Alkaline-earth atoms in optical tweezers

Adam M. Kaufman JILA, NIST/University of Colorado Boulder Boulder Summer School, July 19th

Quantum science = "Quantum state engineering"

Ritter...Rempe, Nature (2012); Britton...Bollinger, Nature (2012) Mazurenko...Greiner, Nature (2017); Harrow and Montanaro, Nature (2017)

lons

Monroe and Kim, Science (2013)

Ultracold atoms

Mazurenko....Greiner, Nature (2017)

Quantum Science Wish List:

Multiple identical quantum objects, qubits
Long-lived quantum coherence
Single particle control/detection
Strong controllable interactions

Solid-state defects

Awschalom...Petta, Science (2013)

Superconducting circuits

Arute...Martinis, Nature (2019)

Zhong...Pan, Nature (2020)

Optical tweezer arrays of neutral atoms

Pioneering work: Grangier group, 2000s

Optical tweezer array capabilities

Scalable, tunable

Endres...Lukin, Science (2016); Barredo...Browaeys, Science (2016); Young...Ye, Kaufman, Nature (2020); Keesling...Lukin, Nature (2019); MPI image credit

Applications

a)

 $|-\rangle$

g 0.25

Quantum information processing

State-of-the-art for global gates:

- Single-qubit gates: 0.9983(14) [1]
- **Bell-state fidelities:**
 - Rydberg qubits: 0.991(4) [2] ٠
 - Hyperfine qubits: 0.974(3), 1D [3]; 0.89, 2D [4] ٠

Few - to - Many-body physics

Studies of:

. . .

- Few-body Hubbard
- Transverse Ising model, gs/dynamics
- **Kibble-Zurek physics**
- Critical phenomena
- Topological phenomena
- Cat state generation

QI: [1] Xia...Saffman, PRL (2015); [2] Madjarov...Endres, Nat. Phys (2020); [3] Levine...Lukin, PRL (2019); [4] Graham...Saffman, PRL (2019) Few/Many body: Kaufman...Regal, Science (2014); Bayha...Jochim, Nature (2020); Bernien...Lukin, Nature (2017), Léséleuc...Browaeys, Science (2019)

Expanding to more complex particles

Alkaline-earth atoms

JILA, Caltech, Princeton

Manuel Endres

Outline

Why Alkaline-earths?

A tweezer clock

A Bell state on a neutral-atom clock transition

Tweezing single atoms into a Hubbardregime lattice

Why alkaline-earths?

e.g. Strontium, Calcium, Magnesium, Ytterbium ("AEA-like")

e.g. Rubidium, Potassium, Caesium, Lithium

Norcia...Kaufman, PRX (2018) Cooper...Endres, PRX (2018)

fast. And very simple.

Resolved sideband cooling in ions: Diedric...Wineland, PRL (1989) Raman-sideband cooling in neutrals: Kerman..Chu, PRL (1998); Han...Weiss, PRL (2000)

Cooling

Norcia...Kaufman, PRX (2018) Cooper...Endres, PRX (2018) Saskin...Thompson, PRL (2019)

Resolved sideband cooling in ions: Diedric...Wineland, PRL (1989) Raman-sideband cooling in neutrals: Kerman..Chu, PRL (1998); Han...Weiss, PRL (2000)

Detection

(Very.) Prelimary data

0.4

80

time (ms)

0.5

100

Ytterbium:1/2, 5/2; Strontium: 9/2

Nuclear + clock \rightarrow spin-orbital exchange gates

Fast and Scalable Quantum Information Processing with Two-Electron Atoms in Optical Tweezer Arrays

2e⁻ Guido Pagano,* Francesco Scazza, and Michael Foss-Feig b а 2 Transfer tweezer Transfer tweezer Transfer tweezer $t_{up} + t_{over}$ ${}^{1}P_{1}$ ramp-up ramp-over ramp-down $|eg\rangle_{12}(|\uparrow\downarrow\rangle_{12} - i|\downarrow\uparrow\rangle_{12})$ $|eg^+\rangle + e^{-i\phi}|eg^-\rangle$ $|eg\rangle(|\uparrow\downarrow\rangle - i|\downarrow\uparrow\rangle)$ |eî,g↓) ³P₁ OS OS $\Delta t_{GATE} = h/8V_{ex}$ ³P₀ Spin-exchange \sqrt{SWAP} Detection Cooling Clock: like a qubit, but Nuclear spin a tough one ${}^{1}S_{0}$ (also metrology: later)

Adiabatic sweep across Ising phase transition **Rydberg Interactions** 2. Rearrange U(t)i.e. Antoine's talk 2e⁻ n³S₁ 0 0 0 $|r\rangle$ 0.0 0.0.0.0.0.0 Ω Rydberg 10⁰ 104 ${}^{1}P_{1}$ Ground State Probability --- 0.97^{N} Number of States 101 101 101 ³P₂ $|AF_1\rangle$ $|AF_2\rangle$ ³P₁ ³P₀ Detection Cooling 10⁰ 20 40 81 121 169 225 Clock Number of Occurences Array Size Nuclear spin ~Microns Alkali, ⁸⁷Rb: Ebadi...Lukin, Nature (2021) ${}^{1}S_{0}$ Also: Scholl...Browaeys, Nature (2021)

Theory proposals: Derivianko, Pohl groups

Wilson...Thompson, arXiv (2019)

Rydberg Interactions

Léséleuc...Browaeys, Science (2019)

→ Length of quantum simulation = how long atoms stick around → extra electron helpful.

 \rightarrow Also: quantum computing gate depth, errors

Alkaline-earths in tweezers

Most important? The intersection of all of these things.

Tl;dw:

- New cooling methods
- New detection methods
- New qubit possibilities
- Rydberg: high fidelity demonstrated, trapping means longer simulations/sequences
- Long lived optical transition → optical frequency metrology, new spin detection schemes for neutrals (shelving)

Quantum science in alkaline-earth atom arrays

Strontium

Ytterbium

- Metrology
- Quantum metrology
- New approaches to Hubbard physics/

- Quantum information
- Quantum simulation
- Quantum metrology

Ingredients for trapping of single Sr atoms

Microscope + UHV chamber

Cold and heit altoundi (cflued set agen 1/40)

Tweezer optics

RF control

Tweezer optics

Felix Ronchen (Bonn)

Tweezers: optical engineering \rightarrow atomic engineering

Two-dimensional

Three-dimensional

Pioneering work: Paris, Browaey's group

Outline

Why alkaline-earths?

A tweezer clock

A Bell state on a neutral-atom clock transition

Tweezing single atoms into a Hubbardregime lattice

Why make a tweezer clock?

Atomic clocks

quality factor of the oscillator!

Atomic clocks

Ludlow...Schmidt, RMP (2015)

Leading platforms

Trapped-ions

Single clock ion, high duty cycle **Challenges**: mainly stability/QPN of one ion Wish list: many atoms, long coherence time, high duty cycle

1000s of optically-trapped atoms Challenges: interactions, tunneling, duty cycle

Tweezer clocks, 2019

Wish list: many atoms, long coherence time, high duty cycle

Demonstrate: 3 seconds of atom-laser coherence,

Question: how large a system can we scale to while maintaining coherence?

Scalable, long-lived tweezer clock systems

Single run yields sufficient statistics

Ramsey measurements

Young, Eckner, Milner, Kedar, Norcia, Oelker, Schine, Ye, Kaufman, Nature (2020)

Forms of coherence

Yes **atom-laser** coherence, Yes **atom-atom** coherence No **atom-laser** coherence, Yes **atom-atom** coherence No **atom-laser** coherence, No **atom-atom** coherence

→ Bloch vectors of individual atoms correlated across the array

Microscopic study of atomic coherence

S_z correlator after Ramsey sequence:

$$g_2(i,j) = 2|\rho_{eg,i}||\rho_{eg,j}|\cos(\phi_i - \phi_j)$$

Millihertz scale light shifts... from tweezers AODs!!

Correlation spectroscopy in ions: Olmschenk...Monroe, PRA (2007) ; Chou...Wineland, PRL (2011); Tan. .Barret, PRL (2019)

Ensemble and single-particle coherence time

Ensemble coherence: 19.5(8) seconds Limited by AODs \rightarrow SLM

Single-particle coherence: 48(8) seconds including loss 92(9) seconds correcting loss

Quality factor: 6.5×10^{16}

Young, Eckner, Milner, Kedar, Norcia, Oelker, Schine, Ye, Kaufman, Nature (2020)

High stability, precision in self-comparisons

Young, Eckner, Milner, Kedar, Norcia, Oelker, Schine, Ye, Kaufman, Nature (2020)

Outline

Why alkaline-earths?

A tweezer clock

A Bell state on a neutral-atom clock transition

Tweezing single atoms into a Hubbardregime lattice

Combining a tweezer clock with entanglement

Pioneering work in ions: NIST, Ozeri Group, Blatt Group

Approaches to entanglement-enhanced clocks

Cavity squeezing in optical-lattice clocks

Pedrozo-Peñafiel...Vuletic, Nature (2020)

Also being pursued at JILA: Thompson, Ye

Programmable quantum sensors with tweezer clocks

Kaubruegger...Rey, Ye, Kaufman, Zoller, PRL (2019)

Entanglement-enhanced metrology

Many uncorrelated TLSs

Single TLS, $N \times$ larger energy separation, $N \times$ faster decay

If lifetime limited, same Q, $\sqrt{N} \times$ worse QPN. If not, $N \times$ higher $Q \rightarrow$ higher bandwidth

$$\sigma_{QPN} \propto \frac{1}{Q} \sqrt{\frac{T_c}{N\tau}}$$

For us, ~ 20 s atomic coherence, $\gtrsim \sim 10 \times 10$ longer than typical clock laser

Many other subtleties:

- Dick effect phase diffusion
- Measurement basis
- Form and time of decoherence

Experiment needs

- High fidelity qubit/clock control: need many gates for large enhancements, want better detection
- Two-qubit control: coherent Rydberg excitation

(All during COVID!)

Interfacing tweezers and lattice

Interfacing tweezers and lattices

>3000 lattice sites compatible with imaging, 3D ground state cooling, and control of clock qubit

Quantum control on the Rydberg transition

see also Madjarov...Endres, Nat. Phys. 2020

Rydberg-mediated clock entanglement

Single atom

Two atoms ($r \ll R_c = \left(\frac{C_6}{\Omega_r}\right)^{\overline{6}}$)

(two particle state: $|ge\rangle$, $|eg\rangle$)

Energy scale for entanglement: $\kappa = E^{(2)} - 2E^{(1)}$

 $H_{eff} \propto \kappa S_z^2$

 $E_{\pm}^{(1)} = \frac{1}{2} \left(-\Delta \pm \sqrt{\Omega_r^2} + \Delta^2 \right)$

$$E_{\pm}^{(2)} = \frac{1}{2} \left(-\Delta \pm \sqrt{2\Omega_r^2 + \Delta^2} \right)$$

Rapid adiabatic Rydberg dressing

Mitra... Deutsch, PRA (2020)

Generating Bell states

Averaged image

FE EF

.....

**

lee)

11

Fa

.

 $|eg\rangle$

.....

 $|ge\rangle |gg\rangle$

.

.

Sz

-1.0

0.0

1.0

gate time, t_1 (μ s)

0.5

 $\sim S_{\chi}^2$

0.0

1.5

$$\begin{split} |\psi\rangle = \frac{1}{\sqrt{2}}(|gg\rangle + e^{i\theta}|ee\rangle) \\ P_{ee} + P_{gg} \simeq 0.96 \end{split}$$

 θ consistent/well-defined?

Prior results in alkalis: 97.4% in 1D arrays (Lukin), 88% in 2D arrays (Saffman)

Manuscript in preparation

On the horizon:

Metrology with bell states

Variational optimization with σ_z^2 + Global rotations

Kaubruegger...Zoller, arXiv 2102:05593 (2021) Plot shown: 64 particles

Dynamics of Ising, transverse Ising models, in and out-of equilibrium (collaboration with Rey group)

														٠									
														٠									
								•				•	•	٠									
					z																		
					÷	5	a							2							1		
							s		e								1					L	
																		2					
			٠																				
			٠																				
				1																			

Programmability

Controlled studies of the useful entanglement arising from many-body spin models

Kaubruegger... Zoller, PRL (2019)

Outline

Why alkaline-earths?

A tweezer clock

A Bell state on a neutral-atom clock transition

Tweezing single atoms into a Hubbardregime lattice

Initializing low entropy samples with QGMs is useful

Zweirlein: spin transport

Topological configuration

h

(b) (a) (c) v/t = 0.0 v/t = 0.8 v/t = 1.6 v/t = 2.910 -10 10 -10 x (a_{latt}) -10 ò Ó Ó 10 -10 (e) Ð Rel 0.5 Time (ħ/t) 0.5 Time (ħ/t)

Bakr: extended Hubbard models

Incomplete list...

Other ways to reach unity filled arrays...

Programmable rearrangement in tweezer arrays

Extends to arbitrary geometries/configurations

..and fast

Can you combine lattice itinerance with the preparation capabilities of tweezers?

Quantum random walk

Ultracold atoms:

Karski... Meschede, Widera, Science (2009) Preiss... Greiner, Science (2015)

lons:

Zähringer... Blatt, Roos, PRL (2010)

NMR: Du... Han, PRA (2003)

Photonics:

Schreiber... Silberhorn, PRL (2010) Tang... Jin, Sci. Adv. (2018) – 2D

Superconducting qubits:

Gong... Zhu, Pan, Science (2021) – 2D

...and more

2D quantum random walk

Coherent exploration of > 200 lattice sites with ~ 150 Hz tunneling rate

Fast cycle time enables exploration of large systems

Search via 2D quantum random walk

Spatial search by quantum walk – Childs and Goldstone, PRA (2004)

Adiabatic preparation of resource state

Search via 2D quantum random walk

Searching an unstructured set with 13-45 elements

Young et al., et al., in preparation

0.10

0.05 으

0.00

What is quantum about this?

A Classical Analog of Quantum Search^{*}

Lov K. Grover, Anirvan M. Sengupta {lkgrover, anirvan}@bell-labs.com Bell Laboratories, Lucent Technologies, 600-700 Mountain Avenue, Murray Hill NJ 07974

Abstract

Quantum search is a quantum mechanical technique for searching N possibilities in only \sqrt{N} steps. We show that the algorithm can be described as a resonance phenomenon. A similar algorithm applies in a purely classical setting when there are N oscillators, one of which is of a different resonant frequency. We could identify which one this is by measuring the oscillation frequency of each oscillator, a procedure that would take about N cycles. We show, how by coupling the oscillators together in a very simple way, it is possible to identify the different one in only \sqrt{N} cycles.

Quantum enhancement: primarily in the ability to have exponential storage space with qubit number, error correction. But quantum algorithm does saturate max O(\sqrt(N)) bound.

Thanks!

Will

Eckner

Ye clock laser team

Jun Ye

Will Milner

Dhruv Kedar

Aruku Alec Aaron Nathan Joanna Jenkins (PD) Schine (PD) Lis Senoo Young