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GOAL OF ERROR CORRECTION

» To preserve messages sent through a noisy transmission channel by encoding the messages
in an error-correcting code
 More precisely: to make sure the rate of corruption of encoded (i.e., logical) information
is lower than that of the same information sent without the extra encoding step.

space- or time-like




QEC: ORIGINS & GROWTH

Google Scholar search: "quantum error correction”
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BEVA FOUNDATION

Peter Shor:
» Quantum error-correcting codes (1995)

> Fault-tolerant syndrome measurement (1996) 1500
» Fault-tolerant universal quantum gates (1996) 1000
» Using QEC to prove security of QKD (2000)
500 I
< SIS D NSNS N b

2000

Alexei Yu. Kitaev: 7 \ Other pioneers:

> Topological quantum codes (1996-2003) » Stabilizer codes (Gottesman + Calderbank, Rains, Shor, Sloane)
> Physically protected quantum computing (1997) > FT error correction (Shor, Steane, Knill)

> Computing with nonabelian anyons (1997) » QEC conditions (Knill, Laflamme)

> CSS-to-homology dictionary (1998) » Concatenated threshold theorem (Aharonov, Ben-Or)

» Magic state distillation (1999-2004)
» Majorana modes in quantum wires (2000) Some material from: J. Preskill, QEC 2017 talk



THE MANY TOPICS OF QEC

. Deterministic or random code constructions that reach boundary of what is possible.

 MDS, perfect, random quantum, generalized homological product, good QLDPC, singleton-
bound approaching approximate, covariant, locally testable, triorthogonal

. Constructing practical codes for near-term realization.

e 2-3D surface, 2-3D color, dynamically generated (Floquet, spacetime circuit), tetron
Majorana, single-shot, self-correcting quantum, cluster-state, homological rotor

. Working with a quantum device to realize codes.

* repetition, small distance block, 2D rotated surface, 2D color, two-component cat, square-
and hexagonal-lattice GKP, dual-rail

. Relating phases of quantum matter to error-correcting codes.

e geometrically local Hamiltonian-based (topological, fracton, ETH, MPS)

. Relating gravitational field theories, among others, to error-correcting codes.

* holographic (HaPPY), renormalization group cat, matrix model

. Development of codes for sensing/metrology. E%O
* Error-corrected sensing, metrological https://errorcorrectionzoo.org/



INTRO TO QEC:
A CODE IS A SUBSPACE



ALPHABETS AND HILBERT SPACES

X classical states (elements of X) quantum states (functions on X)
Ly = Fy bits qubits

Fy g-ary strings (Galois qudits

L, g-ary strings over Z, modular qudits

R™ reals oscillators

G finite group group-valued qudit

Table 1: Common classical alphabets and their corresponding quantum Hilbert spaces.




ONE ROUND OF QEC Measure the

syndrome, not the

datal

) <

Lookup table

Syndrome Likely error
+1) +1 for [00 *), |11 *) 111 77T
—1 for |01 %), |10 *) +1, -1 11X
+1 for |[* 00), |* 11) —1,+1 AL
|+1) —1,—1 I1X1

—1 for [* 01), |* 10)

* To resolve code and error spaces (error diagnosis), measure eigenvalues of commuting set of
observables (check operators; here, ZZI and IZZ with Z = g,) and apply recovery U
conditional on parity-check eigenvalue (error syndrome). This is one round of correction:

1. Diagnose: measure error syndromes using ancillary qubits.
2. Decode: given a syndrome, determine which recovery U to apply.

* Correction rounds generalize straightforwardly to other types of errors and other codes.



ERROR SPACE STRUCTURE

1. Check operator measurement collapses system
onto codespace or an error space.

2. Paulis are a basis for single-qubit operators
— General errors are detectable!

Example: Z-axis rotation:
0 ei@

—10
RQZ(G O)ZCOSQI—isiné’Z

The result superposition of error space collapses to one
error space upon a round of EC:

L'Z4pp)y = cosO|r) —isind 1% |p)

Noise is continuous,
but measured errors

are discrete!

= cos 0 (co|0p) +c1|lp)) —isinf (co|0z) + c1]|lz))



GENERAL QEC CONDITIONS

» Errors Ej are detectable iff they act trivially on the codewords:
1. Environment does not distinguish codewords

Error-detection conditions
(0L|E;|0L) =(1L|E;|1L) —m
| i PE;P = ¢;P
2. Environment cannot connect dIStInCW
P = 1731
(OL‘Ej|1L>:<1L|Ej’0L>:0 |JL><0L|+| L)( L|
Example: constant need not be zero: ZZII|0g)=101) and ZZII1L)=11L)
» Errors Ej ;. mapping to Error-correction conditions

...different error spaces are correctable if they are detectable.
...same error space are correctable if detectable + undo each other.

PEVE.P = c;.P

Example: single-qubit bit flips are not correctable for four-qubit code b/c they cannot
undo each other: XIIT =1XII-Xy,

(1.|ETEs|0L) = (1| XX T110L) = (1] X.[0.) =1 #0.



ENVIRONMENTAL PERSPECTIVE IS USEFUL
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_] Finally, we mention that for superoperators .A, there is a J )
simple information theoretic characterization of .A-correcting
codes due to Nielsen and Schumacher [25]. Let |e)
=(1/Vk)2,|i;)]i;) be the perfectly entangled state of the code

Re|_n to data proceSSin g from which we can define the density matrices:

. e i

inequality: =1 S il and p=3 104 o) eldlor
quant-ph/9604034 29)

[25] = quant-ph/9604022

The entropy of a density matrix ¢ is denoted by S(o).
Theorem I11.6. Let A be a superoperator. Then C is an
A-correcting code if and only if S(p)—S(p)=log, k.
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EXAMPLE: NON-PAULI CHANNEL
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SIMPLE CODES -> IMPORTANT CODES



FOUR-QUBIT CODE - CONCATENATED CODE

» Another basis for the codespace vields a pattern: Z;zpizsz
®2
+1) = =5 (101) [11)) = 5 (|00)  [11))
my = 2
qubits

» The four-qubit code can be viewed as a bit-phase concatenated code:

o 0 ) = 5 (100) + 1) N
- —= —
1) = [11) V2 =)= 1--)
m4 bit-flip repetition code change to phase basis m, phase-flip repetition code

» Concatenating larger codes (m,; = m, = 3) yields Shor nine-qubit code, the first to correct
single-qubit errors:

1) = 3 (/000) £ [111))**

» For general m{, m,, one obtains quantum parity / generalized Shor codes. EC
Z0O

https://errorcorrectionzoo.org/c/quantum_parity



FOUR-QUBIT CODE -> STABILIZER CODE
> Recall four-qubit code: |0f,) = \/_(|OOOO)+|1111)) 1.) = \/_(|0011)+|1100))

» Recall observation of operator for which the codespace is a +1-eigenvalue eigen-subspace:
ZZII0L)=10L)  and  ZZIT|1p)=11)

» Operators [1ZZ and XXXX satisfy this as well. The three mutually commuting operators
generate the code’s stabilizer group S¢oyr—qupit:

Stour-qubit = (ZZIIITZZ XXXX) =(S),S55.53) = {S7S555 | a.b,ceZs}

= Example: Four-qubit code is an [[4,1,2]] code. [[n, k,d]]

» Advantages of stabilizer codes (over other codes): Distance

# logical qubits
v’ Efficient presentation in terms of stabilizer generators. # physical qubits

v Syndromes obtained for free: group generators are check operators.
v’ Detectable/undetectable errors determined simply from check operators EC

v’ General idea: works for bosons, fermions, modular qudits, Galois qudits, molecules. Z00
https://errorcorrectionzoo.org/c/stabilizer

17



FOUR-QUBIT CODE -> CSS CODE

> Re-write stabilizer generators of XXXX+— (1 1 1 1)=Hx
four-qubit code as binary matrices: ZZI11 R 1 1 0 0\ 77
1127 001 1) 7

(1 0

HxHZ =(1 1 1 1) (1) (1) "ty v

\0 1/ EC

» Stabilizer commutation requirement equivalent
to following CSS condition on matrices:

» We just need a particular pair of matrices: Z0O
» Borrow from classical codes = CSS codes  calderbank-Shor-Steane: https://errorcorrectionzoo.org/c/css
» Embed into chain complex = CSS-to-homology dictionary Kitaev 1998

o, o, -
A % H O ‘/ ”bounadariegdon’t

have boundaries”

X-check HX physical Z-check HyHI = 0

space — qubit space : space CSS condition



FOUR-QUBIT = SURFACE CODE -> TOPOLOGICAL CODES

» Arrange the four qubits (@)
into a square and observe
geometrical pattern formed
by stabilizer generators:

X,

XXXX

Geometries with holes Hyperbolic geometries Fractal geometries
arXiv:1111.4022 arXiv:1506.04029 arXiv:2201.03568

_Springboard to other geometries;
connection to topological phases.

| bound o

N . :

On‘c;vizricocuondearles 3D version Exotic manifolds >=4D

(a) Surface-25 (b) Surface-17 (c) Surface-13 e
quant-ph/9707021 arXiv:1406.4227 arXiv:math/0002124,

Rotated surface codes: arXiv:1404.3747 arXiv:1310.5555



SURFACE-to-STABILIZER CODE ROSETTA STONE

stabilizer code surface code
codespace ground-state subspace
errors anyonic excitations
QEC conditions topological quantum order (TQO)
joint +1 Z & X stabilizer eigenspace flux conservation & gauge/1-form symmetry
logical Paulis non-contractible Wilson loops

code switching anyon condensation




STABILIZER EXPERIMENTS

Parameters Name Platforms

NMR (Waterloo), SC circuits (Google, IBM), silicon (RIKEN, Delft), NV centers
[[n,1]] Repetition (Wratchup, Kosaka, Hanson groups), ions (Blatt group)

Photonic (Rarity group), ions (lonQ), SC circuits (IBM, Google, Delft, Wallraff,
[[4,1,2]] variants Four-qubit Monz groups)

NMR (Waterloo), SC circuits (Pan group), ions (Quantinuum), NV centers
[[5,1,3]] Five-qubit perfect (Delft)
[[7,1,3]] Steane lons (Blatt, Monz groups, Quantinuum), Rydberg arrays (Lukin group)
[[9,1,3]] Shor lons (Linke group, lonQ), photonics (Pan group)
[19,1,3]] Bacon-Shor subsystem lons (lonQ)
[[2m,2m-2,3]], m=2,3 Iceberg lons (Quantinuum)
[[m”A2,m,3]], m=2,3 Heavy-Hexagon subsystem SC circuits (IBM)
[[m~A2,m,3]], m<=7 Quantum Parity / Shor lons (Linke group)
[19,1,3]] Surface-17 SC circuits (Wallraff, Pan groups)
n=19 planar, 24 toric Kitaev surface R dber arrays (Lukin group

n=9,25, d=3,5 planar XZZX surface

Is our system good enough that

adding these extra qubits actually
improves logical performance?

0

Ec

For up-to-date references, see: Z00
https://errorcorrectionzoo.org/list/realizations

Google Al
Quantum



STABILIZER CODES & LOCALITY

Check node .

Bit node

local AKA few-body AKA “CS-local”

J edit]|“2 cite|| 7
[J edit]| % cite]

geometrically local AKA [[Z’m, 2m — 2, 2]] errcjr-
“physics-local” detecting code .2 ?‘O

Description

Also known as the iceberg code. CSS stabilizer code for m > 2 with generators
{XX---X,ZZ---Z} acting on all 2m physical qubits. Admits a basis such that each

non-local

Rao, Channel Coding Techniques for Wireless Communications



QLD PC Ex P LOS I O N https://errorcorrectionzoo.org/c/good_gldpc
https://errorcorrectionzoo.org/c/qldpc EC
» QLDPC code: stabilizer code such that the number of qubits participating in each
stabilizer generator and the number of stabilizer generators that each qubit *M:HJM SN

participates in are both independent of n. A
Il Geometric locality not required (!) = this is “locality” in the CS sense. g" f '

> Asymptotically good QLDPC: a family [[n;, k;,d;]] for i = 1 for which the rate k; /nl and
relative distance d; /n; remain constantas i — oo,

arXiv:2206.07750 - Dinur-Hsieh-Lin-Vidick (DHLV) code — DHLV code construction yields asymptotically good
QLDPC codes.

arXiv:2111.03654 - Expander lifted-product code — Lifted products of certain classical Tanner codes are the
first asymptotically good QLDPC codes.

arXiv:2202.13641 - Quantum Tanner code — Quantum Tanner code construction yields asymptotically good
QLDPC codes.

» Geometric locality has to be dropped ®. Codes on lattices in any dimension:
X Cannot be good QLDPC codes arXiv:quant-ph/0304161, arXiv:0810.1983, arXiv:2106.00765, arXiv:2109.10982

X Admit limited set of transversal gates Bravyi-Koenig arXiv:1206.1609



STRUCTURE of STABILIZER CODES



FOUR-QUBIT CODE AS A STABILIZER CODE

S = <§§7 %f’ §§> = <M17M27M3> — {MlaMZb

Oz) oc|gg) +111)
1) oc|19) +191)
C

S‘G,b,CEZQ}

Pauli P Description IIPII = Rel-n to stab. gen’s
Stabilizers Act trivially within I S =11 MY
codespace
Detectable errors Map codespace into 0 EM; = —M;FE for some j
error spaces

Logical Paulis Act nontrivially L

within codespace

LM; = M;L for all j




oo
—— OO
|
co oo
OO i
o lRe
R
o
&
)
E
|2
D
<C
aa
L
=5 |5
M —
al
~
S T
w2
3
al
Vg .
o
O >
~B
LL]
3

~ T — N

3 N >~ >~
™ ™ ™ ™
— = —

S N = >
- - - )
T N T T T
— i — — —O —
oo o O oo o
N N N N N
oo o oo o o
T T T T T
™ ™ i r— O ™
N N N N N
oo oo oo O oo
oo oo O oo O

~
I~

N~
I~

~

I~~~

N~
~pe

T T T
—O O —O
oo — O o
N N N
O — O o
— O —O
T T T
—O —O —
—— —O —O
N N N
o O o
oo O O

N>

~~




™
™

o
o

LOGICAL PAULIS

N~
e
N~
N~

~

ola

X2, Y;={11

,

I

Le{

NN
I~~~

d

~
NN

d

>< <
> <

d

~~
I~~~

|
I~

If A, then B.

d

N~

i<
2
<

~N
S~ N~
A2l
N~ N~
<~ ~IN
Al
P s
N~
Al 2l
N~ N~
>~ N~
Al
>~ N



MOVING LOGICALS & CLEANING LEMMA  |01)

V4

oo OO
~—

e Lither you “can clean M”: all logicals can be chosen to act outside of M

e Or you “cannot clean M”: 4 a logical acting entirely within M

g(M) + g(M+) = 2k

arxiv:0810.1983

OO =

e S =t



HARDNESS OF DECODING Oz) oc|gg) +111)
Ir)oc|ig) +101)

» General stabilizer recovery consists of three parts:

E-L-S

‘ I— Stabilizer group equivalence
Residual logical operations

Map back to codespace

» ML decoding: (L - S)* — arg III}aSX Pr (L, S ‘ E)

» (Degenerate) ML decoding: [, = arg mIijX Z Pr(L,S|F)
S

RIP David Poulin
arXiv:1310.3235



STABILIZER CODES: SUMMARY 0r) oc [99) + |11
10 01
lp)oc|ig) +lo1)
Code-preserving Paulis make up the normalizer
N(S) = Np, (S) = everything in P,, that commutes with everything in S (53
while logical Pauli representatives L make up the quotient group N(S)/ (i,S):
[4,1,2]] code Size Stabilizer Size
stabilizer group (%, 245, 12) 23 =8 S on—k
code-preserving Paulis L-S (i, L, I& 22 11 21 4.9>=128 N(S) 4. ontk
logical Paulis N(S) — (i,S)
logical Paulis modulo (i, S) (L34 242,221 j;gi =4 N(S)/ (i,S) 4k




SUBSYSTEM CODES:
A CIRCUIT-CENTRIC APPROACH



From STABILIZER to SUBSYSTEM codes

» The four-qubit code can be extended to the [[4,2,2]] stabilizer code:

S=(xx:22)

00 11 11 00
007) <|go)+111) 01p) oc|gg) +117)
10 01 01 10
102) <[19)+l01) 111) |55 01/
» Logical Pauli representatives are XT 727 XX 721
X I 1T I>» 1 I Z1
— ——
qubit I qubit II

» Let us not use the second qubit for storage, but as a tunable knob or “gauge” degree
of freedom that we can set as we please.



SUBSYSTEM CODES

» We need another (this time, non-Abelian) group G to keep track of which “gauge”

qubits we have picked. .
(1,S) € G C N(S)

1. G=(7,S): no qubits are gauge —> stabilizer code

2. G = N(S): all qubits are gauge —> no logical subspace

Similarity to gauging in electromagnetism only
conceptual. Electric and magnetic potentials can
be changed via gauge transformations without
affecting the physically observable fields. Similarly,
the gauge qubits can be manipulated without
affect the logical information, but such effects are
observable.



SUBSYSTEM CODES: ADVANTAGE 1

3. gauge fixing can allow you to switch between different codes, and many gadgets can be understood as subsystem
codes

(a) Gauge fixing second qubit to |07) (and forgetting it) gets back to [[4, 1, 2]] code with stabilizer group
(XX 210 1%)

(b) Gauge fixing second qubit to |[+r) (and forgetting it) yields “dual” [[4,1,2]] code with stabilizer

Z7Z XX I 1
group(ZZ, I I’XX>'

(c) Gauge fixing the second qubit to the maximally mixed state yields a way to do computation with
mixed states.

OlL) X

00r) o< |9 g) +
10r,) o< |10

et
\/

—_o O
O O+
~— ~——

RO —~O
~—

~_

|

I
OO HH
O O



SUBSYSTEM CODES: ADVANTAGE 2

Measuring lower-weight operators can yield error syndromes.

XX _ _ I I _ _ | xXx _ _
rT =1 + |xx=t = |xx=-1
| | ==
{ \ Nt/
XXI IXX Z2ZZ 111
Sii0143| =\ XXI,IXX,22%,% %%
XXI'IXX 111222z
XXI I 11 IXX II1 ZII IZI 111 IITI
Go1,a3]=(%S, I T I,XXI,IT1,IXX,ZII,1ZI1,Z11,12Z]I
I 11’ T 11’111 ITT 1 1TITIT'TITT ZII'ITZI

Z00
Physical Review A 52, R2493 (1995), arXiv:quant-ph/0506023, https://errorcorrectionzoo.org/c/bacon_shor



SUBSYSTEM CODES: ADVANTAGE 3

2. Subsystem codes realize more phases of matter than stabilizer codes, e.g.,

planar surface code [2112.11394] Zg)) subsystem code [2211.03798|
| Z
<Za Xa _X_J Z Z >
G | Z
|
X! 7 R B s
Af= —x—Uxt—, Bi=ztp 7 i ¥
X —ZJ i ]
h..._x'.......‘Y-----ooo
S ]
Hamiltonian — Z S — Z JaoG st. Jg eR
SeS GeG

Realizes Z+ topological order Zo gauge theory (w/X X X X constraint)




MBQC AS A SUBSYSTEM CODE 01) o |9
1
1

clusterization foliation
EC

Z0O0
arxiv:1607.02579 https://errorcorrectionzoo.org/c/cluster_state



CODE SWITCHING

* Code switching can be done by starting with a code
state of a stabilizer group S and measuring check
operators in a new stabilizer group F. The new
stabilizer group consist of everything in both S and F
that commute with everything in F.

S — N(S,F) (F) :

== OO
oo OO

OO

e S =t



LATTICE SURGERY IS CODE SWITCHING

S — N<5’|:> (F) :

* Lattice surgery combining [[4,1,2]] and [[2,1,1]] codes into [[6,1,2]].

S T S T
e -0 - -
N " O O
= "= O O
+ 4+ + A

[ I
T T T T
T O —— O
oo OO0 HO HO
oo OO0 HO HO
+ 4+ + A

[ I
S T S T
OO O—-H OO O
N " O O
N " O O
+ + + -

_ I
S T S T
O O—- OO O™
oo OO0 HO HO
oo OO0 HO HO
N S S T
o O 1 |

NN
NN

I~~~

arxiv:1810.10037



LATTICE SURGERY IS CODE SWITCHING  |01)
S — N<5’|:> (F) : 1L> X

~— OO
O OO

S~
e S =t

~—
|
I

OO ==

* Lattice surgery combining [[4,1,2]] and [[2,1,1]] codes into [[6,1,2]].
F=(1%22)
1 Z7 Z
Measurement result is +1, so we project:

0) o

S—"
-
| 3l =2 CD|

D+ I HIiTT)

(
(I +
(I +
(

NN NN
NN NN NN NN
NN NN NN NN

A N O g

190
Ty =0
) =0
) o< |5

ek

1 S+ H 1555 HI1995)

2

arxiv:1810.10037



FLOQUET QEC is CODE SWITCHING 0z) o< [39)
S — N<5’|:> (F) : 1L> X % 8

Z0OO

arxiv:2107.02194; acknowledge discussions w/ Arpit Dua https://errorcorrectionzoo.org/c/floquet



DYNAMICAL PROCEDURES: SUMMARY

gauging out gauge fixing code switching

from/to stab. — gauge gauge — gauge stab. — stab.
using F C N(S) stab. group F C G stab. group F C P,
S transforms as S—Z((,S,F)) S — (S,F) S — Ny (F)

G transforms as (1,S) — (i,S,F) G — Ng(F)




DYNAMICAL PROCEDURES: SUMMARY

gauging out

gauge fixing

code switching

from/to
using

stab. — gauge
F C N(S)

gauge — gauge
stab. group F C G

stab. — stab.

stab. group F C P,

S transforms as
G transforms as

S—Z((,S,F))
(1,S) — (i,S,F)

S — (S,F)
G— N(;(F)

S — N(S,F) (F)

MBQC
lattice surgery
Floquet codes
anyon condensation
chilral abelian top. phases

v [2211.03798]

v [1607.02579)
v [1810.10037]
x [2107.02194]

SN NN

2212.06775]
1810.10037
2107.02194]

2212.00042]




FAULT TOLERANCE

YO DAWG | HEAR YOU DECODED
THEERRORS INYOUR MEMORY

1 w |

-
1

. 1‘

o

¥

SOTPUT SOME ERRORS IN YIIIIII DECODER



MULTI-QUBIT GATE FAULTS

Two-qubit gate errors occur on two qubits, so we

have to take those into account by considering
weight-two Paulis at any two-qubit gate locations.

Ny T —¥] [
[0 "z\f 100—)”,,) [o7 —Z} 1024—///) 02 -_Z\f Joo) #111)
0 —ﬁeé—‘/l 0 —lﬁff 07 — =
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/0> ﬂ— / @H//) /0> -—1:{—— Joo) +111) /0> -—1]— Joo) +/ 1)
1”5 ~ 02 _I@ o —If

—
Iy i
o7 H‘m— 100) +111) (%2 —Z} / Joo) p111) jo7 41 f Joa) o)
yz’ vz’




FAULT TOLERANCE

The four-qubit code has a transversal implementa-
tion of the CZ-gate on its encoded subspace, CZ =~

VZOVZ ©VZ @ VZ, where vZ = diag(1,i). We can

measure this operator as follows. We note that conjugat-
ing S¥ with the unitary rotation T=T @ Tt @ Tt o T,
where 7' = diag(1, /i), gives the hermitian operator:

W=T8XT" x CZS*. (1)

Given that we prepare the code with S¥ = +1, measur-
ing W effectively gives a reading of C'Z.

(a) (b)
0 U - Ut

Fa oY
N

[\
~-
~
~
-t
Fa Y
L/
Fd nY
3/
Vi aY
1/
k?
L__'_:

0)s—{H HHZNAL
0)5 b b Y
4 Ut D U
§ U & Ut

FIG. 1: A fault-tolerant circuit (a) to measure S~ , S and W
using flag qubits on the heavy-hexagonal lattice architecture
(b). The four-qubit code is encoded on qubits with even in-
dices and the other qubits are used to make the fault-tolerant
parity measurement. The circuit measures S (S z ) by set-
ting U = 1 (H), where H is the Hadamard gate. As ex-
plained in the main text, the circuit measures W if we set
U = 1. Measurement outcome M gives the reading of the
parity measurement, and outcomes f and g flag that the cir-
cuit may have introduced a logical error to the data qubits.



SUMMARY

. Classical states are elements of a space
X; quantum states are functions on X.

. Error-correction paradigm works for
spatio-temporal channels &
classical/quantum info [Shannon].

. Quantum codes have to protect against
both bit- and phase-flip errors; there is
a tradeoff.

. QEC requires space-time overhead,
which can be “Wick-rotated” (e.g.,
MBQC).

. Degeneracy makes decoding harder;
yields connections to  statistical
mechanics.

6. Geometric

locality is  physically
relevant, but handicaps code
parameters (QLDPC).

. Circuit-centric approach emerging that

requires less overhead for same
robustness (e.g., Floquet).

. Fault tolerance is the art of using QEC

to make sure errors are not amplified
during performance of desired task.

. QEC has many non-computational

applications (e.g., sensing, holography,
topological order).

Thant you!
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