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Abstract

We study resonantly-paired s-wave superfluidity in a degenerate gas of two species (hyperfine
states labeled by ›,fl) of fermionic atoms when the numbers N› and Nfl of the two species are
unequal, i.e., the system is ‘‘polarized.’’ We find that the continuous crossover from the Bose–
Einstein condensate (BEC) limit of tightly-bound diatomic molecules to the Bardeen–Cooper–Schri-
effer (BCS) limit of weakly correlated Cooper pairs, studied extensively at equal populations, is inter-
rupted by a variety of distinct phenomena under an imposed population difference DN ” N› � Nfl.
Our findings are summarized by a ‘‘polarization’’ (DN) versus Feshbach-resonance detuning (d)
zero-temperature phase diagram, which exhibits regions of phase separation, a periodic FFLO
superfluid, a polarized normal Fermi gas and a polarized molecular superfluid consisting of a molec-
ular condensate and a fully polarized Fermi gas. We describe numerous experimental signatures of
such phases and the transitions between them, in particular focusing on their spatial structure in the
inhomogeneous environment of an atomic trap.
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1. Introduction

1.1. Background and motivation

One of the most exciting recent developments in the study of degenerate atomic gases
has been the observation [1–9] of singlet paired superfluidity of fermionic atoms interact-
ing via an s-wave Feshbach resonance [10–18].

A crucial and novel feature of such experiments is the tunability of the position (detun-
ing, d) of the Feshbach resonance, set by the energy of the diatomic molecular (‘‘closed-
channel’’) bound state relative to the open-channel atomic continuum, which allows a
degree of control over the fermion interactions that is unprecedented in other (e.g.,
solid-state) contexts. As a function of the magnetic-field controlled detuning, d, fermionic
pairing is observed to undergo the Bose–Einstein condensate to Bardeen–Cooper–Schrief-
fer (BEC–BCS) crossover [19–29] between the Fermi-surface momentum-pairing BCS
regime of strongly overlapping Cooper pairs (for large positive detuning) to the coordi-
nate-space pairing BEC regime of dilute Bose-condensed diatomic molecules (for negative
detuning).

Except for recent experiments [30–35] that followed our original work [36], and a wave
of recent theoretical [37–83] activity, most work has focused on the case of an equal mix-
ture of two hyperfine states (forming a pseudo-spin 1/2 system), observed to exhibit pseu-
do-spin singlet superfluidity near an s-wave Feshbach resonance. Here, we present an
extensive study of such systems for an unequal number of atoms in the two pairing hyper-
fine states, considerably extending results and calculational details beyond those reported
in our recent Letter [36]. Associating the two pairing hyperfine states with up (›) and down
(fl) projections of the pseudo-spin 1/2, the density difference dn = n› � nfl between the two
states is isomorphic to an imposed ‘‘magnetization’’ m ” dn (an easily controllable exper-
imental ‘‘knob’’), with the chemical potential difference dl = l› � lfl corresponding to a
purely Zeeman field h ” dl/2.

This isomorphism makes a connection to a large body of work in a related condensed-
matter system, namely BCS superconductors under an applied Zeeman magnetic field,
providing further motivation for our study. In contrast to a normal Fermi liquid that
exhibits Pauli paramagnetism, a conventional homogeneous BCS state [84,85] at zero tem-
perature remains unmagnetized until, at a critical Zeeman field H Z

c , it is destroyed in a
first-order transition to the unpaired magnetized normal state. A natural question is
whether there can be a ‘‘compromise’’ state that exhibits both pairing and nonzero mag-
netization. One proposal for such a state dates back to work of Fulde and Ferrell (FF)
[86] and Larkin and Ovchinnikov (LO) [87], and has been the subject of strong interest
for many years [88–94], finding putative realizations in a variety of systems ranging from
heavy-fermion superconductors [95] to dense quark matter [92,94]. These so-called FFLO
states, theoretically predicted to be the ground state for a narrow range of applied Zeeman
field near the above-mentioned transition, are quite unusual in that, while exhibiting off-
diagonal long-range order (i.e., superfluidity), they spontaneously break rotational and
translational symmetry, forming a crystal of pairing order (i.e., a supersolid [96–99]) with
lattice vectors Q � kF› � kFfl, where kFr is the spin-r Fermi wavevector.

The observation of such magnetized superfluidity in condensed-matter systems has been
elusive for a variety of reasons, primarily because an applied physical magnetic field H

couples not only to spin polarization (i.e., the Zeeman effect) but also to the orbital motion
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of charged electrons. The latter coupling leads to the Meissner effect, in which a charged
superconductor expels an externally applied magnetic field. For type I superconductors,
for sufficiently large H > Hc, the energy cost of expelling the field exceeds the condensation
energy of the superconducting state and the system is driven normal via a first-order tran-
sition. Because this thermodynamic critical field Hc ¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pNð�FÞ

p
is much smaller than

[100] the critical (Clogston limit [84]) Zeeman field H Z
c ¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð�FÞ=vP

p
(where vP is the

Pauli magnetic susceptibility), i.e., H c=HZ
c ¼

ffiffiffiffiffiffiffiffiffiffi
4pvP

p
� 1, in condensed-matter systems

the effects of a purely Zeeman field are expected to be obscured by the orbital effects of
the physical applied magnetic field [101]. The effects of impurities [88,91], that are always
present in condensed-matter systems, can further complicate the realization of FFLO and
other magnetized superfluid states (see, however, recent work [95]).

In contrast, trapped atomic systems are natural settings where paired superfluidity at a
finite imposed magnetic moment, DN = N› � Nfl, can be experimentally studied by pre-
paring mixtures with different numbers N›, Nfl of two hyperfine-state species, with the
(Legendre-conjugate) chemical potential difference dl = l› � lfl a realization of the corre-
sponding effective (purely) Zeeman field.

Beyond the aforementioned isomorphism in the weakly-paired BCS regime, atomic gas-
es interacting via a Feshbach resonance allow studies of magnetized paired superfluidity as
a function of Feshbach resonance detuning across the resonance and deep into the strong-
ly-paired molecular BEC regime, inaccessible in condensed-matter systems.
1.2. Theoretical framework and its validity

The goal of our present work is to extend the study of s-wave paired resonant
superfluidity to the case of an unequal number of the two hyperfine-state species,
DN/N = (N› � Nfl)/N „ 0, namely, to calculate the phase diagram as a function of detun-
ing, d, and polarization, DN/N (or, equivalently, the chemical potential difference dl).

An appropriate microscopic model of such a Feshbach-resonantly interacting fermion
system is the so-called two-channel model [10,24–26,29] that captures the dynamics of
atoms in the open channel, diatomic molecules in the closed channel and the coupling
between them, which corresponds to the decay of closed-channel diatomic molecules into
two atoms in the open channel.

As we will show, the model is characterized by a key dimensionless parameter

c ¼
ffiffiffi
8
p

p

ffiffiffiffiffi
C0

�F

r
; ð1Þ

determined by the ratio of the Feshbach resonance width C0 � 4ml2
Ba2

bgB2
w=�h2 (where lB is

the Bohr magneton), to the Fermi energy �F, and describes the strength of the atom-mol-
ecule coupling that can be extracted from the two-body scattering length observed [13,17]
to behave as

as ¼ abg 1� Bw

B� B0

� �
; ð2Þ

as a function of the magnetic field B near the resonance position B0. Equivalently, c is the
ratio of the inter-atomic spacing n�1/3 (where n is the atom density) to the effective range r0

characterizing the energy dependence of two-body scattering amplitude in the open



D.E. Sheehy, L. Radzihovsky / Annals of Physics 322 (2007) 1790–1924 1793
channel. As was first emphasized by Andreev, Gurarie and Radzihovsky [26,29] in the
context of pairing in an unpolarized (symmetric) Fermi gas, in the limit of a vanishingly
narrow resonance, c fi 0, the two-channel model is exactly solvable by a mean-field solu-
tion. Consequently, for a finite but narrow resonance c� 1, the system admits a detailed
quantitative analytical description for an arbitrary value of detuning (throughout the
BEC–BCS crossover), with its accuracy controlled by a systematic perturbative expan-
sion in c.

This important observation also holds for asymmetric mixtures with an arbitrary
magnetization. Hence in the narrow Feshbach resonance limit we can accurately study
this system by a perturbative expansion in c about a variational mean-field solution.
To implement this we compute the energy in a generalized BCS-like variational state,
and minimize the energy over the variational parameters. Explicitly, the variational
state is parametrized by the bosonic condensate order parameter bQ, where Q is a cen-
ter of mass wavevector that allows for a periodically modulated condensate. Our choice
of the variational ground state is sufficiently rich as to include the normal state, the
gapped singlet BCS state as well as its molecular BEC cousin, a magnetized paired
superfluid state with gapless atomic excitations, a FFLO state [102,103], and inhomo-
geneous ground states that are a phase-separated coexistence of any two of the above
pure states. Our variational ansatz is not, however, general enough to allow for the
very interesting possibility of a uniform but anisotropic paired superfluid ground state,
e.g., a nematic superfluid [45,49], nor of more exotic multi-Q FFLO superfluids
[102,103].

Most of our work focuses on the narrow resonance (c� 1) limit, studied within the
two-channel model. Although experiments do not lie in this regime, the analysis provides
valuable and quantitatively trustworthy predictions for the behavior of the system
(throughout the phase diagram), at least in this one nontrivial limit. However, typical pres-
ent-day experiments [1–9] fall in a broad Feshbach resonance, c . 101 � 104� 1, regime
[104] (see Appendix A). To make contact with these experiments we also extend our results
to the broad resonance limit, complementing our two-channel analysis with an effective
single-channel model. For a broad resonance, we can ignore the dispersion of the
closed-channel molecular mode and integrate it out, thereby reducing the two channel
model to an effective single (open) channel model with a tunable four-Fermi coupling
related to the atomic s-wave scattering length. Although in this broad resonance regime
our mean-field variational theory is not guaranteed to be quantitatively accurate, we expect
that it remains qualitatively valid. Indeed, we find a reassuring qualitative consistency
between these two approaches.

Furthermore, to make detailed predictions for cold-atom experiments we extend our
bulk analysis to include a trap, VT (r). We do this within the local density approximation
(LDA). Much like the WKB approximation, this corresponds to using expressions for the
bulk system, but with an effective local chemical potential l (r) = l � VT (r) in place of l.
The validity of the LDA approximation relies on the smoothness of the trap potential,
namely that VT (r) varies slowly on the scale of the longest physical length k (the Fermi wave-
length, scattering length, effective range, etc.) in the problem, i.e., (k/VT(r)) dVT(r)/dr� 1.
Its accuracy can be equivalently controlled by a small parameter that is the ratio of the
single particle trap level spacing dE to the smallest characteristic energy Ec of the studied
phenomenon (e.g, the chemical potential, condensation energy, etc.), by requiring
dE/Ec� 1.
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1.3. Outline

The rest of the paper is organized as follows. In Section 2, we summarize our main
results. In Section 3, we review the standard two-channel and one-channel models of ferm-
ions interacting via an s-wave Feshbach resonance. Focusing on a narrow resonance
described by the two-channel model, we compute the system’s ground state energy in
Section 4. By minimizing it we map out the detuning-polarization phase diagram. Focus-
ing first on uniformly-paired states (i.e., ignoring the FFLO state), we do this for the case
of positive detuning (the BCS and crossover regimes) in Section 5, and for negative detun-
ing (the BEC regime) in Section 6, finding a variety of phases and the transitions between
them. In Section 7, we revisit the positive-detuning regime to study the periodically-paired
FFLO state. In Section 8, we complement our analysis of the two-channel model with a
study of the one-channel model, finding an expected qualitative agreement. To make pre-
dictions that are relevant to cold-atom experiments, in Section 9 we extend our bulk (uni-
form-system) analysis to that of a trap. We conclude in Section 10 with a discussion of our
work in the context of recent and future experiments and relate it to other theoretical stud-
ies that have recently appeared in the literature. We relegate many technical details to a
number of Appendices.
2. Summary of principal results

Having motivated our study and discussed its theoretical framework and validity,
below we present a summary of the main predictions of our work, thereby allowing
a reader not interested in derivations easy access to our results. As discussed above,
the quantitative validity of our calculations is guaranteed in the narrow resonance
c� 1 limit, with all expressions given to leading order in c. Our results (summarized
by Figs. 1–6) are naturally organized into a detuning-polarization phase diagram (see
Figs. 3 and 4) and our presentation logically splits into predictions for a bulk system
and for a trapped system.
2.1. Bulk system

In this somewhat theoretically-minded presentation of our results, we focus on the two-
channel description, outlining the system’s phenomenology as a function of detuning,
d . 2lB(B � B0) (with B0 the magnetic field at which the Feshbach resonance is tuned
to zero energy), and chemical potential difference h, or imposed polarization DN/N.
2.1.1. BCS regime: d� 2�F
For large positive detuning, the closed-channel molecules are energetically costly, and

the atom density is dominated by open-channel atoms, exhibiting a weak attraction med-
iated by virtual closed-channel molecules. Consequently, for a weak chemical potential
difference (or Zeeman field) h we find a standard s-wave singlet (non-polarized) BCS super-
fluid ground state, that, as a function of detuning, undergoes a BCS–BEC crossover that is
identical to the well-studied crossover at vanishing h. Deep in the BCS regime, for fixed
chemical potential l, this singlet paired state becomes unstable when the Zeeman field h

overwhelms the superconducting gap DBCS(l). For simplicity, for now ignoring the FFLO
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a

Fig. 1. (a) Global phase diagram as a function of Feshbach resonance detuning at fixed total atom number N and
chemical potential difference h within the two-channel model, showing homogeneous superfluid (SF), magnetized
superfluid (SFM), FFLO and spin-polarized normal (N) phases as well as a regime of phase separation (PS,
shaded). (b) Zoom-in of the positive-detuning BCS regime, showing the regime of phase separation (gray) and
FFLO state (red online). See Fig. 41 for a similar phase diagram within the one-channel model. d̂� � d�=�F,
d̂M � dM=�F and the tricritical point d̂c � dc=�F indicate limiting detuning values for FFLO, SFM and phase
separated states, respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)
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state, the BCS superfluid then undergoes a first-order transition to the partially-polarized
normal Fermi gas state at

hcðl; dÞ ¼
DBCSðlÞffiffiffi

2
p ; ð3aÞ

¼4
ffiffiffi
2
p

e�2le
� d�2l

c
ffiffiffiffiffi
�Fl
p

; ð3bÞ
consistent with established results first found by Clogston [84] and Sarma [85]. As is gener-
ically the case for first-order transitions, thermodynamic quantities exhibit jump disconti-
nuities as h crosses hc. In particular, we find the discontinuities in the atomic, molecular
and total densities are, respectively,



Fig. 2. Plot of molecular scattering length am(d,h) Eq. (16), normalized to its value at h = 0, as a function of
2h/|d|.

b

a

Fig. 3. Global phase diagram (a) as a function of Feshbach resonance detuning at fixed population difference
DN
N ¼

N"�N#
N"þN#

. The regime of phase separation (PS) is gray, and the FFLO regime (too thin to see on this scale)
intervenes along a thin line at positive detuning, indicated with a thick dark (red online) line. (b) Zoom in of the
BCS regime at positive detuning showing the regime of phase separation and the FFLO regime.
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Fig. 4. Polarization DN/N vs. detuning / � 1
kFas

phase diagram of the one-channel model (appropriate for
resonance width c fi1) within mean-field theory showing regimes of FFLO, superfluid (SF), magnetized
superfluid (SFM), and phase separation (PS). Note that here (in contrast to a narrow Feshbach resonance c� 1,
Fig. 3) at unitarity, (kFas)

�1 = 0, the boundary between N and PS is at DN/N < 1, consistent with experiments
[30].

a

b

Fig. 5. (a) Local magnetization m(r) radial profile confined to the normal outer shell of the cloud, r > rc, for
coupling (kF|as|)

�1 = 1.5 and DN
N ¼ 0:15 (dashed) and DN

N ¼ 0:20. (b) Sequence of shells, with increasing radius,
implied by the magnetization profiles in (a).
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Fig. 6. (a) Normalized molecular density �nmðrÞ and normalized magnetization �mðrÞ of a trapped fermion gas as a
function of radius r (normalized to the radius of the unpolarized cloud, with parameters given in Section 9.2). (b)
Schematic of the sequence of shells, with increasing radius, implied by the curves in (a).
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Dna � na
SF � na

N ’
cD2

BCSffiffiffi
l
p 1� 1

2
ln

DBCS

8e�2l

� �
> 0; ð4aÞ

Dnm � nm
SF � nm

N ’
D2

BCS

g2
> 0; ð4bÞ

Dn � nSF � nN;

’ 2D2
BCS

g2
þ cD2

BCSffiffiffi
l
p 1� 1

2
ln

DBCS

8e�2l

� �
> 0; ð4cÞ

where na
SF and na

N are the free atomic densities in the superfluid and normal states, respec-
tively, nm

SF and nm
N are their molecular analogs and n is the total (whether free or paired)

atom density. Here, c � m3=2=
ffiffiffi
2
p

p2�h3 is defined by the three-dimensional density of states
Nð�Þ ¼ c

ffiffi
�
p

. The species imbalance (magnetization) m = (N› � Nfl)/V also exhibits a jump
discontinuity

Dm � mSF � mN ’ �2chc
ffiffiffi
l
p

< 0; ð5Þ

across hc.
In the more experimentally-relevant (to cold atoms) fixed total atom number N ensem-

ble, the density difference between the normal and superfluid states makes it impossible for
the normal state to satisfy the imposed number constraint immediately above
hc1(N,d) ” hc(lSF(N),d). [Here, lSF,N are the superfluid (SF) and normal (N) state chemical
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potentials corresponding to the imposed N.] Consequently, we find that in the fixed num-
ber ensemble the transition at hc opens up into a coexistence region hc1(d) < h < hc2(d) in
which the gas is an inhomogeneous mixture of phase-separated superfluid and normal
states, with respective volume fractions x (h,d) and 1 � x (h,d) varying according to

xðh; dÞ ¼ n� nN½h; lcðhÞ�
nSF½d; lcðhÞ� � nN½h; lcðhÞ�

; ð6Þ

to satisfy the imposed total atom number constraint n = N/V = xnSF + (1 � x)nN. Here,
lc (h) is the critical chemical potential as a function of h, implicitly given by Eq. (3b), spec-
ifying the SF–N first-order phase boundary. The coexistence region is bounded by hc2(d)
from above, corresponding to a Zeeman field below which a pure partially-polarized nor-
mal Fermi gas phase cannot satisfy the imposed number constraint while remaining the
ground state.

A more careful analysis, that includes a periodically-paired FFLO state in the varia-
tional ansatz, shows that, in fact, deep in the BCS regime, for detuning d > d* � 2�F,
the first-order transition is actually (from the singlet BCS state) into a magnetized super-
fluid FFLO state. As illustrated in Fig. 1b and consistent with many deep-BCS studies
[86,87,89], we find that this fragile state only survives over a narrow sliver of Zeeman fields
(or imposed polarization) [103] undergoing a continuous [105–108] transition at hFFLO(d)
to a partially-polarized normal Fermi gas ground state. Our work is an extension of these
earlier BCS studies to a varying detuning (controlling the strength of the attractive inter-
actions), with our main result in this regime the location of the critical detuning

d� � �F 2� c
2

lnð0:159cÞ
h i

; ð7Þ

accurately predicted for a narrow resonance (c� 1), below which the FFLO state is unsta-
ble for any h or DN. As seen in Fig. 1b, above d*, deep in the BCS regime, the boundaries
hc1, hc2, and hFFLO display exponential behavior [defining DF ” DBCS(�F)]:

hc1ðdÞ �
1ffiffiffi
2
p DF exp � d2D2

F

8c2�4
F

� �
; d� 2�F; ð8aÞ

hc2ðdÞ �
1ffiffiffi
2
p DF exp � dD2

F

16c�3
F

� �
; d� 2�F; ð8bÞ

hFFLOðdÞ � gDF exp � g2dD2
F

8c�3
F

� �
; d� 2�F ð8cÞ

never crossing with increasing detuning, the latter two boundaries asymptoting to a ratio
hFFLO=hc2 ¼ g

ffiffiffi
2
p
� 1:066 previously found by Fulde and Ferrell [86].

2.1.2. Crossover regime: 0 < d < 2�F
As the detuning is lowered below approximately 2�F, it becomes favorable (for low

chemical potential difference h) to convert a finite fraction of the Fermi sea (between
l � d/2 and �F) into Bose-condensed molecules. Since in this crossover regime the pairing
strength (proportional to the growing molecular density) is no longer driven by Fermi sur-
face pairing and is therefore no longer exponentially weak, the response to the chemical
potential difference, h, (or the imposed polarization, DN) changes qualitatively from the
weakly-paired BCS regime discussed above.
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Consequently, the FFLO state, driven by mismatched Fermi-surface pairing, is no long-
er stable for d < d* [given by Eq. (7)], leading to a direct first-order transition between a
paired superfluid and a partially polarized normal Fermi gas (see Fig. 1).

As above, for imposed atom number the phase boundary splits into a superfluid-normal
coexistence region bounded by hc1(d) and hc2(d). The lower boundary, hc1(d), is still deter-
mined by the value of the gap, D. However, because the gap is in turn set by the molecular
condensate D ¼ g

ffiffiffiffiffiffiffiffiffiffiffi
nmðdÞ

p
, that in this regime is no longer exponentially small but grows as

a power-law with detuning reduced below 2�F, hc1(d) is also a power-law in 2�F � d. We
note, however, that while hc1(d) is significantly larger than its exponentially small value
in the BCS regime, it nevertheless remains small compared to l for a narrow resonance,
justifying a linear response (in h) approximation for the normal-state energy near hc1.

The upper boundary, hc2(d), (no longer in the linear Pauli-paramagnetic regime, i.e.,
hc2 l) is increased even more dramatically beyond that of Eq. (8b), due to the superflu-
id-normal density difference enhanced by a large molecular density nm that here is a finite
fraction of the total atom density. This considerably spreads the coexistence region for d
below 2�F, with hc1(d) given by

hc1ðdÞ ’ �F

ffiffiffi
c
3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

2�F

� �3=2
s

; dM < d < 2�F; ð9Þ

and the critical detuning dM given by

dM � �1:24�F

ffiffiffi
c
p
: ð10Þ

Here, hc2(d) is implicitly given by

�
3=2
F ’ 1

2

d
2
þ hc2ðdÞ

� �3=2

� d
2
� hc2ðdÞ

� �3=2

H
d
2
� hc2ðdÞ

� �" #
; d < 2�F; ð11Þ

which is well-approximated by

hc2ðdÞ ’ 22=3�F �
d
2
; d < 22=3�F; ð12Þ

over most of the range of interest.
2.1.3. BEC regime: d < 0

In the BEC regime, a new uniform magnetized superfluid (SFM) phase appears, for detu-
nings below dM, when the population imbalance DN = N› � Nfl is imposed. The SFM

ground state consists of closed-channel singlet molecules, with the remaining unpaired
atoms forming a fully-polarized Fermi sea that carries the imposed magnetization.

As illustrated in the phase diagram, Fig. 1, for d < dM a spin-singlet (unpolarized)
molecular (BEC) superfluid undergoes a second-order quantum phase transition at

hmðdÞ � jdj=2; d < dM ; ð13Þ

to the magnetized SFM superfluid. The transition turns into a (sharp at low T) crossover at
any finite temperature, since then the magnetization is finite for arbitrarily small h, even
below hm. In the narrow-resonance limit, the phase boundary hm(d) is determined by the
vanishing of the majority-species chemical potential l› = h � |d|/2. Physically, this
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corresponds to the condition that the gain in the Zeeman energy �hDN compensates the
loss of the molecular binding energy |d|/2 per atom.

For intermediate negative detuning dc < d < dM, upon increasing the Zeeman field h the
magnetized superfluid, SFM, undergoes a first-order transition at hc(d) [given by the
implicit Eq. (221b) in the main text]. In the more experimentally-relevant fixed atom num-
ber N ensemble this transition at hc(d) opens up (as is standard for a first-order transition)
into a phase-separated region of coexistence between the SFM and a fully-polarized nor-
mal atomic gas. This phase-separated regime is bounded by

hc1ðdÞ � 0:65jdj; dc < d < 0; ð14Þ

hc2ðdÞ � 22=3�F þ
jdj
2
; d < 0; ð15Þ

that are continuations of the boundaries [Eqs. (8a), (8b), (9) and (12)] found in the BCS
and crossover regimes above. We find that the SFM-phase separation instability, initiated
at hc1, is signaled by an enhanced compressibility and a corresponding suppression (with
increasing h) of the molecular scattering length

am ’
p2�Fc2

16
ffiffiffiffi
m
p jdj3=2

F 4

2h
jdj

� �
; ð16Þ

plotted in Fig. 2. The function F4(x) is defined in Eq. (195) of the main text. In the narrow
resonance limit, c� 1, indeed hc1 is determined by the vanishing of am, as given in Eq. (14)
above.

As illustrated in Fig. 1a, for sufficiently large negative detuning, d < dc, the hc1(d) and
hc2(d) boundaries cross and the first-order SFM–N transition and the corresponding
phase-coexistence region are eliminated. The SFM then undergoes a direct continuous
transition at hc2 (d) into a fully-polarized normal state.

It is now straightforward to convert the phase diagram and our other predictions to the
more experimentally-relevant ensemble of fixed total atom number N and imposed atomic
species difference (polarization) DN = N› � Nfl. As can be seen in Fig. 3, in this ensemble
for positive detuning (BCS and crossover regimes), the singlet BCS superfluid is confined
to the detuning axis, and is unstable to phase separation and coexistence with a normal
atomic gas for any imposed population imbalance. The upper boundary of the coexistence
region and the phase boundary of the FFLO phase are then, respectively, given by

DNc2

N
� 3DF

2
ffiffiffi
2
p

�F

exp � dD2
F

16c�3
F

� �
; ð17Þ

DN FFLO

N
� 3gDF

2�F

exp � g2dD2
F

8c�3
F

� �
: ð18Þ

As seen from the phase diagram these two boundaries cross at d*, thereby eliminating the
FFLO state for lower detuning. For a narrow Feshbach resonance (c� 1) at even lower
detuning (see Fig. 3(a))

dp ’ 22=3�F; ð19Þ

the normalized critical polarization DNc2/N reaches unity according to
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DNc2

N
� 1� ��

3
2

F ðd� dpÞ3=2Hðd� dpÞ: ð20Þ

This implies that for these lower detunings, d < dp, only a fully polarized normal Fermi gas
can appear. In contrast, as illustrated in Fig. 4, for a broad resonance (large c) DNc2/N < 1,
consistent with experiments [30] that find DNc2/N � 0.7 near unitarity.

For sufficiently negative detuning, d < dM, the uniform magnetic superfluid state, SFM,
appears at low population imbalance. For dc < d < dM it becomes unstable to phase sep-
aration and coexistence with the fully-polarized atomic Fermi gas for DN > DNc1, with

DNc1

N
� 0:029

d
�F

� �3=2

: ð21Þ

As this population imbalance is approached, the molecular scattering length am(d,DN)
drops precipitously and the corresponding molecular condensate Bogoliubov sound veloc-
ity

uðd;DNÞ ’ u0ðdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DN

N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 4 1þ 25=3

jd̂j
DN
N

� �2=3
 !vuut ; ð22Þ

(where d̂ � d=�F) vanishes according to

u 	 0:38u0 1� DNc1

N

� �1=2

1� DN
DN c1

� �1=2

; DN ! DN c1: ð23Þ

Finally, for d < dc, the SFM state is stable for any population imbalance up to the fully
polarized limit of DN = N, where it is identical to the fully polarized (single species) Fermi
gas.

2.2. Trapped system

To make a more direct connection with atomic-gas experiments we summarize the
extension of the above bulk results to the case of a trapped gas. This is particularly simple
to do in the case of a trap potential that varies smoothly on the scale of the Fermi wave-
length, i.e., when the Fermi energy is much larger than the trap level spacing, the regime of
most atomic gas experiments. In this regime, the trap potential can be easily taken into
account via the local density approximation (LDA). Namely, we treat the trapped system
as a locally uniform one (thereby taking advantage of our bulk results), but with a local
chemical potential given by l(r) = l � VT(r). The true chemical potential l and chemical
potential difference h still appear and are determined by constraints of the total atom num-
ber N and species imbalance DN. For simplicity we consider an isotropic trap with
V T ðrÞ ¼ 1

2
mX2

T r2, but our results can be easily generalized to an arbitrary anisotropic trap.
The phase transitions and coexistence discussed above are strikingly accentuated by the

trap. To see this, note that (within the LDA approximation) the local phenomenology of a
trapped cloud is that of the bulk one at an effective chemical potential l(r). Hence, a radial
slice through a trapped cloud is an effective chemical potential ‘‘scan’’ through the bulk-
system phase diagram at fixed l and h (the latter displayed in the main text, Fig. 32). Con-
sequently, as we first predicted in our earlier publication [36], a trapped cloud consists of a
combination of shells of the various superfluid and normal phases, with the exact structure
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determined by the value of detuning and population imbalance (or, equivalently, the Zee-
man field h). A critical value of the chemical potential lc separating two phases in the bulk
system translates, within LDA, into a critical radius rc, given by l(rc) = lc (more generally
a hypersurface), that is the boundary between two corresponding phase shells in a trapped
gas.

More concretely, on the BCS side of the resonance (ignoring for simplicity the narrow
sliver of the FFLO state), the normal and (singlet BCS-) SF phases translate into two
shells of a trapped cloud. Because the bulk hc(l) [see Eq. (3b)] is an increasing function
of l and l(r) is a decreasing function of r, the SF phase (that in the bulk appears at high
chemical potential and low h) forms the cloud’s inner core of radius rc(d,h,N) set by
hc(l(rc)) = h. The normal phase forms the outer shell with inner radius rc(d,h,N) and outer
shell radius R0(d,h,N) determined by the vanishing of the normal phase chemical potential,
lN(R0,d,h,N) = 0. The resulting magnetization density profile m(r), confined to (and there-
by vividly imaging) the outer normal shell, is illustrated in Fig. 5a. Following our original
prediction [36], this shell structure has recently been experimentally observed in Refs.
[30,31], and subsequently calculated theoretically by a number of groups [53,55,59,58].

On the BEC side of the resonance, the appearance of an additional phase, the SFM,
allows for the possibility of a triple-shell cloud structure SF fi SFM fi N with increasing
radius at low population imbalance (small h). The inner (Rf1) and outer (RTF) boundaries
of the SFM shell occur where the population imbalance m(r) becomes nonzero at the
SF–SFM boundary and where the molecular density nm(r) vanishes at the SFM–N
boundary, respectively. The radii of the shells are given by the bulk critical fields
hm(l(Rf1)) = h and hc(l(RTF)) = h. The cloud’s radial profile for nm(r) and m(r) for this
case is illustrated in Fig. 6. For larger population imbalance Rf1 is driven to zero, resulting
in a double-shell SFM fi N structure. At even higher DN, RTF vanishes leading to a fully
polarized, normal cloud of radius Rf2.

Another interesting prediction of our work [36] is the possibility to realize in resonantly-
interacting degenerate Fermi gases the enigmatic FFLO state [86,87]. In an idealized
box-like trap the molecular occupation distribution nq ¼ hbyqbqi of this inhomogeneous
superfluid exhibits finite momentum pairing peaks set by Fermi surface mismatch
Q(d) 	 kF› � kFfl

QðdÞ �
ffiffiffi
2
p

kDBCSð�FÞ
�hvF

; ð24Þ

(here k . 1.200) corresponding to reciprocal lattice vectors of this supersolid [102]. This
will translate into spontaneous Bragg peaks (observable by projecting onto a molecular
condensate [1]) appearing at �hQt/m in the cloud’s shadow images after expansion time
t, akin to that exhibited by a superfluid released from a lattice potential [109], where, in
contrast to the FFLO state, Bragg peaks are explicitly induced by the periodicity of the
optical potential.

However, realistic magnetic and optical traps produce a harmonic (more generally,
power-law, rather than box-like) confining potential, that leads to a large density vari-
ation in the gas. Consequently, following the above arguments, within LDA in a real-
istic trap the gas can only exhibit a thin shell of FFLO phase, whose width dr (among
other parameters, N, DN, and d) is set by the inverse trap curvature and proportional to
the difference in critical chemical potentials for the transition into the FFLO and
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normal phases. Clearly, to resolve the abovementioned Bragg peaks, the Bragg peak
width �h/dr must be much smaller than Q, or, equivalently, the FFLO shell width dr

must be larger than the FFLO period 2p/Q. Since FFLO state is confined to a narrow
sliver of the phase diagram and to be meaningful (i.e., LDA reliable) the shell width
must be much larger than the period 2p/Q, its direct observation in density profiles
may be difficult for present-day experiments. Similar conclusions about the effect of
the trap on the FFLO phase have been found in recent work by Kinnunen et al. [53]
that does not rely on the LDA approximation.

On the other hand, the identification of the FFLO state through less direct probes
maybe possible. For example, its spontaneous breaking of orientational symmetry for
an isotropic trap should be detectable in noise experiments [110–112] sensitive to angle-
dependence of pairing correlations across a Fermi surface.

Furthermore, gapless atomic excitations available in the FFLO and SFM states should
be observable through Bragg spectroscopy and reflected in thermodynamics such as
power-law (rather than nearly activated paired-superfluid) heat capacity. The latter should
also exhibit a latent heat peak across the first-order SFM fi N, SF fi FFLO, FFLO fi N
[105], and SF fi N phase transitions, and a nearly mean-field singularity across the
continuous SF fi SFM transition.

Finally, we note that our above results (that are quantitatively accurate at least in the
narrow resonance limit) show no evidence of a homogeneous but magnetized superfluid
near the unitary limit as fi1, nor in the BCS and crossover regimes defined by positive
detuning. We find unambiguously that this magnetized superfluid phase only appears on
the BEC side for sufficiently negative detuning, d < dM, embodied in the SFM ground state.
We do, however, find that the corresponding inverse scattering length
ðkFasMÞ�1 ¼ �2d̂M=pc shifts toward the unitary limit with increased resonance width (sat-
urating at (kFasM)�1 . 1 within mean-field theory) and upon increasing temperature.
Whether this is sufficient or not to explain the putative existence of such a phase, as
claimed in the Rice experiments [31] (that were based on an apparent observation, in
the unitary limit, of a critical population imbalance for the transition to phase separation),
remains an open question.

3. Two-channel model of s-wave Feshbach resonance

The two-channel model of fermions interacting via an s-wave Feshbach resonance,
briefly discussed in Section 1.2, describes open-channel fermions (ĉkr) and closed-channel
molecular bosons (b̂q) coupled by molecule-atom interconversion [10,24–26,113]. It is
characterized by the following model Hamiltonian:

H ¼
X
k;r

�kĉykrĉkr þ
X

q

�q

2
þ d0

� �
b̂yqb̂q þ

gffiffiffiffi
V
p

X
k;q

b̂yqĉkþq
2#ĉ�kþq

2" þ ĉy�kþq
2"

ĉy
kþq

2#
b̂q

� �
;

ð25Þ

where V is the system volume (that we shall generally set to unity) �k ” k2/2m, m is the
atom mass and the ‘‘bare’’ detuning d0 is related to the position of the Feshbach resonance
d in a way that we determine below. The molecule-atom interconversion term is character-
ized by a coupling g that measures the amplitude for the decay of a closed-channel s-wave
singlet diatomic molecule into a pair of open-channel fermions.
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Although within some approximation the model H, Eq. (25), can be derived from a
more microscopic starting point of purely fermionic atoms interacting via a van der Waals
potential and including exchange and hyperfine interactions (see e.g., Ref. [23]), the mod-
el’s ultimate justification is that, as we will show below, it reproduces the Feshbach reso-
nance phenomenology. Namely, for positive detuning d > 0 the model exhibits a resonance
at rest-energy d, whose width is controlled by g, and exhibits a true molecular bound state
at negative detuning d < 0. Associated with the resonance the open-channel s-wave scatter-
ing length as(d) diverges and changes sign as �1/d, when the resonance at d is tuned
through zero energy.
3.1. Scattering theory in the vacuum

The above properties follow directly from the scattering amplitude f0(E), that can be
easily computed exactly for two atom scattering in the vacuum [26,29]. The latter follows
from the T-matrix f0(E) = � (m/2p�h2)T(E) that, in a many-body language, is given by the
diagram in Fig. 7a, with the molecular propagator exactly given by the RPA-like geomet-
ric series of fermion polarization bubbles illustrated in Fig. 7b. With the details of the cal-
culations relegated to Appendix A (see also Refs. [26,29]), we find at low E

f0ðEÞ ¼ �
�hffiffiffiffi
m
p

ffiffiffiffiffi
C0

p

E � dþ i
ffiffiffiffiffi
C0

p ffiffiffiffi
E
p ; ð26Þ

where d is the renormalized (physical) detuning and C0 is a parameter characterizing the
width of the resonance, respectively given by

d ¼ d0 � g2

Z
d3p

ð2p�hÞ3
m
p2
; ð27Þ

C0 �
g4m3

16p2�h6
: ð28Þ

The integral in Eq. (27) is cut off by the ultraviolet scale K . 2p/d, set by the inverse size d

of the closed-channel (molecular) bound state, so that
a

b

Fig. 7. (a) Feynman diagram corresponding to the atom scattering amplitude, with solid lines indicating atoms
and the single (double) dashed lines indicating the bare (full) molecular propagator. (b) A self-consistent equation
for the molecular propagator.
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d ¼ d0 �
g2mK

2p2�h2
; ð29Þ

giving the relation between the bare and physical detuning.
The s-wave scattering length [114] as = � f0(0) is then given by

asðdÞ ¼ ��h

ffiffiffiffiffi
C0

m

r
1

d
: ð30Þ

Thus, to reproduce the experimentally observed dependence of the scattering length on the
magnetic field B, Eq. (2), we take [10] d � 2lB(B � B0), representing the Zeeman energy
splitting (at large two-atom separation) between the open and closed channels. The rele-
vant magnetic moment is naturally dominated by the two-atom electronic spin state (hence
the proportionality constant of the Bohr magneton lB above), that is approximately a sin-
glet for the closed channel and a triplet for the open channel. Detailed multi-channel cal-
culations (see, e.g., Ref. [18]) allow a more accurate determination of parameters when
necessary. Equating as in Eq. (30) with aexp

s , Eq. (2), allows us to determine the Feshbach
resonance energy width C0 (or equivalently the parameter g) arising in the model in terms
of the experimentally measured ‘‘width’’ Bw defined by the dependence of the scattering
length on B in Eq. (2):

C0 �
4ml2

Ba2
bgB2

w

�h2
: ð31Þ

The bound states of the model are determined by the real negative-energy poles of f0(E),
that can be shown to appear only at negative detuning [115], d < 0. For small negative
detuning, |d|� C0, the pole is at low energy, E� C0, so that E in the denominator of
f0(E) can be neglected relative to

ffiffiffiffiffiffiffiffiffi
C0E
p

. At more negative detuning, |d|� C0, one can in-
stead ignore the

ffiffiffiffiffiffiffiffiffi
C0E
p

and the pole is simply given by the detuning d. Together these limits
give:

EpðdÞ �
� d2

C0
¼ � �h2

2ma2
s

for jdj � C0;

d for jdj � C0;

(
ð32Þ

a standard result [114] consistent with the observed phenomenology of Feshbach reso-
nances [13,17]. The complete Ep(d) interpolating between these limiting expressions is giv-
en by

EpðdÞ ¼ �
C0

2
1þ 2jdj

C0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jdj

C0

s" #
; ð33aÞ

¼ � 2�h2

mr2
0

1þ jr0j
as
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jr0j

as

s" #
; ð33bÞ

obtained by solving the quadratic equation 1/f0(Ep) = 0. In Eq. (33b) we expressed Ep in
terms of the scattering length as and the effective range parameter r0 ¼ �2�h=

ffiffiffiffiffiffiffiffiffi
mC0

p
. We

note in passing that, unlike the case of a non-resonant short-range potential where
r0 > 0 and measures the range of the potential (hence the name), here, for a resonant inter-
action, r0 < 0 is negative, with its magnitude characterizing the closed-channel molecular
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lifetime s 	 �h=
ffiffiffiffiffiffiffiffi
C0d
p

at positive detuning [26,29]. In terms of as and r0 the scattering ampli-
tude takes the standard form [114]

f0ðkÞ ¼
1

�a�1
s þ r0k2=2� ik

; ð34Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrE=�h2

q
and mr = m/2 is the two-atom reduced mass.

As can be seen by analyzing Eq. (26), the physical bound state disappears [115] for posi-
tive d. However, as illustrated in Fig. 8, a positive energy resonance does not appear until d
reaches the threshold value of d* = C0/2, corresponding to |as(d*)| = |r0|. This absence of a
resonance for a range of positive detuning 0 < d < d* is a property unique (due to the
absence of a centrifugal barrier) to an s-wave resonance, contrasting with finite angular
momentum resonances [116,29].

For larger positive detuning, d > C0/2 (|as| < |r0|), a finite-width resonance appears at a
complex Ep(d) given by

EpðdÞ ¼ ErðdÞ � iCðdÞ; ð35Þ

with

ErðdÞ ¼ d� 1

2
C0 ¼

2�h2

mr2
0

jr0j
jasj
� 1

� �
; ð36aÞ

CðdÞ ¼ C0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d
C0

� 1

s
¼ 2�h2

mr2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jr0j=jasj � 1

p
; ð36bÞ

where the imaginary part C measures the resonance width (i.e., molecular decay rate is
C/�h).

3.2. Scattering at finite density: Small parameter

As already discussed in the Introduction, at finite density n ¼ k3
F=3p2 the two-channel

model admits a dimensionless parameter c / 1/(kF|r0|) that is the ratio of the average atom
spacing n�1/3 to the effective range. The parameter c controls a perturbative expansion
Fig. 8. Plot of the negative-energy bound-state [E < 0, Eq. (33b)] and positive-energy resonance [E > 0, Eq. (36a)]
positions as a function of �|r0|/as.
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(about an exactly solvable non-interacting g = 0 limit) of any physical quantity and is giv-
en by

c � g2Nð�FÞ
�F

¼
ffiffiffi
8
p

p

ffiffiffiffiffi
C0

�F

r
¼ g2cffiffiffiffiffi

�F
p ¼ 8

p
1

kFjr0j
; ð37Þ

related to the ratio of the Feshbach resonance width (controlled by the atom-molecule
coupling g) to the Fermi energy. The key observation is that c is independent of the scat-
tering length as and detuning d, and as such, once set small, remains small throughout the
crossover, even for a Feshbach resonance tuned through zero. Hence, two-channel model
predictions for a narrow Feshbach resonance, (defined by c� 1, i.e., width of the reso-
nance much smaller than the Fermi energy) are quantitatively accurate throughout the
BEC–BCS crossover.

This contrasts qualitatively with a one-channel model characterized by a dimensionless
gas parameter na3

s that diverges for a Feshbach resonance tuned to zero (i.e., ‘‘on reso-
nance’’) and therefore does not exhibit a small expansion parameter throughout the
crossover.

The dimensionless parameter c naturally emerges in a perturbative expansion in atom-
molecule coupling. More physically, it can also be deduced by estimating the ratio of the
energy associated with the atom-molecule Feshbach-resonance interaction to the kinetic
energy, i.e, the non-interacting part of the Hamiltonian Eq. (25). To see this note that
the atom-molecule coupling energy EFR per atom scales like

EFR 	 gn1=2; ð38Þ

where we estimated the value of b̂ðrÞ by b̂ 	 ffiffiffi
n
p

. This interaction energy is to be compared
to the non-interacting part of the Hamiltonian, i.e., the kinetic energy per atom

E0 	 �F; ð39Þ

with the square of the ratio

c 	 ðEFR=E0Þ2; ð40Þ
	 g2n=�2

F; ð41Þ

giving the scale of the dimensionless parameter c in Eq. (37).
Another instructive way to estimate the interaction strength and to derive the dimen-

sionless coupling that controls perturbation theory is to integrate out (in a coherent-state
path-integral sense) the closed-channel molecular field b (r) from the action. As b (r) cou-
ples to atoms only linearly this can be done exactly by a simple Gaussian integration. The
resulting action only involves fermionic atoms that interact via an effective four-Fermi dis-

persive vertex. After incorporating fermion-bubble self-energy corrections of the T-matrix
the latter is given by Tk = (4p�h2/m)fl(k) � (4p�h2/m)f0(kF), with a key factor that is the
finite-density analog of the scattering amplitude, f0(k), Eq. (34). To gauge the strength
of the molecule-mediated interaction energy we compare the interaction per atom
(4p�h2/m)f0(k)n to the kinetic energy per atom �F. Hence, the dimensionless coupling that
is a measure of the atomic interaction is

k̂k � ð4p�h2=mÞjf0ðkFÞjn=�F; ð42Þ
	 kFjf0ðkFÞj; ð43Þ
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dropping numerical prefactors. At large detuning (i.e., deep in the BCS regime)
k̂k 	 kFjasj � 1 and the theory is perturbative in k̂k. However, as detuning is reduced
|as(d)| and k̂kðdÞ grow, and close to the resonance a�1

s may be neglected in the denominator
of Eq. (34). In this regime, the coupling saturates at k̂1k :

k̂1k 	
kF

jr0k2
F=2� ikFj

; ð44Þ

whose magnitude crucially depends on the dimensionless ratio c / 1/(kF|r0|), with

k̂1k 	
1

r0kF
for jr0jkF � 1;

1 for jr0jkF � 1:

(
ð45Þ

Hence, in contrast to two-particle vacuum scattering, in which the cross section diverges
when the Feshbach resonance is tuned to zero energy, at finite density, for sufficiently large
as, the effective coupling k̂k ceases to grow and saturates at k̂1k , with the saturation value
depending on whether this growth is cut off by the atom spacing 1/kF or the effective range
r0. The former case corresponds to a narrow resonance [c / (|r0|kF)�1� 1], with the inter-
action remaining weak (and therefore perturbative) throughout the BCS–BEC crossover,
right through the strong-scattering 1

kF jasj ¼ 0 point. In contrast, in the latter wide-resonance
case [c / (|r0|kF)�1� 1], sufficiently close to the unitary point 1/as = 0 the effective cou-
pling k̂1k , Eq. (45), grows to Oð1Þ precluding a perturbative expansion in atom interaction
near the unitary point.

3.3. Relation to single-channel model

In this latter broad-resonance limit, of relevance to most experimentally-realized Fesh-
bach resonances to date, the r0k2 contribution to the dispersion (arising from the molec-
ular kinetic energy) of the effective coupling k̂k can be neglected and one obtains an
effective single (open-) channel description.

The reduction to a single-channel model in the broad resonance limit can be executed in
an operator formalism, with the derivation becoming exact in the infinite Feshbach reso-
nance width (c fi1) limit [28]. The expression for the scattering length

1

as
¼ � 4p�h2

mg2
d0 �

g2mK

2p2�h2

� �
; ð46Þ

obtained from Eqs. (28)–(30) dictates that a proper transition to the broad resonance limit
corresponds to g fi1 while adjusting the bare detuning according to

d0 ¼ �
g2

k
; ð47Þ

such that the physical scattering length as remains fixed. This allows us to trade the bare
detuning d0 and coupling g for a new coupling k that physically corresponds to a non-res-
onant attractive interaction depth [29] that can be used to tune the scattering length.
Inserting Eq. (47) into H, Eq. (25), we obtain (V = 1):

H ¼
X
k;r

�k ĉykrĉkr þ
X

q

�q

2
� g2

k

� �
b̂yqb̂q þ g

X
k;q

b̂yqĉkþq
2#ĉ�kþq

2" þ ĉy�kþq
2"

ĉy
kþq

2#
b̂q

� �
; ð48Þ
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The corresponding Heisenberg equation of motion governing the molecular field b̂q

dynamics is given by

_̂bq ¼�
i

�h
b̂q;H
h i

; ð49aÞ

¼ � i

�h
�q

2
� g2

k

� �
b̂q þ g

X
k

ĉkþq
2#ĉ�kþq

2"

" #
: ð49bÞ

Now, in the large g fi1 limit (keeping k fixed) the molecular kinetic energy term / �q/2
on the right and the

_̂bq term on the left are clearly subdominant, reducing the Heisenberg
equation to a simple constraint relation

b̂q ¼
k
g

X
k

ĉkþq
2#ĉ�kþq

2": ð50Þ

Hence, we see that in the extreme broad-resonance limit the molecular field’s
dynamics is ‘‘slaved’’ to that of pairs of atoms according to Eq. (50). Substituting
this constraint into the Hamiltonian, Eq. (48), allows us to eliminate the closed-
channel molecular field in favor of a purely open-channel atomic model with the
Hamiltonian

H ¼
X
k;r

�kĉykrĉkr þ k
X
kqp

ĉyk"ĉ
y
p#ĉkþq#ĉp�q"; ð51Þ

where we redefined the momenta in the interaction term to simplify the final expression.
For future reference, we note that the scattering length in the one-channel model, when

expressed in terms of the coupling k [by combining Eqs. (27) and (30)], is

m

4pas�h
2
¼ 1

k
þ
Z

d3k

ð2p�hÞ3
1

2�k
; ð52Þ

a well-known formula that can also be derived from the Hamiltonian Eq. (51) directly.
Evaluating the momentum integral (cut off at K) gives the scattering length in the one-
channel model

asðkÞ ¼
p

2K
k

kþ 2p2�h2=mK
; ð53Þ

whose behavior is controlled by the new coupling k, with as(k) diverging at k0 = � 2p2�h2/
mK.

A clear advantage of the one-channel model is that, as shown above, it naturally emerg-
es as the correct Hamiltonian in the experimentally-relevant case of a wide resonance,
c� 1. However, a notable disadvantage is that, in the most interesting regime of a Fesh-
bach resonance tuned to zero energy, its dimensionless gas parameter kF|as| fi1, preclud-
ing a controlled perturbative calculation throughout the crossover. Thus, in this
manuscript we shall first compute using the two-channel model that is under more strin-
gent theoretical control, obtaining results that are quantitatively accurate for a narrow res-
onance and qualitatively accurate for a wide resonance. Then, with these well-controlled
results as a guide, we shall re-derive the properties of the system within (an uncontrolled)
mean-field theory on the single-channel model, obtaining qualitative agreement with the
results of the two-channel model.
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4. Two-channel model at finite atom density: Ground state energy

Having introduced the two-channel model of fermionic atoms interacting via an s-wave
Feshbach resonance, we now study its ground state at finite atom density. We work in the
grand-canonical ensemble by introducing two chemical potentials

l" ¼ lþ h; ð54aÞ
l# ¼ l� h; ð54bÞ

that tune the densities nr of atoms in hyperfine spin states r = ›,fl. Comprised of two
opposite-spin fermions, the molecular density is controlled by the sum 2l = l› + lfl of
the two chemical potentials. The appropriate grand-canonical Hamiltonian is then given
by

H ¼ H�
X
k;r

lrĉykrĉkr � 2l
X

q

b̂yqb̂q: ð55Þ

Equivalently, it can be written in terms of the total chemical potential l, that tunes the
total (open and closed channel) atom number N and the chemical potential difference,
dl = l› � lfl, or equivalently Zeeman field h = dl/2, that tunes the polarization (differ-
ence in the two atom species) DN = N› � Nfl:

H ¼H� lN̂ � hðDN̂Þ; ð56Þ
N̂ �

X
k;r

ĉykrĉkr þ 2
X

q

b̂yqb̂q; ð57Þ

DN̂ �
X

k

ĉyk"ĉk" � ĉyk#ĉk#

� �
; ð58Þ

with N̂ the total atom number operator and DN̂ � N̂ " � N̂ # the species asymmetry opera-
tor; their expectation values are the imposed total atom number N and polarization (mag-
netic moment) DN. We shall also find it useful to define the magnetization via

m ¼ ðN " � N #Þ=V ; ð59Þ

with V the system volume. For future reference, we note that the polarization is related to
m by

DN
N
¼ m

n
; ð60Þ

with n = (N› + Nfl)/V the total atom density.
Combining Eq. (55) with Eq. (25) then yields the two-channel model in the grand-ca-

nonical ensemble:

H ¼
X
k;r

ð�k � lrÞĉykrĉkr þ
X

q

�q

2
þ d0 � 2l

� �
b̂yqb̂q

þ gffiffiffiffi
V
p

X
k;q

b̂yqĉkþq
2#

ĉ�kþq
2"
þ ĉy�kþq

2"
ĉy

kþq
2#

b̂q

� �
; ð61Þ

where henceforth we shall generally set V = 1. We analyze this model, Eq. (61), via a var-
iational mean-field treatment that, as discussed at length above, is quantitatively accurate
for a narrow Feshbach resonance with corrections controlled by powers of c� 1. We
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parametrize the variational state by the value of a single complex field BQ, that dominates
the expectation value of the molecular operator b̂q according to BQ ¼ hb̂Qi. Such a varia-
tional state captures a number of possible pure ground states depending on BQ, such as: (i)
a normal Fermi gas, with BQ = 0, (ii) a uniform (BEC–BCS) singlet superfluid, with
BQ=0 „ 0, (iii) a periodically modulated FFLO superfluid, a supersolid, with BQ„0 „ 0, that
in real space is characterized by a condensate [102] B(r) = BQeiQÆr. In addition, we will ad-
mit the important possibility of an inhomogeneous coexistence of a pair of these ground
states, that, as we will see, arises over a large portion of the detuning-polarization phase
diagram (Fig. 3).

The grand-canonical Hamiltonian corresponding to this class of variational states is
given by

H ¼
X
k;r

ð�k � lrÞĉykrĉkr þ
�Q

2
þ d0 � 2l

� �
jBQj2

þ g
X

k

B�Qĉ
kþQ

2#
ĉ�kþQ

2"
þ ĉy

�kþQ
2"

ĉy
kþQ

2#
BQ

� �
: ð62Þ

Its quadratic form in atomic operators, ĉkr, ĉykr, allows for an exact treatment, leading to a
ground state energy EG[BQ], that we compute below using two complementary approach-
es, via Green functions and via a canonical transformation method. The subsequent min-
imization of EG[BQ] then unambiguously determines the phase behavior (i.e. Figs. 1 and 3)
as a function of detuning and Zeeman field, or equivalently, the polarization.
4.1. Green-function approach

In this subsection, we compute the ground state energy of H, Eq. (62), by simply cal-
culating the average

EG ¼hBQjH jBQi; ð63aÞ

¼ �Q

2
þ d0 � 2l

� �
jBQj2 þ hBQjH f jBQi; ð63bÞ

in the variational state |BQæ labeled by BQ, where Hf = HK + HF is the fermion part of the
Hamiltonian with its kinetic and Feshbach resonance parts given by

H K ¼
X
k;r

ð�k � lrÞĉykrĉkr; ð64aÞ

H F ¼
X

k

D�Qĉ
kþQ

2#
ĉ�kþQ

2"
þ ĉy

�kþQ
2"

ĉy
kþQ

2#
DQ

� �
; ð64bÞ

with the pair field DQ ” gBQ.
These averages can be computed from the fermion Green function, which can be easily

obtained from the coherent-state action, Sf. The latter is constructed from Hf in a standard
way [117], using the fermion anticommutation rules

fĉkr; ĉ
y
k0r0 g ¼ dr;r0dk;k0 ; ð65Þ

by first writing Hf in the Bogoliubov–de Gennes form
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H f ¼
X

k

ŴyðkÞ
n�kþQ

2"
DQ

D�Q �n
kþQ

2#

 !
ŴðkÞ þ

X
k

n
kþQ

2#
; ð66Þ

where nkr ” �k � lr and the Nambu spinor

ŴðkÞ �
ĉ�kþQ

2"

ĉy
kþQ

2#

0
@

1
A: ð67Þ

Note that, to get Eq. (66) in this desirable matrix form, the components of the Nambu
spinor are defined with momentum-shifted arguments. From Eq. (66) we construct a
coherent-state path integral for the partition function Z ¼

R
DWDWy exp½�Sf �, with effec-

tive action [with xn = pT(2n + 1) the fermionic Matsubara frequency; here �h = 1]

Sf ¼ �
X
xn

X
k

Wyaðk;xnÞG�1
ab ðk;xnÞWbðk;xnÞ; ð68Þ

where

Wðk;xnÞ �
1ffiffiffi
b
p

Z b

0

dseixnsWðk; sÞ; ð69Þ

is an anticommuting Grassman field and

G�1
ab ðk;xnÞ ¼ �

�ixn þ n�kþQ
2"

DQ

D�Q �ixn � n
kþQ

2#

 !
: ð70Þ

From Eqs. (68) and (70) the Green function Gab(k,xn) [obtained by inverting Eq. (70)]

Gabðk;xnÞ ¼
1

ðixn � n
k�Q

2"
Þðixn þ n

kþQ
2#
Þ � jDQj2



ixn þ n

kþQ
2#

DQ

D�Q ixn � n
k�Q

2"

 !
;

ð71Þ
is easily related to averages of the fermion fields through a Gaussian integration, giving

�Gabðk;xnÞ¼ hWaðk;xnÞWybðk;xnÞi;¼
hĉ�kþQ

2 ;�xn"ĉ
y
�kþQ

2 ;�xn"
i hĉ�kþQ

2 ;�xn"ĉkþQ
2 ;xn#i

hĉy
kþQ

2 ;xn#
ĉy
�kþQ

2 ;�xn"
i hĉy

kþQ
2 ;xn#

ĉ
kþQ

2 ;xn#i

0
@

1
A:
ð72Þ

Armed with expressions Eqs. (72) and (71), the averages in ÆBQ|HF|BQæ can be easily com-
puted. Specializing to the zero temperature limit (continuous xn, with Matsubara sums re-
placed by integrals), with details relegated to Appendix B, we find:

hHKi ¼
X

k

ek þ
X

k

e2
k

Ek
Hð�Ek"Þ �HðEk#Þ½ �

þ
X

k

k �Q
2m
þ h

� �
1�Hð�Ek"Þ �HðEk#Þ½ �; ð73aÞ

hHFi ¼
X

k

jDQj2

Ek
Hð�Ek"Þ �HðEk#Þ½ �; ð73bÞ
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where H(x) is the Heaviside step function and Ekr is the excitation energy for hyperfine
state r with (taking DQ real)

ek �
k2

2m
� lþ Q2

8m
; ð74aÞ

Ek � ðe2
k þ D2

QÞ
1=2
; ð74bÞ

Ek" � Ek � h� k �Q
2m

; ð74cÞ

Ek# � Ek þ hþ k �Q
2m

: ð74dÞ

Combining Eqs. (73a) and (73b) with Eq. (63b), we thus have the following expression for
the mean-field ground-state energy EG(DQ,Q):

EGðDQ;QÞ ¼
�Q

2
þ d0 � 2l

� �D2
Q

g2
�
X

k

ðEk � ekÞ þ
X

k

Ek 1þHð�Ek"Þ �HðEk#ÞÞð Þ

þ
X

k

k �Q
2m
þ h

� �
1�Hð�Ek"Þ �HðEk#Þð Þ; ð75Þ

which can be put in the simpler form

EGðDQ;QÞ ¼
�Q

2
þ d0 � 2l

� �D2
Q

g2
�
X

k

ðEk � ekÞ

þ
X

k

Ek"Hð�Ek"Þ þ Ek#Hð�Ek#Þ½ �: ð76Þ

Using the Green function Eq. (71), together with Eq. (72), the expectation values of the
total atom number hN̂i and the number difference (magnetic moment) hDN̂i, can also
be computed:

N ¼
2D2

Q

g2
þ
X

k

hĉyk"ĉk"i þ hĉyk#ĉk#i
� �

; ð77Þ

¼
2D2

Q

g2
þ
X

k

1� ek

Ek
½HðEk"Þ �Hð�Ek#Þ�

� �
; ð78Þ

DN ¼
X

k

hĉyk"ĉk"i � hĉyk#ĉk#i
� �

; ð79Þ

¼
X

k

Hð�Ek"Þ �Hð�Ek#Þð Þ: ð80Þ

These expressions will be important for eliminating the chemical potentials appearing
in EG in favor of the experimentally-controlled atom number N and polarization
DN/N.

Eq. (76) is quite general, encompassing (as noted above) both uniform and periodic
FFLO-type paired states as well as an unpaired normal state. In various limits, how-
ever, it simplifies considerably. In Appendix C we review the most well-studied such
limit, namely the conventional equal-population BEC–BCS crossover at h = 0 and
Q = 0.
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With our primary result Eq. (76) in hand, the remainder of the paper is conceptually
straightforward, simply amounting to minimizing EG(BQ) over BQ and Q to find their
optimum values as a function of detuning d, polarization DN (or h) and total atom number
N (or l). Although this can be done numerically, considerable insight is obtained by
approximate analytic analysis, possible for a narrow Feshbach resonance, c� 1. Before
turning to this, in the next subsection we present another derivation of EG(BQ), Eq. (76).

4.2. Canonical transformation approach

In this subsection, we present an alternate derivation of Eq. (76) for EG, using only the
canonical commutation relations of the fermion operators ĉkr. As in the preceding subsec-
tion, we focus on the fermion portion Hf of the total Hamiltonian, with the starting point
Eq. (66):

H f ¼
X

k

ŴyðkÞĤ f ŴðkÞ þ
X

k

n
kþQ

2#
; ð81Þ

Ĥ f �
n�kþQ

2"
D�Q

DQ �n
kþQ

2#

 !
; ð82Þ

where without loss of generality we have taken DQ real. The matrix Ĥf can be diagonalized
using the unitary matrix Û

Û ¼
uk vk

vk �uk

� �
: ð83Þ

Here, the coherence factors

uk ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ek

Ek

r
; ð84aÞ

vk ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ek

Ek

r
; ð84bÞ

are analogues of those appearing in BCS theory [118–120], whose form is constrained to
preserve the canonical commutation relations, Eq. (65), that require u2

k þ v2
k ¼ 1. Since,

by construction, the left and right columns of Û are the eigenvectors of Ĥf (with
eigenvalues Ek› and �Ekfl, respectively), this accomplishes a diagonalization of Hf in
Eq. (81). We find:

H f ¼
X

k

âyk" âk#

� � Ek" 0

0 �Ek#

� � âk"

âyk#

 !
þ
X

k

n
kþQ

2#
; ð85Þ

with the Bogoliubov (normal mode) operators âkr following from the operation of Û on
the Nambu spinor Eq. (67):

âk" ¼ ukĉ�kþQ
2"
þ vkĉy

kþQ
2#
; ð86aÞ

âyk# ¼ vkĉ�kþQ
2"
� ukĉy

kþQ
2#
: ð86bÞ

Thus, using fâk#; â
y
k#g ¼ 1, we have
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H f ¼
X

k

Ek"â
y
k"âk" þ Ek#â

y
k#âk#

� �
þ
X

k

n
kþQ

2#
� Ek#

� �
: ð87Þ

Recall that our aim is to compute the ground-state energy. If it were true that Ek› and Ekfl
were both positive, the first two terms in Eq. (87) would simply count the excitation energy
associated with the excitation quanta âkr (Bogoliubov quasiparticles) above the ground
state defined as the vacuum of âkr particles, i.e., âkrjBQi ¼ 0. This would also allow an
immediate identification of the constant part of Hf [the second line of Eq. (87)] with the
fermion contribution EGf = ÆHKæ + ÆHFæ to the ground-state energy.

However, because the energies Ekr are not positive definite, the second line of Eq. (87) is
not the ground state energy when either of Ekr < 0. It is nonetheless possible to write Hf as
a sum of the excitation and ground-state energies. To this end, we use step functions to
separate the sum over momenta into regions that have Ekr > 0 and Ekr < 0:X

k

Ekrâ
y
krâkr ¼

X
k

EkrHðEkrÞâykrâkr þ EkrHð�EkrÞð1� âkrâ
y
krÞ

	 

; ð88Þ

where, for the momenta satisfying Ekr < 0, we used the anti-commutation relation
fâkr; â

y
krg ¼ 1. Using Eq. (88), we can write Hf as

H f ¼
X

kr

EkrHðEkrÞâykrâkr � EkrHð�EkrÞâkrâ
y
kr

� �
þ EGf ; ð89Þ

with

EGf �
X

k

Ek"Hð�Ek"Þ þ Ek#Hð�Ek#Þ þ n
kþQ

2#
� Ek#

� �
: ð90Þ

With these manipulations, each pair of operators in the sum in the first line of Eq. (89) by
construction multiplies a positive excitation energy that is |Ekr|. Thus, they represent exci-
tations above the ground state with the fermion part of the ground state energy given by
ÆHfæ = EGf. Using the definitions of Ekr (and

P
kk �Q ¼ 0), it is straightforward to see that

EGf agrees with the result from the preceding subsection, i.e., ÆHKæ + ÆHFæ:

EGf ¼
X

k

ðek � EkÞ þ
X

k

Ek"Hð�Ek"Þ þ Ek#Hð�Ek#Þð Þ; ð91Þ

which is our result for the fermion contribution to the ground-state energy EG(BQ), Eq. (76).
This method for computing the ground-state energy has the additional benefits that (i)

it provides a physical interpretation to the step functions appearing in EG(BQ) and (ii) it
allows a straightforward computation of the fermion ground-state wavefunction |BQæ that
we now derive. Clearly, |BQæ must be annihilated by the excitation part He

f of the Hamil-
tonian Hf:

H e
f �

X
kr

EkrHðEkrÞâykrâkr � EkrHð�EkrÞâkrâ
y
kr

� �
: ð92Þ

The step functions divide the momentum sum into three regions: (1) k such that Ek› > 0
and Ekfl > 0, (2) k such that Ek› < 0 and (3) k such that Ekfl < 0. From the explicit expres-
sions Eqs. (74c) and (74d) it is easy to see that the Ekr cannot both be negative; thus, these
are the only three possibilities.

Consider momenta such that condition (1) is satisfied, which we denote k1. For such
momenta, the summand in Eq. (92) is Ek1"â

y
k1"âk1" þ Ek1#â

y
k1#âk1#, which annihilates factors
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of the form ðuk1
þ vk1

ĉy
k1þQ

2#
ĉy
�k1þQ

2"
Þ. Of course, if we set Q = 0, this is the usual factor in the

BCS ground-state wavefunction [118–120] that encodes pairing correlations; thus, the
states k1 are paired at nonzero center of mass momentum Q. This can also be seen from
the form of the ground-state energy Eq. (91): Since the H functions in the second term of
this equation vanish for states satisfying condition (1) they have the standard BCS contri-
bution to the ground-state energy from the first term of Eq. (91).

Now consider states in region (2). For them, the excitation energy is �Ek2"âk2"â
y
k2"þ

Ek2#â
y
k2#âk2#. By examining the form of Eq. (86a), it is clear that an operator annihilated

by this summand is simply ĉy
�k2þQ

2"
. Thus, states k2 are simply filled by unpaired spin-›

fermions, i.e., they are unpaired. States in region 3 are similarly unpaired, but with
spin-fl. Expressing |BQæ as a product over these three regions of momenta yields our var-
iational fermion ground state wavefunction:

jBQi ¼
Y
k2k3

ĉy
kþQ

2#

Y
k2k2

ĉy
�kþQ

2"

Y
k2k1

ðuk þ vkĉy
kþQ

2#
ĉy
�kþQ

2"
Þj0i; ð93Þ

with |0æ the fermionic atom vacuum.
We now describe our general strategy. The ground state energy Eq. (76) is a function of

DQ (or equivalently BQ) and Q. By minimizing it over DQ and Q, we find possible ground
states of the two-channel model at particular values of l, h and detuning. Ground states at
fixed imposed atom number (relevant for atomic physics experiments) are stationary with
respect to DQ and Q, and satisfy the total number and polarization constraints:

0 ¼ oEG

oDQ

; ð94aÞ

0 ¼ oEG

oQ
; ð94bÞ

N ¼� oEG

ol
; ð94cÞ

DN ¼� oEG

oh
; ð94dÞ

the latter two being equivalent to Eqs. (78) and (80). We shall refer to Eqs. (94a)–(94d) as
the gap, momentum, number and polarization equations, respectively. It is crucial to
emphasize that EG has numerous stationary points and we must be sure to ascertain that
the particular stationary point we are studying is indeed a minimum [121,122] of EG. Thus,
while often in studies of the BEC–BCS crossover at h = 0 authors simply simultaneously
solve the number and gap equation, at h „ 0 this can (and has in a number of works in the
literature [47,67,45,121–123]) lead to incorrect results, especially at negative detunings
where EG is particularly complicated. Moreover, frequently we shall find that the
ground-state at a particular d, N, and DN (or even at fixed d, N, and h) is a phase-separated
mixture of two of these phases, with fractions x and 1 � x that must be determined. With
these caveats in mind, we now turn to the analysis of Eqs. (76) and (94a)–(94d).

5. Positive-detuning regime of two-channel model at finite population difference

In this section, we consider our system at d > 0 with a finite population imbalance
(polarization) between the species undergoing pairing, encompassing the BCS d� 2�F



1818 D.E. Sheehy, L. Radzihovsky / Annals of Physics 322 (2007) 1790–1924
and crossover 0 < d < 2�F regimes. As discussed in Section 4, it is convenient to first study
the equivalent problem of pairing with a finite chemical potential difference dl = 2h

between the species. What phases do we expect in this regime? For equal chemical poten-
tials (l› = lfl = l), the favored ground state is the paired superfluid (SF) state that (since
l > 0 in this regime) is associated with pairing near the common Fermi surface at momen-
tum kF ¼

ffiffiffiffiffiffiffiffiffi
2ml
p

. This paired SF state is of course described by the BCS ground state. For
very large chemical potential difference h, we expect pairing to be destroyed (DQ = 0) and
the ground-state to be a normal (N) Pauli-paramagnetic Fermi gas with N› > Nfl. The
remaining logical possibility is that, for intermediate values of h, we may have a phase
exhibiting nonzero pairing and a nonzero population difference (DN „ 0); it remains to
be seen whether such a ground state is stable anywhere in the d � DN phase diagram.

One set of possible ground states that accomplish this is the so-called FFLO class of
states, [86,87] already well-studied for a BCS-type superconductor. The fact that our Fesh-
bach resonance model is closely related to the BCS model of interacting fermions ensures
that we will indeed find that FFLO-like states are stable over portions of the phase dia-
gram at large positive detuning.

As we will show, within our restricted ground-state ansatz, these three states (FFLO,
SF and N) are the only homogeneous ground states that are stable at positive detuning, with
the phase diagram dominated by phase separated mixtures of SF and N or SF and FFLO.
Furthermore, the FFLO state is only stable for a very narrow window of h (or DN) values
that vanishes below d* . 2�F. The reason that FFLO states can only exist for a restricted
narrow window of parameters is simply that, in order to accommodate both pairing and a
nonzero polarization DN, the system must pair at a finite wavevector Q 	 kF› � kFfl. This
corresponds to a moving superfluid that, at sufficiently high superfluid velocity (corre-
sponding to a critical Q 	 kF› � kFfl / h) is unstable (via the Landau criterion) to quasi-
particle proliferation, as seen from the form of Ekr [Eqs. (74c) and (74d)].

From a pedagogical point of view, it is easiest to proceed by first neglecting the FFLO state
entirely, setting Q = 0 at the outset in our expression for EG (which simplifies it consider-
ably), before determining the phase diagram (Figs. 9 and 10). Afterwards, in Section 7 we will
return to the FFLO state, finding the regime of the phase diagram in which it is stable.
5.1. Ground-state energy at Q = 0

In this subsection, we focus on the Q = 0 case, which greatly simplifies the ground-state
energy EG. Although this is in preparation for studying possible uniform ground-states at
d > 0, the results of the present section will also apply to the negative-detuning BEC
regime, to be studied in Section 6, where, as we will show, the FFLO state is unstable
and Q = 0 is the only possibility. With this in mind, in this subsection we shall make
no approximations that rely on d > 0.

We start with the general expression Eq. (75) at Q = 0, for simplicity of notation drop-
ping the zero subscript on D (i.e. D0fiD):

EG ¼ ðd� 2lÞD
2

g2
þ
X

k

nk � Ek þ
D2

2�k

� �
þ
X

k

Ek 1þHð�Ek"Þ �HðEk#Þð Þ

þ h
X

k

1�Hð�Ek"Þ �HðEk#Þð Þ; ð95Þ



Fig. 9. Positive detuning (d)-chemical potential difference (h) phase diagram of the two-channel model for the
case c = 0.1 showing the superfluid phase (SF), normal phase (N), FFLO phase (along red curve, too thin to see)
and the regime of phase separation (PS). Above the horizontal dashed line the N phase is fully spin-polarized
(N› = N, Nfl = 0), consisting of a single Fermi surface, while below the dashed line the N phase has two Fermi
surfaces. The dashed line in the shaded PS regime separates SF–N coexistence from SF–FFLO coexistence and is
derived in Section 7.2.

Fig. 10. Positive detuning (d)-population difference (DN) phase diagram of the two-channel model for the case
c = 0.1 showing the regime of phase separation (PS), the normal phase (N) and the FFLO phase (along red
curve). The SF phase is confined to the DN = 0 axis. As in Fig. 9, the dashed line in the shaded PS regime
separates SF-N coexistence from SF–FFLO coexistence (the latter sharing a boundary with the FFLO phase).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
paper.)
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where now nk = �k � l, the excitation energies are simply

Ek" ¼Ek � h; ð96aÞ
Ek# ¼Ek þ h; ð96bÞ

plotted for l > 0 in Fig. 11, and we have used Eq. (29) to exchange the bare detuning d0 for
the physical detuning d.

Without loss of generality we take h > 0, so that H(Ekfl) = 1 and Eq. (95) can be written
in the simpler form



Fig. 11. (Dashed line) Plot of quasiparticle excitation energy Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

k þ D2
q

for a BCS superconductor,
normalized to �F for the case l = �F and D = 0.15�F. Solid lines: Spin-up and spin-down quasiparticle excitation
energies for the case h = 0.3�F.
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EG ¼ ðd� 2lÞD
2

g2
þ
X

k

nk � Ek þ
D2

2�k

� �
þ
X

k

ðEk � hÞHðh� EkÞ: ð97Þ

The last h-dependent term is only nonzero when h > Ek for some k. For l > 0, this means
EG is identically h-independent until the spin-up band crosses zero energy (depicted in
Fig. 11) at h > D.

Eq. (97) may be further simplified by rewriting the h-dependent momentum sums in
terms of the magnetization m(h). The simplest way to do this is to recall Eq. (94d) for
the population difference

N " � N # ¼ �
oEG

oh
; ð98Þ

which can be written in terms of the magnetization m(h) as [using Eqs. (59); note we have
taken the system volume V to be unity]:

mðhÞ ¼
Z

d3k

ð2pÞ3
Hðh� EkÞ; ð99aÞ

¼ 2c
3
ðlþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � D2

p
Þ3=2Hðlþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � D2

p
Þ

h
� ðl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � D2

p
Þ3=2Hðl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � D2

p
Þ
i
; ð99bÞ

where in the last equality we evaluated the integral over momenta by first converting to an
energy integral using the usual prescription

R
d3k
ð2pÞ3 � � � ¼

R
Nð�Þd� � � � with the three-dimen-

sional density of states per spin

Nð�Þ ¼c
ffiffi
�
p
; ð100Þ

c � m3=2ffiffiffi
2
p

p2
: ð101Þ

Thus [using the condition that the magnetic contribution of Eq. (97) vanishes at h = 0], we
have the following general expression for the Q = 0 ground-state energy (also converting
the first momentum sum to an integral):
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EG ¼ ðd� 2lÞD
2

g2
þ
Z

d3k

ð2pÞ3
nk � Ek þ

D2

2�k

� �
�
Z h

0

mðh0Þdh0: ð102Þ

The steps connecting the last term of Eq. (97) to the last term of Eq. (102) can also be de-
rived in a more straightforward approach by manipulating the h-dependent momentum
sums in Eq. (97), as shown in Appendix D.

Possible Q = 0 ground-states correspond to minima of Eq. (102) [which thus satisfy the
gap equation, Eq. (94a)] having magnetization m given by Eq. (99b) and density n given by

n ¼ � 1

V
oEG

ol
: ð103Þ

Quite frequently, we shall be interested in systems at fixed imposed total atom (as free
atoms and molecules) density n. This introduces another natural scale, �F, that is the Fermi
energy at asymptotically large detuning for gfi0:

n ¼ 4

3
c�3=2

F : ð104Þ

We use �F as a convenient energy scale to normalize quantities with dimensions of energy.
Thus, we define

l̂ � l
�F

; ð105aÞ

D̂ � D
�F

; ð105bÞ

d̂ � d
�F

; ð105cÞ

ĥ � h
�F

; ð105dÞ

eG �
EG

c�5=2
F

; ð105eÞ

with the last definition providing a convenient normalization for the ground-state energy.
We shall typically determine quantities (such as critical chemical potential differences and
polarizations) as a function of the normalized detuning d̂. To make contact with
experiments that typically plot physical observables as a function of the inverse scattering
length through the dimensionless parameter �(kFas)

�1, we note that our normalized
detuning d̂ is proportional to this parameter and given by [combining Eq. (30) with
Eqs. (37) and (105c)]

d̂ ¼ � p
2

c
1

kFas
: ð106Þ

Converting the momentum integral in Eq. (102) to an energy integral, we have for eG:

eG ¼ c�1D̂2ðd̂� 2l̂Þ

�
Z ĥ

0

m̂ðĥ0Þdĥ0 þ
Z 1

0

dx
ffiffiffi
x
p

x� l̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� l̂Þ2 þ D̂2

q
þ D̂2

2x

 !
; ð107Þ

where m̂ðĥÞ is the dimensionless form of Eq. (99b):
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m̂ðĥÞ � 2

3
ðl̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2� D̂2

p
Þ3=2Hðl̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2� D̂2

p
Þ � ðl̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2� D̂2

p
Þ3=2Hðl̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2� D̂2

p
Þ

h i
:

ð108Þ

For future reference, we note that the relations between m(h), DN and m̂ðĥÞ can be sum-
marized by

mðhÞ
n
¼ DN

N
¼ 3

4
m̂ðĥÞ: ð109Þ

With these definitions of dimensionless variables, the gap, number and polarization equa-
tions [i.e., Eqs. (94a), (94c), and (94d), respectively] become

0 ¼ oeG

oD̂
; ð110aÞ

4

3
¼� oeG

ol̂
; ð110bÞ

4

3

DN
N
¼� oeG

oĥ
: ð110cÞ

As we have already mentioned, the equations in the present section apply to the Q = 0
ground-state energy in the BCS regime (that we now proceed to study) and also in the
BEC regime that we shall study in Section 6.
5.2. Q = 0 phases of the ground state energy in the BCS regime

In the present section, we study the phases of Eq. (107) for ĥ „ 0 in the BCS limit of
large positive detuning. In this regime, l̂� D̂ and the integral in Eq. (107) is well-approx-
imated by (see Appendix C):Z 1

0

dx
ffiffiffi
x
p

x� l̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� l̂Þ2 þ D̂2

q
þ D̂2

2x

 !

’ � 8

15
l̂5=2 �

ffiffiffî
l

p
D̂2 1

2
� ln

D̂
8e�2l̂

 !
: ð111Þ

This yields:

eG ’ �
ffiffiffî
l
p

2
D̂2 þ D̂2ðd̂� 2l̂Þc�1 þ

ffiffiffî
l

p
D̂2 ln

D̂
8e�2l̂

�
Z ĥ

0

dĥ0m̂ðĥ0Þ � 8

15
l̂5=2; ð112Þ

as the BCS-regime normalized ground-state energy that we shall analyze in the remainder
of this section.
5.2.1. Normal phase

Zero-temperature phases are stationary points of eG, satisfying the gap equation Eq.
(110a). Since eG is a function only of D̂2, it is obvious that D̂ ¼ 0 is always such a station-
ary point. This solution represents the normal (N) state consisting of spin-up and spin-
down Fermi surfaces characterized by chemical potentials l› and lfl. The corresponding
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ground-state energy simply counts the energetic contributions from these two Fermi seas
[see Eq. (B.19)]:

EG;N ¼
X

k

nk � hð ÞHðh� nkÞ þ nk þ hð ÞHð�h� nkÞ½ �; ð113aÞ

¼ � 4c
15
ðlþ hÞ5=2Hðlþ hÞ þ ðl� hÞ5=2Hðl� hÞ
h i

: ð113bÞ

We note that in the normal state Eq. (113b) is valid for an arbitrary relation between h and
l and therefore (in contrast to small h� l approximations, valid in the superfluid regime,
used below) allows us to access the high-polarization regime of the normal state.

In terms of our dimensionless variables, the normalized ground-state energy eG,N is thus

eG;N ¼�
4

15
ðl̂þ ĥÞ

5
2Hðl̂þ ĥÞ þ ðl̂� ĥÞ

5
2Hðl̂� ĥÞ

h i
; ð114aÞ

’ � 8

15
l̂5=2 �

ffiffiffî
l

p
ĥ2; ĥ� l̂: ð114bÞ

Eq. (114b) applies in the linear regime ĥ� l̂, with
ffiffiffî
l
p

ĥ2 the harmonic Pauli-paramagnetic
contribution, and will frequently be sufficient in the low-polarization normal phase.

The normal-state atom density nN and polarization mN at fixed h and l [following from
Eqs. (94c) and (94d)] are also particularly simple:

nN ¼
2c
3
ðlþ hÞ3=2Hðlþ hÞ þ ðl� hÞ3=2Hðl� hÞ
h i

; ð115aÞ

mN ¼
2c
3
ðlþ hÞ3=2Hðlþ hÞ � ðl� hÞ3=2Hðl� hÞ
h i

: ð115bÞ

If we impose a total atom density n ¼ 4
3
c�3=2

F and population imbalance DN, Eqs. (115a),
(115b) can be written in the dimensionless form

1 ¼ 1

2
ðl̂þ ĥÞ

3
2Hðl̂þ ĥÞ þ ðl̂� ĥÞ

3
2Hðl̂� ĥÞ

h i
; ð116aÞ

DN
N
¼ 1

2
ðl̂þ ĥÞ

3
2Hðl̂þ ĥÞ � ðl̂� ĥÞ

3
2Hðl̂� ĥÞ

h i
: ð116bÞ

Note that the normal state undergoes a transition with increasing h from a system with
two Fermi surfaces with energies l ± h to a system that is fully polarized, with only one
Fermi surface. Clearly, this happens at ĥ ¼ l̂, namely lfl = 0 in terms of the dimensionful
variables. According to Eq. (116a), this implies the transition occurs at ĥp = 2�1/3, which,
when inserted into Eq. (116b) indeed yields DN = N, i.e., a fully polarized state. This crit-
ical ĥp is displayed in Fig. 9 as a horizontal dashed line inside the N phase.

5.2.2. BCS superfluid phase and the superfluid to normal transition

At large positive detuning, fermionic attraction is weak and any pairing leads to D that
is exponentially small in ðd̂� 2l̂Þ=c. We have already partially taken this into account,
using the approximation Eq. (111) to obtain Eq. (112). Next, we proceed by using the con-
ditions D̂� l̂ and h� l̂ to simplify m̂ðĥÞ in Eq. (108) and in the remaining integral in Eq.
(112). This yields

m̂ðĥÞ ’ 2
ffiffiffî
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2 � D̂2

p
Hðĥ� D̂Þ; ð117Þ
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and

eG ’ �
ffiffiffî
l
p

2
D̂2 þ D̂2ðd̂� 2l̂Þc�1 þ

ffiffiffî
l

p
D̂2 ln

D̂
8e�2l̂

�
ffiffiffî
l

p
ĥ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2 � D̂2

p
� D̂2cosh�1ðĥ=D̂Þ

h i
Hðĥ� D̂Þ � 8

15
l̂5=2; ð118Þ

that we have plotted as a function of D̂ for various ĥ’s in Fig. 12. To determine the stable
ground state, we study minima of eG, given by the gap equation, oeG=oD̂ ¼ 0 Eq. (110a):

0 ’ c�1D̂ðd̂� 2l̂Þ þ D̂
ffiffiffî
l

p
ln

D̂
8e�2l̂

þ D̂
ffiffiffî
l

p
cosh�1ðĥ=D̂ÞHðĥ� D̂Þ: ð119Þ

The nature of possible solutions depends on the value of ĥ, as is clear from the evolution of
eGðD̂; ĥÞ with a set of increasing ĥ values at fixed chemical potential l̂, illustrated in Fig. 12.
For ĥ sufficiently small, 0 < ĥ < D̂BCS=2, the BCS logarithm [see Eq. (118)] dominates,
leading to a single BCS minimum at D̂ ’ D̂BCS, with

D̂BCSðd̂; l̂Þ � 8e�2l̂e�c�1ðd̂�2l̂Þ=
ffiffî
l
p
; ð120Þ

with the normal state characterized by an unstable maximum at D̂ ¼ 0, discussed in Sec-
tion 5.2.1. The corresponding BCS ground state energy is given by [inserting Eq. (120) into
Eq. (118)]

eG;SF ’ �
8

15
l̂5=2 �

ffiffiffî
l
p

2
D̂2

BCS; ð121Þ

with the terms multiplying Hðĥ� D̂Þ dropping out and therefore not influencing the loca-
tion and depth of the BCS minimum for ĥ < D̂BCS. This behavior persists until
ĥ ¼ ĥ�1 ¼ D̂BCS=2 at which point the normal state extremum at D̂ ¼ 0 develops into a meta-
stable local minimum, separated from the stable SF minimum at D̂BCS by a maximum at
[85]
Fig. 12. Plot of eG [Eq. (118), dropping the final D̂-independent constant] at l̂ ¼ 1 as a function of D̂ for four
values of ĥ (labeled by ĥ): For ĥ = 0, no applied chemical potential difference, eGðD̂Þ has a minimum at
D̂ ¼ D̂BCS � 0:15, representing the fully paired BCS state. With increasing ĥ, for ĥ = ĥ

*1 a local minimum develops
at D̂ ¼ 0 that becomes degenerate with the minimum at D̂BCS for ĥ = ĥc. A local maximum is at D̂ ¼ D̂Sarma. For
ĥ > ĥ

*2, the minimum at D̂BCS disappears.
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D̂Sarma ’ D̂BCS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ĥ

D̂BCS

� 1

s
; ĥ�1 < ĥ < ĥ�2; ð122Þ

where ĥ�2 ¼ D̂BCS. Eq. (122) follows from Eq. (119) upon using cosh�1x ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

þ x
and Eq. (120). With a further increase in ĥ the maximum at D̂Sarma moves out towards
the ĥ-independent BCS minimum, joining it at ĥ = ĥ*2 as can be seen from Eq. (122), so
that for ĥ > ĥ*2 the only stationary point of eG is at D̂ ¼ 0.

In contrast to a number of erroneous conclusions in the literature [47,67,45,121–123]
(that identified DSarma with a magnetized superfluid ground state by studying the gap equa-
tion without checking the corresponding energy), this maximum at DSarma, as first shown
by Sarma [85], clearly does not correspond to any physical (stable) phase of an attractive
Fermi gas.

The BCS ground state remains a global minimum for 0 < ĥ < ĥcðl̂Þ. For ĥ > ĥcðl̂Þ, the
energy eG,N of the normal state D̂ ¼ 0 minimum drops below eGðD̂BCSÞ. The fermion gas
then undergoes a first-order transition to the normal ground state at the critical chemical
potential difference ĥcðl̂Þ given by equating the normal ground-state energy eG,N Eq.
(114a) with the exact [124] superfluid-state energy eG,SF,

eG;SF ¼ c�1D̂2ðd̂� 2l̂Þ þ
Z 1

0

dx
ffiffiffi
x
p

x� l̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� l̂Þ2 þ D̂2

q
þ D̂2

2x

 !
; ð123Þ

[obtained from Eq. (107) by setting m̂ ¼ 0]. This yields

� 4

15
ðl̂þ ĥcÞ5=2Hðl̂þ ĥcÞ þ ðl̂� ĥcÞ5=2Hðl̂� ĥcÞ
h i

ð124Þ

¼ c�1D̂2
0ðd̂� 2l̂Þ þ

Z 1

0

dx
ffiffiffi
x
p

x� l̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� l̂Þ2 þ D̂2

0

q
þ D̂2

0

2x

 !
; ð125Þ

with the right-hand side evaluated at its minimum D̂ ¼ D̂0 satisfying

0 ¼ oeG;SF

oD̂


D̂¼D̂0

; ð126Þ

¼ 2

c
ðd̂� 2l̂Þ þ

Z 1

0

dx
ffiffiffi
x
p 1

x
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� l̂Þ2 þ D̂2

0

q
0
B@

1
CA; ð127Þ

where in the second line we canceled the D̂ ¼ 0 solution. Eqs. (124) and (127) then implic-
itly give ĥcðl̂Þ [or, equivalently, l̂cðĥÞ] that we will use shortly. In the limit of D̂0 � l̂ the
right-hand side of Eq. (124) reduces to Eq. (121) with D̂0 given by D̂BCS, yielding

4

15
½ðl̂þ ĥcÞ5=2 þ ðl̂� ĥcÞ5=2Hðl̂� ĥcÞ � 2l̂5=2� ’ 1

2

ffiffiffî
l

p
D̂2

BCS

¼ 32e�4l̂5=2e�2c�1ðd̂�2l̂Þ=
ffiffî
l
p
: ð128Þ

Deep in the BCS regime (d� 2�F) the molecular condensate and the corresponding gap
D̂BCS, given by Eq. (120) above, are exponentially small. We expect (and self-consistently
find) that the critical Zeeman-field boundary ĥc(d) tracks the gap D̂BCSðd̂; l̂Þ and therefore
must also be exponentially small in ðd̂� 2l̂Þ=c.
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As we will see below (when we consider the more experimentally-relevant ensemble of
fixed atom number), the crossover regime d < 2�F corresponds to l locking to a value
slightly below d/2, with d̂=2� l̂ � Oðc ln cÞ � 1. This is still sufficient to ensure that, in
the crossover regime, the BCS estimate of D̂BCSðl̂; d̂Þ and eG,SF remain valid [since
D̂BCS � l̂ allowing the integral in Eq. (123) to be approximated by Eq. (111)], but with
D̂BCSðl; dÞ=l̂ � Oðc1=2Þ (rather than exponentially small in 1/c).

Consequently, in the BCS (d̂� 2l̂) and crossover [d̂� 2l̂ � Oðc ln cÞ] regimes the con-
dition ĥc � l̂ is well-satisfied. This allows an accurate approximation of the normal state
energy eG,N, Eq. (114a), and correspondingly the left-hand side of Eq. (128) by its lowest
order Taylor expansion in ĥc=l̂. This linear Pauli paramagnetic approximation then gives
an accurate prediction for the critical Zeeman field

ĥcðl̂Þ ’D̂BCS=
ffiffiffi
2
p

; for ĥc � l̂; ð129aÞ

’4
ffiffiffi
2
p

e�2l̂e�c�1ðd̂�2l̂Þ=
ffiffî
l
p
; ð129bÞ

that in the BCS regime self-consistently satisfies the condition ĥc � l̂ used to obtain it.
For l̂ close to d̂=2, Eq. (124) is approximately [to OðcÞ] satisfied for any ĥ since we can

neglect the left-hand side and the second term on the right-hand side. This behavior is also
reflected in the approximate formula (taken beyond its strict regime of validity) Eq. (129b)
that exhibits rapid variation for l̂ near d̂=2. Thus, in this regime at the transition the crit-
ical l̂ is approximately given by

l̂cðĥ; d̂Þ � d̂=2: ð130Þ

Hence, below we will use Eq. (130) as an accurate (in c� 1, narrow resonance limit) form
for the high Zeeman field regime ĥcðl̂; d̂Þ, where the BCS condition D̂� l̂ is violated. This
will be essential to determine the upper boundary ĥc2ðd̂Þ of the coexistence region in the
crossover regime.

It is important to note that, because of the step functions in the ground-state energy Eq.
(97), the curve of eGðD̂; ĥÞ is identically ĥ-independent for D̂ > ĥ. Consequently the BCS
minimum at D̂BCS (stable for 0 < ĥ < ĥc) and the corresponding energy eGðD̂BCSÞ are strictly
ĥ-independent, ensuring that the BCS state is indeed characterized by a vanishing
magnetization,

mSF ¼ �
oEG

oh
¼ 0; ð131Þ

and density given by

nSF ’
2D2

g2
þ 4c

3
l3=2 þ cD2ffiffiffi

l
p

5

4
� 1

2
ln

D
8e�2l

� �
: ð132Þ

Since ĥ only enters through a term multiplied by a step function, Hðĥ� D̂Þ, ĥ-indepen-
dence of the stable minimum at D̂BCS persists until ĥ ¼ D̂BCS, beyond which the energy
at this minimum would have become ĥ-dependent (resulting in a magnetized paired super-
fluid) had the minimum survived. However, as we saw above, the BCS minimum becomes
unstable to the normal state for ĥ P ĥc ’ D̂BCS=

ffiffiffi
2
p

, before the point of this magnetized-
superfluid condition of ĥ ¼ D̂BCS is reached.

As expected at a first-order transition with a tuned chemical potential (rather than
tuned density), our system exhibits jumps in the density at ĥc. This occurs because the
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densities of the superfluid and normal states at the transition ĥcðl̂Þ [using Eq. (129a) and
converting to dimensionful quantities]

nSF ’
2D2

BCS

g2
þ 4c

3
l3=2 þ cD2

BCSffiffiffi
l
p

5

4
� 1

2
ln

DBCS

8e�2l

� �
; ð133Þ

nN ’
4c
3

l3=2 þ cD2
BCS

4
ffiffiffi
l
p ; ð134Þ

are different. Thus, upon increasing ĥ past ĥcðl̂; d̂Þ there is a density discontinuity equal to

nSF � nN ’
2D2

BCS

g2
þ cD2

BCSffiffiffi
l
p 1� 1

2
ln

DBCS

8e�2l

� �
: ð135Þ

Similarly, since the BCS paired superfluid is characterized by a vanishing magnetization
and the normal state by mN given by Eq. (115b) there is a jump discontinuity in m equal
to mN evaluated at hc.
5.3. First-order SF–N transition at fixed density: phase separation and coexistence

Because we are primarily interested in applications of the theory to degenerate trapped
atomic-gas experiments, where it is the atom number N (rather than chemical potential l)
that is fixed (also it is DN = N› � Nfl rather than h that is imposed, but for pedagogical
purposes we delay the analysis of this fixed DN ensemble until Section 5.5), in this section
we study the above transition in the fixed average density n = N/V and imposed h ensem-
ble [125].

However, there is no guarantee that the system’s true ground state corresponds to one
of our assumed spatially homogeneous ground states. In fact, it is clear from the discus-
sion at the end of the last subsection that the existence of the density discontinuity Eq.
(135) at hc(d) implies that, at h = hc(d), a homogeneous atomic gas with density n anywhere
in the range between nN and nSF is in fact unstable to phase separation. As we will see
below, for densities in this range the ground state is an inhomogeneous coexistence of nor-
mal and superfluid phases at the critical chemical potential lc(h,d), with corresponding
densities nN(lc(h,d),d), nSF(lc(h,d),d), appearing in fractions 1 � x(h,d,n) and x(h,d,n),
determined by the constraint that the average density is the imposed one (or equivalently
the total number of atoms is N).

Thus, as illustrated in Fig. 13 (and the full phase diagram, Fig. 1), at fixed average den-
sity n, the critical Zeeman field hc(d) splits into lower- and upper-critical fields, hc1(d) and
hc2(d), bounding the coexistence region from below and above, respectively. To under-
stand how these emerge in detail, we imagine increasing the Zeeman field h (at fixed n
and detuning d within the BCS or crossover regimes) from low values starting from the
singlet superfluid state as the global minimum. As h is increased, the chemical potential
lSF(n,d) (which, because the BCS superfluid is a singlet, is in fact h independent), deter-
mined by the superfluid equation of state (written in terms of dimensionless variables),
satisfies

4

3
¼ 5D̂2

4
ffiffiffiffiffiffiffi
l̂SF

p þ 4

3
l̂3=2

SF þ
2D̂2

c
� D̂2

2
ffiffiffiffiffiffiffi
l̂SF

p ln
D̂

8e�2l̂SF

; ð136aÞ



Fig. 13. Upper curve is ĥc2 [Eqs. (138a), (138b)] and lower curve is ĥc1 Eq. (136a), solved numerically, that bound
the coexistence region in the BCS and crossover regimes.
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to keep the density fixed at n. In this process, as ĥ is increased, the ground-state energy
function eGðĥ; l̂; d̂Þ changes according to Eq. (107) with the relative level of the normal
and superfluid minima changing (see Fig. 12). At a sufficiently large Zeeman field
ĥc1ðd̂; nÞ, given by

ĥc1 ¼ ĥcðl̂SFÞ; ð136bÞ
the two minima become degenerate. This would then naively imply that the system
should jump to the normal ground state at these values of l̂ ¼ l̂SFðn; d̂Þ, h, and d. How-
ever, as seen from Eqs. (133) and (134), since the normal ground state has a density that
(at the same chemical potential l) is distinct from that of the superfluid state, this dis-
continuous transition to the normal state would not keep the density fixed at the im-
posed value n.

The only solution to this dilemma (which is generic to first-order transitions) is for the
system to get pinned at the coexistence curve l̂cðĥ; d̂Þ, Eq. (124), defined by equality of the
normal-state and superfluid-state minima. A subsequent increase in ĥ > ĥc1 changes l
along the critical curve lc(h,d), keeping the normal and superfluid ground states degener-
ate. This, however, leads to a chemical potential l̂cðĥ; d̂Þ, illustrated in Fig. 14, that no
longer allows the density of either of the pure ground states, N and SF to be equal to
n. However, the total imposed atom number can still be satisfied by a mixture of coexisting
SF and N states [39] in respective proportions xðĥ; d̂Þ and 1� xðĥ; d̂Þ, defined by

N
V
¼ xðĥ; d̂ÞnSFðl̂cðĥÞ; d̂ÞÞ þ ½1� xðĥ; d̂Þ�nNðĥ; l̂cðĥÞÞ: ð137Þ

This evolution of the chemical potential according to l̂cðĥÞ continues until ĥ has increased
sufficiently, so that the number constraint equation can be satisfied by a pure normal state
that minimizes EG. The corresponding value of the Zeeman field is precisely the upper-
boundary of the coexistence region, with

ĥc2 ¼ ĥcðl̂NÞ; ð138aÞ

1 ¼ 1

2
ðl̂N þ ĥc2Þ

3
2 þ ðl̂N � ĥc2Þ

3
2Hðl̂N � ĥc2Þ

h i
; ð138bÞ

and ĥcðl̂Þ given by Eq. (124) in the preceding subsection.



a

b

Fig. 14. Plots of the normalized chemical potential l̂ðĥ; d̂Þ (solid blue line) as a function of the normalized
chemical potential difference ĥ at (a) high detuning d̂ ¼ 2:0 and (b) low detuning d̂ ¼ 1:0. For ĥ < ĥc1, the system is
in the SF phase with l̂ ¼ l̂SF. For ĥc1 < ĥ < ĥc2, the system is in the mixed phase, with l̂ constrained to lie on the
first-order critical boundary l̂ ¼ l̂cðĥÞ. For ĥc2 < ĥ, the system is in the pure N phase, with l̂ ¼ l̂NðĥÞ [the solution
to Eq. (116a)].
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Hence, as is clear from the above discussion, the intersections of the l̂cðĥÞ curve with
l̂SFðn; d̂Þ and l̂Nðĥ; nÞ determine ĥc1ðn; d̂Þ and ĥc2ðn; d̂Þ. The full evolution of the chemical
potential with ĥ, from the SF state through the coexistence region and to the normal state
for detuning in the BCS and crossover regimes, is illustrated in Fig. 14.

The two pairs of Eqs. (136a), (136b), (138a), (138b) for ĥc1 and ĥc2 can be straightfor-
wardly solved numerically. We do this for the case of c = 0.1, with results illustrated in
Fig. 13. In the next subsections, we obtain accurate analytic approximations for ĥc1 and
ĥc2 in the BCS and crossover regimes.
5.3.1. hc1 and hc2 for the BCS limit d� 2�F

As discussed in Section 5.2, at large d̂ we will have ĥc1; ĥc2 � l̂, allowing the use of Eqs.
(129a), (129b) for ĥc(l), valid in the linear-response (to ĥ) limit. Starting with ĥc1, for d̂� 2
the normalized gap D̂ is exponentially small so that we may neglect the first term on the
right side of Eq. (136a). The last term in Eq. (136a) may be simplified using the gap equa-
tion, yielding
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4

3
� 4

3
l̂3=2

SF þ
2D̂2

c
þ D̂2

2l̂SFc
ðd̂� 2l̂SFÞ: ð139Þ

Solving Eq. (139) to leading order in small c gives:

l̂SF � 1� 1
4
ðd̂þ 2ÞD̂2c�1: ð140Þ

It is convenient to define the BCS gap Eq. (120) at l̂SF ¼ 1:

D̂F½c; d̂� � 8e�2e�c�1ðd̂�2Þ: ð141Þ

With this definition, to leading order it is valid to replace D̂2 on the right side of Eq. (140)
with D̂2

F. Taking advantage of l̂SF � 1, we Taylor expand D̂ in small l̂SF � 1:

D̂½c; d̂; l̂SF� ’ D̂F½c; d̂� þ ðl̂SF � 1ÞD̂0½c; d̂; 1�; ð142Þ

where

D̂0½c; d̂; 1� ¼ 8e�2e�c�1ðd̂�2Þ d̂
2c
þ 1

c
þ 1

 !
; ð143aÞ

’ 4e�2c�1ðd̂þ 2Þe�c�1ðd̂�2Þ; ð143bÞ
’ 1

2
c�1ðd̂þ 2ÞD̂F½c; d̂�; ð143cÞ

with the prime denoting differentiation with respect to l̂. Using Eq. (142) along with Eq.
(143c) and Eqs. (140), (136b) becomes

ĥc1 �
D̂½c; d̂; l̂SF�ffiffiffi

2
p ; ð144aÞ

� 1ffiffiffi
2
p D̂F �

c�2

8
ðd̂þ 2Þ2D̂3

F

� �
; ð144bÞ

� 1ffiffiffi
2
p D̂F½c; d̂� exp � d̂2

8c2
D̂2

F

" #
; ð144cÞ

where in the final result we have taken d̂� 2 and re-exponentiated the second factor, valid
since D̂F is exponentially small for c� 1. In the asymptotic large d̂ limit, ĥc1 thus decays
exponentially with d̂, as seen in Fig. 13.

Similarly, ĥc2 can be obtained by solving Eqs. (138a), (138b) iteratively utilizing the fact
that, in the large-d̂ limit, ĥc2 is exponentially small while l̂N � 1. Thus, in Eq. (138b) we
can expand in ĥc2=l̂N � 1, yielding

1 � l̂3=2
N þ

3ĥ2
c2

8
ffiffiffiffiffiffi
l̂N

p ; ð145Þ

which has the zeroth order solution l̂N � 1; at this order Eq. (138a) yields ĥc2 � D̂F=
ffiffiffi
2
p

.
Inserting the latter expression into Eq. (145) yields a leading-order correction to l̂N:

l̂N � 1� 1
4
ĥ2

c2 � 1� 1
8
D̂2

F: ð146Þ
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Using this inside Eq. (138a) together with the expansion Eq. (142) (but with l̂N instead of
l̂SF) our final leading-order result for ĥc2 is:

ĥc2 �
1ffiffiffi
2
p D̂F �

1

16c
ðd̂þ 2ÞD̂3

F

� �
; ð147aÞ

� 1ffiffiffi
2
p d̂F½c; d̂� exp � d̂

16c
D̂2

F

" #
; ð147bÞ

that decays exponentially with increasing d̂ as exhibited in Fig. 13. Note that, since
d̂2=8c2 � d̂=16c for large d̂, ĥc2 > ĥc1 in the large detuning limit, i.e., the curves in
Fig. 13 never cross.

5.3.2. hc1 and hc2 for the crossover limit 0 < d < 2�F

We now compute ĥc1ðd̂Þ and ĥc2ðd̂Þ at small d̂. To obtain ĥc1, we first note that at large
detuning in the SF state at ĥ = 0, the full gap and number equations are obtained from
Eqs. (110a) and (110b) with Eq. (112) for eG [see also Eqs. (C.12b) and (C.12d)]:

0 ’ 2D̂ðd̂� 2l̂Þc�1 þ
ffiffiffî
l

p
D̂ ln

D̂
8e�2l̂

; ð148aÞ

4

3
’ 5

4

D̂2ffiffiffî
l
p þ 4

3
l̂3=2 þ 2D̂2

c
� D̂2

2
ffiffiffî
l
p ln

D̂
8e�2l̂

: ð148bÞ

As d̂ is reduced below 2, the system undergoes a crossover from the BCS regime (where l̂ is
pinned near unity) to the BEC regime where D̂ is no longer exponentially small (although
we still have D̂� 1) and l̂ begins to track d̂=2, as atoms pair up into Bose-condensed mol-
ecules (see Fig. C.1). How is this reflected in Eqs. (148a), (148b)? As d̂ drops below 2, D̂
grows such that D̂=l̂ becomes Oðc1=2Þ, so that we may neglect the final D̂ ln D̂=l̂ term on
the right side of Eqs. (148a), (148b). Taking c� 1 in Eq. (148b) (so that the term
5D̂2=4

ffiffiffî
l
p

may be neglected) thus yields the following approximate solutions to Eqs.
(148a), (148b):

l̂ �d̂=2; ð149aÞ

D̂ �
ffiffiffiffiffi
2c
3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðd̂=2Þ3=2

q
: ð149bÞ

Note that the role of the equations has been reversed, with the gap equation fixing l̂ to be
close to d̂=2 [to Oðc ln cÞ], and the number equation fixing D̂; we shall also see such behav-
ior in the asymptotic BEC regime at negative detuning. Using Eq. (149b) inside Eq. (129a)
[still using the ĥc � l̂ expression since, as we shall verify a posteriori, ĥc1 remains small in
this regime], we find for ĥc1 ¼ ĥcðl̂SFÞ:

ĥc1 �
ffiffiffi
c
3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðd̂=2Þ3=2

q
: ð150Þ

Next, we compute ĥc2 in the crossover regime. As in the preceding subsection, ĥc2 is deter-
mined by combining the solution to the gap equation at low detunings (d . 2l, which
approximately solves the equation for ĥc at low detunings, as discussed in Section 5.2.2)
with the normal-state chemical potential l̂N, given by Eq. (138b). We shall denote the solu-
tion to this equation as ĥðNÞðl̂Þ, defined by
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1 ¼ 1

2
½l̂þ ĥðNÞðl̂Þ�3=2 þ ½l̂� ĥðNÞðl̂Þ�3=2H½l̂� hðNÞðl̂Þ�
� �

: ð151Þ

Although Eq. (151) cannot be solved analytically for arbitrary l̂, we can find solutions for
l̂ < ĥ [so that the second term on the right side of Eq. (151) vanishes] and in the limit
l̂� ĥ:

ĥðNÞðl̂Þ ¼22=3 � l̂ for l̂ < 2�1=3; ð152Þ

�
ffiffiffi
8

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l̂3=2

p
for l̂! 1: ð153Þ

Having defined ĥðNÞðl̂Þ, it is straightforward to combine it with the approximate solution
l̂c � d̂=2 Eq. (130) to obtain ĥc2ðd̂Þ:

ĥc2 � ĥðNÞðd̂=2Þ: ð154Þ
For low detunings (d̂ < d̂p � 22=3 � 1:59), we can use Eq. (152) for ĥ(N), giving our final
low-detuning result for ĥc2:

ĥc2 � 22=3 � d̂
2
; ð155Þ

a linear-in-d̂ behavior that is clearly seen in the numerically-determined curve shown in
Fig. 13.

5.4. Mixed state in the BCS regime

5.4.1. Phase fractions

We have argued in the preceding section that, for ĥc1ðd̂Þ < ĥ < ĥc2ðd̂Þ (the region
between the two curves in Fig. 13), and neglecting the possibility of the FFLO state,
our system is a mixed state in which the N and SF ground states coexist in 1� xðd̂; ĥÞ
and xðd̂; ĥÞ fractions, respectively. To show this directly, here we study the properties of
this phase-separated coexistence state by computing its energy and determining the opti-
mum fractions of SF and N. [39] We note that our analysis from the start ignores the inter-
facial energy [73] between the two coexisting (N and SF) phases. For a macroscopic phase
separation, this energy contribution is subdominant in the thermodynamic limit. However,
ignoring it precludes us from determining the spatial SF–N profile in this regime. In the SF
regions, D̂ is given by Eq. (120), with the chemical potential given by l̂cðĥ; d̂Þ, Eq. (124)
[inverting ĥcðl̂; d̂Þ]. The energy of the mixed system in the canonical ensemble (appropriate
for fixed density) is (normalized to c�5=2

F )

eG;NþSF ¼ �
ffiffiffî
l

p D̂2

2
þ 8

15
l̂5=2

 !
x�

ffiffiffî
l

p
ĥ2 þ 8

15
l̂5=2

� �
ð1� xÞ þ 4

3
l̂; ð156Þ

where in the second term we used Eq. (114b) for the normal-state contribution to the ener-
gy, valid since D̂� 1 on the BCS side. The final term comes from switching from the
grand-canonical to the canonical ensemble (recall that in our notation the total normalized

density is 4/3).
The total density of atoms is similarly constructed from contributions from the normal

and paired regions
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D̂2ffiffiffî
l
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3
l̂3=2 þ 2c�1D̂2

 !
þ ð1� xÞ 4

3
l̂3=2 þ ĥ2

2
ffiffiffî
l
p

 !
: ð157Þ

In the BCS regime, D̂� l̂, so that we may neglect the term proportional to D̂2=
ffiffiffî
l
p

on the
right side of Eq. (157). The remaining terms may be approximately solved for l̂, yielding

l̂ ’ 1� c�1D̂2x� ĥ2

4
ð1� xÞ: ð158Þ

To determine the properties of the mixed state we look for xðd̂; ĥÞ that minimizes
eG,N+SF(x), Eq. (156), using the numerically-determined simultaneous solution to Eq.
(158) and Eq. (120) for D̂ and l̂. In the absence of a mixed state, the optimum x would
jump discontinuously from x = 1 to x = 0 as ĥ is increased. The existence of a solution
where the optimum 0 < xðd̂; ĥÞ < 1 therefore indicates a stable phase-separated state.

Defining them to be the endpoints of the region where x is greater than zero or less than
unity (indicating a mixed state) yields an alternate procedure for finding ĥc1ðd̂Þ and ĥc2ðd̂Þ
as given in Eqs. (136a) and (138a), (138b). The two methods of determining ĥc1ðd̂Þ and
ĥc2ðd̂Þ are displayed in Fig. 15, showing excellent agreement.
5.4.2. Atom density

Another way to characterize the regime of phase separation is to study the total atom
density n as a function of chemical potential and verify that, in the mixed regime
ĥc1 < h < ĥc2, it is impossible to adjust l̂ to attain the imposed density by either of the pure

SF or N phases. The normalized SF-state density n̂ ¼ n=c�3=2
F is given by [cf. Eq. (132)]

n̂SF½c; d̂; l̂; D̂� ¼
5

4

D̂2ffiffiffî
l
p þ 4

3
l̂3=2 þ 2c�1D̂2 � D̂2

2
ffiffiffî
l
p ln

D̂
8e�2l̂

; ð159Þ

with D̂½c; d̂; l̂� given by Eq. (120). In the N state, the normalized density is [cf. Eq. (115a)]
Fig. 15. Upper (red) curve is ĥc2 [Eqs. (138a), (138b)] and lower (black) curve is ĥc1 Eq. (136a). For comparison,
the solid points on each curve are the same curves computed using the method described in Section 5.4.1. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this
paper.)
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n̂N½ĥ; l̂� ¼
2

3
ðl̂þ ĥÞ3=2 þ ðl̂� ĥÞ3=2Hðl̂� ĥÞ
h i

; ð160Þ

’ 4

3
l̂3=2 þ ĥ2

2
ffiffiffî
l
p : ð161Þ

Using these expressions we have

n̂½ĥ; l̂� ¼ n̂N½ĥ; l̂�H½l̂cðĥÞ � l̂� þ n̂SF½c; d̂; l̂; d̂�H½l̂� l̂cðĥÞ�; ð162Þ
where l̂cðĥÞ is implicitly defined as the solution of ĥcðl̂c; d̂Þ ¼ ĥ, with ĥcðl̂Þ given by Eq.
(124). In the simplest BCS regime l̂cðĥÞ satisfies

ĥ ’ 4
ffiffiffi
2
p

e�2l̂ce
�c�1ðd̂�2l̂cÞ=

ffiffiffiffi
l̂c

p
: ð163Þ

In Fig. 16, we plot n̂ vs. l̂ for ĥ = .06 with parameter values c = 0.1 and d̂ ¼ 2:0. At these
values of the parameters, ĥc1 � 0.068 at the physical density, thus, we expect the SF state
to be stable. This is reflected in Fig. 16 in the fact that the n̂ðl̂Þ curve intersects the physical
density n̂ ¼ 4=3 (horizontal dashed red line) for l̂ > l̂c.

With increasing ĥ, the discontinuity in n̂ moves to higher values of l̂. The regime of
phase separation occurs when the physical density n̂ ¼ 4=3 intersects this discontinuity,
as shown in Fig. 17 for ĥ = 0.13, which satisfies ĥc1 < ĥ < ĥc2 � 0.37 (all other parameters
being the same). Thus, we see that at this ĥ, no value of l̂ yields n̂ ¼ 4=3. At the critical l̂
(where there is a discontinuity in n̂ðl̂Þ), l̂c � 0:919, there are two possible homogeneous
values of n̂, that can be read off Fig. 17 or determined from Eqs. (159) and (161) [using
Eq. (120) for D̂]. These are n̂N � 1:18 in the N state and n̂SF � 1:92 in the SF state. Using
these values allows us to determine the fractions x and 1 � x of the system that are in the
SF and N phases, respectively, using

4

3
¼ xn̂SF þ ð1� xÞn̂N; ð164Þ

which yields x � 0.20, i.e., most of the system is in the N phase.
Fig. 16. Plot of the normalized density n̂ [solid line, Eq. (162)] vs. l̂ for ĥ = .06 with parameters d̂ ¼ 2 and c = 0.1.
Thin dashed lines denote n̂SF and n̂N. Since the imposed physical atom density (n̂ ¼ 4=3, horizontal dashed red
line) is intersected by the solid curve for l̂ above the critical l̂ (at which n̂ is discontinuous), the system is in the SF
state.



Fig. 17. Same as Fig. 16 but with ĥ = 0.13 raised into the regime of phase separation. At this ĥ, neither the SF nor
the N yields the imposed density n̂ ¼ 4=3, as illustrated by n̂ ¼ 4=3 falling into the discontinuous region of
coexistence.
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With further increasing ĥ, the SF fraction decreases continuously until, above ĥc2 (when
the vertical segment representing the mixed phase moves higher than n̂ ¼ 4=3), the system
enters the pure N phase. This is depicted in Fig. 18, which, for ĥ = 0.40, is slightly above
ĥc2 � 0.37. In Fig. 18 we did not display the entire vertical range of the discontinuity in n̂,
because at such large ĥ for the system to be in the SF state requires a very large D̂, that,
by virtue of the term D̂2=c in Eq. (159), translates into a very large jump in n̂ (for this case,
to n̂ � 8:2) that is off the scale of Fig. 18.

5.5. Fixed population difference in the BCS and crossover regimes

Having characterized the regime of phase separation bounded by the critical curves
ĥc1ðd̂Þ and ĥc2ðd̂Þ at fixed density, we next convert these boundaries to critical population
differences DNc1ðd̂Þ and DNc2ðd̂Þ, first focusing on the positive detuning (BCS and cross-
over) side of Fig. 3. In fact, since at ĥc1ðd̂Þ the system undergoes a first-order transition
from the unmagnetized SF phase to the regime of phase separation, DNc1 = 0 in the
BCS regime.
Fig. 18. Same as Figs. 16 and 17, but with ĥ = 0.40 > ĥc2, so that the normal state is stable.
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Thus, the singlet BCS–BEC superfluid phase is confined to the DN/N = 0 axis, and on
the BCS side of the resonance an arbitrarily small population difference puts the system in
the mixed state (although for a very small population imbalance the fraction of the system
in the SF state will be close to unity). With increasing population difference, eventually the
SF fraction disappears and the system enters the N phase at DNc2. To compute DNc2 mere-
ly requires us to combine our result for ĥc2ðd̂Þ Eqs. (138a), and (138b) with the expression
for DN(ĥ) in the normal state, i.e., Eq. (116b), that gives

DNc2

N
¼ 1

2
½ðl̂N þ ĥc2Þ3=2 � ðl̂N � ĥc2Þ3=2Hðl̂N � ĥc2Þ�; ð165Þ

with l̂N given by Eq. (116a). Along with Eqs. (138a), (138b), (165) provides an accurate
determination (see Fig. 19) of DNc2ðd̂Þ on the BCS side of the resonance [with accuracy
only limited by the approximations used in computing Eq. (138a)]. We now determine
explicit (but approximate) analytic expressions for DNc2/N in the large and small d̂ limits.

5.5.1. DNc2ðd̂Þ
N in the BCS regime of d̂� 2

For large d̂, ĥc2ðd̂Þ is exponentially small according to Eq. (147b) while l̂N � 1 accord-
ing to Eq. (146). Thus, in this limit we can expand Eq. (165) in small ĥc2=l̂N, finding:

DNc2
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2

ffiffiffiffiffiffi
l̂N

p
ĥc2; ð166Þ

with the linear dependence on ĥc2 simply reflecting the Pauli paramagnetism [117] of the N
phase at small h. Inserting Eqs. (146) and (147a) into Eq. (166) (and taking d̂� 2 in the
latter), we find
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� 3D̂F
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2
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F
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16c
D̂2

F

 !
; ð167aÞ

� 3D̂F

2
ffiffiffi
2
p exp � d̂

16c
D̂2

F

" #
; ð167bÞ

where in the final result we kept only leading-order terms in Eq. (167a) (i.e., we took
d̂=c� 1) and re-exponentiated the last factor.
Fig. 19. Plot of the upper-critical polarization DNc2

N as a function of detuning d̂ for c = 0.1, determined by Eq.
(165) along with the numerical solution to Eqs. (138a), (138b).
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5.5.2. DNc2ðd̂Þ
N in the crossover regime of 0 < d̂ < 2

Next, we turn to intermediate detuning in the crossover regime. We recall from Section
5.3.1 that, at low d̂, ĥc2 is approximately given by solving the number equation (138b) along
with the approximate result l̂N � d̂=2 valid in this regime. With ĥc2ðd̂Þ determined by
the number equation

1 ¼ 1

2

d̂
2
þ ĥc2

 !3
2

þ d̂
2
� ĥc2

 !3
2

H
d̂
2
� ĥc2

 !2
4

3
5; ð168Þ

the upper-critical polarization is given by

DN c2

N
¼ 1

2

d̂
2
þ ĥc2

 !3
2

� d̂
2
� ĥc2

 !3
2

H
d̂
2
� ĥc2

 !2
4

3
5: ð169Þ

Physically, Eq. (168) encodes the instability of the polarized Fermi gas to a molecular
superfluid as the point (ĥc2 and the corresponding DNc2) at which the N and SF chemical
potentials are equal to l̂c � d̂=2, Eq. (130). This leads to Eqs. (168), and (169) translates
ĥc2 to DNc2/N, determined by the polarizability of the N state.

We proceed by solving Eq. (168) for ĥc2 and using the result inside Eq. (169) to obtain
the critical polarization. In the case where ĥc2 > d̂=2, this is particularly simple, as the sec-
ond step function in Eq. (168) vanishes (as we found already in Section 5.3.1), giving Eq.
(155) for ĥc2. Using this inside Eq. (169) yields

DN c2

N
¼ 1; d̂ < d̂p ’ 22=3: ð170Þ

Thus, at such low detunings d < dp, the normal state is only stable at full (100%) polar-
ization. To understand this in more detail consider starting at large h in a fully-polar-
ized (spin-›) normal state with DN = N (m = n) and lfl = l � h < 0. As h and DN are
reduced one of two scenarios is possible depending on the value of the detuning d:
(1) For large d > dp, upon lowering h, lfl becomes positive first, converting spin-› atoms
to spin-fl, partially depolarizing the Fermi sea. (2) For low d < dp, case (1) is preempted
by lN exceeding lc . d/2 causing the system to undergo a first-order transition to the
SF state.

We have denoted by dp the critical detuning below which DNc2(d) = N. It is given by the
solution of ĥc2ðd̂pÞ ¼ ĥp ¼ 2�1=3 [the intersection of the horizontal dashed line in Fig. 9 with
hc2(d)], giving

d̂p ’ 22=3: ð171Þ
As d̂ is increased above d̂p, DNc2/N drops continuously below unity, before starting to de-
crease exponentially according to our large d̂ prediction Eq. (167b). To calculate DNc2ðd̂Þ
in the vicinity of d̂p, we take ĥc2 to be close to its value for d̂ < 22=3:

ĥc2 ¼ 22=3 � d̂
2
� �: ð172Þ

with � small. Inserting Eq. (172) into Eq. (168) and expanding to leading order in � yields

1 � 1� 3

2

�

22=3
þ 1

2
ðd̂� 22=3Þ3=2 1þ 3

2

�

d̂� 22=3

� �
; ð173Þ
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which can be easily solved for � and inserted into Eq. (172) to find ĥc2ðd̂Þ:

ĥc2 � 22=3 � d̂
2
� 22=3

3
ðd̂� 22=3Þ3=2

; d̂ > 22=3 ð174Þ

Inserting Eq. (174) into Eq. (169) and again expanding in small deviation d̂� 22=3, we
find

DNc2

N
’1� ðd̂� 22=3Þ3=2Hðd̂� 22=3Þ; ð175Þ

’1� ðd̂� d̂pÞ3=2Hðd̂� d̂pÞ; ð176Þ

where we added a step function to emphasize that the second term is only nonzero for
d̂ > d̂p. Our analysis in this section has neglected interactions, valid for a narrow reso-
nance. The leading-order effects of finite c will add corrections to the approximate relation
l̂ ¼ d̂=2 and hence slightly adjust d̂p (in the numerically generated curve of Fig. 19,
d̂p � 1:57 < 22=3), but the qualitative picture remains the same.

5.6. Coexisting fractions x(DN) in the mixed state

As we have seen, at positive detuning for 0 < DN < DNc2, resonantly interacting ferm-
ions phase separate into an s-wave paired singlet SF and a spin-polarized N state with
fractions x(d,DN) and 1 � x(d,DN), respectively.

To calculate x(d,DN), we begin with Eq. (164) for the normalized density n̂ expressed in
terms of the densities n̂SF and n̂N in the SF and N regions Eqs. (159) and (160), respective-
ly. Using the overall density constraint n̂ ¼ 4=3, we solve Eq. (164) for x to obtain

xðd̂; ĥÞ ¼
4
3
� n̂N½ĥ; l̂cðĥÞ�

n̂SF½d̂; l̂cðĥÞ;
ffiffiffi
2
p

ĥ� � n̂N½ĥ; l̂cðĥÞ�
; ð177Þ

with l̂cðĥÞ given by Eq. (163). Here, in the last argument of n̂SF½d̂; l̂cðĥÞ; D̂ðl̂cÞ� we have
substituted D̂ðl̂cÞ ¼

ffiffiffi
2
p

ĥ, valid everywhere in the mixed phase.
To compute xðd̂;DNÞ, we combine xðd̂; ĥÞ above with a computation of DNðd̂; ĥÞ as a

function of ĥ in the mixed phase. Since any population difference can only occur in the
N regions of fractional volume 1 � x, we have

DNðc; d̂; ĥÞ
N

¼ 1

2
1� xðc; d̂; ĥÞ
h i

ðl̂cðĥÞ þ ĥÞ3=2 � ðl̂cðĥÞ � ĥÞ3=2Hðl̂cðĥÞ � ĥÞ
h i

: ð178Þ

In Fig. 20, we present a numerical solution xðd̂;DNÞ of Eqs. (177) and (178), for d̂ ¼ 1:5
(solid line) and d̂ ¼ 2:0 (dashed line), with c = 0.1. The two curves are qualitatively similar,
each describing a continuous depletion of xðd̂;DNÞ from unity to zero. The main notable
difference between the curves is that for d̂ ¼ 1:5, DNc2

N ¼ 1, while for d̂ ¼ 2:0 the dashed
curve reaches x = 0 at DNc2

N � 0:535 < 1, characterizing a transition to a non-fully-polarized
N state. The rapid initial drop of x with DN

N reflects the fact that, when most of the system is
paired at low polarization, the only way to polarize is to convert regions of the system
from paired to unpaired (i.e. to decrease x), while for large polarization when much of
the system is already in the normal phase, to attain higher polarization the system can fur-
ther polarize already normal sections.



Fig. 20. Plot of the fraction x(d,DN) of mixed state that is in the SF phase as a function of polarization for
detuning d̂ ¼ 1:5 (solid line) and d̂ ¼ 2 (dashed line).
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6. Negative-detuning regime of two-channel model at finite population difference

In the present section we extend our analysis to the d < 0 BEC regime. As for d > 0, here
too we minimize the ground-state energy Eq. (76) with respect to DQ and Q, subject to the
total atom number and imposed spin-polarization constraints. As we shall show in Section
7, the FFLO state is only stable above a critical detuning d* � 2�F [given by Eq. (259)
below], i.e., in the BCS regime. Physically this reflects the fragility of the FFLO state that
is driven by atomic Fermi-surface mismatch, absent in the BEC regime where l � d/2 < 0.
Therefore, in studying the BEC regime at the outset we shall focus on Q = 0 pairing order
as we did in Section 5. Thus, the ground state energy that we shall analyze is still given by
Eq. (102), with its dimensionless form given by Eq. (107).

Before proceeding to our detailed analysis, we briefly summarize our main results, the
negative-detuning phase diagrams at fixed chemical potential difference h and fixed spin
imbalance DN, Figs. 21 and 22, respectively. The three critical h’s (hm, hc1 and hc2) in
Fig. 21. Negative-detuning phase diagram of the two-channel model for the case c = 0.1 at fixed chemical
potential difference h showing regions of singlet superfluid (SF), magnetic superfluid (SFM), phase separation
(shaded, PS) and normal phase (N). To the right of the dashed line in the PS regime, SF and N states coexist,
while to the left of the dashed line in the PS regime SFM and N states coexist. dc is a tricritical point.



Fig. 22. Negative-detuning phase diagram of the two-channel model for the case c = 0.1 at fixed spin population
difference DN, showing regions of magnetic superfluid (SFM) and phase separation (shaded, PS). The fully-
polarized normal phase is confined to the upper boundary DN = N, while the unpolarized SF state is confined to
the DN = 0 axis. To the right of the dashed line, the PS regime consists of coexisting SF and N states; to the left of
the dashed line the PS regime consists of coexisting SFM and N states.
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Fig. 21 separating the singlet superfluid (SF), magnetic superfluid (SFM), normal (N)
states and phase-separation (PS) regime were computed by numerically solving the sta-
tionarity and number constraint conditions [i.e., Eqs. (110a) and (110b)], always ensuring
that the solution is a minimum of the normalized ground-state energy eG, Eq. (107). In the
PS region, it is possible to solve the stationarity and number constraint equations, but the
solution is not a minimum of eG. [47,67,45,121] Then, to obtain Fig. 22, these critical h’s
were converted to critical population differences using Eq. (110c). The dashed lines in these
figures separate different types of PS regime and are derived approximately in Section
6.4.3.

The main aim of this section is to present details of analytic calculations that comple-
ment this numerical analysis of the gap and number-constraint equations and lead to the
phase diagrams in Figs. 21 and 22 in the narrow Feshbach resonance limit, c� 1. These
computations are aided by the fact that, for c� 1, l . d/2 and hence l < 0 for d < 0. Tak-
ing l < 0 yields an important simplification to the equation for the ground-state energy
and consequently for the gap equation and the number and polarization constraints, since
only one of the terms in Eq. (108) for the dimensionless magnetization contributes,
yielding

m̂ðĥÞ ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2 � D̂2

p
� jl̂j

� �3=2

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2 � D̂2

p
� jl̂j

� �
: ð179Þ

As in the preceding section, we proceed by inserting Eq. (179) into Eq. (107) for the nor-
malized ground-state energy eG. Stationary points of eG satisfy the gap equation, Eq.
(110a). In finding solutions to the gap equation we always verify that such stationary
points are actually minima of eG rather than saddle points or local maxima. Failure to
do this in a number of recent theoretical works [47,67,121,45] has led to erroneous results.
To impose constraints on the total atom number and spin population difference, we use
Eqs. (110b) and (110c).

We will show that an accurate quantitative description of the BEC regime, for the case
of a narrow resonance, can be found by expanding the normalized ground-state energy eG
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to leading order in c. Although a full description requires keeping terms up to order Oðc3Þ
(as we show in Section 6.4 below), many essential features are correctly described in the
leading-order c = 0 limit.

6.1. Zero-coupling approximation

In the present section, we analyze the BEC regime in the zero-coupling limit c fi 0
(g fi 0). As we shall show, many of the essential features of the phase diagram are cap-
tured in this extreme narrow resonance limit. Although the Feshbach resonance intercon-
version term that is proportional to g is required for pairing and equilibration between
atoms and molecules, on the BEC side of the resonance the molecular density is deter-
mined by the number equation and therefore, in equilibrium, is finite even in the g fi 0
limit.

To treat this limit, we change variables from D̂ (which vanishes at g fi 0) to the normal-
ized molecular condensate order parameter B̂ ¼ D̂=

ffiffiffi
c
p

. The physical molecular boson den-
sity nm is related to B̂ via

nm ¼ jBj2 ¼ Nð�FÞ�FjB̂j2 ¼ c�3=2
F B̂2; ð180Þ

where for simplicity we have taken B̂ to be real. Inserting this variable change into Eq.
(107), we find, expanding to leading order in small c:

eG ¼ B̂2ðd̂� 2l̂Þ �
Z ĥ

0

m̂ðĥ0Þdĥ0; ð181Þ

where to the same order the magnetization Eq. (179) reduces to

m̂ðĥÞ ¼ 2

3
ðĥ� jl̂jÞ3=2Hðĥ� jl̂jÞ: ð182Þ

Performing the integral over ĥ in Eq. (181), we find

eG ¼ B̂2ðd̂� 2l̂Þ � 4

15
ðĥ� jl̂jÞ5=2Hðĥ� jl̂jÞ: ð183Þ

The number and gap equations are then given by:

4

3
¼ 2B̂2 þ 2

3
ðĥ� jl̂jÞ3=2Hðĥ� jl̂jÞ; ð184aÞ

0 ¼ 2B̂ðd̂� 2l̂Þ: ð184bÞ

In the normal (N) phase, B̂ ¼ 0, Eq. (184b) is automatically satisfied, and the number
equation reduces to

ĥ� jl̂j ¼ 22=3; ð185Þ
for the normal-state chemical potential. Returning to dimensionful quantities clarifies the
meaning of Eq. (185):

ðhþ lÞ3=2 ¼ 2�3=2
F : ð186Þ

Since h + l = l›, this simply states that the normal-phase spin-› density n" ¼ 2
3
cl3=2
" is

equal to the total fermion density, n.
In the superfluid phase, B̂ 6¼ 0, and Eqs. (184a), (184b) give
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B̂2 ¼ 2

3
1� 1

2
ĥ� jl̂j
� �3=2

Hðĥ� jl̂jÞ
� �

; ð187aÞ

l̂ ¼ d̂
2
; ð187bÞ

which combine to yield

B̂2 ¼ 2

3
1� 1

2
ĥ� jd̂j

2

 !3=2

H ĥ� jd̂j
2

 !2
4

3
5; ð188Þ

an expression that is only sensible when the right side is positive. What do the preceding
expressions tell us about the BEC regime at ĥ „ 0? For ĥ < jd̂j=2, corresponding to Zeeman
field less than the molecular binding energy, B̂2 ¼ 2=3, which, in dimensionful units, gives
the molecular density nm = n/2. This is the usual singlet molecular superfluid (SF) phase in
the BEC limit, in which all the atoms are bound into diatomic molecules [See Fig. 23(a)].
Although including nonzero interactions will deplete the molecular density somewhat,
clearly this qualitative picture will still hold.

However, for ĥ > jd̂j=2 the Zeeman field exceeds the molecular binding energy, and the
molecular density continuously depletes with increasing ĥ according to Eq. (188) as mol-
ecules break up into a fully-polarized Fermi sea with l› = h + d/2 > 0 [see Fig. 23(b)].
Using Eqs. (187b) and (182), we find the corresponding magnetization
a

b

Fig. 23. A schematic of the population of atomic states (parabolas, labeled by spin) and the molecular level (line)
in the BEC regime (d < 0) at (a) h = 0 and (b) h > hm.
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m̂ðĥÞ ¼ 2

3
ĥ� jd̂j

2

 !3=2

H ĥ� jd̂j
2

 !
; ð189Þ

continuously increasing from zero beyond ĥ > jd̂j=2. We refer to this uniform state, consist-
ing of both condensed molecules and spin-up polarized fermions, as the magnetic super-
fluid (SFM) state.

At low energies, we expect the SFM to be very similar to a uniform state of bosons and
one species of fermion which has been previously explored in a different context [126]. In
the present context, the SFM state exists for ĥm < ĥ < ĥc2, with (in the c fi 0 limit)

ĥm ¼jd̂j=2; ð190aÞ
ĥc2 ¼22=3 þ jd̂j=2; ð190bÞ

the latter defined by where B̂2 ¼ 0 according to Eq. (188). The approximate linear depen-
dences of ĥm and ĥc2 on d̂ are also clearly seen (away from the unitarity point d = 0) in the
numerically-determined finite c = 0.1 phase diagram (Fig. 21).

Expressing Eq. (188) for B̂ðĥÞ in terms of nm, n and the physical magnetization, m:

nm ¼ 1
2
ðn� mÞ; ð191Þ

further clarifies its meaning. At ĥm, m̂ðĥmÞ ¼ 0 and all the atoms are confined into Bose-
condensed molecules. Applying a sufficiently large ĥ > ĥm such that l› = h + d/2 > 0
populates the spin-up atomic band as illustrated in Fig. 23, depleting the number of
molecular bosons according to Eq. (191). At ĥ = ĥc2, m = n and the system is fully
polarized. As we shall see in the next sections, this simple picture of molecular bosons
depairing into free polarized atoms once the fermion band dips below the molecular level
remains qualitatively correct for c > 0.

6.2. Weak-coupling description of SFM state

In the present section, we extend the above c fi 0 analysis to higher order in c. As we
will show, the qualitative picture of the preceding subsection remains the same: A deple-
tion of the condensate (and concomitant population of the spin-› Fermi sea) with increas-
ing ĥ starting at ĥm, with a continuous depletion until ĥc2 beyond which the molecular
density vanishes and all the atoms occupy the spin-› band. The properties of the homo-
geneous magnetic superfluid SFM, that consists of a molecular superfluid and a spin-› Fer-
mi sea, remain the same. The major qualitative modification from the preceding section is
the continuation of the first-order phase transition curve ĥc1ðd̂Þ, that we found in Section 5,
into the BEC regime. Recall that, on the positive-detuning side of the resonance, ĥc1ðd̂Þ
denotes the chemical potential difference above which the SF phase is unstable, via a
first-order transition, to phase separation. At fixed polarization, this translates to
DNc1 = 0: For any DN „ 0 in the BCS regime the system phase separates.

As we shall see, in the BEC regime at moderate negative detunings, the SFM state is
similarly unstable to phase separation at ĥc1. However, since the SFM state is polarized,
the corresponding fixed-polarization boundary DNc1„0. Remarkably, our naive formula
for ĥc2, Eq. (190b), remains quantitatively correct, but, close to the resonance position,
should be more generally interpreted as the chemical potential difference below which
the spin-polarized N state is unstable to phase separation. At fixed atom density n, the
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sequence of phases and regimes with increasing ĥ is, then, SF fi SFM fi PS fi N. At large
negative detuning, d = dc . �10.6�F, ĥc1 intersects ĥc2, so that the first-order behavior ends
and, for d < dc, we find the sequence of phases SF fi SFM fi N separated by continuous
transitions.

Before computing the ĥc1ðd̂Þ curve, we first analyze the SFM phase in more detail by
studying the Oðc2Þ expression for eG, obtained by expanding the arguments of the integrals
in Eq. (107) in small c and evaluating the integrals term by term. We find:

eG ¼ �
4

15
ðĥ� jl̂jÞ5=2Hðĥ� jl̂jÞ � V̂ 2B̂2 þ 1

2
V̂ 4B̂4; ð192Þ

with

V̂ 2½c; d̂; ĥ; l̂� � 2l̂� d̂� c
ffiffiffiffiffiffi
jl̂j

p
F 2ðĥ=jl̂jÞ; ð193aÞ

V̂ 4½c; ĥ; l̂� �
c2p

32jl̂j3=2
F 4ðĥ=jl̂jÞ; ð193bÞ

where we defined the functions F2(x) and F4(x):

F 2ðxÞ �
p
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p

� tan�1
ffiffiffiffiffiffiffiffiffiffiffi
x� 1
ph i

Hðx� 1Þ; ð194Þ

F 4ðxÞ � 1� 2

px2

ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p

ðxþ 2Þ þ x2 tan�1
ffiffiffiffiffiffiffiffiffiffiffi
x� 1
ph i

Hðx� 1Þ: ð195Þ

To leading order in c, the number Eq. (110b) and gap Eq. (110a) equations are:

4

3
¼ 2B̂2 þ pcB̂2

4
ffiffiffiffiffiffi
jl̂j

p þ 2

3
ðĥ� jl̂jÞ3=2Hðĥ� jl̂jÞ � cB̂2

2
ffiffiffiffiffiffi
jl̂j

p tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ=jl̂j � 1

q
Hðĥ� jl̂jÞ; ð196aÞ

V̂ 2 ¼ B̂2V̂ 4: ð196bÞ

On the BEC side of the resonance the saddle-point equations approximately switch roles,
with the number equation Eq. (196a) approximately determining the boson density B̂2 and
the gap equation Eq. (196b) approximately determining the chemical potential l̂, as can be
seen by solving these equations:

B̂2 ¼ 2

3

1� 1
2

ĥ� jl̂j
� �3=2

1þ c

8
ffiffiffiffi
jl̂j
p p� 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ=jl̂j � 1

q� � ; ð197aÞ

l̂ ¼ d̂
2
þ c

ffiffiffiffiffiffi
jl̂j

p
2

p
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ=jl̂j � 1

q
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ=jl̂j � 1

q� �
; ð197bÞ

with the second equation determining l̂ðd̂Þ through V̂ 2 � 0, correct toOðcÞ since V̂ 4 isOðc2Þ.
At this level of approximation, Eq. (197b) is independent of Eq. (197a) allowing us to solve
Eq. (197b) to determine l̂ðd̂Þ which can then be used to compute B̂2ðd̂Þ through Eq. (197a).
To order c, l̂ is determined by simply iterating Eq. (197b), which amounts to inserting the
zeroth order result l̂ � d̂=2 into the second term. This gives to OðcÞ

l̂ ’ l̂1ðd̂; ĥÞ �
d̂
2
þ

c
ffiffiffiffiffiffi
jd̂j

q
2
ffiffiffi
2
p p

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ĥ=jd̂j � 1

q
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ĥ=jd̂j � 1

q� �
; ð198Þ
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while to the same order B̂2 is given by

B̂2 ¼ 2

3

1� 1
2

ĥ� jl̂1ðd̂; ĥÞj
� �3=2

1þ c
ffiffi
2
p

8
ffiffiffiffi
jd̂j
p ðp� 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ĥ=jd̂j � 1

q
Þ
; ð199Þ

describing the condensate depletion as a function of ĥ and d̂.
These expressions can be easily translated to the experimentally-relevant fixed-popula-

tion ensemble. Expanding Eq. (179) to OðcÞ, we obtain

m̂ ’ 2

3
ðh� jl̂jÞ3=2 � cB̂2

2ĥ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ=jl̂j � 1

q
; ð200Þ

the lowest-order finite-c correction to Eq. (182). This can be turned into an OðcÞ
expression for the quantity ðĥ� jl̂jÞ3=2 appearing in Eq. (197a):

2

3
ðĥ� jl̂jÞ3=2 ’m̂þ cB̂2

2ĥ

3m̂
2

� �1=3

; ð201Þ

’m̂þ cB̂2

2jl̂j
3m̂
2

� �1=3

; ð202Þ

where in the second line we took ĥ � jl̂j, valid to leading order in small m̂. Since, as we
shall see, the SFM state is generally only stable for ĥ � jl̂j, this is approximately valid.
Inserting Eq. (202) into Eq. (197a), and using l̂ � d̂=2 [correct in this expression to
OðcÞ] we find

B̂2 ’
2
3
� m̂

2

1þ c
2jd̂j

3m̂
2

� �1
3 þ

ffiffi
2
p

c

8
ffiffiffiffi
jd̂j
p p� 2 tan�1 ð3m̂Þ1=321=6ffiffiffiffi

jd̂j
p

� � ; ð203aÞ
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n
¼

1
2

1� DN
N

� �
1þ c

2
2
3jd̂j
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N

� �1
3 þ

ffiffi
2
p

c

8
ffiffiffiffi
jd̂j
p p� 2 tan�1 25=6ffiffiffiffi

jd̂j
p DN

N

� �1
3

� � ; ð203bÞ

where in Eq. (203b) we used Eqs. (104), (109), and (180) to express the final result for the
physical molecular density nm(DN). This corrects, to OðcÞ, Eq. (191) of the preceding sec-
tion.

Finally, we consider the OðcÞ corrections to Eqs. (190a), (190b) for ĥm and ĥc2. The SF-
SFM transition at ĥm occurs when the magnetization m̂ðĥÞ becomes nonzero. By examining
Eq. (179) it is clear that ĥm is exactly given by

ĥm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl̂j2 þ D̂2

q
; ð204aÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl̂j2 þ cB̂2

q
; ð204bÞ

with l̂ and B̂ given by their values in the SF state (assuming d̂ < d̂M , so that this contin-
uous transition is not preempted by a first-order SF–N transition). Expressions for l̂ and B̂
in the SF phase are derived in Appendix C, Eqs. (C.17) and (C.18). Inserting these expres-
sions into Eq. (204b), we find, to leading order in c (plotted in Fig. 24),



Fig. 24. Plot of ĥm, the normalized chemical potential difference above which the system enters the SFM phase
(i.e., DN „ 0) as a function of detuning d. The analytical low-c prediction of Eq. (205b) (solid line) shows excellent
agreement with a numerical computation (points), here done for c = 0.1.

1846 D.E. Sheehy, L. Radzihovsky / Annals of Physics 322 (2007) 1790–1924
ĥm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl̂j2 þ 2c=3

q
; ð205aÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d̂2

4
þ c

2

3
� pjd̂j3=2

4
ffiffiffi
2
p

 !vuut ; ð205bÞ

where we displayed the intermediate result Eq. (205a) because it will be useful below.
To compute the upper-critical chemical potential difference ĥc2, below which the normal

(N) state is unstable to pairing or phase separation, we note that stability of the N phase
requires V̂ 2 < 0, so that eG has positive upward curvature at B̂ ¼ 0 [see Eq. (192)]. A sec-
ond-order transition to the B̂ 6¼ 0 SF state occurs when V̂ 2 changes sign. We shall proceed
to compute ĥc2 by finding the location of this assumed second-order N–SFM transition. How-
ever, as we shall see, for d̂ > d̂c this second-order transition is preempted by a first-order tran-
sition to the regime of phase separation. We study this first-order behavior in more detail in
the next section. For now, we proceed with the second-order assumption that locates the
boundary ĥc2 to a good accuracy, as will be seen in the following sections. The corresponding
condition V̂ 2 ¼ 0 is actually equivalent to our OðcÞ expression Eq. (197b) for the gap equa-
tion. Combining this with Eq. (185) for the normal state chemical potential yields:

ĥc2 ¼ 22=3 þ jd̂j
2
� c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥc2 � 22=3

q
p
2
þ 21=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĥc2 � 22=3
p � tan�1 21=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĥc2 � 22=3
p

 !
; ð206aÞ

� 22=3 þ jd̂j
2
� cjd̂j1=2ffiffiffi

8
p p

2
þ 25=6

jd̂j1=2
� tan�1 25=6

jd̂j1=2

 !
; ð206bÞ

with the second expression, obtained by approximating ĥc2 � 22=3 þ jd̂j=2 on the right side
of Eq. (206a), correct to Oðc1Þ. As derived, Eq. (206b) denotes the chemical potential dif-
ference at which a putative second-order N to SFM phase transition occurs. As noted
above, this only occurs for sufficiently low detunings with a first-order transition occurring
for higher detunings. Despite this, we shall see that the critical ĥ for the first-order insta-
bility (which we also denote ĥc2) to good accuracy is given by Eq. (206b). We will demon-
strate this assertion in Section 6.3.
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6.3. Transition to the regime of phase separation

As mentioned above, the regime of phase separation we found on the BCS side of the
resonance persists into the BEC regime, bounded by the ĥc1ðd̂Þ and ĥc2ðd̂Þ curves. A nota-
ble qualitative difference on the BEC side is the existence of a homogeneous magnetized
superfluid (SFM) state.

The condition for the instability of the SFM to phase separation at ĥc1ðd̂Þ is of course
precisely the same as we used on the BCS side: a first-order transition to the N phase in
the grand-canonical ensemble at fixed ĥ and l̂. Although finding the location of this
first-order transition is most accurately done by examining the precise structure of the
ground-state energy as a function of applied chemical potential difference, to a good
approximation it is signaled by a vanishing of the molecular scattering length am. To show
this, we compute the molecular scattering length by using its relation am ¼ m

2p T m to the
molecular T-matrix Tm [114], the latter given to leading order (i.e. the Born approxima-
tion) by the diagram in Fig. 25. Direct calculation of this diagram (relegated to Appendix
E) yields

am ¼
cg4m

64jlj3=2
F 4ðh=jljÞ; ð207Þ

¼
ffiffiffi
2
p

p2�Fc2

64jlj3=2 ffiffiffiffi
m
p F 4ðh=jljÞ; ð208Þ

involving the function F4(x) [defined in Eq. (195)] that we have already introduced in the
definition of the quartic term V̂ 4 in the ground-state energy Eq. (192). This relation to V̂ 4 is
expected as am measures the repulsion between molecular bosons.

Stability of a molecular Bose gas requires am > 0. [127] However, we find that while
am(h = 0) > 0, it decreases monotonically with h/|l| (as illustrated in Fig. 2), vanishing
at h/|l| � 1.30. [128] Based on a detailed analysis of eGðB̂; ĥÞ (see Section 6.4 below), we
associate this vanishing of am(ĥ) with a first-order SFM–N transition driven by the
increased density of unpaired single-spin species atoms. Since (as discussed previously;
see Section 5.3) at fixed atom number the system phase separates at such a first-order tran-
sition we identify this critical ĥ with ĥc1. Combining the value x � 1.30 at which F4(x) van-
ishes with the relation l̂ � d̂=2 that is valid in the SFM state, we find
Fig. 25. Feynman diagram corresponding to the molecular scattering amplitude, with the solid lines indicating
fermionic atom propagators and the dashed lines indicating scattering molecules.
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ĥc1 � 1:30jl̂ðn; d̂Þj; ð209aÞ
� 0:65jd̂j; ð209bÞ

At sufficiently negative d̂, ĥc1ðd̂Þ intersects ĥc2ðd̂Þ. Using the Oðc0Þ result Eq. (190b) for ĥc2,
we find the corresponding detuning

d̂c � �
22=3

0:15
� �10:6: ð210Þ

The implication of this is that, for d̂ < d̂c, the molecular bosons in the SFM phase are
repulsive for any ĥ (and thus are stable). For d̂ < d̂c, the SFM undergoes a continuous tran-
sition at ĥc2 to a fully-polarized atomic gas.

In the more experimentally-relevant ensemble of fixed atom numbers, we translate ĥc1

to the lower critical polarization DNc1 at which the SFM state is unstable to phase separa-
tion. Using Eq. (209b) along with Eqs. (182) and (109) (as well as l̂ � d̂=2) we find

DNc1

N
’ 1

2
ð0:15Þ3=2jd̂j3=2

; ð211aÞ

’ 0:029jd̂j3=2
: ð211bÞ

We next turn to a more detailed demonstration of the preceding discussion by a careful
analysis of the ground-state energy eG.

6.4. Detailed analysis of the SF–SFM and SFM–N transitions

In the present section, we present a more precise determination of the first-order transition
instability described in the preceding subsection. Doing so will provide more accurate (in c)
predictions for ĥc1ðd̂Þ, DNc1ðd̂Þ and ĥc2ðd̂Þ (note that, as found for sufficiently low detuning on
the BCS side, DNc2 = 1 on the BEC side), as well as a more complete description of the first-
order SFM–N transition. We start by expanding eGðB̂Þ to higher order in B̂:

eG � �V̂ 2B̂2 þ V̂ 4

2
B̂4 þ V̂ 6

3
B̂6 þOðB̂8Þ; ð212Þ

where for simplicity we have dropped a B̂-independent term. Here, V̂ 2 and V̂ 4 are given in
Eqs. (193a), (193b) and

V̂ 6½ĥ; l̂� ¼
3c3

32jl̂j7=2
F 6ðĥ=jl̂jÞ; ð213aÞ

F 6ðxÞ��
5p
64
þ 1

3x3
ffiffiffiffiffiffiffiffiffiffi
x�1
p þ 5

32
tan�1

ffiffiffiffiffiffiffiffiffiffi
x�1
p

þ
ffiffiffiffiffiffiffiffiffiffi
x�1
p

96x4
ð�48þ8xþ10x2þ15x3Þ

" #
Hðx�1Þ;

ð213bÞ

is the the sixth-order coefficient.

6.4.1. SF–SFM transition at ĥm

We first recall that, for low ĥ < ĥm � jl̂j, it is sufficient to limit eG to quartic order in B̂.
Standard minimization gives a nontrivial SF solution B̂2 ¼ V̂ 2=V̂ 4 and energy
eG;SF ¼ �V̂ 2

2=V̂ 4 that [because of the step functions Hðĥ=jl̂j � 1Þ] are explicitly ĥ-indepen-
dent. Hence, m̂ ¼ � oeG;SF

oĥ
¼ 0 as expected in the singlet SF state.
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For a more accurate description (and for later study of the SFM–N transition; see
below) we include the V̂ 6B̂6 term in the expansion of eGðB̂Þ. Although V̂ 6 has a form sim-
ilar to V̂ 2 and V̂ 4, namely a constant plus an ĥ-dependent correction that vanishes for
ĥ < ĥm, examination of Eq. (213b) reveals the function F6(x) to be divergent at xfi1+. This
divergence arises from the approximate way we evaluate the integral of m̂ðxÞ (the Zeeman
energy) appearing in Eq. (107):

�
Z ĥ

ĥm

dh0m̂ðĥ0Þ ¼ � 2

3

Z ĥ

ĥm

dh0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2 � cB̂2

q
� jl̂j

� �3=2

; ð214Þ

perturbatively in cB̂2=ðĥ2 � l̂2Þ. Recall that ĥm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̂2 þ cB̂2

q
. Hence, strictly speaking we

should only use these expressions in the regime where cB̂2=ðĥ2 � l̂2Þ � 1.
To elucidate the nature of the transition exhibited by eGðB̂; ĥ; d̂Þ, Eq. (212), we deter-

mine the location of its minima, given by

0 ¼ �V̂ 2B̂þ V̂ 4B̂3 þ V̂ 6B̂5; ð215Þ

which (in addition to the trivial stationary point at B̂ ¼ 0 corresponding to the N state) has
two nontrivial solutions

B̂2
� ¼

V̂ 4

2V̂ 6

�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4V̂ 2V̂ 6=V̂ 2

4

q� �
; ð216Þ

that yield physical stationary points of eG only when the right side of Eq. (216) is real and
positive.

For sufficiently weak chemical potential difference, ĥ < ĥm, the Landau expansion coef-
ficients are V̂ 2 > 0, V̂ 4 > 0 and V̂ 6 < 0. Hence as long as 4V̂ 2jV̂ 6j < V̂ 2

4, the + and � solu-
tions in Eq. (216) correspond to a minimum and a maximum, respectively with the
complete shape illustrated in Fig. 26 (dashed line). By plotting the numerical solution of
the non-Taylor expanded expression for eG in Eq. (107) for this range of parameters
(d̂ < 0, ĥ < ĥm) and comparing with the quartic and sixth order (in B̂) approximation to
eG, it is clear that while the + solution minimum represents the physical, stable singlet-
SF ground state, the � solution maximum is simply an artifact of truncation of eG at sixth
Fig. 26. Plot of eG as a function of B̂ for ĥ < ĥm, comparing fourth-order (dot-dashed), sixth-order (dashed) and
exact numerical (solid) expressions. The sixth-order case approximates well the physical minimum at low B̂ but
has a maximum at larger B̂ that is an artifact of the sixth-order truncation.
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order. However, the + solution provides an accurate approximation to the true SF min-
imum, as shown in Fig. 26.

The SF–SFM transition occurs at ĥm � jl̂j. For ĥ > ĥm two qualitative changes take
place in the coefficients V̂ nðĥ; d̂Þ. First, because of the positive argument of the step func-
tions, the coefficients V̂ nðĥ; d̂Þ and therefore the minimum superfluid solution B̂þ and the
corresponding energy eG(B+) become nontrivial functions of the chemical potential differ-
ence ĥ. This then immediately gives a finite magnetization (population imbalance)
m̂ ¼ �deG=dĥ 6¼ 0, characteristic of the SFM ground state. Second, for ĥ > ĥm the coeffi-
cient V̂ 6 > 0. Hence the shape of the eGðB̂Þ function and the corresponding nature of
the transition out of the SFM state (SFM - N transition) are determined by the signs of
the V̂ 2 and V̂ 4 coefficients.
6.4.2. Second-order SFM–N transition: d̂ < d̂c

Generically a transition is continuous if there is only a single minimum in the energy
function that vanishes continuously as a parameter is tuned. As can be seen from Eq.
(216), this is possible for eGðB̂Þ when V̂ 4 > 0 and V̂ 6 > 0, in which case

B̂2
þ ¼ B̂2

SFM
¼ V̂ 4

2V̂ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4V̂ 2V̂ 6=V̂ 2

4

q
� 1

� �
; ð217Þ

(which vanishes continuously as V̂ 2 ! 0) characterizes the SFM state while B̂2
� < 0 and

therefore no longer corresponds to an extremum of eG, as B̂� is complex.
The evolution of eGðB̂Þ with V̂ 2 for such a continuous transition is illustrated in Fig. 27.

The continuous SFM–N transition is then determined by the vanishing of V̂ 2ðĥ; d̂Þ when
the SFM minimum at B̂þ vanishes into the normal state maximum at B̂ ¼ 0, with this tak-
ing place at ĥc satisfying

F 2ðĥc=jl̂jÞ ¼
2l̂� d̂

c
ffiffiffiffiffiffi
jl̂j

p : ð218Þ

At fixed imposed density, the condition of V̂ 4ðĥc; d̂Þ > 0 for such a continuous transition is
satisfied for d̂ < d̂c with d̂c approximately given by Eq. (210). When combined with the
Fig. 27. Evolution of the BEC-regime normalized ground-state energy eGðB̂Þ Eq. (212), for parameters such that
a continuous SFM fi N transition occurs. Here, c = 0.1, d̂ ¼ �2, l̂ ¼ �0:924. For curves a, b, and c, ĥ < ĥc with
ĥ = 1.0,1.007, and 1.014, respectively, and the minimum at B̂ 6¼ 0 represents the SFM phase. For curve d,
ĥ = 1.020 > ĥc and the minimum is at B̂ ¼ 0.
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normal-state chemical potential Eq. (185), this ĥc is equal to ĥc2ðd̂Þ that we have previously
calculated Eq. (206b), plotted in the phase diagram (see Figs. 1 and 21). As discussed
above, this transition corresponds to a point at which all of the molecules have dissociated
into a fully polarized (single species) gas of atoms, with the molecular condensate nm,
characteristic of the SFM state, vanishing. As such, experimentally (where it is DN rather
than h that is controlled), the fully polarized normal state corresponds to a single point
DN/N = 1.
6.4.3. First-order SFM–N transition: d̂c < d̂ < d̂M

In contrast to the above behavior, for d̂ > d̂c at fixed density, the continuous transition
at V̂ 2 ¼ 0 [given by ĥc, Eq. (218)] is preempted by a first-order transition. This happens
because V̂ 4ðĥ; d̂Þ changes sign (with eGðB̂Þ still well-defined, stabilized at large B̂ by the
positive V̂ 6 term), becoming negative before V̂ 2 has a chance to vanish. We note that as
long as V̂ 2 > 0 (and V̂ 6 > 0, valid for V̂ 6 > 0, valid for ĥ � ĥm that we are considering
here), independent of the sign of V̂ 4 there is a single B̂ 6¼ 0 minimum of Eq. (216) that char-
acterizes the SFM state. However, for V̂ 4 > 0 the SFM state is given by B̂þ solution, while,
for V̂ 4 < 0, it is the B� solution that corresponds to the SFM phase. The change in this
behavior takes place when V̂ 4 ¼ 0, corresponding to

ĥ� ’ 1:30l̂; ð219Þ

[which, incidentally, is the Oðc0Þ approximation to ĥc1 given in Eq. (209a)]
and B̂SF;� ¼ B̂�ðV̂ 4 ¼ 0Þ ¼ ðV̂ 6=V̂ 2Þ1=4.

Once V̂ 4 < 0, as illustrated in Fig. 28, the shape of eGðB̂Þ changes qualitatively when V̂ 2

changes sign. With both V̂ 2 and V̂ 4 negative the normal-state extremum at B̂ ¼ 0 turns into
a local minimum. (Compare curves a and b in Fig. 28.) Concomitantly, both extrema in Eq.
(216) become important, with the B̂þ solution giving the barrier (maximum) separating the
SFM B̂� minimum from the normal-state minimum at B̂ ¼ 0. At low ĥ < ĥc (but larger than
ĥ*), the energy eGðB̂�Þ of the SFM minimum is lower than that of the normal state (for which
eG = 0) and the SFM remains a stable ground state. However, with increasing ĥ the SFM min-
imum rises and reaches the normal-state energy at the first-order condition
Fig. 28. Evolution of the BEC-regime normalized ground-state energy eGðB̂Þ Eq. (212), for parameters such that
a first-order SFM fi N transition occurs. Here, c = 0.1, d̂ ¼ �2, l̂ ¼ �0:921 and ĥ takes four different values: (a)
ĥ = 1.317, so that V̂ 2 > 0 and V̂ 4 < 0, (b) ĥ = 1.322, so that V̂ 2 < 0 and V̂ 4 < 0, (c) ĥ = 1.325 = ĥc, and (d)
ĥ = 1.326 > ĥc.
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0 ¼ �V̂ 2B̂2
� þ 1

2
V̂ 4B̂4

� þ 1
3
V̂ 6B̂6

�; ð220Þ

giving

V̂ 4 ¼ �4
3
V̂ 6B̂2

�; ð221aÞ

or, equivalently (including arguments for clarity),

V̂ 2½d̂; ĥc; l̂�V̂ 6½ĥc; l̂� ¼ �
3

16
V̂ 2

4½ĥc; l̂�; ð221bÞ

as the condition for the critical point ĥcðd̂; l̂Þ of the first-order SFM-N transition.
As is usual for first-order transitions and as discussed in Section 5 for the BCS regime,

the state of the system for ĥ > ĥc is determined by whether the system is kept at fixed
chemical potential or at fixed average density (atom number). For the former case the
system simply jumps from the SFM to the normal (fully spin-polarized) state, and the
density and magnetization are free to adjust discontinuously to this sudden change in state
at ĥc.

On the other hand, for atom number fixed at N, a discontinuous change of state is not
an option available to the system as this would require a change in N (and DN) that are
fixed. As explained in Section 5.3, upon increasing ĥ, the system tunes its chemical
potential to remain on the critical curve ĥcðd̂; l̂Þ and instead phase separates into coexis-
ting SFM and normal states, in proportions so as to satisfy the imposed total number
constraint.

We conclude this subsection by noting that the regime of phase separation (PS) at neg-
ative detuning consists of SFM–N coexistence only for sufficiently low d̂. At larger d̂, the
SFM phase ceases to exist and the coexistence is between N and SF phases (as we find at
low detunings in the BCS regime). To determine the boundary separating these possibili-
ties, we note that, in the regime of phase separation, ĥ ¼ ĥcðl̂Þ with ĥc approximately given
by Eq. (221b). Implementing the constraint 4=3 ¼ xn̂SF þ ð1� xÞn̂N (where here SF can
refer to the SF or SFM states) allows us to study, numerically, the negative-detuning
PS regime. The dashed line in Fig. 21 denotes where, in the PS regime, ĥc = ĥm (indicating
a continuous SF–SFM transition inside the PS regime) and the dashed line in the fixed-
polarization phase diagram Fig. 22 is thus obtained by converting this ĥ boundary to
polarization DN/N.

6.5. Finite c corrections to the SFM–N phase-separation boundaries

Here, we use results of the previous section for the SFM–N first-order transition (occur-
ring for d̂c < d̂ < d̂M) to compute the phase-separation boundaries, correcting our previ-
ous Oðc0Þ results. At fixed chemical potential difference (rather than polarization), the
boundaries are ĥc1ðd̂Þ and ĥc2ðd̂Þ, to zeroth order in c given by Eqs. (209b) and (190b),
respectively.

First focusing on ĥc1ðd̂Þ, corrections to its zeroth order expression Eq. (209b) have two
sources. One is the correction to the approximation of the chemical potential by l̂ � d̂=2,
only valid to Oðc0Þ. The other source of approximation is the location of the transition by
V̂ 4 ¼ 0, that is more accurately given by Eq. (221b).

To determine l̂ðd̂; ĥÞ more accurately we turn to its defining equation, Eq. (197b), that
can be written as
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d̂� 2l̂ ¼ � c
ffiffiffiffiffiffi
jl̂j

p
p

2
� c

ffiffiffiffiffiffi
jl̂j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ=jl̂j � 1

q
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ=jl̂j � 1

q� �
: ð222Þ

To first order in c and near ĥc1 (of interest to us) Eq. (222) can be considerably simplified
by replacing ĥ by ĥc1, with the latter approximated by its zeroth order value in c, Eq.
(209a). This gives

d̂� 2l̂ � � c
ffiffiffiffiffiffi
jl̂j

p
p

2
� 0:047c

ffiffiffiffiffiffi
jl̂j

p
; ð223Þ

which, when solved for l̂ gives

l̂ � l̂ð1Þðd̂Þ � � 1

64
�c0pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc0pÞ2 þ 32jd̂j

q� �2

; ð224Þ

where c 0 ” c[1 + 2(0.047)/p].
The second correction to ĥc1 comes from using the proper equation, Eq. (221a), (rather

than V̂ 4 ¼ 0) as the location of the first-order transition and the lower-field phase bound-
ary ĥc1(d). We write ĥc1 ¼ ĥð0Þc1 þ ĥð1Þc1 , with ĥð0Þc1 the Oðc0Þ expression given by Eq. (209a) and

ĥð1Þc1 the correction of OðcÞ. Using Eqs. (193b) and (213a), as well as the Oðc0Þ expression

for B̂2 [i.e. Eq. (188)] along with Eq. (221a) leads to

F 4
ĥð0Þc1 þ ĥð1Þc1

jl̂j

" #
¼ � 8c

3pjl̂j2
1� 1

2
ðĥð0Þc1 � jl̂jÞ

3
2

� �
F 6

ĥð0Þc1

jl̂j

" #
; ð225Þ

where on the right side we neglected ĥð1Þc1 , valid to order OðcÞ. Expanding the left-hand side
in small ĥð1Þc1 , and using the fact that F 4½ĥð0Þc1 =jl̂j� ¼ F 4½1:30� ¼ 0 (Eq. (209a) above),
F 04[1.30] = �0.74 and F6[1.30] = 0.134, we find

ĥð1Þc1 �
0:154c
jl̂j ½1� 0:082jl̂j3=2�; ð226Þ

yielding

ĥc1 � 1:30jl̂j þ 0:154c
jl̂j ½1� 0:082jl̂j3=2�: ð227Þ

Now using l̂ðd̂Þ in Eq. (227) we finally obtain to OðcÞ

ĥc1ðd̂Þ � 1:30jl̂ð1Þðd̂Þj þ c0:308

jd̂j
½1� 0:029jd̂j3=2�; ð228Þ

that we plot in Fig. 29, as a function of detuning d (on the BEC side of d < 0) and compare
it to a numerical determination of ĥc1 directly from the full ground-state energy Eq. (107).

Also, as illustrated in Fig. 30, for d̂ ¼ �2, the linear decrease of ĥc1 with increasing c
exhibited in Eq. (228) also compares well for small c with the c dependence of the numer-
ical solution (points). We expect the resulting increase in the regime of phase separation to
remain qualitatively correct beyond this narrow-resonance (c� 1) limit.

The above result for ĥc1ðd̂Þ can be easily translated into a critical polarization DNc1(d)
that is relevant for fixed spin-species number difference (fixed polarization) by inserting
ĥc1, l̂ðd̂Þ and B̂2 inside m̂ðĥÞ, Eq. (179), that gives for the lower-critical polarization



Fig. 29. Plot of ĥc1ðd̂; c ¼ 0:1Þ, the normalized lower chemical potential difference above which the system enters
the regime of phase separation. The points are a numerical computation and the solid line is Eq. (228).

Fig. 30. Plot of ĥc1ðd̂; cÞ at one particular detuning (d̂ ¼ �2) as a function of resonance width parameter c.
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DNc1

N
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2

c1 �
2

3
cð1� 0:029jd̂j3=2Þ

r
� jl̂ð1Þj

 !3
2

; ð229Þ

above which the system phase separates into coexisting SFM and N states.
We can also use Eq. (228) to compute the critical detuning d̂M beyond which the SFM

phase ceases to exist and the PS is replaced by N–SF coexistence (as on the BCS side of the
Feshbach resonance). It is determined by the point where ĥmðd̂Þ and ĥc1ðd̂Þ intersect, i.e.,
ĥmðd̂MÞ ¼ ĥc1ðd̂MÞ, or equivalently DNc1ðd̂MÞ ¼ 0. Using the former condition, to OðcÞ
we find

1:69jl̂j2 þ 0:40c½1� 0:082jl̂j3=2� ¼ jl̂j2 þ 2

3
c; ð230Þ

that gives to leading order in c

l̂M ¼ �0:62
ffiffiffi
c
p
; ð231Þ
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for the chemical potential at this intersection. Using the zeroth order relation l̂ ¼ d̂=2
gives, to leading order in c,

d̂M � �1:24
ffiffiffi
c
p
; ð232Þ

a result that compares favorably (see Fig. 21) with the numerical solution (solid point).
We turn next to the calculation of the upper-critical boundary, ĥc2ðd̂Þ, of the phase-sep-

aration region. This is defined by where the normal-state chemical potential
l̂Nðĥ; nÞ ¼ 22=3 � ĥ (Eq. (185)) intersects the first-order condition Eq. (221b). This yields
the self-consistent set of equations

V̂ 2½d̂; ĥc2; l̂N� ¼ �
3

16

V̂ 4½ĥc2; l̂N�2

V̂ 6½ĥc2; l̂N�
; ð233aÞ

l̂N ¼22=3 � ĥc2; ð233bÞ

an expression that applies for d > dc (where the sixth-order expansion applies). Recall that,
close to the first-order transition ĥc, V̂ 4 vanishes allowing a secondary minimum in eG to
form at B̂ ¼ 0. This vanishing implies that the right side of Eq. (233a) is numerically small
near ĥc and may therefore be neglected (despite being formally of the same order in c as the
left side). This reduces Eq. (233a) to our previous approximate result Eq. (206b), derived
assuming a second-order SFM–N transition at the point where V̂ 2 changes sign, and shows
why Eq. (206b) accurately determines ĥc2 even in the first-order regime, as shown in
Fig. 31.

In fact, Eq. (233a) shows that the true ĥc2 is slightly higher than that predicted by
V̂ 2 ¼ 0, since V̂ 2 < 0 in the N state and the right side is negative. This is as expected,
as the first-order transition (that takes place for d̂ > d̂c) always precedes the spinodal
point V̂ 2 ¼ 0 at which the metastability of the normal state is lost.

6.6. Fixed chemical potential

Having determined the BEC-regime phase diagram for the physically-relevant case of
fixed total atom density and population difference, for completeness in the present section
Fig. 31. Plot of ĥc2ðd̂Þ, the normalized upper-critical chemical potential difference above which the system enters
the normal (N) phase. The points are a numerical computation and the solid line is Eq. (206b).
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we compute the phase diagram in the grand-canonical ensemble of fixed l̂ and ĥ. Of
course, in the grand-canonical ensemble there is no regime of phase separation. Thus,
our main task is to find the critical curves for the first- and second-order phase transitions,
focusing on the physically interesting regime of l̂ near d̂=2. This can be done by utilizing
results derived in Sections 6.4.2 and 6.4.3. Starting in the singlet SF state at ĥ = 0, char-
acterized by an effective bosonic chemical potential l̂m ¼ 2l̂� d̂þOðcÞ, and lowering l̂
from > d̂=2þOðcÞ to < d̂=2þOðcÞ, the system undergoes a continuous transition from
a molecular SF to a vacuum of molecules (and atoms, since l̂ < 0). More generally it is
defined by the vanishing of the quadratic coefficient V̂ 2½d̂; ĥ; l̂�, giving

l̂cðd̂; ĥ < ĥmÞ ¼ �
1

64
�cpþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcpÞ2 þ 32jd̂j

q� �2

: ð234Þ

Since, for small ĥ < ĥm, the Landau coefficients V̂ a are h-independent, the above result
holds at ĥ < ĥm, leading to a strictly vertical SF-vacuum phase boundary (see Fig. 32).

Starting in this vacuum state (l̂ < l̂c), with increasing ĥ the system undergoes a
transition to the spin-polarized N state as l̂" changes from negative to positive leading
to a finite density of spin-up fermions (but still B̂ ¼ 0, since l̂ < l̂c). We indicate this phase
boundary in Fig. 32 by a (nearly) horizontal line.

Starting instead in the SF state at l̂ > l̂c and increasing ĥ, a continuous SF-SFM tran-
sition takes place as m̂ becomes nonzero at ĥm. Using Eq. (204b) for ĥm (approximately
equal to jl̂j near the SF-to-Vacuum transition but strongly deviating from it at larger
l̂) along with Eq. (216), B̂2

þ, for the normalized molecular density, yields the SF-to-SFM

boundary shown in Fig. 32.
As discussed in Section 6.4 there are two possibilities for exiting the resulting SFM state

into the N state. (i) If V̂ 2 changes sign (from positive to negative) before V̂ 4 becomes neg-
ative, the SFM–N transition is second-order, and given by Eq. (218). (ii) If V̂ 4 becomes
negative while V̂ 2 is still positive, then the SFM–N transition is first-order. The tricritical
Fig. 32. Negative-detuning phase diagram in the grand-canonical ensemble at detuning d̂ ¼ �2 and width c = 0.1
showing superfluid (SF), magnetic superfluid (SFM, thin region indicated by arrow), vacuum and normal spin-›
phases. Black curves are continuous transitions and the gray curve is a first-order transition. The SFM phase
undergoes either a continuous [to the left of the red point at (�0.922,1.20)] or first-order [to the right of the red
point] transition to the N phase. To the right of the purple point at (�0.9206,1.36), the SFM phase ceases to exist
and there is a direct first-order SF-to-N transition. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this paper.)
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point [129] (whose existence was also recently confirmed and extended to finite tempera-
ture in Ref. [78]) V̂ 4ðĥc; l̂Þ ¼ 0 separating these two scenarios is indicated by a red solid
point, with V̂ 4 < 0 (and transition first-order) and V̂ 4 > 0 (and transition second-order)
to the right and left of this point, respectively. The gray curve indicates the first-order
SFM-to-N transition [computed using Eq. (221b)].

At larger l̂, to the right on the figure, ĥm intersects the first-order curve at the purple
point at (�.9206,1.36). To the right of this point, the SFM phase ceases to exist and there
is a direct SF-to-N first-order transition. Note that, in this regime, our sixth-order approx-
imation begins to be quantitatively invalid. However, this basic qualitative picture can be
validated by directly (numerically) minimizing the full normalized ground-state energy Eq.
(107).

6.7. Bogoliubov sound velocity in SFM phase

In our earlier computation of eGðB̂Þ, Eq. (192), among other quantities, we have
obtained an effective four-boson coupling V̂ 4ðĥ; d̂Þ that at zero molecular density is equiv-
alent to the molecular T-matrix proportional to the molecular scattering amplitude. Thus,
V̂ 4ðĥ; d̂Þ is related to the molecular scattering length am, which is a measure of the effective
molecular interaction induced by the Feshbach resonance coupling to atoms. We have
found that, inside the SFM phase, V̂ 4ðĥ; d̂Þ is positive but decreases with increasing ĥ

and in fact nearly (to OðcÞÞ vanishes at the boundary ĥc1ðd̂Þ to phase separation; see
Eq. (209b) and the discussion in Section 6.3. Physically this represents a repulsive molec-
ular Bose gas whose two-body repulsion nearly vanishes with increasing ĥ at the transition
to phase separation at ĥc1ðd̂Þ.

A striking observable consequence of this is a concomitant suppression of the Bogo-
liubov sound velocity u(d,ĥ) with increasing ĥ or population difference DN. The simplest
way to obtain u is to use the standard result [117]

u2 ¼ 1

2m
oP

ojBj2
; ð235Þ

(recall the boson mass is 2m), where P is the pressure.
Since the grand-canonical energy EG is equal to �PV with V the system volume, we

have, plugging B̂2 ’ V̂ 2=V̂ 4 into Eq. (212) (neglecting V̂ 6),

P ¼ 1

2Nð�FÞ
B4V̂ 4; ð236Þ

where for clarity we have temporarily reverted to dimensionful quantities. Evaluating the
derivative, and reverting back to the dimensionless boson density B̂2 ¼ B2=c�3=2

F , we have

u2 ¼ c2p�FB̂2

32mjl̂j3=2
F 4ðĥ=jl̂jÞ: ð237Þ

As we are primarily interested in fixed density, we insert the fixed-density expressions
l̂ � d̂=2 [valid to OðcÞ on the BEC side of the resonance] and Eq. (188) for B̂2, yielding

u2 ’ u2
0 1� 1

2
ĥ� jd̂j

2

 !3=2

H h� jd̂j
2

 !2
4

3
5F 4

2ĥ

jd̂j

 !
; ð238Þ



Fig. 33. Bogoliubov sound velocity u/u0 as a function of polarization for the case d̂ ¼ �3.

1858 D.E. Sheehy, L. Radzihovsky / Annals of Physics 322 (2007) 1790–1924
with u0 the Bogoliubov sound velocity for h = 0 (i.e., in the SF phase)

u0 ¼
23=4 ffiffiffi

p
p

c

8
ffiffiffi
3
p vF

jd̂j3=4
: ð239Þ

Finally converting to fixed total density and population difference, we have

u ’ u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DN

N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 4 1þ 25=3

jd̂j
DN
N

� �2=3
 !vuut ; ð240Þ

for the sound velocity as a function of applied polarization. Note that there are two ways u

can vanish with increasing DN, depending on whether the detuning is larger or smaller
than dc, and, correspondingly, whether the transition is first or second order. For
d̂ > d̂c, u (nearly; see Ref. [130]) vanishes at the first-order instability of the SFM state
to phase separation, when F4 vanishes, as we have already discussed. For d̂ < d̂c, however,
F4 remains positive at the second-order SFM to N transition. In this case, u vanishes at this
second-order transition simply because the molecular density vanishes as DN fi N.

In Fig. 33, we plot u/u0 as a function of DN/N for the case d̂ ¼ �3 and c = 0.1, showing
its suppression near the first-order transition at DNc1

N � 0:133, where it exhibits a jump dis-
continuity to zero (before V̂ 4ðDNÞ actually vanishes [130]) upon entering the PS regime.

7. FFLO state of two-channel model

Until this point, we have focused on ground states of the two-channel Hamiltonian Eq.
(61) assuming Q = 0 pairing. However, it is well-known [86,87] that the BCS model (which
our model corresponds to in the large positive detuning limit) under applied chemical
potential difference possesses an alternative minimum, characterized by both periodic
off-diagonal long-range pairing order and nonzero magnetization. Such states, which we
generally refer to as FFLO states, break translational and rotational symmetries (and
hence are examples of a supersolid [96–99]) and exhibit a compromise between the tenden-
cy to pair (due to attractive interactions) and the tendency to magnetize (due to the applied
chemical potential difference h).

As we will show, deep in the BCS regime d� 2�F, where the resonant two-channel
model reduces to the BCS model, we reproduce well-known results in the literature
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[86,87]. Our main contribution is the extension of these results on FFLO ground states to a
resonant model at arbitrary detuning d. We thereby predict the evolution of the FFLO
state [i.e., we predict Q(d,h) and the FFLO phase boundary] for d outside the well-studied
BCS regime. In terms of the phase diagram, our main prediction is that the FFLO state is
unstable, i.e., squeezed out by the phase-separation regime and the normal state, for
d < d* . 2�F.

As we have already noted, we expect that FFLO-type ground states of Eq. (61) are ade-
quately modeled [102] by assuming single-harmonic pairing, namely taking the pairing
order to be D(r) = DQeiQÆr. With this assumption, it is straightforward (as we already have
done in Section 4) to find the ground state energy EG(DQ,Q) as a function of wavevector Q

and gap DQ, and then to minimize EG(DQ,Q) over these parameters.
Our analysis is very similar to that of FF [86], though generalized to the present two-

channel resonant Hamiltonian Eq. (61). Thus, our results differ from those of FF only
away from the deep BCS limit. For d� 2�F, however, our results map onto those of
FF, finding that, instead of a phase transition from the SF to the N state at
hc ’ DBCS=

ffiffiffi
2
p

(see Fig. 1), the FFLO state intervenes, so that there is a first-order SF
to FFLO transition, followed by a second-order [105] FFLO to N transition at hFFLO.

We now determine the region of the phase diagram in which the FFLO state has the
lowest energy. The governing (variational) ground-state energy is given by Eq. (75) that
we redisplay here for convenience:

EGðDQ;QÞ ¼
�Q

2
þ d0 � 2l

� �D2
Q

g2
�
X

k

ðEk � ekÞ

þ
X

k

Ek 1þHð�Ek"Þ �HðEk#ÞÞð Þ

þ
X

k

k �Q
2m
þ h

� �
1�Hð�Ek"Þ �HðEk#Þð Þ: ð241Þ

For the Q = 0 case, we have already evaluated the first momentum sum appearing in Eq.
(241). Examining Eqs. (74a) and (74b) reveals that, for this sum, having Q „ 0 simply shifts
the chemical potential l! ~l � l� Q2=8m. The remaining ‘‘excluded’’ sums in Eq. (241)
(second and third lines) can also be evaluated [within the standard approximation of
replacing N(�) fi N(�F), valid in the atomic degenerate limit of D/l� 1] following FF;
we do this in Appendix F. This yields

EG � �
8

15
Nð~lÞ~l2 þ �Q

2
þ d� 2l

� �D2
Q

g2
þ 2Nð~lÞ �

D2
Q

4
þ

D2
Q

2
ln

DQ

8e�2~l

 !

þ
Nð~lÞD2

Q

2�Q
Ið�Qþ �hÞ � Ið�h� �QÞ þ Ið�Q� �hÞ
	 


; ð242Þ

where I(x) is given by

IðxÞ � � 1

3
ðx2 � 1Þ3=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

þ xcosh�1x
� �

Hðx� 1Þ; ð243Þ

and, using notation similar to that of FF, we have defined the rescaled wavevector �Q and
chemical potential difference �h:
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�Q �
~kFQ

2mDQ

; ð244aÞ

�h � h
DQ

; ð244bÞ

with ~kF ¼
ffiffiffiffiffiffiffiffiffi
2m~l
p

the Fermi wavevector associated with the shifted chemical potential. We
note that EG, Eq. (242), is consistent with FF, differing only in the �Q term that accounts
for the molecular kinetic energy absent in the BCS-like model of FF.

From this point on, the determination of the phase diagram and the corresponding
phases is conceptually simple, given by the minimization of EG(DQ,Q) with respect to Q

and DQ (while satisfying the total number constraint). However, because the general struc-
ture of Eq. (242) is quite complicated, to do this generally is technically challenging and
best done numerically. Nevertheless, analytical solutions are possible in a number of
important limits.

We now briefly overview the structure of EG(DQ,Q), Eq. (242). At small Q, only the
terms / ½Ið�Qþ �hÞ � Ið�h� �QÞ� are nonzero; in the Q fi 0 limit these conspire so that Eq.
(242) reduces to our previous result Eq. (118), from Section 5.2. At small h, the SF state
studied in that section is still a stable minimum of Eq. (242) at DQ = DBCS, Q = 0, and
remains so until the critical chemical potential difference hc (that is remarkably close to
the critical h studied in Section 5.2, approximated by hc ’ DBCS=

ffiffiffi
2
p

). Already below hc,
EG(DQ,Q) exhibits a secondary local minimum at the FFLO-state (DQ,Q) and, for
h > hc, there is a first-order transition into this magnetized finite-Q FFLO state that is
nearly degenerate with the DQ = 0 normal state. The FFLO state is only stable for a nar-
row window of h values (and sufficiently large detuning), undergoing a continuous transi-
tion to the N state at hFFLO.

7.1. Second-order N–FFLO transition

Before studying the first-order SF–FFLO transition, it is convenient to first look at the
simpler transition from the N state, that takes place upon lowering h from a large value.
As was first shown by FF [86], this N–FFLO transition is in fact continuous in mean-field
theory [105] of the standard Landau type.

This is possible because, for sufficiently large Q and small DQ, the excluded-sum terms
[i.e. the last line of Eq. (242)] convert the double minimum form of EG(DQ) (characteristic
of the first-order transition that would take place at Q = 0) to a single, h,d-dependent min-
imum that leads to a continuous N–FFLO transition.

The continuous nature of the N–FFLO transition allows us to accurately study its
details by expanding EG(DQ,Q) in small DQ. Since we expect the transition to take place
at finite h (that we call hFFLO) and finite Q, its Landau expansion in small DQ is charac-
terized by the large �Q, �h limit as both are proportional to 1/DQ according to Eqs. (244a),
(244b). As we will verify a posteriori, the existence of the continuous N–FFLO transition
furthermore requires, near hFFLO, the system to be in the ‘‘doubly-depaired’’ (or ‘‘D’’)
regime (in the notation of FF), characterized by �Qþ �h > 1 and �Q� �h > 1, i.e., a regime
in which excluded-sum contributions for both atom species (spin up and down) are non-
zero. In this regime, the term / Ið�h� �QÞ vanishes and, to leading order, the other two
excluded-sum terms give
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Ið�Qþ �hÞ þ Ið�Q� �hÞ � � 2

3
�Q3 � 2�Q�h2 � �Qþ �Q ln 4ð�Qþ �hÞð�Q� �hÞ

þ �h ln
�Qþ �h
�Q� �h

þ 1

4

�Q
�Q2 � �h2

� �
; ð245Þ

where we utilized the expansion of I(x) for large value of its argument:

IðxÞ � Hðx� 1Þ � x3

3
þ � 1

2
þ ln 2x

� �
xþ 1

8x

� �
: ð246Þ

As we will see, the above expansion Eq. (245) [to be used inside Eq. (242)] is sufficient to
get a Landau expansion of EG(DQ,Q) up to fourth order in DQ, required to capture the
second-order N–FFLO transition. We furthermore expand the first term in Eq. (242) in
small Q, finding

8

15
Nð~lÞ~l2 � 8

15
NðlÞl2 þ 1

3
NðlÞ�Q2D2

Q: ð247Þ

It is easy to convince oneself that to lowest order necessary to capture this transition, in all
other terms ~l can be approximated by its unshifted (Q = 0) value l. Now, reverting to our
dimensionless variables D̂Q, l̂, and ĥ [defined in Eqs. (105a), (105b), (105c), (105d), (105e)],
defining a new dimensionless momentum

Q̂ �
ffiffiffî
l

p Q
kF

; ð248Þ

and combining Eqs. (247) and (245) inside EG, Eq. (242), we obtain the sought-after quar-
tic (in D̂Q) Landau expansion for the normalized ground-state energy eG Eq. (105e):

eG � �
8

15
l̂5=2 þ

c�1Q̂2D̂2
Q

2l̂

þ
ffiffiffî
l

p
�D̂2

Q � ĥ2 þ
D̂2

Q

2
ln

4ðQ̂þ ĥÞðQ̂� ĥÞ
D̂2

BCS

þ
ĥD̂2

Q

2Q̂
ln

Q̂þ ĥ

Q̂� ĥ
þ

D̂4
Q

8

1

Q̂2 � ĥ2

" #
;

ð249Þ

where we used the zero-field (ĥ = 0) BCS gap

D̂BCS ¼ 8e�2l̂e�c�1ðd̂�2l̂Þ=
ffiffî
l
p
; ð250Þ

to simplify the final expression. We note that in eG, Eq. (249), an important cancellation of
the nonanalytic D̂2

Q ln D̂Q terms has taken place. Namely, the D̂2
Q ln D̂Q term, characteriz-

ing the ĥ = 0 BCS ground state energy (guaranteeing that a continuum, ĥ = 0 degenerate
Fermi gas with arbitrarily weak attractive interactions is always unstable to paired
superfluidity) is exactly canceled by such a term arising from the finite-ĥ excluded-sum
contribution.

Minimizing EG over D̂Q (the gap equation), Q̂ (which ensures that the total momentum
vanishes in equilibrium [89]) and differentiating with respect to l̂ [to obtain the number
equation, Eq. (110b)] we obtain near the N–FFLO transition
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D̂2
Q ’ 2ĥ2ðk2 � 1Þ 2� c�1ĥ2

l̂3=2
k2 � ln

4ĥ2ðk2 � 1Þ
D̂2

BCS

� 1

k
ln

kþ 1

k� 1

" #
; ð251aÞ

0 ’ c�1ĥ2

l̂3=2
k2 þ 1� 1

2k
ln

kþ 1

k� 1
; ð251bÞ

4

3
’ 4

3
l̂3=2 þ 2c�1D̂2

Q þ
ĥ2

2
ffiffiffî
l
p ; ð251cÞ

where we only kept terms to leading order in D̂Q and c and defined k ¼ Q̂=ĥ. The simul-
taneous numerical solution to these equations yields D̂Q and Q in the FFLO phase, as well
as the critical chemical potential difference ĥFFLO above which D̂Q ! 0.

In Fig. 34 we plot, for c = 0.1, ĥFFLO as a function of normalized detuning, along with
ĥc1 and ĥc2. In Fig. 35, we plot the FFLO wavevector Qðd̂; ĥFFLOÞ at the transition [Qðd̂; ĥÞ
is only weakly ĥ-dependent near the transition]. Indeed, the fact that Q is finite at the tran-
sition is consistent with our large �Q, �h expansion above. To get an idea of the typical mag-
nitude of pairing in the FFLO phase, in Fig. 36 we plot D̂Qðd̂; ĥc2Þ, i.e., the strength of
pairing at the FFLO-to-phase-separation phase boundary. To gain some intuition for
these numerical results we examine analytically the solution to Eqs. (251a), (251b),
(251c) in the large detuning (d̂� 1) limit. In this regime, we can safely neglect the first
term of Eq. (251b), as near the transition ĥ2 � ĥ2

FFLO � c, with the latter inequality arising
from simplest estimate of ĥFFLO 	 D̂BCS. Our dropping of this first term in Eq. (251b) can
be traced back to a neglect of the molecular dispersion, reducing our two-channel model to
a single-channel one, equivalent to that studied by FF. With this simplification the
momentum equation reduces to:

0 ¼ 1� 1

2k
ln

kþ 1

k� 1
; ð252Þ

that is solved by k � 1.200. Using this inside Eq. (251a) (neglecting the term c�1ĥ2k2=l̂3=2 in
the latter) gives

D̂2
Q � 2ĥ2ðk2 � 1Þ ln D̂2

BCS

4ĥ2ðk2 � 1Þ
: ð253Þ
Fig. 34. Plot of the ĥFFLO phase boundary, along with ĥc2 and ĥc1, for c = 0.1, as a function of normalized
detuning d̂. The FFLO phase is stable for ĥc2 < ĥ < ĥFFLO, as shown in the phase diagram Fig. 1.



Fig. 35. Plot of wavevector Qðd̂Þ of FF order, normalized to Fermi wavevector kF ” pF/⁄ for c = 0.1 as a function
of Feshbach resonance detuning d̂.

Fig. 36. Plot of maximum gap DQ(d,hc2) in FFLO phase as a function of Feshbach resonance detuning for the
case c = 0.1.
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The vanishing of D̂Qðĥ; d̂Þ then determines the critical point ĥFFLO for the N–FFLO con-
tinuous transition

ĥFFLO ’
D̂BCS

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 1

p ’ gD̂BCS; ð254aÞ

’gD̂F½c; d̂� exp � g2d̂
8c

D̂2
F

" #
; ð254bÞ

with the constant of proportionality g = 0.754 in (expected) agreement with FF [86]. In the
final line Eq. (254b), we used the number equation for l̂ [Eq. (251c), which, as expected,
precisely reduces to the N-state number equation at the transition where D̂Q ! 0; cf. Eq.
(145)] to find ĥFFLO at fixed imposed density. Here, we remind the reader that D̂F is defined
in Eq. (141).

To this order of approximation (i.e., that of FF [86]) the ĥFFLO(d) (for the N–FFLO
transition) and ĥcðdÞ � DBCSðd̂Þ=

ffiffiffi
2
p

(for the FFLO–SF transition; see below) phase
boundaries maintain a constant ratio as a function of d̂. As we saw in Section 5.2, at fixed
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number [determined by in addition imposing Eq. (251c)] the critical curve ĥcðd̂; l̂Þ
splits into upper-critical and lower critical boundaries ĥc2ðd̂;NÞ ¼ ĥcðd̂; l̂FFLOðd̂;NÞÞ and

ĥc1ðd̂;NÞ ¼ ĥcðd̂; l̂SFðd̂;NÞÞ, respectively, bounding the SF–FFLO coexistence region.

For later reference we note that, because D̂Q;FFLO � D̂BCS � c, the chemical potential
l̂FFLO in the FFLO state is accurately given by its normal state value, l̂N, the latter given

by Eq. (251c), with D̂Q � 0, giving, at small ĥ, l̂FFLO � 1. Just below the N–FFLO tran-

sition, the order parameter D̂Q grows in the expected generic mean-field way [86]

D̂Q;FFLO

D̂BCS

’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥFFLO � ĥ

ĥFFLO

s
for ĥ < ĥFFLO; ð255Þ

with the characteristic Q̂ reducing linearly with ĥ according to Q̂ � kĥ.
We now go beyond the above FF approximation for ĥFFLOðd̂; l̂Þ by including the (so-far

neglected) molecular dispersion in Eqs. (251a) and (251b). Combining these equations
gives the order parameter

D̂2
Q ’ 2ĥ2ðk2 � 1Þ 3� 3

2k
ln

kþ 1

k� 1
� ln

4ĥ2ðk2 � 1Þ
D̂2

BCS

" #
; ð256Þ

that, when solved simultaneously with Eq. (251b), gives the more accurate, higher-order
ĥFFLOðd̂; l̂Þ boundary. The latter is best determined numerically, as illustrated in
Fig. 34. Its new important feature [beyond the lower order result in Eq. (254a)] is

that ĥFFLOðd̂; l̂Þ is no longer proportional to ĥcðd̂; l̂Þ, crossing it [and therefore ĥc2ðd̂;NÞ]
at a detuning d̂� (see Fig. 1), that is determined by the condition ĥFFLOðd̂�; l̂Þ ¼
ĥcðd̂�; l̂Þ ’ D̂BCSðd̂�; l̂Þ=

ffiffiffi
2
p

. Inserting this condition into Eq. (256) gives k at this crossing,
which we call k*:

0 ¼ 3 1� 1

2k�
ln

k� þ 1

k� � 1

� �
� ln 2ðk2

� � 1Þ
	 


: ð257Þ

Solving Eq. (257) numerically gives k* � 1.159, only slightly lower than its FF value of
k � 1.200 in the asymptotic BCS regime. Inserting k* into Eq. (251b) yields the following
implicit expression for d* at which ĥFFLO = ĥc:

1

2
D̂BCS½d�; l̂�2 ¼

l̂3=2c

k2
�

1

2k�
ln

k� þ 1

k� � 1
� 1

� �
; ð258aÞ

’ 0:094l̂3=2c; ð258bÞ

with d* entering via D̂BCS, the BCS gap at ĥ = 0. Using the explicit expression Eq. (120) in
Eq. (258b) and approximating l̂FFLO � l̂N � 1, then gives

d̂� � 2� c
2

ln 0:159c; ð259Þ

where we emphasize that, for c < 1 (where the preceding expressions are valid), d̂� is
bounded by 2�F from below and is an increasing function of Feshbach resonance width
c, illustrated in Fig. 37.

Using the solution of Eqs. (251a) and (251b) for k together with the definition of
k ¼ Q̂=ĥ and Eq. (248), we can obtain the wavevector Q(d,h) characterizing the FFLO



Fig. 37. Critical detuning d
*

beyond which the FFLO phase is stable at nonzero polarization, valid for narrow
resonance (small c).
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state. Approximating ĥ by its critical value ĥFFLOðdÞ � gD̂BCS and reintroducing Planck’s
constant, we find

Q � 2gkDBCS

�hvF

: ð260Þ

As we have mentioned, along the phase boundary ĥFFLOðd̂Þ a more precise numerical solu-
tion for Q̂ðd̂Þ is given in Fig. 35.

We close this subsection by noting that the N–FFLO phase boundary ĥFFLOðd̂Þ can be
easily converted into a critical polarization boundary DN FFLOðd̂Þ by using ĥFFLOðd̂Þ inside
the expression for the normal-state spin imbalance DN(ĥ), Eq. (116b). Doing this numer-
ically gives DNFFLOðd̂Þ, plotted along with DNc2 in the phase diagram Fig. 3, that for large
detuning is given by

DN FFLO

N
� 3g

2
D̂F exp � g2d̂

8c
D̂2

F

" #
; ð261Þ

a result that we will estimate [along with Eq. (260)] in the context of recent experiments in
Section 10.
7.2. First-order FFLO-SF transition and associated phase separation

The FFLO state arises as a result of a delicate balance between the normal state (select-
ed by atom species imbalance) and the singlet-paired superfluid state (preferred by the
attractive pairing interaction). It is characterized by an order parameter that is significant-
ly smaller than that of a singlet BCS superfluid and by a finite magnetization m = DN/V

mðhÞ ¼
Z

d3k

ð2pÞ3
Hð�Ek"Þ �Hð�Ek#Þ½ �; ð262Þ

that is quite close to that of the normal state

mN ’ 2c
ffiffiffi
l
p

h: ð263Þ
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Hence, in many of its properties the FFLO state is quantitatively quite close to the normal
state. This is illustrated in Fig. 38 by the proximity of the FFLO energy minimum to the
normal state, D̂Q ¼ 0.

As can be seen from the evolution of eG with decreasing ĥ below ĥFFLOðd̂; l̂Þ (see
Fig. 38b), a secondary local BCS minimum arises at finite D̂Q¼0 ¼ D̂BCS. Upon further
decreasing ĥ, this BCS singlet SF minimum becomes degenerate (Fig. 38a) with the FFLO
a

b

Fig. 38. Contour plots of the ground-state energy EG (darker regions denote higher EG) as a function of the
normalized gap D̂Q and the normalized wavevector Q̂. For (a), ĥ > ĥc so that a first-order transition from SF to
FFLO has just occurred. For (b), ĥ < ĥFFLO, so the FFLO minimum is approaching the D̂Q ¼ 0 (N state) axis
continuously and the local SF-state minimum has moved to higher energy. Note that the N phase occurs for any

Q̂ at D̂Q ¼ 0.
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one, and the resonant Fermi gas undergoes a first-order FFLO–SF transition by ‘‘jump-
ing’’ from the FFLO minimum to this BCS one.

From the quantitative similarity of the normal and FFLO states’ energetics, it is not
surprising that we find this FFLO-SF transition at

ĥcðd̂; l̂Þ ’
2g

2g2 þ 1
D̂BCS ’ 0:706D̂BCS; ð264Þ

obtained using the approximate formula Eq. (255) for the order parameter near ĥFFLO.
This is extremely close to the N–SF first-order transition at ĥcðd̂; l̂Þ � D̂BCS=

ffiffiffi
2
p
�

:707D̂BCS, studied in Section 5, where we ignored the existence of the FFLO state, validat-
ing our approximation of ĥcðd̂; l̂Þ by D̂BCS=

ffiffiffi
2
p

elsewhere in this section. Consistently,
ĥcðd̂; l̂Þ is also only slightly lower than ĥFFLOðd̂; l̂Þ ensuring that the FFLO state is quan-
titatively indeed quite close to the normal state, occupying only a narrow sliver between
ĥFFLOðd̂; l̂Þ and ĥcðd̂; l̂Þ and limited to d̂ > d̂� � 2 on the phase diagram.

The analysis of the FFLO–SF first-order transition parallels our analysis in Section 5.2
for the N–SF transition (where the FFLO state was neglected). Because of the abovemen-
tioned similarity of the N and FFLO states all the results derived in Section 5.2 remain
quantitatively accurate for the true FFLO-SF transition. To recap, for fixed chemical
potentials and decreasing ĥ, the system simply jumps at ĥcðd̂Þ from the FFLO minimum
to the BCS SF minimum, exhibiting density and magnetization discontinuities given by
Eqs. (135) and (263), respectively. The two superconducting order parameters D̂Q and
D̂0 characterizing the FFLO and BCS SF states, respectively, also experience jump discon-
tinuities with decreasing ĥ at ĥcðd̂; l̂Þ, with D̂Q jumping to 0 and D̂0 jumping to the finite
BCS value d̂BCS. Correspondingly, Q jumps to zero as ĥ reduced below ĥcðd̂Þ.

In contrast, (as also discussed in detail in Section 5.3) at fixed atom density n (or num-
ber N), neither the SF nor the FFLO (nor N) states can satisfy the number equation while
remaining a global minimum of eG. Consequently, below hc2(d,N) = hc(d,lFFLO(N) � lN)
the gas phase separates into coexisting singlet-BCS SF and (at large detuning) FFLO state,
in proportions x(d,h) and 1 � x(d,h) that are well-approximated using Eq. (177). This
coexistence region is bounded from below by a lower-critical Zeeman field
hc1(d,N) = hc(d,lSF(N)), below which the system transitions into a single-component sin-
glet SF.

We conclude this subsection by noting that, because of the existence of the d̂� detuning
point on the ĥFFLOðd̂Þ boundary, the phase separation (PS) regime between ĥc2ðd̂Þ and
ĥc1ðd̂Þ is somewhat nontrivial. This arises from the fact that, for d̂� d̂� (deep in the
BCS regime), it is the FFLO state to which the BCS SF is unstable above ĥcðd̂; l̂Þ. Thus,
at large detunings, we expect the PS to consist of SF–FFLO coexistence. For d̂� d̂�, on
the other hand, we expect the regime of phase separation to consist of SF–N coexistence.

Our aim is to compute the boundary separating these two types of phase-separated mix-
ture. We start by computing this boundary at fixed density and chemical potential differ-
ence, shown in Fig. 39, which can be done using a simple (approximate) argument.

Consider a point ðd̂0; ĥ0Þ ¼ ðd0=�F; h0=�FÞ inside the region of phase separation. The uni-
form phases comprising the mixture at this point must have the same detuning d0 and
chemical potential difference h0 but different densities. Since both axes are normalized
to �F / n2/3, clearly such uniform phases lie on a ray emanating from the origin and inter-

secting ðd̂0; ĥ0Þ. This implies that the homogeneous states on either side of the regime of
phase separation that intersect this ray will comprise the mixed state.



Fig. 39. Portion of the positive-detuning phase diagram for c = 0.1 at fixed detuning d and chemical potential
difference h showing regions of normal phase (N), FFLO (along red curve), singlet superfluid (SF) and phase-
separation (shaded, PS). The dashed line connects the critical point (d

*
,ĥFFLO(d

*
)) with the origin. Below the

dashed line in the shaded PS regime, the phase separation consists of coexisting SF and FFLO states, while above
the dashed line it consists of coexisting SF and N states.
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This procedure can be used to determine the composition of the mixed phase for any
point in the regime of phase separation. In Fig. 39 we have drawn a dashed line connecting
ðd̂�; ĥFFLOðd�ÞÞ � ð2:202; :0965Þ with the origin. Clearly, for points inside the PS region
that are above this dashed line the coexistence is between SF and N while for points below
the dashed line it is between SF and FFLO.

Having found a simple approximate scheme [it is approximate because the location of
ðd̂�; ĥFFLOÞ is not invariant with respect to changes of the density since c is a function of �F]
to determine the boundary between SF–N coexistence and SF–FFLO coexistence, we now
obtain it in a different way, defining the boundary as the place where the N portion of the
SF–N coexistence undergoes a second-order transition (with decreasing chemical potential
difference) to the FFLO phase. The critical chemical potential difference ĥFFLOðl̂Þ at which
this occurs satisfies Eqs. (251b) and (251a) with D̂ ¼ 0 for the latter:

0 ¼ c�1ĥFFLOðl̂Þ2

l̂3=2
k2 þ 1� 1

2k
ln

kþ 1

k� 1
; ð265aÞ

0 ¼ 2� c�1ĥFFLOðl̂Þ2

l̂3=2
k2 � ln

4ĥFFLOðl̂Þ2ðk2 � 1Þ
D̂2

BCS

� 1

k
ln

kþ 1

k� 1
; ð265bÞ

where we include the chemical-potential argument in ĥFFLOðl̂Þ to emphasize that is distinct
from ĥFFLO which we have already defined and which also satisfies the number equation;
instead, here we must combine it with conditions appropriate to the mixed phase.

In fact, we have already studied the gap and number equations in the PS regime, assum-
ing SF–N coexistence, in Section 5.6, where we expressed the total number constraint as an
equation for the SF fraction x in Eq. (177); along with Eq. (178) for the normalized polar-
ization and Eq. (163) (which provides the first-order condition relating l and h in the
mixed phase). For a particular DN/N, such a procedure yields ĥðl̂Þ in the PS regime
assuming SF–N coexistence; where this crosses ĥFFLOðl̂Þ given by Eqs. (265a) and
(265b) leads to a phase boundary (plotted in Fig. 40) that marks the FFLO-N phase tran-
sition inside the PS regime.



Fig. 40. Portion of the positive-detuning phase diagram for c = 0.1 at fixed detuning d and polarization DN

showing regions of normal phase (N), FFLO (along red curve) and phase-separation (shaded, PS). Below the
dashed line, the phase separation regime consists of coexisting SF and FFLO states, while above the dashed line it
consists of coexisting SF and N states.
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8. One-channel model

In the preceding sections, we have studied a resonantly-interacting Fermi gas across a
Feshbach resonance as a function of detuning and chemical potential imbalance (or,
equivalently, species asymmetry), summarized by the phase diagrams Figs. 1 and 3. We
have limited our analysis to the two-channel model, Eq. (25), for reasons discussed in Sec-
tion 3, namely, because it is characterized by a small parameter c /

ffiffiffiffiffiffiffiffiffiffiffiffi
C0=�F

p
(with C0 the

Feshbach resonance width), that justifies, in the narrow resonance c� 1 limit, a perturba-
tive mean-field analysis across the resonance.

In contrast, the one-channel model (to which the two-channel model reduces in the
broad-resonance c� 1 limit) is characterized by a gas parameter n1/3|as| which diverges
in the vicinity of the resonance where kF|as| fi1. Hence, standard mean-field analysis
(uncontrolled embellishments notwithstanding) is expected to become quantitatively unre-
liable across the resonance.

However, most present-day experiments on 40K and 6Li (e.g., the Feshbach resonance
at 202 G in 40K or at 830 G in 6Li) are in the broad resonance limit (see Appendix A) and
one is forced to analyze this analytically inaccessible limit. This is best done directly in a
one-channel model. Although mean-field theory on the one-channel model is not expected
to be accurate across a Feshbach resonance tuned to zero energy, it still may be a quali-
tatively correct interpolation between the deep BCS and BEC regimes where the gas
parameter n1/3|as|� 1. With this caveat in mind, in the present section we study, within
mean-field theory, the single-channel model as a function of polarization and detuning
(or, equivalently, s-wave scattering length as), with our results summarized by the phase
diagrams Figs. 41 and 42 (which are in agreement with recent results [64,75,78]). Since
the one- and two-channel models are so closely related (see Section 5), many of the calcu-
lations will be very similar to ones we have already presented in the context of the two-
channel model.

We begin with the one-channel model Hamiltonian Eq. (51) in the grand-canonical
ensemble (with system volume V = 1)



a

b

Fig. 41. Chemical potential difference, h, vs. coupling 1
kFas

phase diagram of the one-channel model showing
regimes of FFLO, superfluid (SF), magnetized superfluid (SFM), and phase separation (PS). Panel (a) is the global
phase diagram and panel (b) is a zoom-in emphasizing the FFLO regime. The thick red dot at (�2.37,6.89) in the
BEC regime is a tricritical point separating first and second order transitions. On the horizontal axes three critical
detunings are labeled: ~dc � �ðkFascÞ�1 ¼ �2:37, ~dM � �ðkFasM Þ�1 ¼ �1:01 and ~d� � �ðkFas�Þ�1 ¼ 0:46.
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H ¼
X
k;r

ð�k � lrÞĉykrĉkr þ k
X
kqp

ĉyk"ĉ
y
p#ĉkþq#ĉp�q"; ð266Þ

applying a standard mean-field analysis, by first assuming an expectation value

khĉ#ðrÞĉ"ðrÞi ¼ DQeiQ�r; ð267Þ
corresponding to pair condensation at a single wavevector Q, with DQ and Q to be self-
consistently determined. With this mean-field assumption, H, Eq. (266), reduces to the
standard BCS mean-field form:

H ¼ � jDQj2

k
þ
X

k

ð�k � lrÞĉykrĉkr þ
X

k

DyQĉ
kþQ

2#
ĉ�kþQ

2"
þ ĉy

�kþQ
2"

ĉy
kþQ

2#
DQ

� �
: ð268Þ

With the identification of DQ with gBQ, its main distinctions from the two-channel model
Eq. (62) are the lack of any dispersion in the DQ field [with �k�1 replacing
g�2ð1

2
�Q þ d0 � 2lÞ] and the fact that the total atom-number constraint here involves only

N ¼
P

k;rhc
y
krckri rather than the analogous Eq. (77).



a

b

Fig. 42. Polarization DN/N vs. coupling 1
kFas

phase diagram of the one-channel model showing regimes of FFLO,
superfluid (SF), magnetized superfluid (SFM), and phase separation (PS). As in the preceding figure, panel (a) is
the global phase diagram, panel (b) is a zoom-in emphasizing the FFLO regime, and on the horizontal axes the
three critical detunings ~dc ¼ �2:37, ~dM ¼ �1:01, and ~d� ¼ 0:46 are labeled. Note that here (in contrast to a
narrow Feshbach resonance c� 1, Fig. 3) at unitarity, (kFas)

�1 = 0, the boundary between N and PS is at
DN/N . 0.93 < 1, consistent with experiments [30].
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As for the two-channel model, after this mean-field approximation (treating DQ as a
c-number), everything else can be in principle computed exactly because the model is
quadratic in fermion operators and can easily be diagonalized. Equivalently, the theory
can be formulated via a coherent-state path integral, where DQ appears as a Hubbard–Stra-
tonovich field used to decouple the quartic interaction [131] in H, Eq. (266). In this approach,
the mean-field approximation corresponds to a saddle-point treatment of the field DQ.

All T = 0 properties (on which we focus) follow directly from the corresponding ground
state energy EG(DQ), with DQ appearing as a variational parameter. As in the two-channel
case, we shall find that for much of the phase diagram the ground-state is characterized by
Q = 0. Anticipating this, we first focus on this Q = 0 subspace, returning to the more gen-
eral Q „ 0 case in Section 8.5 [where we display the full Q-dependent ground-state energy
as Eq. (334)]. With this simplification, we find the ground-state energy (taking DQ=0 ” D
real):

EG ¼ �
D2

k
þ
X

k

ðnk � EkÞ �
Z h

0

mðh0Þdh0; ð269Þ
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with nk ” �k � l and where the magnetization

mðhÞ ¼ 2c
3
ðlþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�D2

p
Þ3=2Hðlþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�D2

p
Þ� ðl�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�D2

p
Þ3=2Hðl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�D2

p
Þ

h i
:

ð270Þ
The short-scale (ultraviolet cutoff K) dependence in the first momentum sum of Eq. (269),
as usual, can be eliminated by re-expressing EG in terms of the s-wave scattering length
using the relation Eq. (52) between as and k. This gives (converting sums to integrals)

EG ¼ �
m

4pas
D2 þ

Z
d3k

ð2pÞ3
nk � Ek þ

D2

2�k

� �
�
Z h

0

mðh0Þdh0; ð271Þ

which is almost identical to our two-channel ground-state energy [c.f. Eq. (102)]. We now
proceed to study EG, Eq. (271), in a variety of relevant regimes, finding the phase diagram
at nonzero chemical potential difference h or population difference DN. We follow the
standard practice of expressing all physical quantities as a function of the dimensionless
coupling � 1

kFas
/ d that ‘‘measures’’ the system’s distance from the zero-energy resonance.

In terms of this coupling, in the one-channel model the BCS regime occurs for � 1
kFas

> 1
(i.e., as small and negative), the BEC regime occurs for � 1

kFas
< �1 (i.e., as small and po-

sitive), and the crossover between these regimes takes place for kF|as|� 1 across the uni-
tary point where kF|as| fi1.

Armed with EG(D,l,h), the determination of the phases and transitions is conceptually
straightforward. We simply minimize EG over D and supplement the resulting gap equa-
tion, which ensures that D = kÆĉfl(r)ĉ›(r)æ is satisfied in the ground-state, with the number
equation ensuring that the total atom density equals the imposed density n ¼ 4

3
c�3=2

F . The
resulting equations

0 ¼ oEG

oD
; ð272aÞ

N ¼� oEG

ol
; ð272bÞ

are well-known in the standard BEC–BCS crossover at h = 0 and equal spin population.
At finite imposed population imbalance DN (equivalent to magnetization m = DN/V) Eqs.
(272a), must be solved simultaneously with

DN ¼ � oEG

oh
; ð273Þ

ensuring the imposed DN. As we shall see, however, caution must be exercised in using
these equations to map out the phase diagram, since, at h „ 0, they exhibit solutions that
are local maxima of EG(D) and therefore do not correspond to a ground state of the sys-
tem [121]. Failing to ensure that solutions to Eq. (272a) are indeed minima of Eq. (269) has
led to a number of incorrect results in the literature (see, e.g., Ref. [47,67,123]).

8.1. One-channel model at h = 0

For completeness and point of reference we review the mean-field theory of the single-
channel model at equal populations by studying EG at h = 0. Using dimensionless vari-
ables D̂ � D=�F, l̂ � l=�F and eG ¼ EG=c�5=2

F as in the two-channel model,
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eG ¼ �
p

2kFas
D̂2 þ

Z 1

0

d�
ffiffi
�
p

�� l̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� l̂Þ2 þ D̂2

q
þ D̂2

2�

 !
: ð274Þ

The well-known BEC–BCS crossover behavior [19–22] follows from minimizing eG at
fixed total density. This corresponds to simultaneously solving the gap and number equa-
tions (in dimensionless form)

0 ¼ oeG

oD̂
; ð275Þ

4

3
¼ � oeG

ol̂
; ð276Þ

with numerical solutions given in Fig. 43. We can find simple analytic approximations to
these solutions by evaluating the integral in Eq. (274) in the asymptotic BCS and BEC lim-
its. In the BCS regime (1 < � 1

kFas
), l̂ > 0 and D̂� l̂, yielding for eG [using results from

Appendix C]

eG ’ �
pD̂2

2kFas
� 8

15
l̂5=2 �

ffiffiffî
l

p
D̂2 1

2
þ ln

8e�2l̂

D̂

� �
: ð277Þ
a

b

Fig. 43. Plots of (a) D and (b) l as a function of coupling �(kFas)
�1, within mean-field theory for the single-

channel model, each normalized to �F.
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Using this approximation for eG inside Eqs. (275) and (276) in turn gives the gap and num-
ber equations

D̂ ’8e�2l̂ exp
p

2kFas
ffiffiffî
l
p

� �
; ð278aÞ

4

3
’ 4

3
l̂3=2 þ 5

4

D̂2ffiffiffî
l
p � D̂2

2
ffiffiffî
l
p ln

D̂
8e�2l̂

; ð278bÞ

which, in the asymptotic BCS regime, are accurately solved by

D̂ �D̂F � 8e�2 exp
p

2kFas

� �
; ð279Þ

l̂ �1: ð280Þ

In the negative-detuning BEC regime of � 1
kFas

< �1, in which l̂ < 0 and jl̂j � D̂, we find
eG is approximated by

eG ’ �
pD̂2

2kFas
þ

ffiffiffiffiffiffi
jl̂j

p D̂2

2
pþ p

32

D̂2

l̂2

 !
; ð281Þ

that leads to the following approximate gap and number equations:

p
2kFas

� 1

2
p
ffiffiffiffiffiffi
jl̂j

p
’ pD̂2

32jl̂j3=2
; ð282aÞ

4

3
’ p

4
ffiffiffiffiffiffi
jl̂j

p D̂2 � 3p

128jl̂j5=2
D̂4: ð282bÞ

Accurate analytic approximations to these equations can be obtained by neglecting terms
of higher order in D̂. Thus, we find

l̂ � � 1

ðkFasÞ2
; ð283Þ

D̂ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

3pkFas

s
; ð284Þ

where we see that the role of the gap and number equations is effectively reversed in the
BEC regime, with the gap equation approximately determining l̂ and the number equation
approximately determining D̂. In the next few subsections we will extend the above by-now
standard h = 0 analysis to finite h and finite imposed species imbalance DN.

8.2. BCS regime of one-channel model at h „ 0

In the present section, we analyze the positive-detuning side of the resonance (as < 0)
within the one-channel model at finite h. Our analysis will closely follow that of Section
5 for the two-channel model; with the results of that section in hand, we will be brief in
deriving similar results for the one-channel model. In addition, as in Section 5, we will first
neglect the possibility of the FFLO state in this section, returning to finite-Q ground states
in Section 8.5. Evaluating the momentum and h integrals in Eq. (271), with approxima-
tions D� l and h� l appropriate to the BCS regime, we obtain
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EG � �
m

4pas
D2 � 8c

15
l5=2 � c

ffiffiffi
l
p

D2 1

2
� ln

D
8e�2l

� �

� c
ffiffiffi
l
p

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � D2

p
� D2cosh�1ðh=DÞ

h i
Hðh� DÞ: ð285Þ

We start in the grand-canonical ensemble at fixed l and h. As we have already seen, the
first line of Eq. (285) (EG at h = 0) has a minimum at DBCS given by

DBCS ¼ 8e�2l exp
p
ffiffiffiffiffi
�F
p

2kFas
ffiffiffi
l
p

� �
: ð286Þ

We recall that DBCS and the corresponding ground state energy EG(DBCS) remain h-inde-
pendent at low h, consistent with a singlet magnetization-free BCS ground state. Physical-
ly, this is due to the fact that the h = 0 BCS state is gapped and h couples to a conserved
quantity DN. Mathematically, because of the step function in Eq. (285), EG(DBCS) can only
become h-dependent for h > DBCS. However, before this can occur a first-order transition
to the normal state D = 0 takes place at

hcðlÞ ¼
DBCSffiffiffi

2
p ¼ 4

ffiffiffi
2
p

e�2l exp
p
ffiffiffiffiffi
�F
p

2kFas
ffiffiffi
l
p

� �
; ð287Þ

determined by equating EG,N = EG(D = 0,hc) and EG,SF = EG(DBCS,hc), that is clearly
smaller than DBCS. Hence, the BCS minimum remains stable and independent of h.

At fixed density n, the chemical potentials lSF(n) and lN(n) of the SF and N phases are
bounded by the distinct atom-number constraint equations

n � 4c
3

l3=2
SF þ

5

4

cD2
BCSffiffiffiffiffiffiffi
lSF

p � cD2
BCS

2
ffiffiffiffiffiffiffi
lSF

p ln
DBCS

8e�2lSF

; ð288Þ

n � 4c
3

l3=2
N þ

ch2

2
ffiffiffiffiffiffi
lN

p ; ð289Þ

and therefore lSF „ lN. As a result, the jump discontinuity at the first-order transition at hc

(for fixed l) opens up into a coexistence region for fixed n, bounded by hc1 = hc(lSF) and
hc2 = hc(lN), respectively determined by the solutions of Eqs. (288) and (289) inside Eq.
(287). As discussed at length in in Section 5.3, since neither the SF nor the N can satisfy
the atom number constraint while minimizing EG, for hc1 < h < hc2 the system is forced to
phase separate into a coexisting mixture of SF and N states.

It is straightforward to find hc1 and hc2 by numerically solving the sets of equations [i.e.,
Eqs. (288) and (287), and Eqs. (289) and (287)] that define them. At large (kF|as|)

�1 in the
BCS regime (large positive detuning), however, we can find accurate analytic approxima-
tions to these equations. To do this, we first write the corresponding sets of equations in
dimensionless form (ĥ ” h/�F, D̂ � D=�F, l̂ � l=�F) for ĥc1:

4

3
� 4

3
l̂3=2

SF þ
5ĥ2

c1

2
ffiffiffiffiffiffiffi
l̂SF

p � ĥ2
c1ffiffiffiffiffiffiffi
l̂SF

p ln
ĥc1

4
ffiffiffi
2
p

e�2l̂SF

; ð290aÞ

ĥc1 ¼ 4
ffiffiffi
2
p

e�2l̂SF exp
p

2kFas
ffiffiffiffiffiffiffi
l̂SF

p
� �

; ð290bÞ

and for ĥc2:
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4

3
� 4

3
l̂3=2

N þ
ĥ2

c2

2
ffiffiffiffiffiffi
l̂N

p ; ð291aÞ

ĥc2 ¼4
ffiffiffi
2
p

e�2l̂N exp
p

2kFas
ffiffiffiffiffiffi
l̂N

p
� �

: ð291bÞ
As in Section 5.2 where we studied the two-channel model, we solve these equations per-
turbatively about l̂SF ’ 1 and l̂N ’ 1, obviously a good approximation since ĥc1 and ĥc2

are exponentially small. Expressing ĥc1 and ĥc2 in terms of the gap Eq. (279) in that limit,
we have:

ĥc1 �
D̂Fffiffiffi

2
p exp � p2D̂2

F

32ðkFjasjÞ2

" #
; ð292aÞ

ĥc2 �
D̂Fffiffiffi

2
p exp � p2D̂2

F

32kFjasj

" #
; ð292bÞ
with each expression only accurate to leading order in the argument of the exponential.
Thus, we see that, in the asymptotic large (kF|as|)

�1 limit, 0 < ĥc1 < ĥc2, although in the
deep BCS regime they become exponentially close to zero and to each other. We note that
these expressions also agree exactly with the corresponding two-channel results Eqs. (144c)
and (147b), using the relation Eq. (106) between the scattering length as and the detuning
d. However, as we shall see, such a simple correspondence only holds in the BCS regime
and does not apply in the BEC regime. Physically, this correspondence occurs because the
molecular dynamics that are accounted for in the two-channel model (but neglected in the
one-channel model) are unimportant in the BCS regime.

To connect to experiments in which DN rather than h is imposed, ĥc1 and ĥc2 can be
easily converted into critical polarizations using the general formula for the population
difference:

DN
N
¼ 1

2
ðl̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2 � D̂2

p
Þ3=2Hðl̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2 � D̂2

p
Þ � ðl̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2 � D̂2

p
Þ3=2Hðl̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2 � D̂2

p
Þ

h i

Hðĥ� D̂Þ: ð293Þ
Since ĥc1 < D̂BCS, clearly Eq. (293) gives DNc1 = 0. This is consistent with our earlier find-
ing that the BCS SF ground state cannot tolerate any spin population difference in the
BCS regime. Using D̂ ¼ 0 in the normal state we find

DNc2

N
¼ 1

2
ðl̂N þ ĥc2Þ3=2Hðl̂N þ ĥc2Þ � ðl̂N � ĥc2Þ3=2Hðl̂N � ĥc2Þ
h i

; ð294Þ

� 3

2
ĥc2

ffiffiffiffiffiffi
l̂N

p
; ð295Þ
with the second expression applying for ĥc2 � l̂N (which is always valid in the BCS regime
of interest). Inserting Eq. (292b) into Eq. (295), and using l̂N � 1� 1

8
D̂2

F [which follows
from Eq. (291a) to leading order], we have
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DN c2

N
� 3D̂F

2
ffiffiffi
2
p 1� pD̂2

F

32kFjasj

 !
1� D̂2

F

8

 !
; ð296Þ

� 3D̂F

2
ffiffiffi
2
p exp � p2D̂2

F

32kFjasj

" #
; ð297Þ

where in the last line we used (kF|as|)
�1� 1 and re-exponentiated, valid to leading order.

Again, Eq. (297) agrees with the corresponding two-channel result Eq. (167b) using Eq.
(106). And, as in the two-channel model, for sufficiently large (kF|as|)

�1, there is a narrow
regime of FFLO phase (neglected in this section) that intervenes between the regime of
phase separation and the polarized N state. To remedy this, we must recompute the
ground-state energy and number and gap equations including the possibility of a spatial-
ly-varying D(r). Before doing this (in Section 8.5), we first study the strong-coupling BEC
regime at as > 0.

8.3. BEC regime of one-channel model

Here, we analyze EG, Eq. (271), in the BEC regime of as > 0, still focusing on the case of
Q = 0, which, as we saw in Section 7, is actually not a restriction as the ground state in the
BEC regime is always at Q = 0. We also anticipate that l < 0 in the BEC regime, remain-
ing valid even for finite h. Physically, this well-known property of the BEC regime is due to
the finite molecular binding energy Eb that fixes l � �Eb/2. For l < 0, the Q = 0 ground-
state energy for the single-channel model, Eq. (271), can be simplified considerably by
expanding it to leading order in D/|l|:

EG ¼ �
4

15
cðh� jljÞ5=2Hðh� jljÞ � V 2D

2 þ 1

2
V 4D

4; ð298Þ

where the ‘‘Landau’’ coefficients are given by

V 2 �
m

4pas
� c

ffiffiffiffiffiffi
jlj

p
F 2ðh=jljÞ; ð299aÞ

V 4 �
cp

32jlj3=2
F 4ðh=jljÞ; ð299bÞ

with F2(x) and F4(x) given by Eqs. (194) and (195), respectively. The gap and number
equations then reduce to

V 2 ¼D2V 4; ð300aÞ
n ¼� oEG=ol; ð300bÞ

with n the total fermion density. We emphasize that, like in the two-channel model, the
naive solution of Eq. (300a) is only a minimum of the ground-state energy for sufficiently
small h; at larger h it is a local maximum and therefore does not correspond to a physical
ground state.

To leading order in the small D/|l| limit, Eqs. (300a) reduce to

V 2 ¼0; ð301Þ

n ¼ cp

4
ffiffiffiffiffiffi
jlj

p D2 þ 2

3
cðh� jljÞ3=2Hðh� jljÞ: ð302Þ
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First focusing on the gap equation, Eq. (301), and ignoring the weak h/|l| dependence in
the second term of V2 we find (using F2(0) = p/2)

0 ¼ m
4pas

� 1

2
cp

ffiffiffiffiffiffi
jlj

p
; ð303Þ

which gives for the chemical potential [22]

l ¼ � 1

2ma2
s

¼ �Eb

2
¼ � �F

ðkFasÞ2
; ð304Þ

minus one-half the molecular binding energy Eb ¼ 1=ma2
s , a well-known result for h = 0,

that we see extends approximately to h > 0. With this result, Eq. (302) becomes

n ¼
ffiffiffi
2
p

cp
4
ffiffiffiffiffi
Eb
p D2 þ 2

3
c h� Eb

2

� �3=2

H h� Eb

2

� �
: ð305Þ

Clearly, the first and second terms on the right side of this number equation represent
fermions bound into molecules and free spin-up fermions, respectively, characteristic of
the magnetic superfluid (SFM) phase that we have discussed for the two-channel model
in Section 6. This allows us to relate the molecular condensate wave function (order
parameter) to D via [22]

w2
m �

cp

4
ffiffiffiffiffiffiffiffi
2Eb

p D2; ð306Þ

giving for the number equation

n ¼ 2w2
m þ

2

3
c h� Eb

2

� �3=2

H h� Eb

2

� �
: ð307Þ

It is also useful to define an effective molecular chemical potential

lm � Eb þ 2l; ð308Þ

in terms of which our approximate solution to the gap equation above [i.e. Eq. (301)] sim-
ply corresponds to lm � 0, as expected for a T = 0 Bose condensate. Re-expressing EG in
terms of l and wm, we find

EG � �
4

15
c h� Eb

2

� �5=2

H h� Eb

2

� �
� ~V 2w

2
m þ

1

2
~V 4w

4
m; ð309Þ

with the quadratic and quartic coefficients

~V 2 � 2Eb 1� 2

p
1� lm

2Eb

� �
F 2

2h
Eb

� �� �
; ð310Þ

~V 4 �
4pffiffiffiffiffi

Eb
p

m3=2
F 4

2h
Eb

� �
: ð311Þ

Using Eqs. (306) and (307), we can obtain an approximate expression for the pair field D
as a function of h:
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D2 ¼
ffiffiffiffiffiffiffiffi
8Eb

p

cp
n� 2c

3
h� Eb

2

� �3=2

H h� Eb

2

� �" #
; ð312aÞ

¼D2
0 1� 1

2

h
�F

� Eb

2�F

� �3=2

H h� Eb

2

� �" #
; ð312bÞ

with D0 the pair field at h = 0:

D0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

ffiffiffiffiffiffiffiffi
2Eb

p

cp

s
¼

ffiffiffiffiffiffiffiffiffiffi
4np
m2as

s
¼ �F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

3pkFas

s
; ð313Þ

where we used Eq. (104) for n. The preceding equations determine the phase diagram of
the single-channel model Eq. (266) on the BEC side of the resonance. We determine the
phase diagram at fixed N and h, fixed N and DN, and fixed l and h in Sections 8.3.1,
8.3.2 and 8.3.3, respectively, with the latter a prerequisite to studying inhomogeneous

polarized paired Fermi condensates in a harmonic trap within the local density approxi-
mation.

8.3.1. Phase diagram at fixed ĥ and density n

The three critical chemical-potential differences describing the phase diagram at fixed
density and chemical potential difference are: hm, the SF–SFM transition point, hc1, defined
by when the SFM phase becomes unstable to phase separation and hc2, defined as the h

above which the purely fermionic polarized N state is stable. By examining Eq. (270),
we see that

hm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ D2

q
; ð314Þ

with l and D given by their values in the SF phase, i.e., Eqs. (304) and (313), respectively.
As we found for the two-channel model in Section 6.3, hc1 is most easily (approximately)
determined by finding the point where ~V 4 vanishes (so that molecules are no longer repul-
sive), signaling the first-order instability. Examining Eq. (311) and recalling F4(1.30) = 0,
we see that this occurs at 2hc1/Eb = 1.30. Finally, hc2 is defined as that h at which the
molecular density vanishes according to Eq. (307) and the system consists of a fully-polar-
ized Fermi gas. Taken together, these three critical h’s are then given by:

hm ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

b

4
þ 2n

ffiffiffiffiffiffiffiffi
2Eb

p

cp

s
; ð315aÞ

’ �F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðkFasÞ4
þ 16

3pkFas

s
; ð315bÞ

hc1 ’ 0:65Eb ¼ 1:30
�F

ðkFasÞ2
; ð315cÞ

hc2 ’
1

2
Eb þ

3n
2c

� �2=3

¼ �F 22=3 þ 1

ðkFasÞ2

 !
; ð315dÞ

where we have expressed them in terms of the molecular binding energy Eb = 2�F/(kFas)
2.

Note that, as can be seen from the way it is displayed in the phase diagram Fig. 44, hm is



Fig. 44. Plot of approximate critical curves hm [Eq. (315b)], hc1 [Eq. (315c)] and hc2 [Eq. (315d)] which separate
regions of magnetized molecular superfluid (SFM), a fully-polarized normal Fermi gas (N), and a singlet
molecular superfluid (SF). The critical detunings ~dc � �ðkFascÞ�1 and ~dM � �ðkFasM Þ�1 denote a tricritical point
and the beginning of the SFM phase, respectively. This approximate phase digram agrees well with the
numerically-determined mean-field phase diagram for the single-channel model Fig. 41.
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only defined for sufficiently large (kFas)
�1 (to the left in the figure), and ceases to be defined

when it crosses the lower critical hc1 boundary at the critical scattering length asM satisfy-
ing (kFasM)�1 � 1.35. Similarly, hc1 is only defined for small (kFas)

�1, until it crosses hc2 at
asc given by (kFasc)

�1 � 2.30; this is a tricritical point. These two critical points are anal-
ogous to the critical detunings dM and dc in the two-channel model.
8.3.2. Phase diagram at fixed population difference

In the present subsection, we convert these critical h’s to corresponding critical popu-
lation differences (or magnetizations). To do this, we simply use DN(h), Eq. (179). Of
course, since hm is defined by the h at which the population difference DN increases
from zero in a continuous fashion, DNm = 0. Moreover, everywhere on the BEC side
DNc2/N = 1, as can be seen by plugging Eq. (315d) into Eq. (179); thus, a normal Fermi
gas with anything less than complete polarization is unstable to pairing or phase
separation in the deep BEC regime. We are therefore left with the computation of
DNc1, the population difference at which the polarized one-channel model (in the SFM

state) is unstable to phase separation. Eq. (179) yields for DNc1 [using Eq. (109); recall
Eqs. (105a), (105b), (105c), (105d), (105e)]:

DNc1

N
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2

c1 � D̂2

q
� jl̂j

� �3=2

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĥ2

c1 � D̂2

q
� jl̂j

� �
; ð316Þ

where l̂ is given by Eq. (304) and D̂ is given by its value at the transition, obtained by plug-
ging hc1 into Eq. (312b):

D̂2 ’ 16

3pkFas
1� 1

2

1:30

ðkFasÞ2
� 1

ðkFasÞ2

 !3=2
2
4

3
5; ð317Þ

which, along with Eqs. (316) and (315c) yields
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DN c1

N
’ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:30Þ2

ðkFasÞ4
� D̂2

s
� 1

ðkFasÞ2

 !3=2

; ð318Þ

plotted in Fig. 45. This analytic approximation agrees well with the exact numerically-de-
termined mean-field phase diagram for the single-channel model Fig. 42.

8.3.3. Phase diagram at fixed chemical potential

We conclude this subsection by computing the phase diagram in the grand-canonical
ensemble at fixed l and h that will be important for the extension of this bulk analysis
to that of a trap in Section 9. Our analysis here will mirror that of the BEC regime of
the two-channel model in the grand-canonical ensemble presented in Section 6.6.

To determine the phase diagram at fixed l and h, it is most convenient to use the
ground-state energy function Eq. (309) as a starting point. We first consider the case of
h = 0 in the SF phase. Since EG has the form of a conventional ‘‘/4’’ theory [129], with
quadratic and quartic terms in the molecular field wm, the vanishing of the quadratic coef-
ficient signals a second-order SF-to-Vacuum transition in a well-studied universality class
[132,133]. At h = 0 the point where this occurs is given by ~V 2;c ¼ lm;c ¼ 0. For small
h < hm, the same qualitative behavior, of a SF-to-Vacuum transition at lm,c = 0, persists
and leads to the vertical phase boundary in Fig. 46. With increasing h, the vacuum phase
undergoes a continuous transition to the spin-polarized N phase when l› becomes posi-
tive, yielding the phase boundary h = (Eb � lm)/2.

Similarly, with increasing h the SF phase acquires a nonzero magnetization, entering
the SFM state, when m(h) becomes nonzero at hm satisfying Eq. (314). Using
l ¼ 1

2
ðlm � EbÞ and the sixth-order approximation for D2 [i.e., the analogue within the

one-channel model of our result Eq. (216) for the two-channel model] with Eq. (314) yields
the SF–SFM phase boundary depicted in Fig. 46.

As we saw for the two-channel model, for h sufficiently close to jl̂j (so that ~V 4 > 0)
there is a continuous SFM–N transition at ~V 2 ¼ 0, yielding the following extension of
lm,c at higher h:
Fig. 45. Approximate (analytic) polarization-scattering length phase diagram on BEC side, for the single-channel
model, illustrating the critical polarization boundaries DNc1 and DNc2 = N, with critical detuning values ~dc and
~dM defined as in the Fig. 44. This approximate phase digram agrees well with the numerically-determined mean-
field phase diagram for the single-channel model Fig. 42.



Fig. 46. Phase diagram in the grand-canonical ensemble for the single-channel model Eq. (266) as a function of
molecular chemical potential lm and atomic chemical potential difference h, showing superfluid (SF), magnetic
superfluid (SFM), vacuum and fully-polarized N phases. Black lines denote continuous T = 0 transitions, while
the gray curve denotes a first-order SFM–N transition. The red dot at (0.058,0.65) is a tricritical point separating
first-order and second-order SFM–N transitions. Beyond the purple dot at (0.121,0.77), the SFM phase ceases to
exist.
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lm;c ¼ Eb 2� p
F 2ð2h=EbÞ

� �
; ð319Þ

a formula that applies to the left of the tricritical point at (0.058, 0.65) (where ~V 4 vanishes).
Beyond this tricritical point, the fourth order expansion of the ground-state energy breaks
down and we must incorporate the sixth-order term as we did in Section 6.4 for the two-
channel model. Of course, the close analogy between the one and two-channel models
means the sixth-order term is essentially the same. Inclusion of this term (which we shall
derive in Section 9.2 below) yields a first-order SFM–N transition at hc (satisfying the ana-
logue of Eq. (221b) for the one-channel model) at

lm;c ’ Eb 2� p
F 2ð2h=EbÞ

1� p3

256

ðF 4ð2h=EbÞÞ2

F 6ð2h=EbÞ

" # !
; ð320Þ

valid beyond the tricritical point

lm;c > lm;tric: ’ 0:058Eb; ð321Þ

and plotted as a gray curve in Fig. 46.
As seen in the figure, at higher lm, the first-order curve Eq. (320) intersects the SF-SFM

transition curve hm. Although our small-D expansion of EG becomes quantitatively invalid
in this regime, the existence of such an intersection at lm � 0.121Eb (the purple point in
Fig. 46) is correct, as can be verified by an exact numerical minimization of the full
ground-state energy. Beyond this point, the SFM state ceases to exist, and there is a direct
first-order SF–N transition.

8.4. Molecular scattering length and zeroth sound velocity

In the present subsection, we compute the molecular scattering length as and the corre-
sponding zeroth sound velocity within the single-channel model. To do this, we need to
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first calculate the molecular dispersion induced by atom-molecule resonant interactions.
This requires a computation of the leading-order contribution to the energy due to spatial
variations in D or wm, which comes from computing the momentum-dependent part of the
self energy (diagram Fig. 47):

Rðq;XÞ ¼
Z

d3p

ð2pÞ3
T
X

x

1

ix� np"

1

ix� iXþ nq�p#
; ð322Þ

with the x being fermionic Matsubara frequencies and npr ” �p � lr. As usual, we shall
take Tfi0; furthermore, we only require R(q,0) to leading (quadratic) order in q. As in
the gap equation, the short-scale (UV cutoff) dependence of R(q,0) can be absorbed into
the experimentally-measured scattering length as. Direct evaluation of Eq. (322) then
yields (to quadratic order in q)

� 1

k
þ Rðq; 0Þ ¼ � m

4pas
þ c

ffiffiffi
l
p

F 2ðh=jljÞ þ q2 c

32mjlj1=2
F qðh=jljÞ; ð323Þ

where

F qðxÞ � 1� 2

p
tan�1

ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p

� 4

3p

ffiffiffiffiffiffiffiffiffiffiffi
x� 1
p 1

x2
þ 1

2x

� �� �
Hðx� 1Þ; ð324Þ

and we recall that F2(x) is given by Eq. (194). Clearly, the first two terms of Eq. (323) sim-
ply represent the previously-computed coefficient �V2 in Eq. (298). The q-dependent part
is new, and represents the energetic cost of spatial variations of D, or, more physically, the
molecular kinetic energy. Thus, the generalization of EG, Eq. (298), (restoring the system
volume V) to the case of a spatially-varying D is simply given by (neglecting an overall D-
independent constant term):

EG �
Z

d3r
cF qðh=jljÞ
32mjlj1=2

j$Dj2 � V 2jDj2 þ
1

2
V 4jDj4

" #
; ð325Þ

that in terms of wm reduces to the standard Ginzburg–Landau form [using the relation of
D to wm, Eq. (306)]

EG �
Z

d3r
j$wmj

2

2mb
� ~V 2jwmj

2 þ 1

2
~V 4jwmj

2

" #
: ð326Þ

The molecular mass mb is defined by

1

mb
¼ F qð2h=EbÞ

2m
; ð327Þ
Fig. 47. Feynman diagram corresponding to the molecular self energy, in which the solid lines are atomic
(fermion) propagators and the dashed lines are molecular propagators.
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and therefore is not simply 2m but is enhanced through the function Fq(2h/Eb). Note that,
unlike the function F4(x) that vanishes indicating the instability of the SFM phase, Fq(x) is
positive in the regime of interest x > 1.

This expression for mb, together with ~V 4, allows us to deduce the molecular scattering
length am

~V 4 ¼
8pasF 4ð2h=EbÞ
F qð2h=EbÞmb

; ð328Þ

� 4pam

mb
; ð329Þ

where in the second line we used the well-known relation [127] between the quartic coef-
ficient and the molecular scattering length am to identify

amðhÞ ¼ 2as
F 4ð2h=EbÞ
F qð2h=EbÞ

; ð330Þ

that decreases with increasing h as we found in the two-channel model. We note here that,
because Eq. (330) is computed only within the Born approximation (equivalent to our one-
loop mean-field theory), it is certainly not quantitatively accurate. This is consistent with
our caveat, made at the start of this section, about the uncontrolled accuracy of the mean-
field approximation on the one-channel model. The level of this quantitative inaccuracy
can be assessed by noting that our result for am(h) reduces to [22] am(h = 0) = 2as that
is known to be off the exact value in the dilute BEC limit of am(h = 0) = 0.6as found by
Petrov et al. [134] (see also Refs. [135,28]), with the difference arising from strong molec-
ular fluctuations about the mean-field theory solution [28]. Finding the generalization of
the formula am = 0.6as to finite chemical-potential difference [which would give the exact
form of Eq. (330)] remains a challenging open problem.

Using Eq. (330), it is straightforward to find the sound velocity u inside the SF and SFM

phases using the standard expression [127]

u2 ¼ 4pnmam

m2
b

: ð331Þ

Following the analysis of Section 6.7 and using Eq. (330), we find

u2 ’ pnas

m2
1� 1

2

h
�F

� Eb

2�F

� �3=2

Hð2h� EbÞ
" #

F q
2h
Eb

� �
F 4

2h
Eb

� �
; ð332Þ

at fixed chemical potential difference h, or, at fixed polarization,

u2 ’ pnas

m2
ð1� DN

N
ÞF q ðkFasÞ2

2DN
N

� �2=3

þ 1

" #

 F 4 ðkFasÞ2

2DN
N

� �2=3

þ 1

" #
: ð333Þ

With increasing DN, there are two ways u(DN) can vanish according to Eq. (333): For
moderate detunings, (kFas)

�1 close to unity, it vanishes when the effective molecular inter-
action proportional to the function F4 vanishes at DNc1 approximately given by Eq. (318),
signaling the first-order transition to the regime of phase separation. In contrast, for large
negative detunings, deep in the BEC regime 1

kFas
> 1

kFasc
, the velocity u(DN) vanishes due to



D.E. Sheehy, L. Radzihovsky / Annals of Physics 322 (2007) 1790–1924 1885
the vanishing molecular density nm / (1 � DN/N), before F4 does. In this regime the van-
ishing of u simply signals the second-order transition to the normal state.

This concludes our description of the single-channel model Eq. (266) at finite chemical
potential difference h in the BEC regime. Next, we study the FFLO regime of the single-
channel model, confined to the positive-detuning BCS regime.

8.5. FFLO state in the one-channel model

In the present subsection, we analyze the FFLO ground state for the single-channel model
Eq. (266). As in the preceding subsections, we shall be brief in our analysis as details closely
resemble those for the two-channel model discussed in Section 7. For simplicity [102], we take
the single-Q FF pairing ansatz for the ground state of the form D(r) = DQeiQÆr. Following our
previous analysis, the ground state energy for this ansatz is [as before, exchanging the cou-
pling k for the s-wave scattering length as using Eq. (52)]:

EG ¼ �
m

4pas
D2

Q þ
X

k

ek � Ek þ
D2

Q

2�k

 !
þ
X

k

Ek"Hð�Ek"Þ þ Ek#Hð�Ek#Þ½ �; ð334Þ

where we recall that Ek is given by Eq. (74b), ek is given by Eq. (74a), and Ekr is given by
Eqs. (74c) and (74d).

As in the two-channel case, the FFLO state in the single-channel model is described (in
the grand-canonical ensemble) by the gap (oEG/oDQ = 0) and momentum equations (oEG/
oQ = 0), that, using Eq. (334), give

0 ¼ � m
2pas

�
X

k

1

Ek
� 1

�k

� �
þ
X

k

1

Ek
ð1þHð�Ek"Þ �HðEk#ÞÞ; ð335aÞ

0 ¼ Q
2

X
k

1þ ek

Ek
Hð�Ek"Þ �HðEk#Þð Þ

� �
� 1

Q

X
k

k �Q Hð�Ek"Þ þHðEk#Þð Þ: ð335bÞ

We remark that the right side of Eq. (335b) can also be obtained by computing the expec-
tation value of the momentum operator with respect to our variational ground-state wave-
function [89].

We now proceed to evaluate the momentum sums in Eqs. (335a), (335b), focusing on
the small-DQ limit. Starting with the gap equation, the first sum in Eq. (335a) isX

k

1

Ek
� 1

�k

� �
’ 2Nð~lÞ ln 8e�2~l

DQ

; ð336Þ

while the second, excluded, sum can be evaluated following the procedure of Appendix F.
We find, assuming from the outset that we are in the doubly-depaired FFLO state occu-
ring near the second-order FFLO-N transition at hFFLO [86]:X

k

1

Ek
ð1þHð�Ek"Þ �HðEk#ÞÞ ’

Nð~lÞ
�Q

Gð�Qþ �hÞ þ Gð�Q� �hÞ
	 


; ð337Þ

where �Q / 1=DQ is given by Eq. (244a) and

GðxÞ � ðxcosh�1x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

ÞHðx� 1Þ: ð338Þ

With this result, the gap equation Eq. (335a) becomes
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0 ¼ � m
2pas

� 2Nð~lÞ ln 8e�2~l
DQ

þ Nð~lÞ
�Q

Gð�Qþ �hÞ þ Gð�Q� �hÞ
	 


: ð339Þ

Near the second-order transition at ĥFFLO, we can expand the right side of Eq. (339) in
small DQ, using Eqs. (336) and (337). To leading order, we find

0 ¼ � m
2pas

� 2Nð~lÞ ln 8e�2~l
DQ

þ Nð~lÞ ln 4ð�Q2 � �h2Þ þ
�h
�Q

ln
�Qþ �h
�Q� �h

� 2þ 1

2

1
�Q2 � �h2

� �
: ð340Þ

Expressing Eq. (340) in terms of the h = 0 gap DBCS in the single-channel model using

�m
4pas

¼ NðlÞ ln 8e�2l
DBCS

; ð341Þ

using ~l � l� Q2=8m, and switching to our dimensionless variables Eqs. (105a), (105b),
(105c), (105d), (105e) and (248) we have, to leading order in D̂Q and the dimensionless
momentum Q̂,

D̂2
Q ’ 2ðQ̂2 � ĥ2Þ 2� ln

4ðQ̂2 � ĥ2Þ
D̂2

BCS

� ĥ

Q̂
ln

Q̂þ ĥ

Q̂� ĥ
� Q̂2

8l̂2
ln

8l̂

D̂BCS

" #
; ð342Þ

which describes the magnitude of the pairing order parameter DQ in the FFLO regime near
ĥFFLO.

Turning to the momentum equation, we split the first line of Eq. (335b) into two sums:

X
k

1þ ek

Ek
Hð�Ek"Þ �HðEk#Þð Þ

� �
¼
X

k

1� ek

jekj

� �

þ
X

k

ek

jekj
þ ek

Ek
Hð�Ek"Þ �HðEk#Þð Þ

� �
: ð343Þ

The first sum can be easily evaluated exactly:

X
k

1� ek

jekj

� �
¼ 4

3
Nð~lÞ~l: ð344Þ

For the second sum in Eq. (343), we make a standard approximation, replacing the density
of states by its value at the Fermi surface, valid for a degenerate Fermi gas (appropriate in
the BCS limit). This gives:

X
k

1þ ek

Ek
Hð�Ek"Þ �HðEk#Þð Þ

� �
’ 4

3
Nð~lÞ~lþ Nð~lÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~l2 þ D2

Q

q
� ~lÞ;

’ 4

3
c~l3=2 þ

cD2
Q

2
ffiffiffi
~l
p ; ð345Þ

with the last line applying for DQ � ~l. The second momentum sum of Eq. (335b) can also
be evaluated within this degenerate Fermi gas approximation, yielding
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1

Q

X
k

k �Q Hð�Ek"Þ þHðEk#Þð Þ ’ DQ
~kFNð~lÞ
6�Q2


 2½ð�Qþ �hÞ2 � 1�3=2 � 3�hcð�Qþ �hÞ þ 2½ð�Q� �hÞ2 � 1�3=2 þ 3�hcð�Q� �hÞ
h i

; ð346Þ

where cðxÞ � ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p

� cosh�1xÞHðx� 1Þ. Combining these terms yields for the number
equation Eq. (335b) (approximating ~kF � kF)

0 ’ 4

3

mDQ
�Ql

kF

þ
mD3

Q
�Q

2kFl

� DQkF

6�Q2
2½ð�Qþ �hÞ2 � 1�3=2 � 3�hcð�Qþ �hÞ þ 2½ð�Q� �hÞ2 � 1�3=2 þ 3�hcð�Q� �hÞ
h i

;

ð347Þ
which, near ĥFFLO (and switching to our standard dimensionless variables), yields

0 ’ 1� ĥ

2Q̂
ln

Q̂þ ĥ

Q̂� ĥ
þ Q̂2

4l̂2
: ð348Þ

Our subsequent analysis of Eqs. (342) and (348) mirrors that of the two-channel gap and
momentum equations [Eqs. (251a) and (251b), respectively] from Section 7. We are pri-
marily interested in the width of the FFLO regime in the phase diagram as a function
of (kF|as|)

�1, which at fixed ĥ is bounded above by the second-order FFLO–N transition
at ĥFFLO and below by the first-order SF–FFLO transition. We express the gap and
momentum equations in terms of the parameter k, defined by Q̂ ¼ kĥ

D̂2
Q ’ 2ĥ2ðk2 � 1Þ 2� ln

4ĥ2ðk2 � 1Þ
D̂2

BCS

� 1

k
ln

kþ 1

k� 1
� k2ĥ2

8l̂2
ln

8l̂

D̂BCS

" #
; ð349Þ

0 ’ 1� 1

2k
ln

kþ 1

k� 1
þ k2ĥ2

4l̂2
: ð350Þ

As we saw in Section 7, in the asymptotic BCS regime (kF|as|)
�1� 1, upon dropping the

exponentially small last term /ĥ2, Eq. (350) is solved by k � 1.200. [86] Inserting this k val-
ue into Eq. (349) and neglecting the subdominant last term of Eq. (349), and setting
D̂Q ¼ 0, we find [86]

ĥFFLOðl̂Þ ’ gD̂BCS; ð351Þ

with g = 0.754, as for the deep-BCS two-channel model. This result applies for small kF|as|
in the BCS regime at fixed chemical potential. Combining this with the number equation

(which fixes l̂ at l̂ � 1� ĥ2
FFLO

4
� 1� g2D̂2

F

4
) yields for ĥFFLO and DNFFLO:

ĥFFLO ’gD̂F exp � pg2D̂2
F

16kFjasj

" #
; ð352aÞ

DN FFLO

N
’ 3

2

ffiffiffî
l

p
ĥFFLO;

’ 3g
2

D̂F exp � pg2D̂2
F

16kFjasj

" #
: ð352bÞ
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However, as we showed in the two-channel case, close to the resonance ĥFFLO approaches
ĥc � D̂BCS=

ffiffiffi
2
p

, with reduced (kF|as|)
�1, crossing it at a critical coupling strength kFas* that

we now determine. To do this, we first re-express the last term in square brackets in Eq.
(349) in terms of as using Eq. (341), after setting D̂Q ¼ 0:

0 ’ 2� ln
4ðk2 � 1Þ

D̂2
BCS

� 1

k
ln

kþ 1

k� 1
� ĥ2

FFLOk2

4l̂2
þ pk2ĥ2

FFLO

16l̂2kFas
ffiffiffî
l
p : ð353Þ

Numerically solving Eqs. (353) and (350) for ĥFFLO(kFas), we find that ĥFFLO crosses ĥc at

1

kFjas�j
� 0:46; ð354Þ

defining the abovementioned critical coupling strength beyond which the FFLO state ceas-
es to be stable within our mean field theory (as plotted in the phase diagram Fig. 41).
Although the location of this crossing is not guaranteed to be accurate (due to the absence
of a small parameter to justify mean field theory near unitarity), we do expect the existence
of the crossing to survive beyond mean-field theory.
9. Polarized superfluidity in a trap: Local density approximation

The primary experimental application of our results on polarized paired superfluidity is
that of trapped degenerate atomic gases. It is thus crucial to extend our results to take into
account the effect of the potential VT(r), that in a typical experiment is well-approximated
by a harmonic-oscillator potential. While a full analysis of the effect of the trap is beyond
the scope of this manuscript, in the present section we study this problem within the well-
known local density approximation (LDA). We note that several recent studies (e.g., Refs.
[52–55,58,59,68]) have also addressed polarized superfluidity in a trap.

For simplicity, and because of its more direct current experimental relevance, in this
section we focus on the single-channel model Eq. (266). The generalization of this model
to a trap is straightforward:

H ¼
X
r¼";#

Z
d3r

j$ĉrðrÞj2

2m
þ ðV T ðrÞ � lrÞjĉrðrÞj2

 !
þ k

Z
d3rĉy"ĉ

y
#ĉ#ĉ"; ð355Þ

where ĉr(r) is a fermionic field operator with Fourier transform ĉkr. Henceforth, to be con-
crete, we shall focus on an isotropic harmonic trap V T ðrÞ ¼ V T ðrÞ ¼ 1

2
mX2

T r2, although this
simplification can easily be relaxed. Within LDA (valid for a sufficiently smooth trap po-
tential VT(r), see our discussion in the introduction, Section 1.2), locally the system is tak-
en to be well approximated as uniform, but with a local chemical potential given by

lðrÞ � l� 1
2
mX2

T r2; ð356Þ

where the constant l is the true chemical potential (a Lagrange multiplier) still enforcing
the total atom number N. The spatially-varying spin-up and spin-down local chemical
potentials are then [cf. Eq. (54a)]:

l"ðrÞ ¼lðrÞ þ h; ð357Þ
l#ðrÞ ¼lðrÞ � h; ð358Þ
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with the chemical potential difference h uniform. Thus, within LDA we approximate the
system’s energy density by that of a uniform system with spatial dependence (via the trap)
entering only through l(r). The ground state energy is then simply a volume integral of
this energy density. Below we compute the resulting ground-state energy and analyze spa-
tial profiles that emerge from it throughout the phase diagram. Within LDA, the phase
behavior as a function of chemical potential, l, translates into a spatial cloud profile
through l(r), with critical phase boundaries lc corresponding to critical radii defined by
lc = l(rc,h). [136] As we first predicted [36], this leads to a shell-like cloud structure that
has subsequently been observed experimentally [30,31,35] and reproduced theoretically
by a number of works [53,55,59,58].

Below we study these shell structures in much more detail using LDA. We note, how-
ever, that throughout our discussion, sharp (discontinuous) features (like the shell struc-
ture) that are arise are an artifact of LDA (precisely where it is invalid) and are
expected to be smoothed on microscopic (Fermi wave-) length scales by the kinetic energy
(or, surface tension [73]).
9.1. BCS regime

As we have seen, for a bulk system in the BCS regime (as < 0) there are three possible
homogeneous phases: (1) the singlet superfluid phase (SF), which is paired and has zero local
magnetization (2) the normal phase (N), and (3) the FFLO phase, which exhibits both pair-
ing and local magnetization, but is only stable for a narrow window of chemical potential
difference DBCS=

ffiffiffi
2
p

< h < 0:754DBCS. The narrowness of the window of FFLO phase trans-
lates, within LDA, to a thin shell rc < r < rc + dr of FFLO phase in a trap. Although the for-
malism that we shall now present can be easily generalized to find this shell, we believe that
the LDA approximation (which relies on slow variations of physical quantities) is not quan-
titatively trustworthy for such a thin region, especially considering that the FFLO state itself
varies over a large length scale Q�1 � (kF› � kFfl)�1. This is not to say that the FFLO state is
not observable in a trap, but merely that theoretical study of the FFLO state in a trap will
require a more sophisticated technique than LDA [53]. Thus, in the following analysis we
shall generally neglect the FFLO phase, briefly returning to it at the end of this section to
estimate the expected width dr of the FFLO phase in a trap within LDA.

Taking advantage of our bulk results at fixed l and h, in the SF state, the mean-field
LDA ground-state energy is given by

EG;SF ¼
Z

d3r � 8c
15

lðrÞ5=2 � m
4pas

DðrÞ2 þ NðlðrÞÞ � 1

2
DðrÞ2 þ DðrÞ2 ln

DðrÞ
8e�2lðrÞ

� �� �
;

ð359Þ
while in the N state it is given by

EG;N ¼�
4c
15

Z
d3r ðlðrÞ þ hÞ

5
2 þ ðlðrÞ � hÞ

5
2

h i
; ð360Þ

�
Z

d3r � 8c
15

lðrÞ5=2 � c
ffiffiffiffiffiffiffiffiffi
lðrÞ

p
h2

� �
; ð361Þ
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with the second line applying for h� l(r) and we recall the dimensionful parameter c is
defined in Eq. (100). The pairing field D(r) that locally minimizes Eq. (359) within LDA
is then simply given by

DðrÞ � 8e�2lðrÞ exp
m

4pasNðlðrÞÞ

� �
: ð362Þ

Plugging this into Eq. (359) yields

EG;SF ¼
Z

d3r � 8c
15

lðrÞ5=2 � 1

2
c
ffiffiffiffiffiffiffiffiffi
lðrÞ

p
DðrÞ2

� �
; ð363Þ

so that, by comparing EG,SF, Eq. (363), with EG,N, Eq. (361), we find the critical chemical
potential difference

hcðrÞ ¼
DðrÞffiffiffi

2
p ;

¼4
ffiffiffi
2
p

e�2lðrÞ exp
m

4pasNðlðrÞÞ

� �
; ð364Þ

at which the SF and N states locally have the same energy. Thus, within LDA, at fixed h

any regions of the system that satisfy h < hc(r) are in the SF state while those that satisfy
h > hc(r) will be in the N state. Since l(r) in Eq. (356) decreases with increasing r it is clear
that, within LDA, the higher-density superfluid regions will be confined to the center of
the trap (where l and thus hc is largest), with the lower-density polarized N state expelled
to the outside, as illustrated in Fig. 5. The resulting shell structure with radius rc(h) of the
SF-N interface is implicitly given by

h ¼ 4
ffiffiffi
2
p

e�2lðrcÞ exp
m

4pasNðlðrcÞÞ

� �
; ð365Þ

a striking signature of the regime of phase separation in a trap.
To describe the shell structure of the regime of phase separation for positive detuning at

fixed atom number Nr, we exchange l and h for the total atom number N = N› + Nfl and
normalized population difference DN

N ¼
N"�N#
N"þN#

. To do this we first note that the local total
atom density in the SF and N phases is given, respectively, by [cf. Eqs. (159) and (161)]

nSF ’
4c
3

lðrÞ
3
2 þ 5cDðrÞ2

4
ffiffiffiffiffiffiffiffiffi
lðrÞ

p � cDðrÞ2

2
ffiffiffiffiffiffiffiffiffi
lðrÞ

p ln
DðrÞ

8e�2lðrÞ ; ð366aÞ

nN ¼ nN"ðrÞ þ nN#ðrÞ; ð366bÞ

’ 4c
3

lðrÞ
3
2 þ ch2

2
ffiffiffiffiffiffiffiffiffi
lðrÞ

p ; ð366cÞ

where the local density of spin-r atoms in the N state is nNrðrÞ � 2c
3
lrðrÞ

3=2. Eqs. (366a),
(366b), (366c) can also be easily obtained by functionally differentiating Eqs. (359) and
(361) with respect to l(r). To determine the chemical potential l in the BCS regime, we
note that the above expressions are each well-approximated by their first terms (which
are identical). This underscores the weakness of pairing D and of the corresponding
depairing field hc in the BCS regime, with only a small fraction of states near the Fermi
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surface paired, slightly modifying l. We first consider the singlet BCS SF at h = 0. Since it
is unmagnetized, N› = Nfl and the total atom number is given by

N ¼ 4c
3

Z
d3rðl� 1

2
mX2

T r2Þ3=2
; ð367Þ

where the integration is restricted to r < R0, with the Thomas–Fermi (TF) radius

R0 �
ffiffiffiffiffiffiffiffiffiffi
2l

mX2
T

s
; ð368Þ

defined by where l(r) vanishes and approximately delineating the edge of the system [136].
We shall see below that, at h „ 0, the spin-up and spin-down clouds actually have different
Thomas–Fermi radii R› „ Rfl. Evaluating the integral, we find

N ¼ p2c
6

l3=2R3
0 ¼

p2c
6

l3 2

mX2
T

 !3=2

; ð369Þ

that gives l = (3N)1/3⁄XT (a result that is valid beyond LDA [137]), with Eqs. (368) and
(369) valid approximations for a cloud at small polarization.

Next, we turn to the mixed state where l > lc(r,h) > 0, and, as a result, the abovemen-
tioned SF–N shell structure develops. Thus, for r < rc the system consists of a SF core and
for rc < r < R the system consists of a polarized N Fermi gas. Thus, since n› = nfl in the SF
sphere, the total N› � Nfl is determined by the difference of the total number of spin-up
and spin-down atoms in the normal shell outside rc, which we label by NN› and NNfl.
The corresponding atom numbers in these normal shells are given by:

NNr ¼
2c
3

Z
rc<r<Rr

d3r lr �
1

2
mX2

T r2

� �3=2

; ð370Þ

that lead to distinct Thomas–Fermi radii for spin › and fl:

Rr ¼
ffiffiffiffiffiffiffiffiffiffi
2lr

mX2
T

s
; ð371Þ

with the majority (taken as spin-›, for h > 0) population occupying the larger volume.
Evaluating the integral in Eq. (370), we find

NNr ¼
p2c
12

l3=2
r R3

r½1� f ðrc=RrÞ�; ð372aÞ

with

f ðxÞ � 2

3p
3 sin�1 x� x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

ð8x4 � 14x2 þ 3Þ
h i

: ð372bÞ

Eq. (372a) counts the number of spin-r atoms in a spherical shell of inner radius rc and
outer radius Rr. For 0 < x < 1, f(x) is a monotonically increasing function of x with
f(0) = 0 and f(1) = 1 (so that a shell of vanishing width naturally contains no atoms). Sub-
tracting NNfl from NN›, we have for the polarization
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DN ¼NN" � NN#; ð373Þ

¼ p2c
12

2

mX2
T

 !3=2

l3
" 1� f

rc

R"

� �� �
� l3

# 1� f
rc

R#

� �� �� �
: ð374Þ

Expanding Eq. (374) to leading order in h/l (valid since hc(r)� l in the BCS regime), we
have [using R›,fl . R0(1 ± h/2l), from Eqs. (368) and (371)]:

DN ’ p2c
12

2

mX2
T

 !3=2

hl2 6½1� f ðxcÞ� þ xcf 0ðxcÞð Þ; ð375Þ

with f 0(x) the derivative of f(x) and where we have defined xc ” rc/R0. Using Eq. (369) for
N, (valid for h� l) we obtain

DN
N
’ h

2l
6½1� f ðxcÞ� þ xcf 0ðxcÞð Þ: ð376Þ

Using Eq. (365) for xc to eliminate h/l, and defining kF via l ¼ k2
F=2m (an approximation

corresponding to l � �F, valid in the BCS regime), we thus have our final expression for xc

in the BCS regime:

DN
N
’ 2

ffiffiffi
2
p

e�2ð1� x2
cÞ exp

p

2kFas

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

c

p
" #


 6½1� f ðxcÞ� þ xcf 0ðxcÞð Þ: ð377Þ

For DN = 0, Eq. (377) is solved by xc = 1, i.e., the entire system is in the SF phase. With
increasing difference DN in the number of spin-up and spin-down atoms, however, a thin
shell of spin-polarized normal Fermi liquid forms on the outside of the cloud, correspond-
ing to xc = rc/R0 decreasing from unity. Although Eq. (377) cannot be solved analytically
for xc, the radius of the inner SF sphere, it is straightforward to determine it numerically,
as shown in Fig. 48 for coupling strengths kF|as| = 2, kF|as| = 1.5 and kF|as| = 1 (the latter
falling outside the range of quantitative validity of the BCS approximation, but expected
to be qualitatively correct). As illustrated in Fig. 48, rc(DN) vanishes at a critical popula-
tion difference DNc beyond which the cloud is completely in the N phase, exhibiting Pauli
Fig. 48. Radius rc (normalized to the TF radius R0) of the SF cloud core as a function of imposed normalized
population difference on the positive detuning BCS side of the resonance for coupling strengths (by which they are
labeled) (kF|as|)

�1 = 2, (kF|as|)
�1 = 1.5, and (kF|as|)

�1 = 1.
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paramagnetism and no pairing even at zero temperature. This critical population differ-
ence increases with increasing coupling strength, indicating the increased strength of Coo-
per-pairing as the Feshbach resonance is approached from positive detuning.

When the system is in the mixed phase, 0 < xc < 1, the local magnetization
m(r) = n›(r) � nfl(r) will exhibit an interesting radius dependence that we now compute.
We find for m(r)

mðrÞ ¼ 2c
3

l3=2 1� r2

R2
0

þ h
l

� �3=2

� 1� r2

R2
0

� h
l

� �3=2
" #

Hðr � rcÞ; ð378Þ

with the heaviside step function enforcing that m(r) vanishes in the SF state, where
n›(r) = nfl(r). For r > rc, in the normal shell, m(r) = nN›(r) � nNfl(r) is nonzero and given
in terms of x = r/R0 and a population-difference scale (restoring ⁄ for clarity here)

m0 �
2c
3

l3=2 ¼ 2

3

m3=2l3=2ffiffiffi
2
p

p2�h3
; ð379Þ

by

mðrÞ ¼ m0 1� x2 þ h
l

� �3=2

� 1� x� h
l

� �3=2
" #

Hðx� xcÞ: ð380Þ

To plot m(r) for a particular coupling and population difference, we combine Eq. (380)
with Eq. (377) for rc(DN) and Eq. (365) for h at that particular population difference
and coupling. In Fig. 5, we do this for coupling (kF|as|)

�1 = 1.5 and two different values
of the relative population difference: DN

N ¼ 0:15 (dashed) and DN
N ¼ 0:20 (solid). We note

that, since the spin-› TF radius R› is slightly larger than R0, m(r) is nonzero even slightly
beyond unity in the figure.

In Fig. 49, we also plot the experimentally-accessible [30,31] individual spin-up and spin-
down densities n›(r) and nfl(r). As expected, for r < rc, in the SF phase, n›(r) = nfl(r) = nSF(r)/2,
with nSF given by Eq. (366a). To obtain this plot, we need n›(r) and nfl(r) at a particular l.
Fig. 49. Local fermion densities n›(r) and nfl(r) (dashed and solid, respectively, normalized to n0 � 4
3
cl3=2) as a

function of radius (normalized to the DN = 0 TF radius R0) in the regime of phase separation in a harmonic trap
for coupling (kF|as|)

�1 = 1.5 and
N"�N#
N"þN#

¼ 0:15.
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Although in the above analytical calculation of l we have neglected the subdominant D-de-
pendent terms, in plotting n›(r) and nfl(r) in Fig. 49 we have included them.

In the normal state, n›(r) and nfl(r) are simply given by the two terms in Eq. (378):

nN"ðrÞ ¼
2c
3

l3=2 1þ h
l
� x2

� �3=2

H 1þ h
l
� x2

� �
; ð381Þ

nN#ðrÞ ¼
2c
3

l3=2 1� h
l
� x2

� �3=2

H 1� h
l
� x2

� �
: ð382Þ

Then, to obtain nr(r) for a particular (kFas)
�1 and population difference DN, we first deter-

mine xc through Eq. (377) and then plot nrðrÞ ¼ 1
2
nSFðrÞHðrc � rÞ þ nNrðrÞHðr � rcÞ. In

Fig. 49 we plot the resulting n›(r) and nfl(r) as a function of r for (kFas)
�1 = 1.5 and

DN
N ¼ 0:15 (i.e. the same parameters as the dashed curve of Fig. 5), for which the SF–N
boundary is at xc = 0.36, i.e., at rc = 0.36R0,

Before proceeding to the LDA in the negative-detuning BEC regime, we compute the
width dr of the FFLO phase in a trap. As we have noted above, because the FFLO phase
intervenes between the SF and N phases, for a homogeneous system at fixed l and h,
strictly speaking LDA predicts a thin spherical shell of FFLO between the SF and N.
To estimate the width of this shell, first imagine imposing a particular h so that the system
is polarized. Now, rc defined by h � DðrcÞ=

ffiffiffi
2
p

Eq. (365) denotes the critical radius at
which the system jumps from the SF phase to the FFLO phase with increasing radius.
Similarly, using Eq. (351), we see that at radius rc + dr defined by h = hFFLO = gD(rc + dr)
the FFLO phase disappears continuously into the N phase. To find dr, we simply expand
each of these equations to leading order in small dr and equate them, which [using Eq.
(368)] yields (at kF|as|� 1)

dr
R0

’ 1� 1ffiffiffi
2
p

g

� �
2kFjasjR0

prc
1� rc

R0

� �3=2

: ð383Þ

The first factor ð1� 1ffiffi
2
p

g
Þ ’ 0:062 in Eq. (383) is numerically small by virtue of the thinness

of the FFLO region of the phase diagram, i.e., g being close to 1=
ffiffiffi
2
p

. The apparent diver-

gence at rcfi0 is an artifact of approximating ðrc þ drÞ2 ’ r2
c þ 2drrc, valid for dr� rc,

that can be easily fixed. Clearly, dr� R0 simply because kF|as|� 1 in the BCS regime.
However, even for kF|as| = 1, reading a typical value of rc/R0 . 0.5 for DN/N = 0.2 from
Fig. 48 yields dr/R0 � 0.05.

9.2. BEC regime

We now turn to the BEC regime in which as > 0. As we have already discussed in the pre-
ceding subsection, within LDA the phase structure in a trap follows from the phase diagram
at fixed l and h, with the local phase at position r determined by the local chemical potential
l(r) satisfying Eq. (356). However, an important distinction is that, as we found for the
homogeneous case in Section 8.3, the chemical potential l at the center of the trap is already
negative in the BEC regime and therefore |l(r)| does not vanish as in the BCS case.

We start by recalling the BEC-regime phase diagram in the grand-canonical ensemble
Fig. 46, which we re-plot here (Fig. 50) as a function of h and the fermion chemical poten-
tial l (zoomed-in to emphasize the SFM phase). The black solid lines represent continuous



Fig. 50. Mean-field phase diagram (equivalent to Fig. 46) for the single-channel model Eq. (266) as a function of
atomic chemical potential l and atomic chemical potential difference h, each normalized to the molecular binding
energy Eb, showing superfluid (SF), magnetic superfluid (SFM), and fully-polarized normal (N) phases. Thin
black lines denote continuous T = 0 transitions, while the gray thick curve denotes a first-order SFM–N or SF–N
transition. The red dot at (�0.47,0.65) is a tricritical point separating first-order and second-order SFM–N
transitions while the purple dot at (�0.44,0.77) shows the chemical potential above which the SFM phase ceases to
exist.
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phase transitions between the SFM and N phases (upper line), and between the SF and
SFM phases (lower line). The gray solid line denotes a first-order SFM to N (or, to the
right, a first-order SF to N) transition. Within LDA, a trapped fermion gas with particle
number N and population difference DN is characterized by a certain chemical potential
and chemical potential difference (l,h) at the center of the trap that can be interpreted
as a coordinate in Fig. 50. With increasing radius, l(r) changes according to Eq. (356),
tracing out a left-ward moving horizontal line segment (l(r),h) on Fig. 50. Thus, if a polar-
ized Fermi gas is in the SF phase at the center of the trap, with increasing radius it will
generally go through the sequence of phases SF fi SFM fi N, with the SFM fi N transi-
tion continuous for h < 0.65Eb and first order for h > 0.65Eb (the latter indicating jumps
in the local density as we have seen in the preceding subsection).

The LDA ground-state energy, which determines l and h as a function of N, DN and
the scattering length as, is obtained by spatially integrating the local energy density
EG[D(r),l(r)] over the cloud’s volume. We approximate the full uniform-case energy den-
sity Eq. (271) by expanding to sixth order in small D/Eb (with Eb the binding energy
Eb ¼ �h2=ma2

s ). Defining dimensionless quantities �DðrÞ ¼ DðrÞ=Eb, �lðrÞ ¼ lðrÞ=Eb and
�h ¼ h=Eb (the latter not to be confused with the same symbol used in Sections 7 and
8.5) we find
EG

cE5=2
b

¼
Z

d3r � 4

15
cðh� jlðrÞjÞ5=2Hðh� jlðrÞjÞ � �V 2ð�h; �lðrÞÞ�DðrÞ2

�

þ 1

2
�V 4ð�h; �lðrÞÞ�DðrÞ4 þ

1

3
�V 6ð�h; �lðrÞÞ�DðrÞ6

�
; ð384Þ
with the coefficients
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�V 2ð�h; �lÞ ¼
p

2
ffiffiffi
2
p �

ffiffiffiffiffiffi
j�lj

p
F 2ð�h=j�ljÞ; ð385Þ

�V 4ð�h; �lÞ ¼
p

32j�lj3=2
F 4ð�h=j�ljÞ; ð386Þ

�V 6ð�h; �lÞ ¼
3

32j�lj7=2
F 6ð�h=j�ljÞ; ð387Þ

where F6(x) is given by Eq. (213b).
The local pairing field �DðrÞ is given by the gap equation [cf. Eq. (215)]

0 ¼ ��V 2ð�h; �lðrÞÞ�DðrÞ þ �V 4ð�h; �lðrÞÞ�D3ðrÞ þ �V 6ð�h; �lðrÞÞ�D5ðrÞ; ð388Þ

which has the trivial (normal-state) solution �D ¼ 0, as well as the nontrivial solution (sup-
pressing the arguments of the �V a for simplicity)

�D2
�ðrÞ ¼

�V 4

2�V 6

�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�V 2

�V 6=V̂ 2
4

q� �
: ð389Þ

As discussed in Section 6.4, the correct physical solution (locally corresponding to the
SF or SFM state) is given by the + of Eq. (389) for �V 4 > 0 and the � of Eq. (389) for
�V 4 < 0.

Next, we determine equations for the local number density and magnetization. For the
former, we find (keeping only leading-order terms) nðrÞ ¼ cE3=2

b �n½�h; �lðrÞ�, with

�n½�h; �lðrÞ� ’ 2

3
ð�h� j�lðrÞjÞ3=2

þ
�DðrÞ2

2
ffiffiffiffiffiffiffiffiffiffiffi
j�lðrÞj

p p
2
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=j�lðrÞj � 1

q
Hð�h� j�lðrÞjÞ

� �
; ð390Þ

the dimensionless density. Crucially, the spatial dependence of �n½�lðrÞ� arises only via �lðrÞ.
Similarly, the local magnetization mðrÞ ¼ cE3=2

b �m½�h; �lðrÞ� with

�m½�h; �lðrÞ� ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2 � �DðrÞ2

q
� j�lðrÞj

� �3=2

: ð391Þ

In terms of n(r) and m(r), the total particle number N and population difference DN are
given by

N ¼
Z

d3rnðrÞ; ð392Þ

DN ¼
Z

d3rmðrÞ; ð393Þ

constraints that determine �l and �h at a particular N and DN.

9.2.1. h = 0 case
We start by restricting attention to �h ¼ 0, appropriate for DN = 0. For this case, �D2, Eq.

(389), vanishes continuously as �V 2 ! 0, which in a homogeneous system corresponds to a sec-
ond-order SF-to-Vacuum transition, as discussed in Section 8.3.3. In the present LDA con-
text, it corresponds to the vanishing of the molecular density at the boundary of the system.
Thus, we can define the Thomas–Fermi radius RTF0, where V̂ 2 vanishes, via this condition:
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�V 2½0; �lðRTF0Þ� ¼ 0; ð394Þ
or,

�lðRTF0Þ ¼ �l0 �
mX2

T

2Eb
R2

TF0 ¼ �
1

2
: ð395Þ

Solving Eq. (395) for RTF0 yields, [using Eq. (356)]

RTF0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ebð2�l0 þ 1Þ

mX2
T

s
; ð396Þ

with the zero subscript on �l0 and RTF0 indicating that they are for h = 0. We proceed to
normalize the cloud radius r to RTF0, defining x = r/RTF0, in terms of which the normal-
ized chemical potential is

�l0ðxÞ ¼ �l0 � x2 �l0 þ
1

2

� �
: ð397Þ

With this definition, Eq. (392) becomes

N ¼ N 0ð2�l0 þ 1Þ3=2

Z
dx x2�n½�h; �l0ðxÞ�; ð398Þ

with

N 0 ¼
4pcE3

b

m3=2X3
T

; ð399Þ

a characteristic particle number scale. One can easily estimate the parameter N0 from typ-
ical experiments. For the case of 40K, given typical values from the Jin group [13,1], we
take scattering length as = 750a0, (a0 the Bohr radius) trap frequency XT = 2p · 400 s�1.
With these parameters, N0 . 2 · 108 and we must adjust �l0 to attain a realistic particle
number. Numerically solving Eq. (398) to find the normalized chemical potential yields
�l0 ¼ �0:465 for N = 105. Since the effective molecular chemical potential lm = Eb + 2l
Eq. (308), which in dimensionless units is �lm ¼ 2�lþ 1, we see that the deviation of �l0 from
�0.5 directly measures the effective molecular chemical potential. Consistently, we see
from Eq. (397) that, at the boundary of the system (x = 1), �l0ðxÞ ¼ � 1

2
indicating a van-

ishing of the effective molecular chemical potential. In Fig. 51, we plot the effective nor-
malized molecular density �nm ¼ p�D2=8

ffiffiffiffiffiffi
j�lj

p
as a function of radius for this case,

showing the standard Thomas–Fermi profile for a molecular Bose condensate.
9.2.2. h „ 0 case

At h „ 0, the system becomes locally magnetized, with the total population difference
given by Eq. (393). We now study our system at nonzero population difference by simul-
taneously solving this along with the number equation. In dimensionless form these are

N ¼ N 0ð2�l0 þ 1Þ3=2

Z
dx x2�n½h; �lðxÞ�; ð400Þ

DN ¼ N 0ð2�l0 þ 1Þ3=2

Z
dx x2 �m½h; �lðxÞ�; ð401Þ



Fig. 51. Normalized molecular density �nm ¼ nm=cE3=2
b as a function of radius for an unpolarized trapped fermion

cloud, with parameters given in the text.
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where we note that the dependence of Eq. (401) on �l0 arises because we are still measuring
the radial coordinate in units of the unpolarized system, i.e., we continue to use
x = r/RTF0. To maintain constant N, the chemical potential �l deviates slightly from �l0

and the general formula for �lðxÞ as a function of the normalized radius is

�lðxÞ ¼ �l� x2 �l0 þ
1

2

� �
: ð402Þ

Using Eq. (402) along with Eqs. (400) and (401), it is straightforward to numerically study
the cloud shape with increasing DN, using the same parameters as before.

As shown in Fig. 6 in Section 2.2, the typical sequence of phases with increasing
radius that we find within LDA is SF fi SFM fi N. As in the positive-detuning BCS
regime, this is due to the spin-polarized normal fermions having been expelled to the
outer shell of the system. In this context, the SFM phase that is unique to negative
detuning represents a thin shell in which the singlet molecular bosons and outer nor-
mal-phase fermions ‘‘bleed’’ into each other. In Fig. 52 we plot the normalized molec-
ular density �nmðrÞ and normalized magnetization �mðrÞ as a function of radius for
DN
N ¼ 0:26 (Fig. 52a) and DN

N ¼ 0:73 (Fig. 52b). Fig. 6a is for the same parameters
but DN

N ¼ 0:39.
The three radii labeled on the horizontal axes of Figs. 52a and b, indicated in the car-

toon picture Fig. 6b of the superfluid shell structure, are: Rf1, the radius below which
�mðrÞ ¼ 0, RTF, the radius below which �nmðrÞ 6¼ 0 and the system is superfluid and Rf2,
the radius above which �mðrÞ ¼ 0. Thus, for r < RTF and r < Rf1, the system is in the SF
phase, consisting of singlet molecular pairs while for Rf1 < r < RTF the system is in the
SFM phase with coexisting molecular pairs and single-species fermions. For RTF < r < Rf2

the system consists purely of single-species fermions.
With increasing DN

N , RTF and Rf1 decrease and Rf2 rapidly increases as the system is
converted from a molecular superfluid to a single-species fermion gas. This behavior,
seen in comparing Fig. 52a and b, is shown in detail in Fig. 53, in which we plot all
three radii as a function of DN

N . We note in particular that, for very large DN
N , Rf1 fi 0

with RTF „ 0. Thus, in this regime, LDA predicts the sequence of phases with increas-
ing radius to be SFM fi N.



b

a

Fig. 52. Normalized molecular density �nm ¼ nm=cE3=2
b and normalized magnetization �m ¼ m=cE3=2

b as a function
of radius for a polarized trapped fermion cloud, with (a) DN/N = 0.26 and (b) DN/N = 0.73 and other parameters
given in the text.

Fig. 53. Plots of the three radii Rf2 (outer boundary of N phase), RTF (outer boundary of SFM phase) and Rf1

(outer boundary of SF phase) characterizing the polarized cloud in the BEC regime within LDA.
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10. Discussion and conclusions

10.1. Summary

In this lengthy manuscript, we have studied the rich zero-temperature phase behavior of
a two-species (pseudo-spin up and down) Fermi gas interacting via a tunable Feshbach
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resonance and constructed its phase diagram as a function of Feshbach resonance detun-
ing d and pseudo-spin population imbalance DN (and chemical potential difference h). Our
main results relied on a well-controlled mean-field analysis of the two-channel model of
fermions interacting via a Feshbach resonance that is quantitatively accurate in the narrow
resonance limit. In addition, we have complemented this with a study of the one-channel
model, appropriate for the wide resonance limit, for which the mean-field approximation
that we use is not quantitatively justified near unitarity, but is expected to be qualitatively
correct, finding an expected qualitative agreement between the two models.

As described in the main text, for h below a critical value that is exponentially small in
the BCS regime of d� 2�F, the fully-gapped singlet superfluid (SF) is stable and under-
goes the (by now) standard BCS-BEC crossover with reduced d. On the positive-detuning
BCS side of the resonance, for h larger than hc1(d) the fixed atom-number constraint forces
the system to enter a regime of phase separation (PS) consisting of coexisting singlet SF
and partially magnetized FFLO states for hc1 < h < hc2. At hc2, for d� 2�F, the system
enters the periodically-paired FFLO phase, before undergoing a continuous [105] trans-
tion to the normal Fermi gas (N) phase at hFFLO. At lower detuning values d � 2�F, the
FFLO phase becomes unstable and the thin window of FFLO phase between hc2 and
hFFLO is ‘‘squeezed out.’’ In this crossover regime, upon increasing h, the SF undergoes
a direct first-order transition to the N phase, with SF–N coexistence for hc1 < h < hc2

for fixed atom number.
On the negative-detuning BEC side of the resonance, for h > hm(d) the fully-gapped

molecular SF undergoes a continuous transition to a homogeneous magnetized superfluid
ground state (SFM) composed of molecules and a single-species Fermi gas, with the latter
responsible for the gapless atomic excitations and finite polarization characterizing the
SFM state. Upon further increase of the chemical potential difference, h, for d > dc the
SFM undergoes a first-order transition to a fully-polarized N phase, with, for fixed particle
number, a phase-separated regime consisting of SFM and N polarized states. In contrast,
for d < dc there is a continuous SFM-N transition. We give a detailed description of these
T = 0 phases and phase boundaries characterizing the phase diagram, with many of our
predictions already verified in recent experiments [30,31,35].

10.2. Relation to other work

Our study of polarized resonantly-interacting Fermi gases builds on a large body of
work dating back to the seminal contributions of Clogston [84], Sarma [85], Fulde and
Ferrell [86], and Larkin and Ovchinnikov [87]. These were followed by many studies of
FFLO and related exotic paired superfluid states that, in additional to off-diagonal
long-range order, also break spatial symmetries. These studies range from solid state elec-
tronic systems [95] to nuclear matter (quark-gluon plasma) [92,94,103], but until very
recently were generally confined to the weakly-interacting BCS regime.

This theoretical effort has recently seen a resurgence of activity, stimulated by the dis-
covery of tunable resonantly-paired superfluidity in degenerate atomic Fermi gases [1–6].
However, perhaps the first theoretical work to study atomic gases with unequal spin pop-
ulations in the BCS regime, by Combescot [37], preceded these experiments. Also preced-
ing such experiments was the proposal by Liu and Wilczek [38] of the breached pair state,
that is closely related to the FFLO and SFM phases. Other notable theoretical work on
spin-polarized Fermi gases in the BCS regime includes that by Mizushima et al. [41],
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who studied signatures of FFLO phases in cold fermion experiments but did not determine
the conditions necessary (i.e., the phase boundaries) for the observation of such states and
that by Bedaque, et al. [39], who emphasized the first-order nature of the SF–N transition
and the concomitant regime of phase separation (missed in an important work by
Gubankova et al. [138], see Ref. [139] for a discussion).

Later, in a predominantly numerical work Carlson and Reddy [42] extended the study
of polarized paired superfluids across the resonance to include the BEC regime, still not
including a trap. One important prediction in Ref. [42] is numerical evidence for a uniform
magnetized paired superfluid around the unitary point, corresponding to a finite critical
value of polarization (species imbalance) to produce phase separation. The unitary point
under applied polarization was also studied by Cohen [43], who derived general conditions
for phase separation in this regime.

These early microscopic studies and ideas that followed were compiled into a general
phenomenological phase diagram by Son and Stephanov [48]. The first microscopic ana-

lytical study of the problem across the BCS-BEC crossover was done by Pao et al. [47]
within the single-channel model via mean-field theory. On the BCS side their study of a
uniform Fermi gas (that ignored the interesting FFLO state), was consistent with earlier
BCS-regime studies [85,39]. However, their extension to the BEC regime was done incor-
rectly, leading to a qualitatively wrong phase boundary below which the magnetized
superfluid SFM is unstable. [121] The correct zero-temperature mean-field phase diagram
for the single-channel model (consistent with our earlier work on the two-channel model
[36]) was published by Gu et al. [64], by Chien et al. [75], and by Parish et al [78], although
these authors also neglected the possibility of an FFLO state.

Our work [36] presented the first analytical prediction of a complete (full range of
detuning) phase diagram for a resonantly-interacting Fermi gas within the more general
two-channel model. Our work also included a detailed study of the FFLO state (extending
the original work of Fulde and Ferrell and Larkin and Ovchinnikov to a resonant tunable
interaction) as well as a prediction regarding the experimental consequences of the trap.
With regard to the former our main contribution was a prediction of the phase boundaries
(hFFLO(d) and hc2(d)) for the FFLO state, showing their crossing at d* � 2�F that leads to
the elimination of the FFLO state for d < d*. With regard to the trap that we studied with-
in LDA, as summarized in the inset of Fig. 1 and last section of our earlier publication
[36], with many additional details presented here, our main prediction is that, in a trap,
phase separation leads to the recently observed [30,31,35] shell-like cloud profile, with
interfacial boundaries whose detailed dependence on detuning and population imbalance
we predict.

Our original study also clearly identified the source of the error of Pao et al. in comput-
ing phase boundaries in the BEC regime. We unambiguously showed that much of the
BEC regime that they claimed to be a uniform stable magnetized superfluid (SFM in
our notation), was in fact a phase separated regime, consisting of coexisting SFM and fully
polarized normal Fermi gas. We have explicitly identified the error in Ref. [47] by repro-
ducing their (in our view erroneous) results. The error stems from the fact that some solu-
tions to the gap equation correspond to saddle points or maxima of the variational ground
state energy EG(DQ). Pao et al. only used the positivity of local magnetic susceptibilities
and the superfluid stiffness to check stability of the identified solutions. Since this stability
criterion is not stringent enough, being necessary but not sufficient, certain solutions of the
gap equation identified as stable in Ref. [47] are in fact maxima of EG(DQ) and therefore in
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fact unstable [122]. In the presence of a first-order transition a careful study of EG(DQ)
(best done in the grand-canonical ensemble [139], with number constraints only imposed
a posteriori) is necessary in order to ensure that extrema solutions to the gap equation
indeed correspond to stable phases that minimize EG.

Following the subsequent experimental observations by Zwierlein et al. [30] and by Par-
tridge et al. [31], qualitatively consistent with our original predictions (e.g., the shell-like
phase structure of the atomic cloud as a signature of phase separation in a trap, the expul-
sion of magnetization to the outer shell, the general location of phase boundaries and their
qualitative detuning and population imbalance dependence), there has been an explosion
of theoretical activity. Many of our T = 0 predictions have been carefully verified and
extended in important ways by many works that followed (see, however, Refs.
[47,67,121]). These include nontrivial extensions to a finite temperature [75,78], uncon-
trolled but elaborate extensions to a broad resonance treated within the one-channel mod-
el (beyond our original mean-field approximation), as well as more detailed studies of the
effects of the trap [52–55,58,59,73,68], and extensions of the FFLO [50] and other related
exotic states [49,51,60]. A notable work by De Silva and Mueller [58] demonstrated that
consistency with experiments [31] requires a breakdown of LDA in an anisotropic trap;
clearly LDA must also obviously break down at an interface between coexisting phases.
This was followed by a detailed treatment of the trap beyond LDA [73], an issue that
was also addressed in Refs. [68,32].

The experimental observation [31] (that, however, has not been seen in the MIT
experiment [30,35], see also Refs. [32,33]) of the existence of a uniform magnetized
superfluid at the unitary point (where 1/kFa fi 0) and a corresponding critical polarization
(DNc/N � 0.09) necessary to drive it to phase separate has generated considerable theoret-
ical interest. With the exception of the theory by Ho and Zhai [62], that attempts to
account for this feature via a phenomenological model of Bogoliubov quasi-particle
pairing, to our knowledge no model has been able to capture this putative experimental
feature; some support for it however exists in the original Monte-Carlo work by Carlson
and Reddy [42]. From our perspective, this seemingly qualitative feature reduces to a
quantitative question of the location of the critical detuning dM point in Fig. 3 (or,
equivalently, the asM point in Fig. 42) Our work shows unambiguously that for a narrow

resonance (c� 1) at T = 0, dM most definitely falls in the BEC regime (negative detuning),
thereby excluding the uniform magnetized SFM state from the unitary point. Our mean-
field theory predicts the critical scattering length for the broad-resonance one-channel
model to be close to kFasM . 1, again excluding the SFM state from unitarity. For reasons
discussed in the Introduction, Section 1, however, mean-field theory for a broad resonance
(relevant to present-day experiments) is not quantitatively valid for a broad resonance.
Thus, it is quite possible that for finite T [140] and a broad resonance dM indeed
shifts to a positive detuning, with the experimental findings of DNc [31] then naturally
interpreted as the observation of the SFM phase at the unitary point.

10.3. Experimental predictions

Most of our predictions were made both for a narrow resonance within a two-channel
model and for a broad resonance within a one-channel model. As discussed in the Intro-
duction, the former has an important advantage that it is quantitatively accurate with the
width of the resonance as the small expansion parameter. However, unfortunately,
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experiments are deep in the broad-resonance regime, where the two-channel model exactly

[28] reduces to a one-channel model, that in the interesting crossover regime cannot be
treated analytically in a quantitatively trustworthy way. We do, however, expect it to give
qualitatively correct predictions. And, as mentioned earlier, indeed we find that recent
experimental findings are qualitatively consistent with our wide-resonance predictions
done within the one channel model.

However, as we discussed above, our perturbative mean-field analysis, in either the nar-
row or broad resonance limit, does not find a uniform magnetized superfluid near the uni-
tary point and a corresponding finite critical population imbalance DNc.

Another feature that is seen in experiments [30] is that at unitarity the upper-critical bound-
ary where coexistence ends and the normal state takes over is given byDNc2/N � 0.7 < 1. That
is, the transition from phase separation is to a normal state that is only 70% polarized. This
seemingly qualitative feature is actually a quantitative question. In contrast to experiments,
as we show in the main text (see Fig. 3) our quantitatively accurate narrow resonance two-
channel model analysis (that can answer such a question) at the resonance position unambig-
uously predicts the transition directly to a fully-polarized normal state, i.e., DNc2/N � 1 at
unitarity. However, the less quantitatively trustworthy broad-resonance limit gives a predic-
tion of DNc2/N . 0.93 < 1, more consistent with experiments. Pick your poison.

We expect that many of our general predictions will continue being fundamental to the
understanding of specific experiments. Our predictions that can be already directly tested
(some have already been qualitatively tested [30,31]) are for the atomic cloud phase com-
position and spatial density and magnetization profiles. Most of these have already been
discussed in Section 9, summarized by Figs. 5, 6, 49–53, where we give details of the phase
separation-driven cloud shell structure, dependences of radii on detuning and population
imbalance, and detailed spatial gas profiles that can be imaged by cloud expansion.

In principle, the FFLO state (that was the original impetus for our study) should exhibit
particularly striking experimental signatures, associated with its simultaneous ODLRO
and spontaneous breaking of translational and orientational symmetry, encoded in DQ.
For a homogeneous cloud, the typical population imbalance required to enter the FFLO
state is given by Eq. (261), which in dimensionful units is approximately (recall g . 0.754)

DN FFLO

N
� 3gDBCS

2�F

; ð403Þ

which we can easily estimate using typical values of DBCS and �F from experiments. For
example, the last data point of Fig. 2 of Ref. [6] has Fermi temperature TF = 1.2 lK
and gap DBCS/h � 1 KHz (here h is Planck’s constant). Converting the former to frequency
units yields the Fermi energy �F � 25 KHz and DBCS/�F � .04, which, when inserted into
Eq. (403), yields DNFFLO/N � .05, a rather small polarization that will grow closer to
the resonance.

Upon expansion (after projection onto a molecular condensate [1]), a trapped cloud in
the FFLO (supersolid [96–99]) phase should exhibit peaks

nðr; tÞ / F r� �htQ
m

� �
; ð404Þ

in the density profile n(r,t) at time t set by the FFLO wavevector Q, reminiscent of a Bose
superfluid state trapped in a periodic optical potential [109], but contrasting from it by the
spontaneous (since translational symmetry is broken spontaneously) nature of the peaks.



1904 D.E. Sheehy, L. Radzihovsky / Annals of Physics 322 (2007) 1790–1924
The width of the peaks (given by the function F ðrÞ that is a Gaussian for a Gaussian
trapped cloud, see Appendix G) is set by the inverse spatial extent of the FFLO state.
Using the same typical numbers as above from the experiments of Ref. [6], the typical
wavevector Q [given by Eq. (260)] can be estimated to be Q�1 � 5lm.

The formula Eq. (404) assumes the simplest FFLO-type superfluid B(r) / eiQÆr. Howev-
er, as we have discussed, in reality the true ground state in the FFLO regime of the phase
diagram will likely be a more complicated (but nearly degenerate) state containing more
Fourier modes [87,94,93,90] Qn, yielding a more complicated density profile of the expand-
ed gas given by the more general formula Eq. (G.9) in Appendix G.

Also, the spontaneous anisotropy of the FFLO state should manifest itself in the atom
shot noise distribution [110–112], with peaked k, � k correlations that are anisotropic
around the Fermi surface with the axis of symmetry spontaneously selected by the Q’s
characterizing the FFLO ground state.

However, there might be serious impediments for such a direct detection of the FFLO state
in trapped atomic gases. As we showed this phase is confined to a narrow sliver of the phase
diagram on the BCS side of the resonance. Within LDA, this narrow range of dh in chemical
potential difference translates into a thin FFLO shell at rc of width [using Eq. (383)]

dr 	 0:04kFjasj
R2

0

rc
1� r2

c

R2
0

� �
; ð405Þ

(applying for rc not too small) with the cloud radius R0. Now the (above-mentioned)
width of the spontaneous Bragg peaks will be limited from below by this finite shell
width as dQ = 2p/dr. This places a requirement that Q� 2p/dr in order to be able to
resolve the peaks. This is consistent with the condition of applicability of LDA. On
the other hand in Section 7 we found the optimum Q characterizing FFLO state is given
by Q / DBCS/⁄vF [Eq. (260)] Hence it is clear that, generally, Qdr� 1.

The identification of phases and the corresponding quantum and thermal phase transi-
tions should also be possible through thermodynamics by measuring, for example, the heat
capacity. Although we have not done detailed quantitative studies of this, general argu-
ments [141] predict that the SFM and FFLO states at low T should be characterized by
a heat capacity that is linear in T due to gapless atomic excitations around the majority
particle Fermi surface of the SFM state. This dependence should distinguish the SFM

and FFLO states from a fully gapped BCS–BEC singlet SF state. On the other hand
the finite molecular BEC peak and ODLRO, along with their dependence on detuning
and polarization, should distinguish the SFM and FFLO states from the normal Fermi
gas (N) state. Direct observation of gapless atomic excitations via Bragg spectroscopy
[142] should also be possible. Phase transitions should also be readily identifiable via stan-
dard thermodynamic anomalies, such as divergences of susceptibilities across a transition,
in addition to effects observable in the density and magnetization profiles.

We hope that our work on this exciting subject of polarized resonant superfluids will
stimulate further careful and detailed experimental studies to test our predictions.
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Appendix A. Scattering amplitude

For completeness, in this Appendix we review the properties of the s-wave scattering
amplitude following Refs. [114,26]. The s-wave scattering amplitude is related to the phase
shift ds(k) (not to be confused with the bare and renormalized Feshbach resonance detu-
nings d0 and d, respectively) by

f0ðkÞ ¼
1

2ik
e2ids � 1
� �

: ðA:1Þ

Clearly, the unitarity requirement |2 ikf0 + 1| = 1 is automatically satisfied, which implies
that f0 may be written as

f0 ¼
1

g0ðkÞ � ik
; ðA:2Þ

with g0(k) a real function of k2. At low energies, expanding the denominator to leading
order in k2 yields

f0ðkÞ ¼
1

�a�1
s þ r0k2=2� ik

; ðA:3Þ

with as the s-wave scattering length and r0 the effective range, that for our resonant two-
channel model is actually negative.

The simplest way to compute the scattering amplitude (in vacuum, l = 0) for the two-
channel model Eq. (25) is to note that it is proportional to the molecular propagator
GbðEÞ ¼ hb̂ðEÞb̂yðEÞi,

GbðEÞ ¼
1

E � d0 � Rð0;EÞ ; ðA:4Þ

with R(q,E) the molecular self energy (diagram in Fig. 47; see Ref. [26]):

Rðq;EÞ ¼ g2

Z
d3p

ð2pÞ3
T
X

x

1

ix� �p

1

ix� iXþ �q�p


iX!Eþi0þ

: ðA:5Þ

Taking the q = 0 and low-E limit, we obtain

Rð0;EÞ � �i
g2m3=2

4p

ffiffiffiffi
E
p
� g2

Z
d3p

ð2pÞ3
m
p2
; ðA:6Þ

which, when used in Eq. (A.4), gives Gb(E) in the low-energy limit. Defining the physical

(renormalized) detuning d ¼ d0 � g2
R

d3p
ð2pÞ3

m
p2 to absorb the short (molecular) scale depen-

dence in the scattering amplitude, we have

f0ðEÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
C0=m

p
E � dþ i

ffiffiffiffiffi
C0

p ffiffiffiffi
E
p ; ðA:7Þ

f0ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
C0=m

p
k2=m� dþ i

ffiffiffiffiffi
C0

p
k=

ffiffiffiffi
m
p ; ðA:8Þ
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with

C0 �
g4m3

16p2
; ðA:9Þ

a measure of the width of the resonance and where an overall factor [that is the constant of
proportionality between Gb(E) and f0(E)] is fixed using the unitarity condition Eq. (A.2).
In obtaining Eq. (A.8), we replaced E fi k2/2mr, with mr = m/2 the reduced mass. Com-
paring Eq. (A.8) to Eq. (A.3), we identify

a�1
s ¼�

d
ffiffiffiffi
m
pffiffiffiffiffi
C0

p ; ðA:10Þ

r0 ¼�
2ffiffiffiffi

m
p ffiffiffiffiffi

C0

p ; ðA:11Þ

in terms of the detuning d and the width C0.
A.1. Experimental determination of parameters

The detuning parameter d is related to the difference in rest energy between the closed
channel and the open channel [10,143]. For a Feshbach resonance tuned to low energy d
by a magnetic field, we expect d / (B � B0) near the position of the resonance, where B0 is
the field at which the resonance is at zero energy. Determining the precise constant of pro-
portionality requires a detailed atomic physics analysis that is beyond the scope of this
manuscript. However, we can approximate d by the Zeeman energy difference between
the closed and open two-atom states. The latter are approximately dominated by electron-
ic triplet (open channel) and singlet (closed channel) states, giving

d � 2lBðB� B0Þ; ðA:12Þ

with lB the Bohr magneton. With this approximation, we can extract parameters of our
model, the most important being the width of the resonance, from current experiments.
Using Eq. (A.12) inside Eq. (A.10), we get

a�1
s ¼ �

2lB

ffiffiffiffi
m
pffiffiffiffiffi
C0

p ðB� B0Þ; ðA:13Þ

which should be compared with the form [10]

as ¼ abg 1� Bw

B� B0

� �
; ðA:14Þ

observed near a resonance [13,17], with Bw defined to have the same sign as abg. For
B fi B0, Eq. (A.14) can be written as

a�1
s ’ �

B� B0

abgBw
; ðA:15Þ

and comparison to Eq. (A.13) gives
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ffiffiffiffiffi
C0

p
¼ 2

ffiffiffiffi
m
p

lBabgBw

�h
; ðA:16aÞ

r0 ¼�
�h2

mlBabgBw
; ðA:16bÞ

where we have reinserted the correct factors of ⁄so that C0 has units of energy and r0 has
units of length. Experiments at JILA on 40K have studied a resonance with [13] abg = 92Å
and Bw = 9.76 G. Using m = 6.64 · 10�26 kg gives r0 � 10 Å and

ffiffiffiffiffi
C0

p
¼ 4:06
 10�13

ffiffiffi
J
p

.
Comparing the width C0 to the Fermi energy �F yields the parameter c /

ffiffiffiffiffiffiffiffiffiffiffiffi
C0=�F

p
Eq.

(37) characterizing the two-channel model. We find, for a typical �F = 3 · 10�33J (see
Ref. [111]), c � 6600 and 1/kF|r0| � 2600. Clearly, this Feshbach resonance is quite broad.

For the 830 G 6Li resonance studied in Ref. [17], we have |abg| = 744 Å and
|Bw| = 300 G, that together with m = 9.96 · 10�27 kg, gives

ffiffiffiffiffi
C0

p
¼ 3:93
 10�11

ffiffiffi
J
p

and
|r0| = 0.5Å. A typical value for the Fermi energy may be taken from Zwierlein et al [2],
who quote k�1

F ’ 2000a0, with a0 = 0.529 Å the Bohr radius. This yields kF = 9.4 · 106m�1,
�F ¼ �h2k2

F=2m ¼ 4:9
 10�29J, c . 5000 and 1/kF|r0| � 1982, also a very broad resonance.
Finally, we consider the narrow 6Li resonance near 543 G studied, e.g., in Ref. [15].

Although to our knowledge fermionic superfluidity has not been observed near this reso-
nance, in the near future it is quite likely. Estimating |abg| = 100a0 and |Bw| � 0.1G yields
(using TF � 1.4 lK from Ref. [15]) c . 18 and 1/kF|r0| � 7.3.
A.2. Bound states and resonances of the scattering amplitude

The poles of the scattering amplitude determine the positions of bound-states and res-
onances [114]. Since r0 is negative [114,26,29], we write f0 as

f0ðkÞ ¼
1

�a�1
s � jr0jk2=2� ik

; ðA:17Þ

with the poles given by the quadratic equation:

kp ¼
i� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jr0j=as

p
�jr0j

: ðA:18Þ

The only subtlety is that these solutions do not always correspond to physical bound states
or resonances. Purely imaginary poles are physical bound states only if Imkp > 0, such that
the corresponding wavefunction decays at large radius. Complex poles correspond to a
resonance only if the real part of the energy Re E > 0 and ImE < 0.

For the BEC regime as > 0, we can identify the correct pole as the � of Eq. (A.18),

kp ¼
i� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jr0j=as

p
�jr0j

; ðA:19Þ

since it is the one that in the r0 fi 0 limit yields the correct pole at kp ¼ ia�1
s . This pole is at

kp = ij with j a real and positive (as required) wavevector (since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jr0j=as

p
> 1) and

thus corresponds to a bound state [114,144] at energy Ep = �j2/2mr = �j2/m, with
mr = m/2 the reduced mass. Eq. (A.19) then yields
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Ep ¼�
2

mr2
0

1þ jr0j
as
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jr0j

as

s" #
; ðA:20Þ

¼ � C0

2
1þ 2jdj

C0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jdj

C0

s" #
; ðA:21Þ

where in the final equality we used Eqs. (A.10) and (A.11). For |r0|� as or |d|� C0, j �
1/as, a regime that is referred to as ‘‘universal.’’ The bound-state energy is

Ep � � 1
ma2

s
¼ � d2

C0
. In the opposite limit of |r0|� as or |d|� C0, j �

ffiffiffiffiffiffiffiffi
2

asjr0j

q
, corresponding

to the bound-state energy E � �(|r0|asm)�1 = d. Thus, in this regime the bound state sim-
ply follows the detuning.

On the BCS side as < 0, for 2|r0| < |as| both the + and � of Eq. (A.18) apparently give
solutions of the form kp = ij for j real. But since, for both, j is negative, they do not
correspond to a physical bound state since the corresponding wavefunction is an exponen-
tially growing solution of the radial Schrödinger equation [114,144]. On the other hand,
for 2|r0| > |as|, the pole kp is complex. Choosing the correct sign of the square root, we have
the physical pole at

kp ¼
1

jr0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jr0j
jasj
� 1

s
� i

jr0j
: ðA:22Þ

This pole corresponds to a physical resonance (by definition) only when the real part of the
energy of the pole is positive while the imaginary part is negative. The resonance energy is

E ¼
k2

p

m
¼ 2

mr2
0

jr0j
jasj
� 1� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jr0j=jasj � 1

p� �
; ðA:23Þ

which can be written in terms of the real part of the pole location Er and width C as

E ¼Er � iC; ðA:24Þ

Er �
2

mr2
0

jr0j
jasj
� 1

� �
¼ d� 1

2
C0; ðA:25Þ

C � 2

mr2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jr0j=jasj � 1

p
¼ C0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d
C0

� 1

s
; ðA:26Þ

where again we used Eqs. (A.10) and (A.11). Thus, there is a true resonance for 1/|as| >
1/|r0| (or, d > C0/2), with a width C > C0/2. We note that Er fi 0 as dfiC0/2, but C(d)
remains finite at this point with C(d = C0/2) = C0/2.

The positive-energy resonance in the two-channel model can also be seen in the s-wave
partial cross section r0 ¼ 4p

k2 sin2 ds. Using Eqs. (A.1) and (A.2), the phase shift ds satisfies

e2ids ¼ g0 þ ik
g0 � ik

; ðA:27Þ

g0 ¼� a�1
s þ r0k2=2; ðA:28Þ

so that r0 is given by
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r0 ¼
4p

g2
0 þ k2

: ðA:29Þ

Using Eq. (A.28) and E = k2/m, we find for as < 0 after straightforward algebra:

r0 ¼
16p
r2

0m2

1

ðE � ErÞ2 þ C2
; ðA:30Þ

the Lorentzian structure expected for a resonance.
Appendix B. Ground-state energy of two-channel model

In this Appendix, we give details of the derivation of the mean-field ground-state energy
for the two-channel model, Eq. (76), presented in Section 4. There, we expressed the effec-
tive fermion action in terms of the fermion Green function G(k,x), defined in Eqs. (72) and
(71). Now, we must simply compute the expectation values of HK and HF, defined in Eqs.
(64a) and (64b).
B.1. Computation of ÆHKæ

We start by noting that Eq. (54a) implies that HK can be written in the form [this also
follows from Eq. (61)]

hHKi ¼
X
k;r

nkhĉykrĉkri � hDN ; ðB:1Þ

with DN the population difference:

DN ¼
X

k

hĉyk"ĉk"i � hĉyk#ĉk#i
� �

: ðB:2Þ

We now compute the two terms of Eq. (B.1) in turn. The first is given by

X
k;r

nkhĉykrĉkri ¼
X

k

n�kþQ
2
T
X
xn

ixn þ n
kþQ

2#

ðixn � n
k�Q

2"
Þðixn þ n

kþQ
2#
Þ � jDQj2

þ
X

k

n
kþQ

2
T
X
xn

ixn þ n
k�Q

2"

ðixn þ n
k�Q

2"
Þðixn � n

kþQ
2#
Þ � jDQj2

; ðB:3Þ

where we have defined nkr ” �k � lr. The first frequency sum in Eq. (B.3) is easily evalu-
ated after factorizing the denominator:

T
X
xn

ixn þ n
kþQ

2#

ðixn � n
k�Q

2"
Þðixn þ n

kþQ
2#
Þ � jDQj2

¼ T
X
xn

ixn þ nkþQ=2#

ðixn � Ek"Þðixn þ Ek#Þ
; ðB:4Þ

¼ 1

2Ek

ðEk# þ n
kþQ

2#
ÞnF ðEk#Þ þ ðEk" � n

kþQ
2#
ÞnF ðEk"Þ

h i
; ðB:5Þ

with nF(x) the Fermi function and where we used Eqs. (74a), (74b), (74c), (74d). Taking the
T fi 0 limit, in which nF(x) fi H(�x), we have
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T
X
xn

ixn þ n
kþQ

2#

ðixn � n
k�Q

2"
Þðixn þ n

kþQ
2#
Þ � jDQj2

¼ 1

2
Hð�Ek"Þ þHðEk#Þ½ � þ ek

2Ek
Hð�Ek"Þ �HðEk#Þ½ �: ðB:6Þ

A similar result for the second frequency sum in Eq. (B.3) may be obtained by taking
Q fi �Q and h fi �h in Eq. (B.6) (since this operation interchanges n

kþQ
2#

and n
k�Q

2"
):

T
X
xn

ixn þ n
k�Q

2"

ðixn þ n
k�Q

2"
Þðixn � n

kþQ
2#
Þ � jDQj2

¼ 1

2
Hð�Ek#Þ þHðEk"Þ½ � þ ek

2Ek
Hð�Ek#Þ �HðEk"Þ½ �; ðB:7Þ

¼ 1� 1

2
Hð�Ek"Þ þHðEk#Þ½ � þ ek

2Ek
Hð�Ek"Þ �HðEk#Þ½ �; ðB:8Þ

where in the last line we used H(x) = 1 � H(�x). Inserting these sums into Eq. (B.3), we
have after a straightforward rearrangement:X

k;r

nkhĉykrĉkri ¼
X

k

ek þ
X

k

e2
k

Ek
Hð�Ek"Þ �HðEk#Þ½ �

�
X

k

k �Q
2m

Hð�Ek"Þ þHðEk#Þ½ �: ðB:9Þ

Following the same procedure as above, DN is given by

DN ¼
X

k

T
X
xn

½
ixnþnkþQ

2#

ðixn�n
k�Q

2"
Þðixnþn

kþQ
2#
Þ� jDQj2

�
ixnþn

k�Q
2"

ðixnþn
k�Q

2"
Þðixn�n

kþQ
2#
Þ� jDQj2

;

ðB:10Þ
¼
X

k

�1þHð�Ek"ÞþHðEk#Þð Þ; ðB:11Þ

which can be combined with Eq. (B.9) to yield (using
P

kk �Q ¼ 0)

hH Ki ¼
X

k

ek þ
X

k

e2
k

Ek
Hð�Ek"Þ �HðEk#Þ½ �

þ
X

k

k �Q
2m
þ h

� �
1�Hð�Ek"Þ �HðEk#Þ½ �; ðB:12Þ

used in the main text.

B.2. Computation of ÆHFæ

The computation of ÆHFæ follows straightforwardly along the lines of the calculation of
ÆHKæ presented above. The two terms comprising ÆHFæ are identical, and yield

hH F i ¼
X

k

T
X
xn

2jDQj2

ðixn � n
k�Q

2"
Þðixn þ n

kþQ
2#
Þ � jDQj2

;

¼
X

k

jDQj2

Ek
Hð�Ek"Þ �HðEk#Þ½ �; ðB:13Þ

the result used in the main text.
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B.3. Ground state energy at DQ = 0

One simple check on our expression for EG, Eq. (75), is the limit DQfi0, required to
reproduce (at arbitrary Q) the ground-state energy for a normal Fermi gas under a finite
chemical potential difference h, a quantity that we also use in the main text. Taking this
limit, we have

EG ¼
X

k

ðek � jekjÞ þ
X

k

jekj 1þHð�Ek"Þ �HðEk#Þð Þ

þ
X

k

k �Q
2m
þ h

� �
1�Hð�Ek"Þ �HðEk#Þð Þ; ðB:14Þ

where now, at DQ = 0, H(�Ek›) and H(Ekfl) are given by

Hð�Ek"Þ ¼ H
k �Q
2m
þ h� jekj

� �
; ðB:15Þ

¼ Hðh� n
k�Q

2
ÞHðekÞ þHðn

kþQ
2
þ hÞHð�ekÞ;

HðEk#Þ ¼ H
k �Q
2m
þ hþ jekj

� �
; ðB:16Þ

¼ Hðn
kþQ

2
þ hÞHðekÞ þHðh� n

k�Q
2
ÞHð�ekÞ:

The second lines of Eqs. (B.15) and (B.16) can each be verified by considering the first lines
for ek > 0 and ek < 0. With these expressions in hand, Eq. (B.14) may be considerably sim-
plified. Inserting them into Eq. (B.14), and combining all the momentum sums, we have

EG ¼
X

k

ek 1þHðh� n
k�Q

2
Þ �Hðn

kþQ
2
þ hÞ

� �h

þ k �Q
2m
þ h

� �
1� Hðh� n

k�Q
2
Þ �Hðn

kþQ
2
þ hÞ

� �� ��
: ðB:17Þ

Next, using the identity H(x) = 1 � H(�x), Eq. (B.17) further simplifies to

EG ¼
X

k

ek �
k �Q
2m
� h

� �
Hðh� n

k�Q
2
Þ þ

X
k

ek þ
k �Q
2m
þ h

� �
Hð�h� n

kþQ
2
Þ;

ðB:18Þ

where we note that, since the sums over k are restricted to small k by the step functions,
the sums are each convergent at large k. Therefore, it is valid to shift k fi k + Q/2 and
k fi k � Q/2 in the first and second terms, respectively, which yields

EG ¼
X

k

nk � hð ÞHðh� nkÞ þ nk þ hð ÞHð�h� nkÞ½ �; ðB:19Þ

the correct result for the ground-state energy of a normal Fermi gas under an applied
chemical potential difference.

Appendix C. BEC–BCS crossover at h = 0

In this Appendix, we review the BEC–BCS crossover [19–27] exhibited by H, Eq. (61),
at zero chemical potential difference h = 0. This will set the stage for our subsequent
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treatment at finite h of interest to us and will also serve to establish notation. The mean-
field ground-state energy EG associated with H is Eq. (76). After taking h = 0 in the Eq.
(76), to be completely general one must then minimize over Q and BQ. However, in the
absence of any chemical potential difference it is clear that EG is minimized by Q = 0 as
there is no energetic gain (only cost) of FFLO-type states. Thus, at the outset we set
Q = 0 along with h = 0 in Eq. (76), obtaining (writing D0 as D for notational simplicity):

EG ¼ ðd� 2lÞD
2

g2
þ
X

k

nk � Ek þ
D2

2�k

� �
; ðC:1Þ

where we have defined

nk � �k � l ¼ k2

2m
� l; ðC:2Þ

and used Eq. (27) for the renormalized detuning d. We first compute EG in the normal
state D = 0:

EGðD ¼ 0Þ ¼
X

k

ðnk � jnkjÞ; ðC:3aÞ

¼ � 8

15
cl5=2HðlÞ; ðC:3bÞ

where we converted the sum to an integral and used the three-dimensional density of states
NðEÞ ¼ c

ffiffiffiffi
E
p

with

c � m3=2ffiffiffi
2
p

p2
: ðC:4Þ

Combining this with Eq. (C.1) then gives:

EG ¼ ðd� 2lÞD
2

g2
� 8

15
cl5=2HðlÞ þ Iðl;DÞ; ðC:5Þ

where

Iðl;DÞ �
Z

d3k

ð2pÞ3
jnkj � Ek þ

D2

2�k

� �
; ðC:6Þ

where we have converted the momentum sum to an integral.
The standard BEC–BCS crossover follows from finding the minimum of EG which sat-

isfies the gap equation

0 ¼ oEG

oD
; ðC:7aÞ

while satisfying the number constraint

N ¼ � oEG

ol
; ðC:7bÞ

which we evaluate numerically in Fig. C.1.
For a narrow Feshbach resonance (c� 1), we can find accurate analytic approxima-

tions to EG in Eq. (C.5) in all relevant regimes. The first step is finding an appropriate
approximation to Eq. (C.6), which has drastically different properties depending on



Fig. C.1. Plot of D̂=D̂BEC (i.e., the gap normalized to its asymptotic value D̂BEC ¼
ffiffiffiffiffiffiffiffiffiffi
2c=3

p
) in the BEC regime and

l̂, as a function of normalized detuning D̂ ¼ d=�F for c = 0.1.
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whether l > 0 (so that the low-energy states are near the Fermi surface) or l < 0 (so that
there is no Fermi surface and excitations are gapped with energy bounded from below by
|l|). We proceed by first evaluating the derivative oI

oD and then integrating the expression
with constant of integration I(l,0) = 0.

oI
oD
¼� D

Z
d3k

ð2pÞ3
1

Ek
� 1

�k

� �
; ðC:8aÞ

¼ � cD
Z 1

0

ffiffi
�
p

d�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�� lÞ2 þ D2
q � 1

�

0
B@

1
CA; ðC:8bÞ

’ � 2NðlÞD ln
8e�2l

D
; l > 0; l� D; ðC:8cÞ

’ NðlÞD pþ p
16

D
l

� �2
" #

; l < 0; jlj � D; ðC:8dÞ

Eq. (C.8d) may be obtained by Taylor expanding the integrand in D� |l| and integrating
term by term, with details of the derivation of Eq. (C.8c) appearing in Ref. [29]. Integrat-
ing with respect to D, we thus have

I ’
�NðlÞ D2

2
þ D2 ln 8e�2l

D

� �
l > 0; l� D;

NðlÞ D2

2
pþ p

32
D
l

� �2
� �

l < 0; jlj � D;

8><
>:

9>=
>; ðC:9aÞ

Having computed EG(l,D) in the regimes of interest, the phase diagram is easily deduced
by finding D that minimizes EG(l,D), subject to the total atom number constraint Eq.
(C.7b).

C.1. BCS regime

The BCS regime is defined by d� 2�F, where D� l and l . �F > 0, with pairing taking
place in a thin shell around the well-formed Fermi surface. In this regime, EG is given by
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EG ’ �c
ffiffiffi
l
p

2
D2 þ D2

g2
ðd� 2lÞ þ c

ffiffiffi
l
p

D2 ln
D

8e�2l
� 8

15
cl5=2: ðC:10Þ

It is convenient to work with the dimensionless variables defined in Eqs. (105a), (105b),
(105c), (105d), (105e). The normalized ground-state energy eG in the BCS regime is then
given by

eG �
EG

c�5=2
F

’ �
ffiffiffî
l
p

2
D̂2 þ D̂2ðd̂� 2l̂Þc�1 þ

ffiffiffî
l

p
D̂2 ln

D̂
8e�2l̂

� 8

15
l̂5=2; ðC:11Þ

where, c, defined in Eq. (37), is a dimensionless measure of the Feshbach resonance width
C0 to the Fermi energy. With this, (C.7a) and (C.7b) become

0 ¼ oeG

oD̂
; ðC:12aÞ

’ 2D̂ðd̂� 2l̂Þc�1 þ 2
ffiffiffî
l

p
D̂ ln

D̂
8e�2l̂

; ðC:12bÞ

4

3
¼ � oeG

ol̂
; ðC:12cÞ

’ 5

4

D̂2ffiffiffî
l
p þ 4

3
l̂3=2 þ 2D̂2c�1 � D̂2

2
ffiffiffî
l
p ln

D̂
8e�2l̂

; ðC:12dÞ

that admits the normal state (D̂ ¼ 0, l̂ ¼ 1) and the BCS SF state

D̂ ’D̂BCSðl̂Þ � 8e�2l̂e�c�1ðd̂�2l̂Þ=
ffiffî
l
p
; ðC:13aÞ

4

3
’ 4

3
l̂3=2 þ 2D̂2c�1: ðC:13bÞ

where in the second line we approximately neglected the first term on the right side of Eq.
(C.12d), valid since D̂BCS � 1 (and c� 1). It is easy to show that the BCS solution is al-
ways a minimum of EG.

The meaning of the two terms on the right side of Eq. (C.13b) is clear once we recall its
form in terms of dimensionful quantities:

n ’ 4

3
cl3=2 þ 2jbj2; ðC:14Þ

i.e., the first term simply represents the total unpaired atom density, reduced below n since
l < �F, while the second term represents the density of atoms bound into molecules, i.e.,
twice the molecular density |b|2. Qualitatively, we see that at large d̂, D̂� 1, implying from
the number equation that l̂ < 1.
C.2. BEC regime

We next consider the BEC regime defined by d < 0. As we shall see, in this regime l < 0
and |l|� D, so that Eq. (C.9a), I(l,D), applies. This yields, for the normalized ground-
state energy,
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eG ’ ðd̂� 2l̂ÞD̂2c�1 þ
ffiffiffiffiffiffi
jl̂j

p D̂2

2
pþ p

32

D̂
l̂

 !2
2
4

3
5; ðC:15Þ

and, for the gap and number equations (dividing by an overall factor of D̂ in the former)

0 ’ 2c�1ðd̂� 2l̂Þ þ
ffiffiffiffiffiffi
jl̂j

p
pþ p

16

D̂
l̂

 !2
2
4

3
5; ðC:16aÞ

4

3
’ 2c�1D̂2 þ D̂2p

4
ffiffiffiffiffiffi
jl̂j

p : ðC:16bÞ

As noted in Ref. [22], in the BEC regime the roles of the two equations are reversed, with l̂
approximately determined by the gap equation and D̂ approximately determined by the
number equation. Thus, l̂ is well-approximated by neglecting the term proportional to
D̂2 in Eq. (C.16a), giving

l̂ � d̂
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2p2

32jd̂j

s
� cpffiffiffiffiffiffiffiffiffiffi

32jd̂j
q

2
64

3
75

2

: ðC:17Þ

At large negative detuning, jd̂j � 1, where it is valid in the BEC regime, Eq. (C.17) reduces
to l � d̂=2, with the chemical potential tracking the detuning.

Inserting Eq. (C.17) into Eq. (C.16b) yields

D̂2 ¼ 2c
3

1� cpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcpÞ2 þ 32jd̂j

q
2
64

3
75: ðC:18Þ

Using D̂ ¼ D=�F and the relation D2 = g2nm between D and the molecular density, we have

nm ¼
3

4
c�1D̂2n; ðC:19Þ

’ n
2

1� cpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcpÞ2 þ 32jd̂j

q
2
64

3
75; ðC:20Þ

which, as expected (given the fermions are nearly absent for l < 0) simply yields nm � n/2
in the asymptotic (large jd̂j) BEC regime.
Appendix D. Derivation of Eq. (102)

In the present appendix, we provide the steps leading from Eq. (97) to Eq. (102). To this
end we need to evaluate
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SðhÞ ¼S1ðhÞ þ S2ðhÞ; ðD:1Þ
S1ðhÞ �Ek

X
k

Hðh� EkÞ; ðD:2Þ

S2ðhÞ � � h
X

k

Hðh� EkÞ: ðD:3Þ

We shall derive Eq. (102) by showing that oS/oh = �m(h), with m(h) given by Eq. (99b).
Since S(0) = 0 (recall Ek > 0), this is sufficient. First, using H 0(x) = d(x) with d(x) the Dirac
delta function, we have

oS1

oh
¼
X

k

Ekdðh� EkÞ ¼ h
X

k

dðh� EkÞ; ðD:4Þ

oS2

oh
¼�

X
k

Hðh� EkÞ � h
X

k

dðh� EkÞ: ðD:5Þ

Adding these, we obtain

oS
oh
¼ �

X
k

Hðh� EkÞ ¼ �VmðhÞ; ðD:6Þ

which provides the connection between Eqs. (97) and (102).

Appendix E. Derivation of leading-order contribution to T-matrix

The leading-order contribution to the T-matrix is given by the Feynman diagram in
Fig. 25 (corresponding to molecular scattering), with external momenta and frequencies
set equal to zero. We find it easiest to compute this diagram by starting at finite temper-
ature T before taking the T fi 0 limit. Standard analysis gives

T m ¼ g4T
X

x

Z
d3p

ð2pÞ3
1

ðix� np"Þ2
1

ð�ix� np#Þ2
; ðE:1Þ

with npr = �p � lr as in the main text. The fermionic Matsubara frequency sum can be
straightforwardly evaluated using standard techniques: [145]

SðA;BÞ �T
X

x

1

ðix� AÞ2
1

ðix� BÞ2
; ðE:2Þ

¼ d
dA

d
dB

T
X

x

1

ix� A
1

ix� B
; ðE:3Þ

¼ d
dA

d
dB

nFðAÞ � nFðBÞ
A� B

: ðE:4Þ

Taking the T fi 0 limit, in which nF(x) fi H(�x) and evaluating the derivatives, we have

SðA;BÞ ¼ �2

ðA� BÞ3
Hð�AÞ �Hð�BÞ½ � � dðAÞ

B2
� dðBÞ

A2
: ðE:5Þ

Using Eq. (E.5) for S(A,B), with A = np› and B = �npfl, the molecular T-matrix is (using
the density of states Nð�Þ ¼ c

ffiffi
�
p

) given by:
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T m ¼ �
cg4

4

Z 1

0

d�
ffiffi
�
p 1

ð�� lÞ3
Hð��þ l"Þ �Hð�� l#Þ
	 


� cg4

Z 1

0

d�
ffiffi
�
p dð�� l"Þ
ð�� l#Þ

2
þ

dð�� l#Þ
ð�� l"Þ

2

" #
: ðE:6Þ

Since we are in the BEC regime, l < 0. Taking (without loss of generality) h > 0, we
have lfl < 0 always and the second step function in the first line of Eq. (E.6) is always
unity. Moreover, for the same reason, the second delta function in the second line is
always zero. However, l› does change signs with increasing h, so that the first delta
function in the second line can contribute. Evaluating the remaining integrals in Eq.
(E.6) then yields

T m ¼
cg4p

32jlj3=2
F 4ðh=jljÞ; ðE:7Þ

with F4(x) defined in Eq. (195), the result used in the main text.

Appendix F. Computation of excluded sums

In this Appendix, we provide details for the computation of the ‘‘excluded sums’’
appearing in the ground-state energy Eq. (241) [86]. The first such sum is

S1 �
X

k

Ek 1þHð�Ek"Þ �HðEk#Þð Þ: ðF:1Þ

Using Eqs. (74c) and (74d) for Ekr, we see the first step function gives unity for (with h the
angle between k and Q, and in this section dropping the subscript Q on DQ for simplicity)

kQ cos h
2m

þ h >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

k þ D2

q
; ðF:2Þ

while the second gives unity for

kQ cos h
2m

þ h > �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

k þ D2
q

; ðF:3Þ

and each vanishes otherwise. Clearly, if Eq. (F.2) is satisfied, then so is Eq. (F.3). Thus, out
of four possibilities only two nonzero contributions to Eq. (F.1) occur, when either both
inequalities are satisfied or when both are violated.

The conditions Eqs. (F.2) and (F.3) restrict the momentum sum in Eq. (F.1) to the
immediate vicinity of the Fermi surface. Thus, we shall replace k ! ~kF on the left side
of Eqs. (F.2) and (F.3), where ~kF is the Fermi wavevector associated with the adjusted
chemical potential ~l � l� Q2=8m, i.e., ~k2

F=2m ¼ ~l. Following Ref. [86], we now determine
where these conditions intersect the Fermi surface where ek fi 0. In this limit, Eqs. (F.2)
and (F.3) can be written as

cos h > cos hmin �
1� �h

�Q
; ðF:4Þ

cos h > cos hmax ��
1þ �h

�Q
; ðF:5Þ
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where (as in the main text) we defined the rescaled momenta �Q � ~kFQ
2mD and the rescaled

chemical potential difference �h � h
D.

Now, S1 can be straightforwardly computed (converting sums to integrals viaP
k !

Nð~lÞ
2

R
de
R

d cos h)

S1 ¼ DNð~lÞ
Z 1

cos hmin

d cos h
Z eþ

0

de

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

D2

r

þ DNð~lÞ
Z cos hmax

�1

d cos h
Z eþ

0

de

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

D2

r
; ðF:6Þ

where

eþ � D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�Q cos hþ �hÞ2 � 1

q
; ðF:7Þ

is the maximum energy at a particular h where the contribution to S1 is finite. The two
lines of Eq. (F.6) correspond to the cases when both Eqs. (F.2) and (F.3) are satisfied,
or both violated, respectively.

Clearly, if cos hmax < �1 or cos hmin > 1 (as defined by Eqs. (F.4) and (F.5)) then these
integrals simply vanish. These limits are manifested in the final expression by step (H)
functions in the final result. Furthermore, we have implicitly assumed in Eqs. (F.4)
and (F.5) that 1��h

�Q < 1, and � 1þ�h
�Q > �1. If either assumption is not valid, then the corre-

sponding integration range over cos h in Eq. (F.6) becomes
R 1

�1 d cos h. Taking this into
account, the integrals in Eq. (F.6) yield for S1:

S1 ¼
Nð~lÞD2

2�Q
Hð�Qþ �hÞ þ Hð�Q� �hÞ � Hð�h� �QÞ
	 


; ðF:8Þ

HðxÞ � 1

3
ðx2 � 1Þ3=2 þ xcosh�1x�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p� �

Hðx� 1Þ:

Following the same procedure for S2, the final line of Eq. (241), gives

S2 �
X

k

k �Q
2m
þ h

� �
1�Hð�Ek"Þ �HðEk#Þð Þ; ðF:9Þ

¼ � Nð~lÞD2

3�Q
Jð�Qþ �hÞ þ Jð�Q� �hÞ � Jð�h� �QÞ
	 


; ðF:10Þ

with

JðxÞ � ðx2 � 1Þ3=2Hðx� 1Þ; ðF:11Þ

which is the result used in the main text.
Appendix G. Free expansion

In this Appendix, for completeness we review the free expansion dynamics of a trapped
Bose gas, recalling how it yields information about the initial boson momentum distribu-
tion [146–149]. This is of interest here as free expansion is a direct probe able to distinguish
and identify the phases discussed in this paper. Its application to the FFLO state requires
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an additional first step of sweeping the resonance in the usual manner [1] to project the
FFLO state onto a finite momentum molecular condensate.

We take the initial state of the Bose system to be a condensate characterized by a single-
particle wavefunction B0(r). After time t of free expansion, B0(r) evolves into b(r,t) given
by

bðr; tÞ ¼
Z

d3k

ð2pÞ3
~B0ðkÞeik�re�i�htk2=2m; ðG:1Þ

~B0ðkÞ ¼
Z

d3rB0ðrÞe�ik�r; ðG:2Þ

governed by the free-particle Schrödinger equation. The corresponding spatial boson den-
sity distribution at time t is

nðr; tÞ ¼ hb̂yðr; tÞb̂ðr; tÞi ’ b�ðr; tÞbðr; tÞ: ðG:3Þ
Inserting Eq. (G.1) into Eq. (G.3), using Eq. (G.2), and shifting k fi k + mr/⁄t, we have

nðr; tÞ ’
Z

d3r1d3r2f ðr1; r2Þeim
�htr�ðr1�r2ÞB�0ðr1ÞB0ðr2Þ; ðG:4Þ

f ðr1; r2Þ �
Z

d3k

ð2pÞ3
d3k0

ð2pÞ3
eiðk�r1�k0 �r2Þei �ht

2mðk
2�k02Þ; ðG:5Þ

The function f(r1,r2) can be evaluated by changing variables to k,k 0 = p ± q/2, giving

f ðr1; r2Þ ¼
Z

d3p

ð2pÞ3
d3q

ð2pÞ3
eip�ðr1�r2Þeiq�ðr1þr2Þ=2eið�ht=mÞp�q;

¼ m
2p�ht

� �3

eimðr1þr2Þðr1�r2Þ=2�ht; ðG:6Þ

Inserting Eq. (G.6) into Eq. (G.4), we find

nðr; tÞ ’ m
2p�ht

� �3
Z

d3r1d3r2eim
�htðr1�r2Þ�ðrþ1

2½r1þr2�Þ 
 B�0ðr1ÞB0ðr2Þ: ðG:7Þ

Noting that the initial cloud is small compared to the expanded one, we may neglect r1 and
r2 compared to r in the exponential in the first line of Eq. (G.7) since r is measured in the
expanded cloud while r1 and r2 are confined to the initial cloud. This reduces n(r,t) to

nðr; tÞ ’ m
2p�ht

� �3
~B�0

m
�ht

r
� �

~B0

m
�ht

r
� �

; ðG:8Þ

’ m
2p�ht

� �3

nk¼m
�htr
; ðG:9Þ

where nk is the momentum distribution function. Thus, as advertised, the density profile
n(r,t) in the expanded cloud probes the initial momentum distribution. For the simplest
trapped FFLO-type state B0(r) = BQ(r)eiQÆr, Eq. (G.9), with BQ(r) the shape of the ampli-
tude envelope determined by the trap. Taking it (for concreteness and simplicity) to be a
Gaussian BQðrÞ / e�r2=2R2

0 and using Eq. (G.9) we find

nðr; tÞ / exp � r� �ht
m

Q

� �2�
�ht
m

R�1
0

� �2
" #

; ðG:10Þ
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i.e., a Gaussian peaked at r ¼ �htQ
m thus probing the FFLO wavevector Q. Requiring the

peak location be much larger than the Gaussian width ⁄t/mR0 thus implies that
QR0� 1 is necessary to observe the FFLO state in this manner.
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[22] C.A.R. Sá de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71 (1993) 3202.
[23] E. Timmermans, K. Furuya, P.W. Milonni, A.K. Kerman, Phys. Lett. A 285 (2001) 228.
[24] M. Holland, S.J.J.M.F. Kokkelmans, M.L. Chiofalo, R. Walser, Phys. Rev. Lett. 87 (2001) 120406.
[25] Y. Ohashi, A. Griffin, Phys. Rev. Lett. 89 (2002) 130402, Phys. Rev. A 67 (2003) 033603.
[26] A.V. Andreev, V. Gurarie, L. Radzihovsky, Phys. Rev. Lett. 93 (2004) 130402.
[27] J. Stajic, J.N. Milstein, Q. Chen, M.L. Chiofalo, M.J. Holland, K. Levin, Phys. Rev. A 69 (2004) 063610.
[28] J. Levinsen, V. Gurarie, Phys. Rev. A 73 (2006) 053607.
[29] V. Gurarie, L. Radzihovsky, cond-mat/0611022.
[30] M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Science 311 (2006) 492.
[31] G.B. Partridge, W. Li, R.I. Kamar, Y. Liao, R.G. Hulet, Science 311 (2006) 503.
[32] M.W. Zwierlein, W. Ketterle, cond-mat/0603489.
[33] G.B. Partridge, W. Li, R.I. Kamar, Y. Liao, R.G. Hulet, cond-mat/0605581.
[34] M.W. Zwierlein, C.H. Schunck, A. Schirotzek, W. Ketterle, cond-mat/0605258.
[35] Y. Shin, M.W. Zwierlein, C.H. Schunck, A. Schirotzek, W. Ketterle, Phys. Rev. Lett. 97 (2006) 030401.
[36] D.E. Sheehy, L. Radzihovsky, Phys. Rev. Lett. 96 (2006) 060401.
[37] R. Combescot, Europhys. Lett. 55 (2001) 150.
[38] W.V. Liu, F. Wilczek, Phys. Rev. Lett. 90 (2003) 047002.
[39] P.F. Bedaque, H. Caldas, G. Rupak, Phys. Rev. Lett. 91 (2003) 247002.
[40] H. Caldas, Phys. Rev. A 69 (2004) 063602.
[41] T. Mizushima, K. Machida, M. Ichioka, Phys. Rev. Lett. 94 (2005) 060404.



D.E. Sheehy, L. Radzihovsky / Annals of Physics 322 (2007) 1790–1924 1921
[42] J. Carlson, S. Reddy, Phys. Rev. Lett. 95 (2005) 060401.
[43] T.D. Cohen, Phys. Rev. Lett. 95 (2005) 120403.
[44] P. Castorina, M. Grasso, M. Oertel, M. Urban, D. Zappalà, Phys. Rev. A 72 (2005) 025601.
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[46] K. Yang, Phys. Rev. Lett. 95 (2005) 218903.
[47] C.-H. Pao, S.-T. Wu, S.-K. Yip, Phys. Rev. B 73 (2006) 132506.
[48] D.T. Son, M.A. Stephanov, Phys. Rev. A 74 (2006) 013614.
[49] K. Yang, cond-mat/0508484.
[50] J. Dukelsky, G. Ortiz, S.M.A. Rombouts, K. van Houcke, Phys. Rev. Lett. 96 (2006) 180404.
[51] K. Yang, S. Sachdev, Phys. Rev. Lett. 96 (2006) 187001.
[52] P. Pieri, G.C. Strinati, Phys. Rev. Lett. 96 (2006) 150404.
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