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Boulder notes by Victor V. Albert. Most of the lecture closely follows his notes; some extra parts are below.
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I.1. Weyl semimetals

While the lecture is mostly in his notes, some things are not mentioned. The Hamiltonian in eq. (9) is H = ~d·~σ
and we look at surfaces in the kx − ky plane (although similar things hold for other cuts):

• kz = 0: The vector ~d (kx, ky) looks like a skyrmion when plotted in the 2D kx− ky plane. Chern number is 1.

• kz = π: ~d = 〈0, 0, 3− cos kx − cos ky〉. Chern number is 0.

The Fermi surface looks different depending on the chemical potential.

• Let’s assume that the chemical potential is at EF = 0, so the Fermi surface is two points at the resective
Weyl nodes ±k0. More generally, H has different Chern numbers for the region |kz| < k0 inbetween the Weyl
nodes and the region outside of them. The BZ used to be a torus, but now it is punctured at the two Weyl
nodes since there is a gap closing at each of them. Since the Chern number is 1 in the region |kz| < k0, there
exist surface states there. In the band structure in the kx−kz plane, those states are represented by a Fermi
arc (F1).

• If the chemical potential is not at the Weyl nodes, then the two point Fermi surface becomes two spheres
around those points and the Fermi arcs move around (F2).

We k0 = π, then the Fermi arcs annihilate and the entire BZ has Chern number 1. Therefore, the system
becomes a 3D quantum Hall insulator (a weak TI from Charlie Kane’s lectures).

I.2. Weyl semimetals in a magnetic field

Introduce a magentic field ~B = ~∇× ~A = Bẑ and put it into Ham:

H = ~p · ~σ −→
(
~p− ~A

)
· ~σ .

You will get Landau levels of the Dirac type (see Pablo Jarillo-Herrero) with energies

En ∝ ±
√
Bn+ p2z .



2

I.3. Graphene as a topological semimetal

Consider graphene and look at lines in the BZ to see how they change upon crossing nodes. In contrast to
Charlie Kane’s lectures and motivation, we need to make sure that the gap in graphene is closed as opposed to
trying to open it. Therefore, we cannot look at any 2D invariants since the system is gapped. Since we are gapped,
we need to preserve the Hamiltonian under time-reversal, inversion, and su (2) spin rotation. The combined T̃ = TI

with T̃ 2 = +1, which determines that our symmetry class is AI. But which dimension do we pick? In 1D, class AI
is trivial. Teo and Kane looked at defects in otherwise translationally invariant Hamiltonians and saw that defect
real-space coordinates contribute a negative dimension:

H

 ~k︸︷︷︸
dk

~r︸︷︷︸
dr

 d = dk − dr .

So instead of looking at d = 1, we look at d = 7, which does have a Z2 index.
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Topological entanglement entropy (TEE) is the constant offset γ in the entropy of the reduced density
matrix of a region A of space:

SA = −Tr {ρA log ρA} = αL− γ,

where L is the perimeter of A and α is a constant. If γ > 0 in the ground state of a Hamiltonian on a 2D plane, the
phase is long-range entangled (LRE). If γ = 0, the phase is short-range entangled. For the toric code, γ = log 2.
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III.1. 1D cluster state model

Consider the frustration-free model in d = 1 with Z× Z symmetry:

H = −J
∑
i

ZiXi+1Zi+2 ≡ −J
∑
i

X̃i .

The two symmetries are gµ =
∏
iX2i+µ. The frustration-free nature can be checked by ordering the terms by site:Z X Z

Z X Z
Z X Z

 .

There is a unique ground state in PBC, but with open BC, we have a symmetry protected degeneracy. Possible
commuting edge operators are

ΣZL = Z0 ΣXL = X0Z1 ΣYL = Y0Z1.

These edge operators commute with H and anti-commute with each other, implying a two-fold degeneracy on each
edge and a total four-fold degeneracy. The symmetry operators are now

g1 = Z0Z2N = ΣZLΣZR g1 = ΣXL ΣXR .

These satisfy the group multiplication rules when multiplied:

g1g2 = g2g1 .

However, the one-edge components of g1,2 form a projective representation (the group multiplication rules are
changed by extra factors):

gR1 = ΣZR gR1 = ΣXR gR1 g
R
2 = −gR2 gR1 .

Classification of the projective representations (and therefore the phases) which add U (1) phases to group multi-
plication rules is related to the second cohomology gorup H2 (G,U (1)). Here

H2 (Z2 × Z2, U (1)) = Z2 .
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III.2. 2D boson-vortex duality (Peskin, Dasgupta/Halperin)

Consider bosons hopping on a lattice with creation operators eiφi with conjugate number operators ni such
that [ni, φj ] = δij :

H = −t
∑
〈ij〉

cos (φi − φj) + U
∑
i

n2i .

This model is an insulator at t � U and a superfluid at t � U . We look for a description of this model in terms
of another set of operators — vortices:

1. The vortices are determined by locations, so they can be thought of as particles ψ†
V (r).

2. Vortices have long-range interactions, so in 2D v (|r − r′|) = − log (|r − r′|). This is the same behavior as for
electric charges.

3. A boson sees a vortex through 2π flux and visa versa. This turns out to be non-trivial (despite the phase
being trivial). There is also then a vector potential ~a and electric/magnetic fields ~e, b causing this flux.

Boson Vortex

density n flux 1
2π
~∇× ~a = 1

2π b
1
2π
~∇×

(
~∇φ
)

vortex density nV
1
2π ẑ ×

(
~∇φ
)

electric field e

Time reversal Particle-hole symmetry

We can model the vortex interactions and coupling to the EM fields with the Lagrangian

L = |(∂µ − iaµ)ψV |2 +m2 |ψV |2 + |ψV |4 +
(
e2 + b2

)
+

1

2π
εµνλAµ∂νaλ .

The background field A (last term) keeps track of the boson charges.
In the insulator phase, the bosons are gapped but in the dual picture, the vortices are “condensed”.
In the superfluid phase, there is a phononic Goldstone mode and the bosons are condensed. In the dual picture,

the vortices are gapped. In the Lagrangian, this corresponds to the photon of the EM photon (when we ignore
anything with a ψV in it).

III.3. 2+1D SPT using two layers of bosons

Take two layers A and B with background fields AAµ and ABµ and consider the Lagrangian of a bound state of
a vortex in A and a charge in B, ψ̃V = ψAV ΦB :

LBS =
∣∣∣(∂µ − iaµ − iABµ ) ψ̃ν∣∣∣2 +

(
e2 + b2

)
+

1

2π
εµνλAµ∂νaλ .

If we condense (
〈
ψ̃V

〉
6= 0) and use the Meissner effect a+AB = 0→ a = −AB , we can ignore almost everything:

LBS =
1

2π
εµνλA

A
µ ∂νA

B
λ .

This is a multi Chern-Simons theory with K = X (see Chetan Nayak’s talk). Since |detK| = 1, this is a trivial
topological phase (while for the toric code |detK| = 4). Taking a look at the response,

ja = σabEb jµ =
δL

δAµ
=

1

π
εµνλ∂νAλ .

To see how this is related to Hall conductance, let’s take a look at

j1 =
1

π
(∂2A0 − ∂0A2) =

1

π
E2 −→ σxy =

1

π
.

This indeed implies a quantized conductance if we plug in bosons of charge q and ~ = 1, meaning that 2π → h

and so σxy = 2 q
2

h . So for bosons, the Hall conductance is quantized and in multiples of two. If we consider Cooper
pairs, q = 2e and conductance is in multiples of 8. We can relate the quantum Hall charge transfer to heat transfer
via the Wiedeman-Franz law for free fermions, Cooper pairs on the other hand violate Wiedeman-Franz due to
interactions.


