. Expressing the fluxes up to linear order in terms
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of the forces, we obtain the following constitutive equations

σdαβ = 2η

(
vαβ −

1

d
vγγδαβ

)
+ νvγγδαβ − ζ∆µδαβ (6)

jα = −γ∂αµ̄ (7)
r = Λ∆µ+ ζvγγ. (8)

The first two terms in Eq. (6) are the usual contributions to the stress of a viscous fluid resulting
from pure shear and pure contractile/extensile flows with the corresponding shear viscosity
η and the bulk viscosity ν. Furthermore, δαβ is the Kronecker symbol and equates to 1 for
α = β and to 0 otherwise. Other fluxes and forces of the same tensorial order are coupled by
phenomenological constants. Specifically, γ is related to a diffusion constant and Λ determines
the hydrolysis rate for a given difference ∆µ in the chemical potentials. Most interestingly in
the present context, there is a cross-term relating ∆µ to the deviatory stress and consequently
the rate of strain tensor to the ATP-hydrolysis rate. The coupling coefficient ζ is, up to a sign,
the same for both terms as imposed by the Onsager relations.

3 Retrograde flow in lamellipodia

Cells crawling on a solid substrate extend a flat protrusion at the leading edge, the lamel-
lipodium. At the leading edge, the membrane is often pushed forward by polymerizing actin.
The cell body follows through actin network contraction induced by myosin motors. It has been
observed that relative to the substrate, the actin network in the lamellipodium flows backwards
from the leading edge. In this section, we will analyze a cartoon version of the lamellipodium to
show that this retrograde flow is a generic consequence of contractile active stresses in the actin
network. We will neglect permeation of the solvent and consider an effective one-component
description of the gel [21, 22]. This description had been introduced in [23].

3.1 Dynamic equations for an actin slab

We consider an actin slab of fixed height h moving on a substrate that coincides with the (x, y)-
plane. Actin polymerizes at xr at velocity vp and depolymerizes at xl at velocity vd into the
direction of positive x, see Fig. 1. The gel assembly dynamics breaks the isotropy of the system
by making it globally polar. However, locally the material properties are still isotropic. As we
are interested in the behavior on long time scales, we assume the gel to be purely viscous as in
the previous section. For simplicity, we will take it to be infinitely compressible.
The only relevant conservation law of the problem is momentum conservation in form of the
force balance equation. Given the conditions exposed above, the constitutive equation for the
total stress reads

σtot
αβ =

η

2
(∂αvβ + ∂βvα − ∂γvγδαβ) + ν∂γvγδαβ − ζ∆µ. (9)

In the following, we will assume translational invariance in the y-direction. Consequently, the
dynamic quantities only depend on x and z.
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h
vd vp

U

xL xR

Fig. 1: Simplified description of a lamellipodium. It is represented by a slab of an active gel with
constant height h. It polymerizes with velocity vp at x = xr and depolymerizes with velocity vd
at x = xl. The steady state velocity of the slab is U .

Let us focus on the steady state and look at force balance on a small strip of gel of width ∆x.
In the x-direction we then get

−
∫ h

0

σtot
xx (x, z) dz +

∫ h

0

σtot
xx (x+ ∆x, z) dz (10)

−
∫ x+∆x

x

σtot
xz (x′, 0) dx′ +

∫ x+∆x

x

σtot
xz (x′, h) dx′ = 0. (11)

Note that we have assumed that there are no external bulk forces present. The coupling to the
environment is taken into account through the boundary conditions on the stress tensor σtot.
We assume a free boundary at the top of the slab, z = h, and friction with the substrate at the
bottom, z = 0. These boundary conditions, which imply σtot

xz (x, 0) = ξvx(x, 0), where ξ is an
effective friction coefficient, and σtot(x, h) = 0, together with the definition

σ(x) :=
1

h

∫ h

0

σtot
xx (x, z) dz (12)

yield

−hσ(x) + hσ(x+ ∆x)− ξv(x)∆x = 0. (13)

Here, we have used v(x) = vx(x, 0). In the limit ∆x→ 0 we arrive at

d

dx
σ =

ξ

h
v. (14)

As the height h is constant and the gel is infinitely compressible, we do not need to consider
force balance in z-direction.
From the constitutive equation (9) we obtain

σ = η̃
d

dx
v − ζ∆µ. (15)

This completes the definition of the dynamic equations.
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Fig. 2: Steady state of the actin slab with L/λ = 10 and ζ∆µ < 0. Shown are the profiles of
the stress (a) and the velocity (b) along the active gel slab.

3.2 The retrograde flow
Combinig Equations (14) and (15) we get

λ2 d
2

dx2
σ − σ = ζ∆µ, (16)

where the characteristic length λ is determined by λ2 = ηh/ξ. The general solution is given
by σ(x) = Aex/λ + Be−x/λ − ζ∆µ. We now use the slab’s reference frame, such that xl = 0
and xr = L. The integration constants A and B are fixed by the boundary conditions σ(0) =
σ(L) = 0 to be

A = ζ∆µ
e−L/λ

1 + e−L/λ
(17)

B = ζ∆µ
1

1 + e−L/λ
(18)

yielding

σ(x) = ζ∆µ

{
cosh 2x−L

2λ

cosh L
2λ

− 1

}
. (19)

For the velocity, which is still measured relative to the substrate, we then have

v =
h

ξ

d

dx
σ (20)

=
hζ∆µ

ξλ

sinh 2x−L
2λ

cosh L
2λ

. (21)

For ζ∆µ < 0 we thus obtain a retrograde flow at the leading edge of the slab and an anterograde
flow at the trailing edge, see Fig. 2. Note that in absence of active processes, ∆µ = 0, there are
no flows generated.
Let U denote the constant velocity at which the slab is moving. This implies

vp + v(L) = U (22)
vd + v(0) = U. (23)
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These conditions fix the system length L and the velocity U . Explicitly, we have

U =
1

2
(vp + d) (24)

L = 2λartanh
ξλ (vp − vd)

2hζ∆µ
. (25)

This example shows how the coupling of the chemical energy released during ATP-hydrolysis
to mechanical stresses leads to flows of the actin cytoskeleton. Similarly, in confining channels,
it can lead to spontaneous laminar [15, 19] and more complex flow patterns [24].

4 Contraction of a poroelastic active gel

In this section, we will study the contraction of an active gel that is permeated by a solvent.
Indeed, some works suggest the presence of poroelastic effects in cellular cytoskeletal dynam-
ics [25, 26]. These notably comprise the diffusion of stress and the generation of a solvent flow
by a contracting actin network. Such solvent flows might play an important role for distributing
proteins and other biomolecules that can, for example, be used for assembling organelles or for
signalling purposes. In contrast to the previous examples, we will now consider an elastic active
gel.

4.1 The dynamic equations of a poroelastic active gel

Consider an isotropic elastic gel that is permeated by a solvent. There are three conserved
quantities in this problem, the gel mass, the solvent mass, and momentum. The respective
densities ρgel and ρsol of the gel and the solvent evolve according to the continuity equations

∂tρgel + ∂αρgelu̇α = 0 (26)
∂tρsol + ∂αρsolvα = 0. (27)

Here, u is the displacement field that describes deformations of the gel from its relaxed state in
absence of activity, such that u̇ ≡ ∂tu is the gel deformation velocity, and v the solvent velocity
field. To first order in the displacement field, the density ρgel can be expressed in terms of the
initial gel density ρ0 at t = 0 and the displacement field u through

ρgel = ρ0

(
1− ∂αuα +O(u2)

)
, (28)

which solves Eq. (26) up to first order in u. Furthermore, the combined gel-solvent system is
incompressible, ρ = ρgel + ρsol = const, such that the gel volume fraction φ ≡ ρgel/ρ obeys

∂α (φu̇α + (1− φ) vα) = 0. (29)

The material properties are determined by the constitutive equations for the mechanical stress
in the system, which enter the momentum conservation equation. This condition reduces again
to force balance, because we consider overdamped dynamics, such that inertial terms can be
neglected. It determines the gel displacement and solvent velocity fields, such that the dynamics
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is fully specified. The force balance condition can be written separately for the gel and for the
solvent. Explicitly,

−∂βσsol
αβ = γ (u̇α − vα) (30)

−∂βσgel
αβ = −γ (u̇α − vα) . (31)

Here, γ accounts for the friction between the gel and the solvent and has units of a viscosity
divided by a length squared. In general, it changes with the gel volume fraction φ, but we neglect
this dependence for simplicity. The constitutive equations for the gel and solvent stresses result
from linear stress-strain and stress-strain rate relations [20, 21]

σsol
αβ = 2ηvαβ + Pδαβ (32)

σgel
αβ = Kuγγδαβ + 2µ

(
uαβ −

1

3
δαβuγγ

)
− ζ∆µδαβ. (33)

The hydrostatic pressure acts as a Lagrange multiplier and is determined by the incompressibil-
ity condition. The elastic properties of the dry gel in absence of activity are captured by the
constant bulk and shear moduli K and µ. We neglect any direct coupling of the activity, that is,
∆µ, to the solvent flow.

4.2 Active contraction of a circular symmetric disk
Consider a circular symmetric disk of an active gel embedded in a viscous solvent. We use
cylindrical coordinates and neglect any dependence on the angular coordinate θ and the height
coordinate z. The relevant components of the stress in the gel are then given by

σgel
rr = K

(
∂rur +

ur
r

)
+ 2µ∂rur − ζ∆µ (34)

σgel
θθ = K

(
∂rur +

ur
r

)
+ 2µ

ur
r
− ζ∆µ. (35)

From these expressions, we obtain the dynamic equation

−γ (u̇r − vr) = −
(
∇ · σgel

)
r

(36)

= −
[
∂rσ

gel
rr +

1

r

(
σgel
rr − σ

gel
θθ

)]
(37)

To determine the radial component of the solvent velocity vr, we use the continuity equation for
the total density ρ expressed in terms of the gel volume fraction

1

r
∂r (rφu̇r + r (1− φ) vr) = 0. (38)

We consider a situation, where the gel is embedded in a circular recipient, such that the total
material flux at the boundary of the system equals zero. Hence, the continuity equation yields

vr = − φ

1− φ
u̇r. (39)

The solvent flow is always directed opposite to the gel displacement velocity. For a gel volume
fraction φ > 1/2, the solvent flow is faster than the gel displacement velocity.
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According to Equation (28), the gel volume fraction can be expressed in terms of the initial
gel volume fraction φ0 and the radial gel displacement field ur. Using this relation and expres-
sion (39) for vr we can rewrite the dynamic equation (37) in a form that only depends on the
displacement vector field ur:

u̇r =
1− φ
γ

∂r

[
(K + 2µ)

{
∂rur +

ur
r

}
− ζ∆µ

]
. (40)

Finally, we have to specify the boundary conditions. In the center, clearly ur (r = 0) = 0. Fur-
thermore, we assume that there are no external forces applied to the border of the gel and the cor-
responding boundary conditions read σgel

rr (r = R + ur(R)) = 0 and σgel
θθ (r = R + ur(R)) = 0.

Here, R is the initial and R+ur(R) the current radius of the gel. The homogenous active stress
−ζ∆µ only contributes at the boundary. Consequently, we can absorb it into a boundary con-
dition and solve

u̇r =
1− φ
γ

∂r

[
(K + 2µ)

{
∂rur +

ur
r

}]
(41)

with (K + 2µ)
{
∂rur + ur

r

}∣∣
r=R

= ζ∆µ.
In the following, we will scale space with the initial radius R, time with γR2/ (K + 2µ), and
stresses with K + 2µ. Consequently, the system dynamics depends only on two dimension-
less parameters: the initial gel volume fraction φ0 and the dimensionless active stress ζ∆µ, for
which we have kept the original notation. Anticipating that the solution of the dynamic equa-
tion for ζ∆µ < 0 describe contraction of the gel, we note that the scaling implies that the max-
imal contraction velocity scales inversely proportionally with the initial system size whereas
the characteristic relaxation time scales with R2. The latter is consistent with observations of
contracting actomyosin networks in vitro [27].
The steady state, u̇r = 0 is given by

u(0)
r (r) =

ζ∆µ

2
r, (42)

such that the final strain is proportional to the activity. The gel density as well as the stress are
homogenous in the steady state: the gel volume fraction equals φ0(1− ζ∆µ) and the total stress
vanishes.

4.3 The limit of small deformations

In general, the dynamic equation (41) is difficult if not impossible to solve analytically. In
case the overall deformation of the gel is small, changes in the gel volume fraction φ can be
neglected. In the dynamic equation (41), we can then set φ = φ0 leaving us with a linear
equation:

u̇r = (1− φ0) ∂r

(
∂rur +

ur
r

)
. (43)

The boundary condition is
(
∂rur + ur

r

)∣∣
r=1

= ζ∆µ. The radial deformation field is thus de-
termined by the diffusion equation, which depends only through the boundary condition on the
active stress ζ∆µ.
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To solve the linearized dynamic equation, we write ur(r, t) = u
(0)
r (r) +w(r, t). The function w

then also obeys Eq. (43), but now with the boundary condition
(
∂rw + w

r

)∣∣
r=1

= 0. Using the
separation ansatz w(r, t) = T (t)Ψ(r). We obtain

T = e−(1−φ0)ωt (44)
d

dr

(
Ψ′ +

Ψ

r

)
= −ωΨ, (45)

where the prime indicates derivation with respect to r. The solution to the second equation is
given by J1(

√
ωr), where J1 is the Bessel function of the first kind. The possible values of ω

are determined by the boundary conditions, that is,

√
ωJ ′1(
√
ω) + J1(

√
ω) = 0. (46)

Under this condition, the Bessel functions are pairwise orthogonal:∫ 1

0

J1(
√
ωr)J1(

√
ω′r) rdr = δωω′ . (47)

The general solution to Eq. (45) is then given by

w(r, t) =
∞∑
j=1

aje
−(1−φ0)ωjtJ1(

√
ωjr), (48)

where ωj denote the possible solutions of Eq. (46) and where the values aj , j = 1, . . . are
determined by the initial condition w(r, t = 0) = winit(r) ≡ ur,init − u(0)

r through

aj =

∫ 1

0

winit(r)J1(
√
ωjr)r dr/

∫ 1

0

J2
1 (
√
ωjr)r dr. (49)

For sufficiently small values of ζ∆µ, the system is always in the limit of small deformations
and its dynamics is completely specified by the above solution, see Fig. 3a. Eventually, the
relaxation occurs with a critical time scale ω−1

1 (1− φ0)−1, where ω1 is the smallest non-zero
positive solution to Eq. (46).

4.4 Large deformations

In the general case of arbitrary radial deformations, the dynamic equation (41) is nonlinear and
we have to resort to numerical solutions. For the numerical solution of the dynamic equations
we use an explicit forward Euler method. The discretization scheme is detailed in App. A.
For small activities, the solution of the full equation agrees well with the linearized equa-
tion (43), see 3a. In the general case, initially the contraction is too slow, see Fig. 3b. The
numerical solution shows that contraction starts always from the boundary, see Fig. 4. This
was to be expected, because the active stress is unbalanced only there. The displacement and
hence the stress in the gel then propagate towards the center of the disk according to the diffu-
sion equation (41) with a state dependent diffusion constant. Together with the generation of a
solvent flux, this is one of the hall marks of poroelasticity.
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Fig. 3: Radius of a contracting poroelastic disk as a function of time for small activity ζ∆µ =
−0.1 (a) and large activity ζ∆µ = −1 (b). Shown are the solution of the linearized dynamic
equation (blue solid line) and of the full dynamic equation that is numerically integrated (black
dashed line). The initial gel volume fraction is φ0 = 0.01.
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Fig. 4: The gel volume fraction as a function of space and time for the same parameters as in
FIg. 3b.
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5 Conclusions

In this chapter, we have sketched the derivation of the hydrodynamic equations for isotropic
active gels and discussed two examples of spontaneously emergent gel flows. These flows were
due to contractile stresses generated by active processes that are driven by the hydrolysis of
ATP. Since we restricted attention to isotropic gels without any polar order, the active stress
only entered the description through the boundary conditions. In the general case, the active
stress is anisotropic and its components change with changing polar (or nematic) order. In that
case, much richer spontaneous flow patterns can be observed [2, 24]. They are tightly connected
to the emergence of topological point defects. For high enough activity, one can even observe
low Reynolds number turbulence, that is, spatiotemporal chaos.
Even though the generalized hydrodynamic equations for active gels are a priori only valid on
macroscopic length scales, this approach has been successfully applied to describe subcellular
dynamics, notably, the formation and contraction of actomyosin rings during cell division [17].
It will be interesting to see other applications in the future, in particular, through coupling active
gel theory to cell signaling pathways. Since it is based on symmetries rather than molecular
processes, active gel theory can and has been applied to tissue dynamics. In particular, in the
context of embryonic development, a number of interesting phenomena wait to be analyzed in
this framework.

Appendices

A Discretization scheme for the numerical solution of the ac-
tive poroelastic dynamic equations

In this appendix, we explicit the discretization scheme, we used to solve the dynamic equa-
tion (41) for the radial displacement field. We introduce a dynamic lattice carrying the gel. Its
sites are given by i∆r + ui, i = 0, . . . , N with N = 1/∆r. Here ui is the radial displacement
vector at i∆r. The gel volume fraction and the stresses are associated with the bonds between
the lattice sites. We will, respectively, denote them by φi− 1

2
, σrr,i− 1

2
, and σθθ,i− 1

2
for the bond

between sites i and i− 1.
For calculating the gel volume fraction for a given displacement field, we do not take the ap-
proximate form given in Eq. (28), but the exact form that is obtained from equating the gel mass
in a volume element before and after deformation. It yields for i = 2, . . . , N

φi− 1
2

= φ0
(2i− 1) ∆r2

[(2i− 1) ∆r + ui + ui−1] [∆r + ui − ui−1]
(50)

and

φ 1
2

= φ0
∆r2

(∆r + u1)2 . (51)
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For the stresses, Eqs. (34) and (35) lead to

σrr,i− 1
2

=

(
ui − ui−1

∆r

)
+

ui + ui−1

(2i− 1) ∆r
− ζ∆µ (52)

σθθ,i− 1
2

=

(
ui − ui−1

∆r

)
+

ui + ui−1

(2i− 1) ∆r
− ζ∆µ (53)

for i = 2, . . . , N and

σrr, 1
2

=
u1

∆r
+
u1

∆r
− ζ∆µ (54)

σθθ, 1
2

=
u1

∆r
+
u1

∆r
− ζ∆µ (55)

σrr,N+ 1
2

= σθθ,N+ 1
2

= 0, (56)

where we have used the dimensionless form introduced in the main text. Then, the time evolu-
tion is given by

u̇i =

(
1−

φi− 1
2

+ φi+ 1
2

2

){
σrr,i+ 1

2
− σrr,i− 1

2

∆r + ui+1+ui−1

2

+
1

2

σrr,i+ 1
2

+ σrr,i− 1
2
− σθθ,i+ 1

2
− σθθ,i− 1

2

i∆r + ui

}
(57)

for i = 1, . . . , N if we set u0 = uN+1 = 0.
Finally, we use mass conservation, Eq. 39, to obtain the radial solvent velocity. The correspond-
ing discretized field vi− 1

2
gives the solvent velocity at

(
i− 1

2

)
∆r for i = 1, . . . , N . It can be

computed directly from φi− 1
2

and u̇i. Explicitly

vi− 1
2

= −
φi− 1

2

1− φi− 1
2

u̇i−1 + u̇i
2

(58)

for i = 1, . . . , N . Outside of the gel, the solvent velocity vanishes, vi− 1
2

= 0 for i ≥ N + 1.
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