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What does it mean - non-Fermi liquid ?

A:The difference is the same as between 
bananas and non-bananas.

Q: What is the difference between 
Fermi-liquid and non-Fermi liquid ?

What does it mean Fermi liquid ?



Fermi LiquidFermi Liquid

Fermi statistics

Low temperatures

Not too strong interactions

Translation invariance

Fermi
Liquid

What does it mean?What does it mean?



It means thatIt means that
1. Excitations are similar to the excitations in a Fermi-gas:

a) the same quantum numbers – momentum, spin ½ , charge e
b) decay rate is small as compared with the excitation energy

Fermi statistics
Low temperatures
Not too strong interactions
Translation invariance

Fermi
Liquid

2. Substantial renormalizations. For example, in a Fermi gas

BgTcn µχγµ ,, =∂∂
are all equal to the one-particle density of states ν .
These quantities are different in a Fermi liquid



1. Resistivity is proportional to T2 :
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very 
low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

Signatures of the Fermi  - Liquid state  ?!

…The increase of the resistance caused by the interaction between
the electrons is proportional to T2 and at low temperatures exceeds 
the usual resistance, which is proportional to T5.

… the sum of the momenta of the interaction electrons can change
by an integer number of the periods of the reciprocal lattice. 
Therefore the momentum increase caused by the electric field can
be destroyed by the interaction between the electrons, not only by 
the thermal oscillations of the lattice. 



1. Resistivity is proportional to T2 :
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very 
low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

Umklapp electron – electron scattering dominates the 
charge transport (?!) 

Signatures of the Fermi  - Liquid state  ?!

( ) ( )pi
ZpG

n
G

G
ξε

ε
−

=,

( )pn G

p
Fp

Fermi liquid = 0<Z<1 (?!)

2. Jump in the momentum distribution 
function at T=0.

2a. Pole in the one-particle Green function



Landau Fermi  - Liquid theory
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Momentum

Momentum distribution

Total energy

Quasiparticle energy

Landau f-function

?Q: Can Fermi – liquid survive without the momenta
Does it make sense to speak about the Fermi – liquid
state in the presence of a quenched disorder
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?Does it make sense to speak about the Fermi –
liquid state in the presence of a quenched disorderQ:

1. Momentum is not a good quantum number – the
momentum uncertainty is inverse proportional to the

elastic mean free path, l. The step in the momentum 
distribution function is broadened by this uncertainty

2. Neither resistivity nor its temperature dependence is determined by the umklapp 
processes and thus does not behave as T2

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a 
function of the energy, ε. The residue , Z, makes no sense.

Nevertheless even in the presence of the disorderNevertheless even in the presence of the disorder
I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations



Quantum  Dot
e
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1. Disorder  (×impurities)
2. Complex  geometry }

e
e

e

e

×

×
3. e-e interactions

chaotic
one-particle
motion

Realizations:Realizations:
• Metallic clusters
• Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
• Carbon nanotubes
•
•



Energy 
scalesOneOne--particle problem (particle problem (Thouless, 1972))

1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = ET / δ1 g = Gh/e2



Zero Dimensional Fermi LiquidZero Dimensional Fermi Liquid
Finite Thouless
System energy ET

ε << ET 0Ddef

At the same time, we want the typical energies, ε , to 
exceed the mean level spacing, δ1 :

TE<<<< εδ1
1

1

>>≡
δ

TEg



g10

Localized states 
Insulator

Extended states 
Metal

Thouless Conductance and
One-particle Quantum Mechanics

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

The same statistics of the random 
spectra and one-particle wave 

functions (eigenvectors)

Ν  × Ν
Random Matrices

Quantum Dots with
dimensionless 
conductance g

Ν→ ∞ g→ ∞



|α,σ>TwoTwo--Body Body 
InteractionsInteractions

Set of one particle states. σ
and α label correspondingly 
spin and orbit.

εα -one-particle orbital energies Mαβγδ -interaction matrix elements
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|α,σ>TwoTwo--Body Body 
InteractionsInteractions

Set of one particle states. σ
and α label correspondingly 
spin and orbit.
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εα -one-particle orbital energies Mαβγδ -interaction matrix elements

αβγδ

αε

M

are taken from the shell model

are assumed to be random 

Nuclear
Physics

αβγδ

αε

M

RANDOM; Wigner-Dyson statistics 

? ? ? ? ? ? ? ?

Quantum
Dots
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Diagonal Diagonal - α,β,γ,δ are equal pairwise
α=γ and β=δ or α=δ and β=γ or α=β and γ=δ

Offdiagonal Offdiagonal - otherwise
αβγδM

It turns 
out that
in the limit

• Diagonal matrix elements are much bigger
than the offdiagonal ones

• Diagonal matrix elements in a particular 
sample  do not fluctuate - selfaveraging

loffdiagonadiagonal MM >>

∞→g



Toy model:Toy model: Short range e-e interactions

( ) ( )rrU GG δ
ν
λ

= λ is  dimensionless coupling constant 
ν is  the electron density of states

( )rGαψ
one-particle

eigenfunctions
( ) ( ) ( ) ( )rrrrrdM GGGGG

δγβααβγδ ψψψψ
ν
λ

∗∗= ∫

x

ψα

electron
wavelength



Short range e-e
interactionsToy model:Toy model: ( ) ( )rrU GG δ

ν
λ

=

λ is  dimensionless coupling constant;ν is  the electron density of states

( )rGαψ
one-particle

eigenfunctions
( ) ( ) ( ) ( )rrrrrdM GGGGG

δγβααβγδ ψψψψ
ν
λ

∗∗= ∫
electron

wavelength is a random function 
that rapidly oscillates

as long as
T-invariance 
is preserved

( )rGαψ

( ) 2
0rαψ ≥

G

( )2 0rαψ ≥
Gr

ψα



In the limit • Diagonal matrix elements are much bigger than 
the offdiagonal ones

• Diagonal matrix elements in a particular sample  
do not fluctuate - selfaveraging

loffdiagonadiagonal MM >>∞→g
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  U
G
r ( )More general:More general: finite range interaction potential

  
Mαβαβ =

λ
ν
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The same 
conclusion



Eα - spectrum
ψα (i) – i-th component of α-th eigenvector

( ) ( ) 1
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Nα γ αγψ ψ δ δ∗ =

Random Random 
Matrices:Matrices:

( ) ( ) 2
iji j

Nα γ αγ
βψ ψ δ δ−

=

in the limit N → ∞

Components of the different eigenvectors 
as well as different components of the 
same eigenvector are not correlated 



Exact  wavefunctions at energy in
chaotic systems behave as sums of plane 
waves with and random coefficients:

≈ εF
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Berry Berry 
Conjecture:Conjecture:

when     increases decays       
quickly enough for the integral 

to converge
Only local correlations
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Important:Important:

f x( )x
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0

d is # of dimensions, 
Jµ(x) is Bessel function

∞

∫ x d−1dx



AFRICA BILLIARD - a conformal image of a unit circle

ω z( ) = R
z + bz2 + ceiδ z 3

1 + 2b2 + 3c3

0.2;
1.5; 1

b c
Rδ

= =
= =

Sang-Hyeon Ahn
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Distribution of the 
matrix elements

Sang-Hyeon Ahn

Open boxes -
levels from 20 to 30

Closed circuits –
levels from 30 to 40
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Universal (Random Matrix) limit - Random 
Matrix symmetry of the correlation functions:

All correlation functions are  invariant under  
arbitrary  orthogonal transformation:
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There are only three operators, which are quadratic in 
the fermion operators      ,      , and invariant under RM
transformations:
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Charge conservation
(gauge invariance) -no ˆ T ˆ T + ˆ T ˆ T +or

Invariance under 
rotations in spin space

- no ˆ S 2ˆ S 

only

only

Therefore, in a very general case

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

Only three coupling constants describe all of 
the effects of e-e interactions



In a very general case only three coupling constants 
describe all effects of electron-electron interactions:
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I.L. Kurland, I.L.Aleiner & B.A., 2000
See also
P.W.Brouwer, Y.Oreg & B.I.Halperin, 1999
H.Baranger & L.I.Glazman, 1999
H-Y Kee, I.L.Aleiner & B.A., 1998



In a very general case only three coupling constants 
describe all effects of electron-electron interactions:
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For a short range interaction with a coupling constant λ
Ec =

λδ1

2
J = −2λδ1 λBCS = λδ1 2 − β( )

where       is the one-particle mean level spacingδ1



ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

Only one-particle part of 
the Hamiltonian,       ,
contains randomness

ˆ H 0



ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

Ec
determines the charging energy 
(Coulomb blockade)

describes the spin exchange interaction

determines effect of superconducting-like
pairing

J

λBCS



ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

Isn’t it a Fermi liquid ?
Fermi liquid behavior  follows from the fact that Fermi liquid behavior  follows from the fact that 

different wave functions are almost uncorrelateddifferent wave functions are almost uncorrelated



ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations uncorrelated



Small decay rate

•Why is it small

•What is it equal to

•What is the connection    
between the decay rate 
of the quasiparticles 
and the dephasing rate



Quasiparticle decay rate at T = 0 in a cleanclean Fermi Liquid.

I. I. d=3d=3
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Reasons:Reasons:
• At small ε the energy transfer, ω , is small and the integration 
over ε′ and ω gives the factor ε2. 
…………………………………………………………………
•The momentum transfer, q , is large and thus the scattering 
probability at given ε′ and ω does not depend on ε′ , ω or ε



Quasiparticle decay rate at T = 0 in a cleanclean Fermi Liquid. 

II. II. Low dimensionsLow dimensions
Small momenta transfer, q , become important at 
low dimensions because the scattering probability is 
proportional to the squared time of the interaction, 
(qvF. )-2

e vF

1/q
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Quasiparticle decay rate at T = 0 in a cleanclean Fermi Liquid. 

III. III. ApplicabilityApplicability
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Conclusions:Conclusions:
1. For d=3,2 from ε<< ε F it follows that ετe-e >> h, i.e., that 

the qusiparticles are well determined and the Fermi-liquid 
approach is applicable.

2. For d=1 ετe-e is of the order of h, i.e., that the Fermi-liquid 
approach is not valid for 1d systems of interacting fermions. 

Luttinger liquids



Quasiparticle decay rate at T = 0 in a ODOD Fermi Liquid.

ε′+ωε−ω

ε′
Fermi Sea

ε
Electronic spectrum is discrete

Need offdiagonal matrix elements

Quasiparticle decay is beyond 
the “universal Hamiltonian”

Quasiparticle decay 
rate is small as  g-1
Quasiparticle decay 
rate is small as  g-1

( )
ε

ετ =gee ≥



CONCLUSIONS
One-particle chaos + moderate interaction of the electrons 6
to a rather simple Hamiltonian of the system, which can be 
called Zero-dimensional Fermi liquid.
The main parameter that justifies this description is the 
Thouless conductance, which is supposed to be large
Excitations are characterized by their one-particle energy, 
charge and spin, but not by their momentum.
These excitations have the lifetime, which is proportional to 
the Thouless conductance, i.e., is long.
This approach allows to describe Coulomb blockade 
(renormalization of the compressibility), as well as the 
substantial renormalization of the magnetic susceptibility and 
effects of superconducting pairing  
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