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on-Fermi liquid ?

What does it

Q " What is the difference between ?

Fermi-liquid and non-Fermi liquid |

A m The difference Is the same as between
= bananas and non-bananas.

What does it mean Fermi liquid ?



Eermi Liguia

Fermi statistics

Low temperatures

Not too strong interactions

Translation invariance




Fermi statistics
Low temperatures

Not too strong interactions ( BE==>>
Translation invariance

1. Excitations are similar to the excitations in a Fermi-gas:
a) the same quantum numbers — momentum, spin %2 , charge €

b) decay rate is small as compared with the excitation energy

2. Substantial renormalizations. For example, in a Fermi gas

onfou, y=c/T, x/0us
are all equal to the one-particle density of states V.
These quantities are different in a Fermi liquid



Signatures of the Fermi - Liquid state

1. Resistivity is proportional to T2
L.D. Landau & l.Ya. Pomeranchuk “To the properties of metals at very

low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

..The increase of the resistance caused by the interaction between
the electrons is proportional to T2 and at low temperatures exceeds
the usual resistance, which is proportional to T°.

.. the sum of the momenta of the interaction electrons can change
by an integer number of the periods of the reciprocal lattice.
Therefore the momentum increase caused by the electric field can
be destroyed by the interaction between the electrons, not only by
the thermal oscillations of the lattice.



Signatures of the Fermi - Liquid state

1. Resistivity is proportional to T2
L.D. Landau & l.Ya. Pomeranchuk “To the properties of metals at very

low temperatures™”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649
Umklapp electron — electron scattering dominates the
charge transport (?!) n

2. Jump in the momentum distribution
function at T=0.

2a.  Pole in the one-particle Green function

. Z
o) )

Fermi liquid = 0<Z<1 (?!)




Landau Fermi - Liquid theory

Momentum p

Momentum distribution ~ n(p)

Total energy E{n(p)}
Quasiparticle energy &(p)=oE/on(p)
Landau f-function f(p, p')=06¢(p)/on(p')

Can Fermi - liquid survive without the momenta
|

Does it make sense to speak about the Fermi — liquid ;
m  state in the presence of a quenched disorder o



" Does it make sense to speak about the Fermi —
= |iquid state in the presence of a quenched disorder =

1. Momentum is not a good quantum number - the
momentum uncertainty is inverse proportional to the
elastic mean free path, |. The step in the momentum
distribution function is broadened by this uncertainty

2. Neither resistivity nor its temperature dependence is determined by the umklapp
processes and thus does not behave as T2

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a

function of the energy, & The residue , Z, makes no sense

Neverineless even in tne presence of the disorder
Excitations are similar to the excitations in a disordered Fermi-gas.

|. Small decay rate
ll. Substantial renormalizations




Quantum Dot

1. Disorder (ximpurities)}ghaotic

ne-particle
2. Complex geometry motion

3. 8-e Interactions

Realizations:

* Metallic clusters
* Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)

» Carbon nanotubes



Energy
scales

One-particle problem (Thouless, 1972)

L. Mean level spacing O, = 1/Vx L
L

l 5 L IS the system size;
i /

energy

d IS the number of
dimensions

Thouless ENergy ET — hD/L2 D is the diffusion const

ET has a meaning of the inverse diffusion time of the traveling
through the system or the escape rate (for open systems)

g=E, /5, ouess™ g = Ghle?

conductance



Zero Dimensional Eermi LLiguid

Finite Thouless
—> ET

System energy

At the same time, we want the typical energies, &, to
exceed the mean level spacing, O, :

0, << & << E;




Thouless Conductance and
One-particle Quantum Mechanics

Localized states Extended states
Insulator Metal
Poisson spectral Wigner-Dyson
statistics spectral statistics

Quantum Dots with
dimensionless

conductance

N x N
Random Matrices

The same statistics of the random
spectra and one-particle wave
functions (eigenvectors)




TWO-Body Set of one particle states. ¢
INteractions

‘OC O > and o label correspondingly
? spin and orbit.

&, -one-particle orbital energies M ofys ~Nteraction matrix elements



TWO-Body Set of one particle states. ¢
Interactions and o label correspondingly

spin and orbit.

&, -one-particle orbital energies M ofys ~Nteraction matrix elements

&, are taken from the shell model
Nuclear
Physics s are assumed to be random
g . N = .
a RANDOM; Wigner-Dyson statistics
Quantum J y
Dots I\/Iaﬂyg DNNNNHNH



Vatrix Elements

Diagonal - . 3,7,0 are equal pairwise
M a=yand =6 or a=5 and S=y or a=f and y=6

affyo

Offdiagonal - otherwise

» Diagonal matrix elements are much bigger
|t turns than the offdiagonal ones
M S>> M

diagona offdiagonal

out that

_ -  Diagonal matrix elements in a particular
9 .
in the limit sample do not fluctuate - selfaveraging




100)Y model: Short range €-€ interactions

=) _ A o=\ A is dimensionless coupling constant
U)==o(F) = |
v V Is the electron density of states

v, (F)
one-particle
eigenfunctions
electron
% wavelength




Bl Short range €-€ N A o
10y MOCE]: [dssbules U(r)==5(r)

A is dimensionless coupling constant; Vis the electron density of states

one-particle
eigenfunctions

electron

wavelength v (T) is a random function

W 4 that raldl oscillates
a
v, (F)| >0
— ﬁ[

as Iong as

FY >0 [-invariance
Va ( ) IS preserved




- » Diagonal matrix elements are much bigger than
In the limit the offdiagonal ones
g —> X Ivldiagonal >> M

* Diagonal matrix elements in a particular sample
do not fluctuate - selfaveraging

}-:»-

More general: finite range interaction potential U(F)

offdiagonal

M pep = jdr\% ) ‘Wﬂ

~\|2
‘%‘(r)‘ = volume

The same
conclusion




Random E - spectrum
Matrices: (i) - i-th component of a-th eigenvector

in the limit N >«

Components of the different eigenvectors
as well as different components of the
same eigenvector are not correlated



Ber Exact wavefunctions at energy = &g In
ry chaotic systems behave as sums of plane

Conjecture waves with ‘k‘ ~ k_and random coefficients:

(v, @, () =

d ), d is # of dimensi
f(x)=T y1-4/2 3 is # of dimensions,
(x) ( 2) oo (%) Jﬂ(X) is Bessel function

Important:

when X increases f (X)decays
quickly enough for the integral

jf(x)(d_ldx to converge
°Only local correlations




AFRICA BILLIARD - a conformal image of a unit circle
Sang-Hyeon Ahn
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Distribution of the Sang-Hyeon Ahn
matrix elements |m

8 .
1
6 - Open boxes -
' levels from 20 to 30
= o? ﬂ\ Closed circuits —
Z | levels from 30 to 40
o 0=
O_Mmi 1 H—i’—‘rw—z
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Universal (Random Matrix) limit - Random
Matrix symmetry of the correlation functions:

All _correlation functions are inva_riant under
arbitrary orthogonal transformation:




There are only three operators, which are quadratic In
the fermion operators a’ , d , and invariant under RM
transformations:

total number of particles

total spin

0?0?0?0?




Charge conservation - C o+ A
(gauge invariance) '”OT or T only TT

Invariance under no S only SZ
rotations in spin space

Therefore, in a very general case

Only three coupling constants describe all of
the effects of e-e interactions



In a very general case coupling constants
describe effects of electron-electron interactions:

H = Zgana +H.
(04

Vo N

H. =eVA+EA2+JS%+ AT T.

|.L. Kurland, I.L.Aleiner & B.A., 2000

See also

P.W.Brouwer, Y.Oreg & B.l.Halperin, 1999
H.Baranger & L.l1.Glazman, 1999

H-Y Kee, I.L.Aleiner & B.A., 1998



In a very general case coupling constants
describe effects of electron-electron interactions:

H = Zgana +H.
o

H.  =eVA+EA%+ 5%+ A, T°T.

For a short range interaction with a coupling constant l

where 51 IS the one-particle mean level spacing



Only one-particle part of
the Hamiltonian, H, ,
contains randomness

o —uD



E determines the charging energy
C (Coulomb blockade)

A

describes the spin exchange interaction

determines effect of superconducting-like
BCS pairing



| Excitations are similar to the excitations in a disordered Fermi-gas.

ll.  Small decay rate
lll. Substantial renormalizations

Isn’t it a Fermi liquid ?

Fermi liquid behavior follows from the fact that

different wave functions are almost uncorrelated




! similar Fermi-gas.



Small decay rate

‘Why is it small

*What is it equal to ?
C
Q *What is the connection
B between the decay rate B

of the quasiparticles
and the dephasing rate



Quasiparticle decay rate at In a Fermi Liquid.

2 2
g) \eonsant) g

Reasons:

« At small £ the energy transfer, @, is small and the integration
over & and @ gives the factor &2

*The momentum transfer, ( , is large and thus the scattering
probability at given £”and @ does not depend on ' @ or&



Quasiparticle decay rate at In a Fermi Liquid.

Il. Low dimensions rF \/

/ \
Small momenta transfer, J , become important at | ©\VF |

low dimensions because the scattering probability is \ /
proportional to the squared time of the interaction

\ /7
(QVe)? 2
g /e, d=3

) > (82/8F)|Og(g|:/g) d=2

. (e

g d=1



Quasiparticle decay rate at In a Fermi Liquid.

l1l. Applicability s d=3

j oc (gz/gF)log(gF/g) d=2

. (e

g d=1
Conclusions:

1. For d=3,2 from E<< & it follows that £7, , >> N, ie,, that

the qusiparticles are well determined and the Fermi-liquid
approach is applicable.

2. Ford=1 &1, is of the order of N, i.e., that the Fermi-liquid

approach is not valid for 1d systems of interacting fermions.
Luttinger liquids



iquid.

Fermi
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Quasiparticle decay

Quasiparticle decay is beyond
the “universal Hamiltonian™

rate is small as g

€e



CONCLUSIONS

One-particle chaos + moderate interaction of the electrons i—

to a rather simple Hamiltonia

n of the system, which can be

called Zero-dimensional Fermi liquid.
The main parameter that justifies this description is the

Thouless conductance, whic

Excitations are characterizec
charge and spin, but not by t

N IS supposed to be large
by their one-particle energy,

nelir momentum.

These excitations have the lifetime, which Is proportional to

the Thouless conductance, I.

e., Is long.

This approach allows to describe Coulomb blockade

(renormalization of the comp

ressibility), as well as the

substantial renormalization of the magnetic susceptibility and

effects of superconducting p

airing
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