
Annals of Physics 322 (2007) 2–119

www.elsevier.com/locate/aop
Resonantly paired fermionic superfluids

V. Gurarie *, L. Radzihovsky

Department of Physics, University of Colorado, Boulder, CO 80309, USA

Received 28 October 2006; accepted 28 October 2006
Abstract

We present a theory of a degenerate atomic Fermi gas, interacting through a narrow Feshbach
resonance, whose position and therefore strength can be tuned experimentally, as demonstrated
recently in ultracold trapped atomic gases. The distinguishing feature of the theory is that its accu-
racy is controlled by a dimensionless parameter proportional to the ratio of the width of the reso-
nance to Fermi energy. The theory is therefore quantitatively accurate for a narrow Feshbach
resonance. In the case of a narrow s-wave resonance, our analysis leads to a quantitative description
of the crossover between a weakly paired BCS superconductor of overlapping Cooper pairs and a
strongly paired molecular Bose–Einstein condensate of diatomic molecules. In the case of pairing
via a p-wave resonance, that we show is always narrow for a sufficiently low density, we predict a
detuning-temperature phase diagram, that in the course of a BCS–BEC crossover can exhibit a host
of thermodynamically distinct phases separated by quantum and classical phase transitions. For an
intermediate strength of the dipolar anisotropy, the system exhibits a px + ipy paired superfluidity
that undergoes a topological phase transition between a weakly coupled gapless ground state at large
positive detuning and a strongly paired fully gapped molecular superfluid for a negative detuning. In
two dimensions the former state is characterized by a Pfaffian ground state exhibiting topological
order and non-Abelian vortex excitations familiar from fractional quantum Hall systems.
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1. Introduction

1.1. Weakly and strongly paired fermionic superfluids

Paired superfluidity in Fermi systems is a rich subject with a long history dating back to
the discovery of superconductivity (charged superfluidity) in mercury by Kamerlingh
Onnes in 1911. Despite considerable progress on the phenomenological level and many
experimental realizations in other metals that followed, a detailed microscopic explanation
of superconductivity had to await seminal breakthrough by Bardeen, Cooper and
Schrieffer (BCS) (for the history of the subject see, for example, Ref. [1] and references
therein). They discovered that in a degenerate, finite density system, an arbitrarily weak
fermion attraction destabilizes the Fermi sea (primarily in a narrow shell around the Fermi
energy) to a coherent state of strongly overlaping ‘‘Cooper pairs’’ composed of weakly
correlated time-reversed pairs of fermions.

In contrast, superfluidity in systems (e.g., liquid 4He), where constituent fermions (neu-
trons, protons, electrons) are strongly bound into a nearly point-like bosonic atom, was
readily qualitatively identified with the strongly interacting liquid limit of the Bose–Einstein
condensation of composite bosonic 4He atoms (for a review, see for example Ref. [2]).

While such weakly and strongly paired fermionic s-wave superfluids were well under-
stood by early 1960s, the relation between them and a quantitative treatment of the latter
remained unclear until Eagles’s [3] and later Leggett’s [4], and Nozières and Schmitt-
Rink’s [5] seminal works. Working with the mean-field BCS model, that is quantitatively
valid only for a weak attraction and high density (a superconducting gap much smaller
than the Fermi energy), they boldly applied the model outside its quantitative range of
validity [6] to fermions with an arbitrarily strong attraction. Effectively treating the BCS
state as a variational ground state, such approach connected in a concrete mean-field mod-
el the two types of s-wave paired superfluids, explicitly demonstrating that they are two
extreme regimes of the same phenomenon, connected by a smooth (analytic) crossover
as the strength of attractive interaction is varied from weak to strong. This lack of qual-
itative distinction between a ‘‘metallic’’ (BCS) and ‘‘molecular’’ (BEC) s-wave superfluids,
both of which are characterized by a complex scalar (bosonic) order parameter W, was also
anticipated much earlier based on symmetry grounds by the Ginzburg–Landau theory [1].

Nevertheless, the two types of superfluids regimes exhibit drastically (quantitatively [7])
distinct phenomenologies [5,8]. While in a weakly paired BCS superconductor the transi-
tion temperature Tc nearly coincides with the Cooper-pair binding (dissociation) energy,
that is exponentially small in the pairing potential, in the strongly paired BEC superfluid
Tc is determined by the density, set by the Fermi temperature, and is nearly independent of
the attractive interaction between fermions. In such strongly coupled systems the binding
energy, setting the temperature scale T* above which the composite boson dissociates into
its constituent fermions (e.g., of order eV in 4He) can therefore be orders of magnitude
larger than the actually condensation temperature Tc� T*. This large separation between
Tc and T* is reminiscent of the phenomenology observed in the high-temperature super-
conductors (with the range Tc < T < T* referred to as the ‘‘pseudo-gap’’ regime), rekin-
dling interest in the BCS–BEC crossover in the mid-90s [8] and more recently [9].

With a discovery of novel superconducting materials (e.g., high-Tc’s, heavy fermion com-
pounds), and superfluids (3He), that are believed to exhibit finite angular momentum pairing,
the nature of strongly and weakly paired superfluids has received even more attention. It was
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soon appreciated [10–12] that, in contrast to the s-wave case, strongly and weakly paired
states at a finite angular momentum are qualitatively distinct. This is most vividly illustrated
in three dimensions, where for weak attraction a two-particle bound state is absent, the
pairing is stabilized by a Fermi surface and therefore necessarily exhibits nodes and gapless
excitations in the finite angular momentum paired state. In contrast, for strong attraction a
two-particle bound state appears, thereby exhibiting a fully gapped superfluidity with
concomitant drastically distinct low temperature thermodynamics. Other, more subtle
topological distinctions, akin to quantum Hall states, between the two types of paired
grounds states also exist and have been investigated [11,10]. Consequently, these qualitative
distinctions require a genuine quantum phase transition (rather than an analytic crossover,
as in the case of s-wave superfluid) to separate the weakly and strongly paired states. This
transition should be accessible if the pairing strength were experimentally tunable.
1.2. Paired superfluidity via a Feshbach resonance

The interest in paired superfluidity was recently revived by the experimental success in
producing degenerate (temperature well below Fermi energy) trapped atomic Fermi gases
of 6Li and 40K [13–16]. A remarkable new experimental ingredient is that the atomic two-
body interactions in these systems can be tuned by an external magnetic field to be dom-
inated by the so-called Feshbach resonant (FR) [17,18] scattering through an intermediate
molecular (virtual or real bound) state.

As depicted in Fig. 1, such tunable Feshbach resonance [19] arises in a system where the
interaction potential between two atoms depends on their total electron spin state,
r

U(r)

Zeeman
splitting

closed channel

open channel

Fig. 1. Interactions between the atoms generically depends on their mutual spin state. This figure depicts two
potentials corresponding to two spin states of the pairs of atoms. One of them (usually referred to as an ‘‘open
channel’’) is too weak to support a bound state, while the other (a ‘‘closed channel’’) supports a bound state, but
is energetically unfavorable at large distances. The closed channel potential can be moved vertically with respect
to the open channel potential via the Zeeman effect, by changing an external magnetic field.
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admitting a bound state in one spin channel (usually referred to as the ‘‘closed channel’’,
typically an approximate electron spin-singlet). The interaction in the second [20] ‘‘open’’
channel (usually electron spin triplet, that is too shallow to admit a bound state) is then
dominated by a scattering through this closed channel resonance [21]. Since the two chan-
nels, coupled by the hyperfine interaction, generically have distinct magnetic moments,
their relative energies (the position of the Feshbach resonance) and therefore the
open-channel atomic interaction can be tuned via an external magnetic field through the
Zeeman splitting, as depicted in Fig. 1.

In the dilute, two-body limit the low-energy s-wave Feshbach resonant scattering is
characterized by an s-wave scattering length, that, as illustrated in Fig. 2, is observed to
behave according to [22,23]

aðHÞ ¼ abg 1� Hw

H � H 0

� �
; ð1:1Þ
diverging as the magnetic field passes through a (system-dependent) field H0, correspond-
ing to a tuning of the resonance through zero energy. (Analogously, a p-wave resonance is
characterized by a scattering volume v(H), as discussed in detail in Section 2.2). In above,
the experimentally measurable parameters abg and Hw are, respectively, the background
(far off-resonance) scattering length and the so-called (somewhat colloquially; see [24])
magnetic ‘‘resonance width’’.

An s-wave Feshbach resonance is also characterized by an additional length scale, the
so-called effective range r0, and a corresponding energy scale

C0 ¼
4�h2

mr2
0

; ð1:2Þ
a

a bg

H0H

Fig. 2. A schematic of a typical, experimentally observed behavior of an s-wave scattering length a(H) as a
function of magnetic field H in a vicinity of a Feshbach resonance.
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that only weakly depend on H. This important scale measures the intrinsic energy width of
the two-body resonance and is related to the measured magnetic-field width Hw via

C0 � 4ml2
Ba2

bgH 2
w=�h2; ð1:3Þ

with lB the Bohr magneton. C0 sets an energy crossover scale between two regimes of (low-
and intermediate-energy) behavior of two-atom s-wave scattering amplitude.

A key observation is that, independent of the nature of the complicated atomic inter-
action leading to a Feshbach resonance, its resonant physics outside of the short micro-
scopic (molecular size of the closed-channel) scale can be correctly captured by a
pseudo-potential with an identical low-energy two-body scattering amplitude, that, for
example, can be modeled by a far simpler potential exhibiting a minimum separated by
a large barrier, as illustrated in Fig. 5. The large barrier suppresses the decay rate of the
molecular quasi-bound state inside the well, guaranteeing its long lifetime even when its
energy is tuned above the bottom of the continuum of states.

Although such potential scattering, Fig. 5 is microscopically quite distinct from the
Feshbach resonance, Fig. 1, this distinction only appears at high energies. As we will
see, the low energy physics of a shallow resonance is controlled by a nearly universal scat-
tering amplitude, that depends only weakly on the microscopic origin of the resonance.
Loosely speaking, for a large barrier of a potential scattering depicted on Fig. 5 one
can associate (quasi-) bound state inside the well with the closed molecular channel, the
outside scattering states with the open channel, and the barrier height with the hyperfine
interactions-driven hybridization of the open and closed channels of the Feshbach reso-
nant system. The appropriate theoretical model was first suggested in Ref. [19], and in turn
exhibits two-body physics identical to that of the famous Fano–Anderson model [25] of a
single level inside a continuum (see Appendix B).

A proximity to a Feshbach resonance allows a high tunability (possible even in ‘‘real’’
time) of attractive atomic interactions in these Feshbach-resonant systems, through a res-
onant control of the s-wave scattering length a(H), Eq. (1.1) via a magnetic field. As we
will discuss in Section 7, a p-wave Feshbach resonance similarly permits studies of p-wave
interacting systems with the interaction tunable via a resonant behavior of the scattering
volume v(H). This thus enables studies of paired superfluids across the full crossover
between the BCS regime of weakly paired, strongly overlapping Cooper pairs, and the
BEC regime of tightly bound (closed-channel), weakly interacting diatomic molecules.
More broadly, it allows access to interacting atomic many-body systems in previously
unavailable highly coherent and even non-equilibrium regimes [26–28], unimaginable in
more traditional solid state systems.

1.3. Narrow vs wide resonances and model’s validity

An atomic gas at a finite density n (of interest to us here) provides an additional length,
n�1=3 � k�1

F and corresponding energy, �F ¼ �h2k2
F=2m scales. For the s-wave resonance,

these scales, when combined with the length r0 or the resonance width C0, respectively,
allow us to define an s-wave dimensionless parameter (with numerical factor chosen for
later convenience)

cs ¼
ffiffiffi
8
p

p

ffiffiffiffiffi
C0

�F

r
¼ 8

p
�h

kFjr0j
; ð1:4Þ
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that measures the width of the resonance or equivalently the strength of the Feshbach res-
onance coupling (hybridization of an atom-pair with a molecule) relative to Fermi energy.
For a p-wave (and higher angular momentum) resonance a similar dimensionless param-
eter can be defined (see below). The key resonance-width parameter c [24] naturally allows
a distinction between two types of finite density Feshbach-resonant behaviors, a narrow
(c� 1) and broad (c� 1). Physically, these are distinguished by how the width C0 com-
pares with a typical atomic kinetic energy �F. Equivalently, they are contrasted by whether
upon growth near the resonance, the scattering length a(H) first reaches the effective range
|r0| (broad resonance) or the atom spacing ‘(narrow resonance).

Systems exhibiting a narrow resonant pairing are extremely attractive from the theoret-
ical point of view. As was first emphasized in Ref. [28] and detailed in this paper, such sys-
tems can be accurately modeled by a simple two-channel Hamiltonian characterized by the
small dimensionless parameter c, that remains small (corresponding to long-lived mole-
cules) throughout the BCS–BEC crossover. Hence, while non-trivial and strongly interact-
ing, narrow Feshbach resonant systems allow a quantitative analytical description, detailed
below, that can be made arbitrarily accurate (exact in the zero resonance width limit), with
corrections controlled by powers of the small dimensionless parameter c, computable
through a systematic perturbation theory in c. The ability to treat narrowly resonant sys-
tems perturbatively physically stems from the fact that such an interaction, although arbi-
trarily strong at a particular energy, is confined only to a narrow energy window around a
resonant energy.

As we will show in this paper [28], such narrow resonant systems exhibit a following
simple picture of a pairing superfluid across the BCS–BEC crossover, illustrated in
Fig. 3. For a Feshbach resonance tuned to a positive (detuning) energy the closed-channel
state is a resonance [29], that generically leads to a negative scattering length and an effec-
tive attraction between two atoms in the open-channel. For detuning larger than twice the
Fermi energy, most of the atoms are in the open-channel, forming a weakly BCS-paired
Fermi sea, with exponentially small molecular density, induced by a weak Feshbach res-
onant (2-)atom-molecule coupling (hybridization). The BCS–BEC crossover initiates as
the detuning is lowered below 2�F, where a finite density of atoms binds into Bose-con-
densed (at T = 0) closed-channel quasi-molecules, stabilized by the Pauli principle. The
formed molecular (closed-channel) superfluid coexists with the strongly coupled BCS
superfluid of (open-channel) Cooper pairs, that, while symmetry-identical and hybridized
with it by the Feshbach resonant coupling is physically distinct from it. This is made par-
ticularly vivid in highly anisotropic, one-dimensional traps, where the two distinct (molec-
ular and Cooper-pair) superfluids can actually decouple due to quantum fluctuations
suppressing the Feshbach coupling at low energies [30]. The crossover to BEC superfluid
terminates around zero detuning, where conversion of open-channel atoms (forming Coo-
per pairs) into closed-channel molecules is nearly complete. In the asymptotic regime of a
negative detuning a true bound state appears in the closed-channel, leading to a positive
scattering length and a two-body repulsion in the open-channel. In between, as the posi-
tion of the Feshbach resonance is tuned through zero energy, the system is taken through
(what would at zero density be) a strong unitary scattering limit, corresponding to a diver-
gent scattering length, that is nevertheless quantitatively accessible in a narrow resonance
limit, where cs � 1/(kFr0) plays the role of a small parameter. This contrasts strongly with
systems interacting via a featureless attractive (e.g., short-range two-body) potential,
where due to a lack of a large potential barrier (see Fig. 12) no well-defined (long-lived)
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Fig. 3. An illustration of the BCS–BEC crossover in the limit of a narrow Feshbach resonance width, cs� 1. The
evolution with detuning x0 is illustrated, with (a) the BCS regime of x0 > 2�F, where particles are predominantly
open-channel atoms forming a Cooper-paired Fermi sea, (b) the crossover regime of 0 < x0 < 2�F, where a
fraction of atoms between x0 and �F have converted into a BEC of bosonic (closed-channel) molecules, with the
rest forming a Cooper-paired Fermi sea at a chemical potential l, and (c) the BEC regime of x0 < 0, where
(to order cs� 1) only Bose-condensed molecules are present.
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resonant state exists at positive energy and a parameter cs (proportional to the inverse of
effective range r0) is effectively infinite. For such broad-resonance systems, a gas parameter
n1/3|a(H)| is the only dimensionless parameter. Although for a dilute gas (n1/3abg� 1) a
controlled, perturbative analysis (in a gas parameter) of such systems is possible away
from the resonance, where n1/3|a(H)|� 1, a description of the gas (no matter how dilute),
sufficiently close to the resonance, such that n1/3|a(H)| > 1 is quantitatively intractable in
broad-resonance systems [31]. This important distinction between the narrow and broad
Feshbach resonances and corresponding perturbatively (in)accessible regions in the
kF � a�1 plane around a Feshbach resonance are illustrated in Fig. 4.

Nevertheless, because of their deceiving simplicity and experimental motivation (most
current experimental systems are broad), these broad-resonance systems (exhibiting no
long-lived positive energy resonance [29]) were a focus of the aforementioned earlier stud-
ies [3–5,8] that provided a valuable qualitative elucidation of the BCS–BEC crossover into
the strongly paired BEC superfluids. However, (recent refinements, employing enlighten-
ing but uncontrolled approximations notwithstanding [19,32,33,9]) these embellished



Fig. 4. An illustration of perturbatively accessible and inaccessible (grey) regions in the inverse particle spacing vs
inverse scattering length, n1/3–a�1 plane around a Feshbach resonance, where a diverges. Note that outside the
grey region, even for a broad Feshbach resonance there is a small parameter that is either the gas parameter or
Feshbach resonance coupling, or both, and hence the system can be analyzed perturbative.

r

U(r)

r

U(r)

Fig. 5. A potential with a low-energy bound state whose energy is shown by a dashed line. If the potential is
modified to make it more shallow, the bound state disappears altogether, replaced by a virtual bound state. If the
potential is made even more shallow, a resonance—a state with positive energy and finite lifetime—appears.
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mean-field descriptions are quantitatively untrustworthy outside of the BCS regime, where
weak interaction (relative to the Fermi energy) provides a small parameter justifying a
mean-field treatment—and outside of the BEC regime where, although mean-field
techniques break down, a treatment perturbative in n1/3|a|� 1 is still possible [6,85].
The inability to quantitatively treat the crossover regime for generic (non-resonant)
interactions is not an uncommon situation in physics, where quantitative analysis of the
intermediate coupling regime requires an exact or numerical solution [34]. By integrating
out the virtual molecular state, systems interacting through a broad (large c) resonance can
be reduced to a non-resonant two-body interaction of effectively infinite c, and are there-
fore, not surprisingly, also do not allow a quantitatively accurate perturbative analysis
outside of the BCS weak-coupling regime [31].
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The study of a fermionic gas interacting via a broad resonance reveals the following
results. If a < 0 (the interactions are attractive but too weak to support a bound state)
and n1/3|a|� 1, such a superfluid is the standard BCS superconductor described accurate-
ly by the mean-field BCS theory. If a > 0 (the interactions are attractive and strong enough
to support a bound state) and n1/3 a� 1, the fermions pair up to form molecular bosons
which then Bose condense. The resulting molecular Bose condensate can be studied using
n1/3a as a small parameter. In particular, in a very interesting regime where a� |r0| (even
though a� n�1/3) the scattering length of the bosons becomes approximately ab � 0.6a

[35], and the Bose condensate behaves as a weakly interacting Bose gas with that scattering
length [36], as shown in Ref. [6]. Finally, when |a|n1/3� 1, the mean-field theory breaks
down, the superfluid is said to be in the BCS–BEC crossover regime, and its properties
so far could for the most part be only studied numerically, although with some encourag-
ing recent analytical progress in this direction [31]. Much effort is especially concentrated
on understanding the |a|n1/3 fi1 unitary regime [34] (so called because the fermion scat-
tering proceeds in the unitary limit and the behavior of the superfluid becomes universal,
independent of anything but its density).

In this paper we concentrate solely on resonantly paired superfluids with narrow reso-
nances, amenable to an accurate treatment by mean-field theory regardless of the scatter-
ing length a. The identification of a small parameter [28,31], allowing a quantitative
treatment of the BCS–BEC crossover in resonantly paired superfluids in itself constitutes
a considerable theoretical progress. In practice most s-wave Feshbach resonances studied
up to now correspond to cs . 10, which is consistent with the general consensus in the lit-
erature that they are wide. Yet one notable exception is the very narrow resonance dis-
cussed in Ref. [14] where we estimate cs . 0.1; for a more detailed discussion of this,
see Section 9.

Even more importantly is the observation that the perturbative parameter c is density-
(Fermi energy, �F) dependent, scaling as cs � 1=

ffiffiffiffiffi
�F
p

, cp �
ffiffiffiffiffi
�F
p

for an s-wave and p-wave
Feshbach resonant pairing, respectively. Hence, even resonances that are classified as
broad for currently achievable densities can in principle be made narrow by working at
higher atomic densities.

1.4. Finite angular momentum resonant pairing: p-wave superfluidity

We also study a p-wave paired superfluidity driven by a p-wave Feshbach resonance,
where the molecular (closed-channel) level is in the angular momentum ‘ = 1 state. While
in degenerate atomic gases a p-wave superfluidity has not yet been experimentally demon-
strated, the existence of a p-wave Feshbach resonance at a two-body level has been studied
in exquisite experiments in 40K and 6Li [37,38]. Recently, these have duly attracted consid-
erable theoretical attention [39–43].

One might worry that at low energies, because of the centrifugal barrier, s-wave scatter-
ing will always dominate over a finite angular momentum pairing. However, this is easily
avoided by working with a single fermion species, in which the Pauli exclusion principle
prevents identical fermionic atoms from scattering via an s-wave channel, with a p-wave
scattering therefore dominating [44]. Being the lowest angular momentum channel in a sin-
gle-species fermionic gas not forbidden by the Pauli exclusion principle, a p-wave interac-
tion is furthermore special in that, at low energies it strongly dominates over the higher
(than ‘ = 1) angular momentum channels.
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There is a large number of features special to p-wave resonant superfluids that make
them extremely interesting, far more so than their s-wave cousins. Firstly, as we will show
in Sections 2.2 and 5.2.2, p-wave (and higher angular-momentum) resonances are natural-
ly narrow, since at finite density a dimensionless measure of their width scales as
cp � c1 � �

1=2
F (c‘ � �

‘�1=2
F in the ‘ angular momentum channel), that in contrast to the

s-wave case can be made arbitrarily narrow by simply working at sufficiently low densities
(small �F). Consequently, a narrow p-wave Feshbach-resonant superfluid, that can be
described arbitrarily accurately [45] at sufficiently low densities for any value of detuning,
is, in principle, experimentally realizable.

Secondly, superfluids paired at a finite angular-momentum are characterized by richer
order parameters (as exemplified by a p-wave paired 3He, heavy-fermion compounds, and
d-wave high-Tc superconductors) corresponding to different projections of a finite angular
momentum and distinct symmetries, and therefore admit sharp quantum (and classical)
phase transitions between qualitatively distinct ‘-wave paired superfluid ground states.
In fact, as we will show, even purely topological (non-symmetry changing) quantum phase
transitions at a critical value of detuning are possible [46,11,42,41]. This contrasts qualita-
tively with a smooth (analytic) BCS–BEC crossover (barring an ‘‘accidental’’ first-order
transition), guaranteed by the aforementioned absence of a qualitative difference between
BCS and BEC paired superfluidity.

Thirdly, some of the p-wave (and higher angular momentum) paired states are isomor-
phic to the highly non-trivial fractional quantum Hall effect ground states (e.g., the Pfaf-
fian Moore-Read state) that have been demonstrated to display a topological order and
excitations (vortices) that exhibit non-Abelian statistics [11]. Since these features are nec-
essary ingredients for topological quantum computing [47], a resonant p-wave paired
atomic superfluid is an exciting new candidate [42] for this approach to fault-tolerant
quantum computation.

Finally, a strong connection to unconventional finite angular momentum superconduc-
tors in solid-state context, most notably the high-temperature superconductors provides
an additional motivation for our studies.

1.5. Outline

This paper, while quite didactic, presents considerable elaboration and details on our
results reported in two recent Letters [28,42]. The rest of it is organized as follows. We
conclude this Section 1 with a summary of our main experimentally relevant results. In
Section 2 we present general, model-independent features of a low and intermediate energy
s-wave and p-wave scattering, with and without low energy resonances present. In Section
3 we discuss general features of the microscopic models of scattering, tying various forms
of scattering amplitudes discussed in Section 2 to concrete scattering potentials. We intro-
duce one- and two-channel models of s-wave and p-wave Feshbach resonances [19,32] in
Sections 4 and 5, compute exactly the corresponding two-body scattering amplitudes mea-
sured in experiments, and use them to fix the parameters of the two corresponding model
Hamiltonians. These models then by construction reproduce exactly the experimentally
measured two-body physics. In Section 6, we use the resulting s-wave Hamiltonian to
study the T = 0 narrow resonance BCS–BEC crossover in an s-wave resonantly paired
superfluid, and compute as a function of detuning the molecular condensate fraction,
the atomic (single-particle) spectrum, the 0th-sound velocity, and the condensate
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depletion. In Section 6.2.4 contained within the Section 6, we extend these results to a
finite temperature. In Section 7 we use the p-wave two-channel model Hamiltonian to ana-
lytically determine the p-wave paired ground state, the spectrum and other properties of
the corresponding atomic gas interacting through an idealized isotropic p-wave resonance.
We extend this analysis to a physically realistic anisotropic p-wave resonance, split into a
doublet by dipolar interactions. We demonstrate that such a system undergoes quantum
phase transitions between different types of p-wave superfluids, details of which depend
on the magnitude of the FR dipolar splitting. We work out the ground-state energy and
the resulting phase diagram as a function of detuning and dipolar splitting. In Section 8
we discuss the topological phases and phase transitions occurring in the p-wave conden-
sate and review recent suggestions to use them as a tool to observe non-Abelian statistics
of the quasiparticles and build a decoherence-free quantum computer. In Section 9 we dis-
cuss the connection between experimentally measured resonance width Hw and a dime-
nionless parameter cs and compute the value of cs for a couple of prominent
experimentally realized Feshbach resonances. Finally, we conclude in Section 10 with a
summary of our results.

Our primarily interest is in a many-body physics of degenerate atomic gases, rather
than in (a possibly interesting) phenomena associated with the trap. Consequently,
throughout the manuscript we will focus on a homogeneous system, confined to a
‘‘box’’, rather than an inhomogeneous (e.g., harmonic) trapping potential common to real-
istic atomic physics experience. An extension of our analysis to a trap are highly desirable
for a more direct, quantitative comparison with experiments, but is left for a future
research.

We recognize that this paper covers quite a lot of material. We spend considerable
amount of time studying various models, not all of which are subsequently used to under-
stand the actual behavior of resonantly paired superfluids. This analysis is important, as it
allows us to choose and justify the correct model to properly describe resonantly interact-
ing Fermi gas under the conditions of interest to us. Yet, these extended models develop-
ment and the scattering theory analysis can be safely omitted at a first reading, with the
main outcome of the analysis being that the ‘‘pure’’ two-channel model (without any addi-
tional contact interactions) is sufficient for our purposes. Thus, we would like to suggest
that for basic understanding of the s-wave BCS–BEC crossover one should read Sections
2.1, 5.1, 6.1, and 6.2.1.

1.6. Summary of results

Our results naturally fall into two classes of the s-wave and p-wave Feshbach resonant
pairing for two and one species of fermionic atoms, respectively. For the first case of an
s-wave resonance many results (see [9] and references therein) have appeared in the liter-
ature, particularly while this lengthy manuscript was under preparation. However, as
described in Section 1, most of these have relied on a mean-field approximation that is
not justified by any small parameter and is therefore not quantitatively trustworthy in
the strong-coupling regime outside of the weakly coupled BCS regime. One of our concep-
tual contribution is the demonstration that the two-channel model of a narrow resonance
is characterized by a small dimensionless parameter c, that controls the validity of a con-
vergent expansion about an exactly solvable mean-field c = 0 limit. For a small c, the per-
turbative expansion in c gives results that are quantitatively trustworthy throughout the
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BCS–BEC crossover. For s-wave and p-wave resonances these key dimensionless param-
eters are, respectively, given by:

cs ¼
m2g2

s

n1=3

1

ð3p8Þ1=3
; ð1:5Þ

cp ¼ m2g2
pn1=3 21=3

ð3p2Þ2=3
; ð1:6Þ

where n is the atomic density, gs and gp are the closed-open channels coupling in s-wave
and p-wave resonances, controlling the width of the resonance and m an atom’s mass.
The numerical factors in Eqs. (1.5) and (1.6) are chosen purely for later convenience.

The many-body study of the corresponding finite density systems is expressible in terms
of physical parameters that are experimentally determined by the two-body scattering
measurements. Hence to define the model we work out the exact two-body scattering
amplitude for the s-wave [19,48] and p-wave two-channel models, demonstrating that they
correctly capture the low-energy resonant phenomenology of the corresponding Feshbach
resonances. We find that the scattering amplitude in the s-wave case is

fsðkÞ ¼ �
1

�a�1 þ 1
2
r0k2 � ik

¼ � 1ffiffiffiffi
m
p

ffiffiffiffiffi
C0

p

E � x0 þ i
ffiffiffiffiffiffiffiffiffi
C0E
p ;

ð1:7Þ

where x0 � 2lB(H � H0) is the magnetic field-controlled detuning (in energy units),
E = k2/m, and C0, introduced in Eq. (1.3), is the width of the resonance. a and r0, which
can be expressed in terms of C0 and x0, represent standard notations in the scattering the-
ory [49] and are the scattering length and the effective range. We note that r0 < 0 which
reflects that the scattering represented by Eq. (1.7) is resonant. Our analysis gives a and
r0 in terms of the channel coupling gs and detuning x0

a ¼ � mg2
s

3px0

¼ r0

C0

2x0

; r0 ¼ �
8p

m2g2
s

: ð1:8Þ

In the p-wave case, the scattering amplitude is found to be

fpðkÞ ¼ �
k2

�v�1 þ 1
2
k0k2 � ik3

; ð1:9Þ

where v is the magnetic field controlled scattering volume, and k0 is a parameter with
dimensions of inverse length which controls the width of the resonance appearing at
negative scattering volume. v and k0 can in turn be further expressed in terms of
interchannel coupling gp and detuning x0

v ¼�
mg2

p

6p 1þ m2g2
pK

3p2

� �
x0

; ð1:10Þ

k0 ¼�
12p
m2g2

p

1þ
m2g2

pK

3p2

 !
: ð1:11Þ
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In contrast to our many-body predictions (that are only quantitatively accurate in a nar-
row resonance limit), above two-body results are exact in the low-energy limit, with cor-
rections vanishing as Oðp=KÞ, where K � 1/d is the ultra-violet cutoff set by the inverse
size d of the closed-channel molecular bound state. We establish that at the two-body level
this model is identical to the extensively studied Fano–Anderson [25] of a continuum of
states interacting through (scattering on) a localized level (see Appendix B). For complete-
ness and to put the two-channel model in perspective, we also calculate the two-body scat-
tering amplitude for two other models that are often studied in the literature, one
corresponding to a purely local, d-function two-body interaction and another in which
both a local and resonant interactions are included. By computing the exact scattering
amplitudes of these two models we show that the low-energy scattering of the former
corresponds to r0 fi 0 limit of the two-channel model. More importantly, we demonstrate
that including a local interaction in addition to a resonant one, as so often done in the
literature [32,33,9] is superfluous, as it can be cast into a purely resonant model [19] with
redefined parameters, that, after all are experimentally determined.

For the s-wave resonance we predict the zero-temperature molecular condensate
density, nb = |B(x0)|2. In the BCS regime of x0� 2�F + cs�F we find

nbðx0Þ �
48n
e4cs

exp �2
x0 � 2�F

cs�F

� �
; ð1:12Þ

and in the BEC regime of x0���F

nbðx0Þ ¼
n
2

1� pcs

4
ffiffiffi
2
p

ffiffiffiffiffiffiffiffi
�F

x0j j

r� �
; ð1:13Þ

where n is the total density of the original fermions. The full form of nb is plotted in Fig. 6.
Following Ref. [50] we also compute the zeroth sound velocity and find that it interpo-

lates between the deep BCS value of

vBCS
s ¼ vFffiffiffi

3
p ; ð1:14Þ

where vF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�F=m

p
is the Fermi velocity, and the BEC value of
Fig. 6. Normalized condensate order parameter B̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2nb=n

p
and normalized chemical potential l̂ ¼ l=�F as a

function of normalized detuning x̂0 ¼ x0=�F.
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vBEC
s ¼ cs�

5=4
F

ffiffiffi
p
p

25=4
ffiffiffiffiffiffi
6m
p 1

jx0j3=2
: ð1:15Þ

The BEC speed of sound quoted here should not be confused with the BEC speed of sound
of the s-wave condensate undergoing wide resonance crossover, which was computed in
Ref. [6]. The crossover in the speed of sound as function of detuning x0 should in principle
be observable through Bragg spectroscopy. Extending our analysis to finite T, we predict
the detuning-dependent transition temperature Tc(x0) to the s-wave resonant superfluid.
In the BCS regime

T c ¼
8eC�2

p
�F exp �x0 � 2�F

cs�F

� �
; x0 � 2�F; ð1:16Þ

where C is the Euler constant, lnC � 0.577. In the BEC regime Tc(x0) quickly approach-
es the standard BEC transition temperature for a Bose gas of density n/2 and of particle
mass 2m

T c ¼
p
m

n
2f 3

2

� �
 !2=3

; x0 � ��F: ð1:17Þ

Taking into account bosonic fluctuations reviewed for a Bose gas in Ref. [51], we also ob-
serve that Tc is approached from above, as x0 is decreased. The full curve is plotted in
Fig. 7. In the broad-resonance limit of cs fi1 this coincides with earlier predictions of
Refs. [4,5,48,33,9].

For a single-species p-wave resonance we determine the nature of the p-wave superfluid
ground state. Since the p-wave resonance is observed in a system of effectively spinless
fermions (all atoms are in the same hyperfine state), two distinct phases of a condensate
are available: px + ipy phase which is characterized by the molecular angular momentum
m = ±1 and a px whose molecular angular momentum is equal to m = 0.

We show that in the idealized case of isotropic resonance, the ground state is always a
px + ipy superfluid regardless of whether the condensate is in BCS or BEC regime. In the
BCS limit of large positive detuning this reproduces the seminal result of Anderson and
Morel [52] for pairing in a spin-polarized (by strong magnetic field) triplet pairing in
3He, the so-called A1 phase. Deep in the BCS regime we predict that the ratio of the
Fig. 7. A sketch of the critical temperature Tc(x0) as a function of detuning x0, displaying a maximum at
intermediate x0. TBEC denotes the asymptotics of Tc at large negative x0.
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condensation energy Epxþipy
of this m = 1 state to the Epx

of the competitive m = 0 pz state
is given by R ¼ Epxþipy

=Epx
¼ e=2, exactly.

A much more interesting, new and experimentally relevant are our predictions for a
Feshbach resonance split into a doublet of m = ±1 and m = 0 resonances by dipolar
anisotropy d [37]. Our predictions in this case strongly depend on the strength of the dipo-
lar splitting, d and the resonance detuning, x0. The three regimes of small, intermediate
and large value of splitting (to be defined more precisely below) are summarized respec-
tively by phase diagrams in Figs. 9–11.

Consistent with above result of vanishing splitting, for weak dipolar splitting,
0 < d < dBEC

c we find that the p-wave m = 1 superfluid ground state is stable, but slightly
deformed to px + iapy, with function a(d,x0) that we compute. For an intermediate dipo-
lar splitting, dBEC

c < d < dBCS
c the ground is a px + ipy-superfluid (m = 1) in the BCS regime

and is a px-superfluid (m = 0) in the BEC regime. We therefore predict a quantum phase
transition at x0c between these two p-wave superfluids for intermediate range of dipolar
splitting [42,53]. For a large Feshbach-resonance splitting, d > dBSC

c the ground state is
a stable px-superfluid for all detuning. We show that in all these anisotropic cases the
px-axis of the p-wave condensate order parameter is aligned along the external magnetic
field. Finally, we expect that for an extremely large dipolar splitting, much bigger than �Fcp
T

F
ω 0

T (ω  )0c2

0ω (μ=0)

p  +  i px y

gapped p  +  i px y

gapless

Normal

2ε

Fig. 8. Temperature vs detuning phase diagram of a p-wave resonant Fermi gas, for the case of no resonance
splitting, d = 0, i.e., isotropic system. This phase diagram is also expected to describe a resonance with a splitting
much larger than the Fermi energy for x0 tuned to the m = ±1 resonance doublet.

Fig. 9. Temperature vs detuning phase diagram of a p-wave resonant Fermi gas, for the case of a small resonance
splitting, 0 < d < dBEC

c .



T

F
ω 0

T (ω  )0c2

0ω (μ=0)

px

p  +  i px y

gapless

p  +  i px y

gapped

ω 0c

c1
(ω  )T 0

Normal

2ε

Fig. 10. Temperature vs detuning phase diagram of a p-wave resonant Fermi gas, for the case of an intermediate
resonance splitting, dBEC

c < d < dBCS
c . The critical temperature Tc1(x0) vanishes in a universal way at the quantum

critical point x0c, according to Eq. (1.19).

Fig. 11. Temperature vs detuning phase diagram of the p-wave resonant Fermi gas for the case of a high
resonance splitting, d > dBCS

c . This phase diagram is also expected to describe a resonance with a splitting much
larger than the Fermi energy for x0 tuned to the m = 0 resonance.
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(which could quite well be the current experimental situation), the system can be indepen-
dently tuned into m = 0 and m = ±1 resonances, and may therefore display the px + ipy

and px states separately, depending on to which of the m = 0 or m = ±1 resonances the
system is tuned. Thus even in the case of an extremely large dipolar splitting, phase dia-
grams in Fig. 8 and in Fig. 11 will be separately observed for tuning near the m = 1
and m = 0 resonances, respectively.

As illustrated in the phase diagrams above, we have also extended these results to a
finite temperature, using a combination of detailed microscopic calculation of the free
energy with more general Landau-like symmetry arguments. We show quite generally that
for a dipolar-split (anisotropic) resonant gas, the normal to a p-wave superfluid transition
at Tc2(x0,d) is always into a px-superfluid, that, for an intermediate dipolar splitting is fol-
lowed by a px-superfluid to px + ipy superfluid transition at Tc1(x0,d). The ratio of these
critical temperatures is set by

T c2

T c1

� ed=a1 ; ð1:18Þ

where a1, given in Eq. (7.24), is an energy scale that we derive. As seen from the corre-
sponding phase diagram, Fig. 10, we predict that Tc1(x0) vanishes in a universal way
according to
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T c1ðx0Þ � jx0 � x0cj1=2
; ð1:19Þ

at a quantum critical point x0c, that denotes a T = 0 quantum phase transition between px

and px + ipy superfluids.
In addition to these conventional quantum and classical phase transitions, we predict

that a p-wave resonant superfluid can exhibit as a function of detuning, x0 quite uncon-
ventional (non-Landau type) phase transitions between a weakly paired (BCS regime of
l > 0) and a strongly paired (BEC regime of l < 0) versions of the px and px + ipy super-
fluids [10,12,46,54]. In three dimensions these are clearly distinguished by a gapless (for
l > 0) and a gapped (for l < 0) quasiparticle spectra, and also, in the case of a px + ipy

superfluid via a topological invariant that we explicitly calculate.
While the existence of such transitions at l = 0 have been previously noted in the liter-

ature [10,12,46,54] our analysis demonstrates that these (previously purely theoretical
models) can be straightforwardly realized by a p-wave resonant Fermi gas by varying
the Feshbach resonance detuning, x0.

Moreover, if the condensate is confined to two dimensions, at a positive chemical
potential this state is a Pfaffian, isomorphic to the Moore-Read ground state of a fraction
quantum Hall ground state believed to describe the ground state of the plateau at the fill-
ing fraction m = 5/2. This state has been shown to exhibit topological order[11,12], guar-
anteeing a 4-fold ground state degeneracy on the torus and vortex excitations that
exhibit non-Abelian statistics.

As was shown by Read and Green [11], despite the fact that both weakly and strongly
paired p-wave superfluid states are gapped in the case of a px + ipy- (but not px-) superfluid
the topological order classification and the associated phase transition at l = 0 remains.
Consistent with the existence of such order, we also show [55] (via an explicit construction)
that for l > 0, an odd vorticity vortex in a px + ipy-superfluid will generically exhibit a sin-
gle zero mode localized on it. In an even vorticity vortex such zero-energy solutions are
absent.

In the presence of far separated vortices, these zero-modes will persist (up to
exponential accuracy), leading to a degenerate many-particle ground state, and are
responsible for the non-Abelian statistics of associated vortices [11,12,54,55]. This new
concrete realization of a topological ground state with non-Abelian excitations, may be
important (beyond the basic physics interest) in light of a recent observation that non-
Abelian excitations can form the building blocks of a ‘‘topological quantum computer’’,
free of decoherence [47]. We thus propose a Feshbach resonant Fermi gas, tuned to a
px + ipy-superfluid ground state as a potential system to realize a topological quantum
computer [42,56].
2. Resonant scattering theory: phenomenology

A discussion of a two-body scattering physics, that defines our system in a dilute limit,
is a prerequisite to a formulation of a proper model and a study of its many-body phenom-
enology. We therefore first focus on a two-particle quantum mechanics, that, for short-
range interaction is fully characterized by a scattering amplitude f(k,k 0), where ±k and
±k 0 are scattering momenta before and after the collision, respectively, measured in the
center of mass frame. In the case of a centrally symmetric interaction potential U(r), the
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scattering amplitude f(k,h) only depends on the magnitude of the relative momentum,
namely energy

E ¼ k2

2mr

(with mr = m1m2/(m1 + m2) the reduced mass) and the scattering angle h (through
k Æ k 0 = k2 cosh), and therefore can be expanded in Legendre polynomials, P‘(cosh)

f ðk; hÞ ¼
X1
‘¼0

ð2‘þ 1Þf‘ðkÞP ‘ðcos hÞ: ð2:1Þ

The scattering amplitude is related to the differential scattering cross-section, the probabil-
ity density of scattering into a solid angle X, by a standard relation dr/dX = | f |2. The ‘th
partial-wave scattering amplitude f‘(k) measures the scattering in the angular momentum
channel ‘, conserved by the spherically symmetric potential U(r). For later convenience,
when we focus on s- and p-wave channels, we denote ‘ = 0 and ‘ = 1 quantities with sub-
scripts s and p, respectively, as in

fs � f‘¼0 ð2:2Þ
fp � f‘¼1: ð2:3Þ

In terms of the scattering matrix S‘ ¼ ei2d‘ in channel ‘, defined by a phase shift d‘, the scat-
tering amplitude is given by f‘ ¼ ðei2d‘ � 1Þ=ð2ikÞ.

Analyticity and unitarity of the scattering matrix, |S‘| = 1, then restrict the scattering
amplitude to a generic form

f‘ðkÞ ¼
1

k�2‘F ‘ðk2Þ � ik
; ð2:4Þ

where F‘(k
2) is a real function Taylor expandable in powers of its argument [49]. It is

directly related to the scattering phase shifts d‘(k) through the scattering matrix
S‘ ¼ ei2d‘ via k2‘+1cot d‘(k) = F‘(k

2). Notice that at small k,

f‘ðkÞ � k2‘: ð2:5Þ

Important information is contained in the poles Epole of scattering amplitude (defined
by f �1

‘ ðEpoleÞ ¼ 0), when it is studied as a function of complex energy E. Poles in f‘(E) cor-
respond to discrete eigenstates with different boundary conditions that can be obtained
without explicitly solving the corresponding Schrodinger equation. However, because
k ¼

ffiffiffiffiffiffiffiffiffiffiffi
2mrE
p

, the scattering amplitude, while a single-valued function of the momentum
is a multi-valued function of the energy, and one must be careful to specify the branch
on which a pole is located in identifying it with a particular eigenstate of a Schrodinger
equation. Starting with a branch where E > 0 and k > 0, negative energy E < 0 can be
approached from the positive real axis either via the upper or lower half complex plane.
A pole which lies on the negative real axis, approached via the upper half plane is equiv-
alent to k ¼ þi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrjEj

p
, i.e., Im(k) > 0, and therefore corresponds to a true bound state of

the potential U(r), with a wavefunction w(r) � e�|k|r that properly decays at long distanc-
es. On the other hand, a pole on the negative real axis, approached via the lower half plane
is not associated with a bound state, since it corresponds to k ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrjEj

p
, i.e., Im(k) < 0

and therefore to an unphysical wavefunction that grows at large distances as w(r) � e|k|r.
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Although it reflects a real low-energy feature of a scattering amplitude f‘(E), the so-called
virtual bound state [49] does not correspond to any physical bound state solution of a
Schrodinger equation as it does not satisfy decaying boundary conditions demanded of
a physical bound state.

On the other hand a pole

Epole ¼ Er � iC=2; ð2:6Þ

of f‘(E), with ReEpole ” Er > 0, ImEpole ” �C/2 < 0 is a resonance, that corresponds to a
long-lived state with a positive energy Er = ReEpole and width C = �2ImEpole, latter char-
acterizing the lifetime s = 1/C for this state to decay into a continuum. A complex conju-
gate pole that always appears along with this resonance pole, corresponds to an eigenstate
that is time reversal of the resonance solution [49,29].

Coming back to the scattering amplitude Eq. (2.4), a low-energy scattering (small k) is
characterized by a first few low-order Taylor expansion coefficients of F‘(k

2), and therefore
only weakly depends on details of the interaction potential U(r). This observation is at the
heart of our ability to capture with a simple model Hamiltonian (see Section 5, below) the
experimentally determined two-body phenomenology, governed by a complicated atomic
interaction potential U(r) or even multi-channel model as in the case of a Feshbach reso-
nant systems. To do this we next specialize our discussion to a particular angular momen-
tum channel.

2.1. Low energy s-wave scattering

We first concentrate on s-wave (‘ = 0) scattering that, by virtue of Eq. (2.5), is the chan-
nel, that, for two fermion species dominates at low energies.

2.1.1. Scattering in the asymptotically low energy limit

Scattering at low energies can be analyzed by expanding the amplitude Fs(k
2) in powers

of its argument, that to lowest order leads to a simple form

fsðkÞ ¼ �
1

a�1 þ ik
; ð2:7Þ

with a = �1/Fs(0), where a is called the s-wave scattering length. The latter can be identi-
fied with particle effective interaction (in Born approximation proportional to a Fourier
transform of the potential), with a > 0 (a < 0) generally (but not always) corresponding
to a repulsive (attractive) potential. We observe that at zero momentum the scattering
amplitude is simply equal to the scattering length, f(0) = �a, leading to r = 4pa2 scattering
cross-section.

We can now give a physical interpretation to the only pole of Eq. (2.7) located at

kpole ¼ ia�1; ð2:8Þ

Epole ¼�
1

2mra2
: ð2:9Þ

The key observation at this stage is that by virtue of Eq. (2.8) and the fact that to be a
physical bound state w � eikpoler must decay at large r, the pole Eq. (2.8) corresponds to
the true bound state with energy, Epole only if a > 0. In contrast, for a < 0 the scattering
amplitude pole corresponds to a wavefunction that grows exponential with r and therefore,
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despite having a negative Epole, is not a physical bound state or a resonance solution of a
Schrodinger equation, but is what is called a virtual bound state [49]. Hence, a physical
bound state characterized by a binding energy 1/(2mra

2), that vanishes with a�1 fi 0, only
exists for a positive scattering length a and disappears for a negative a.

Thus, lacking any other poles at this lowest order of approximation, the scattering
amplitude (2.7), while capturing the asymptotic low-energy bound states of the potential
U(r), does not exhibit any resonances [29], i.e., states with a positive energy and a finite
lifetime. fs(k) in Eq. (2.7) corresponds to a scattering from a relatively featureless potential
of the form illustrated in Fig. 12, where for a sufficiently deep well, there is a bound state
and a > 0, but only a continuum of states with a < 0 and no resonance for well more shal-
low than a critical depth. This is despite the existence of an (unphysical) virtual bound
state for a < 0, with a negative energy E = �1/(2mra

2) identical to that of a true bound
state (only present for a > 0). This point is, unfortunately often missed in the discussions
of Eq. (2.7) that have appeared in the literature. As we discuss in detail below, this scatter-
ing phenomenology is captured by a featureless short-ranged attractive two-body interac-
tion (pseudo-potential) such as the commonly used d-function four-Fermi many-body
interaction.

We notice that in order to be able to trust Eqs. (2.8) and (2.9), all higher order terms in
the expansion of Fs(k

2) calculated at this value of energy have to be negligible when com-
pared with |k|pole = a�1. In other words, a has to be sufficiently large, and |E|pole sufficiently
small, with precise criteria determined by the details of the scattering potential and the cor-
responding coefficients of higher order terms in the Taylor expansion of Fs(k

2).
2.1.2. Intermediate energy resonant scattering

In order to capture the resonant states (absent in the approximation Eq. (2.7)), which
could be present in the potential U(r), Fs(k

2) in fs(k) must be expanded to the next order in
k2,

F sðk2Þ ¼ �a�1 þ 1

2
r0k2; ð2:10Þ
r

U(r)

r

U(r)

Fig. 12. A weakly attractive potential is progressively made more and more attractive, until a bound state
appears, indicated in the figure by a dashed line. Although such potential leads to strong resonant scattering,
when a bound state is close to or has just appeared, in contrast to a potential in Fig. 5 it does not exhibit a
resonance in a sense of a long-lived state with a positive energy and finite width [29].
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with parameter r0 usually called the effective range of the interaction potential. For a
generic, everywhere attractive potential, U(r) < 0, r0 can be shown to be positive [49],
and moreover, to roughly coincide with the spatial extent of U(r), hence the name ‘‘effec-
tive range’’. However, as is clear from physical considerations and an analysis of pole
structure of fs(k

2), a potential which is attractive everywhere cannot support a resonance.
In order to be able to capture a positive energy quantum particle for a significant amount
of time, the potential must be attractive at short scales and exhibit a positive energy barrier
at intermediate scales, of a generic form illustrated in Fig. 5. It can be shown that for such
a potential, r0 is in fact negative, with its magnitude having nothing to do with the range of
U(r). Instead for such resonant U(r) as shown on Fig. 5, |r0|�1 reflects the barrier transmis-
sion coefficient, with the higher barrier corresponding to a longer resonance lifetime and
larger |r0|. Therefore, focusing on resonant potentials, we will take r0 < 0, keeping in mind
that |r0| can be much longer than the actual microscopic range of the scattering potential,
d ” 2p/K. In short, to leave open the possibility for the scattering to go in the presence of
low-energy resonances, in addition to bound states and virtual bound states, r0 must be
negative and ‘‘anomalously’’ large, a condition that will be assumed throughout the rest
of this paper.

At this higher level of approximation, the scattering amplitude is given by

fsðkÞ ¼ �
1

� 1
2
r0k2 þ a�1 þ ik

; ð2:11Þ

Equivalently, in terms of energy E = k2/2mr (in a slight abuse of notation) fs takes the
form

fsðEÞ ¼ �
1ffiffiffiffiffiffiffiffi
2mr

p C1=2
0

E � x0 þ iC1=2
0 E1=2

; ð2:12Þ

in which

x0 �
1

mrr0a
¼ 1

2
C0

r0

a
; ð2:13Þ

and, as discussed in Section 1, Section 1.2, a characteristic energy scale

C0 �
2

mrr2
0

ð2:14Þ

is made explicit, with r0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=mrC0

p
. It marks a crossover energy scale between a low-

and intermediate-energy behaviors of fs(E). Also, as we will see below, C0 defines an energy
scale for the low-energy pole above (below) which, 1/mra

2 J C0 (1/mra
2
[ C 0) a resonant

state appears (disappears).
The poles of the scattering amplitude are given by

k�pole ¼
i

r0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ar0 � a2
p

ar0

; ð2:15Þ

Epole ¼
1

mrr2
0

r0

a
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

r0

a

r� �
;

¼x0 �
1

2
C0 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x0=C0

p� �
; ð2:16Þ
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where in Epole, Eq. (2.16) we only kept the ‘‘minus’’ pole (with the minus sign in front of
the square-root of) k�pole, as the other pole kþpole (with a plus sign) corresponds to an unphys-
ical virtual bound state (regardless of the sign of the scattering length a), and therefore will
be ignored in all further discussions.

The real part of the energy Epole, Eq. (2.16), as a function of �a�1 (with r0 < 0) is illus-
trated in Fig. 13. As �a�1 is changed from �1 to +1, the pole first represents a bound
state, then a virtual bound state (plotted as dotted curve), and finally a resonance. This is
further illustrated in Fig. 14, where the position of the pole Epole is shown in a complex
plane of energy E, with arrows on the figure indicating its motion with increasing �a�1.
The bound state and virtual bound state correspond to Im Epole = 0±, respectively, with
the former (latter) approaching negative real axis from above (below) the branch cut.
The resonance, on the other hand, corresponds to ImEpole < 0 and a positive real part
of the energy, ReEpole > 0.

We note that for 1/|a|� 1/|r0|, the Eq. (2.16), lying close to zero, approximately coin-
cides with Eq. (2.9), as expected, since the higher order term 1

2
r0k2

pole in fs(k) is subdominant
to ikpole. In other words, at a sufficiently large scattering length, the scattering is well
approximated by the asymptotic low-energy (scattering-length) approximation of the pre-
vious section. For such large positive a� |r0| it gives bound state energy, Eq. (2.9), that
grows quadratically with 1/a. Further away from the resonance, on the positive a side,
where the scattering length drops significantly below the effective range, a� |r0|, the
bound state energy crosses over to a linear dependence on 1/a, as illustrated in Fig. 13
and summarized by

EboundðaÞ ¼
� 1

2mra2 ; for jr0j � a > 0

� 1
mrjr0ja ; for jr0j � a > 0:

(
ð2:17Þ
Fig. 13. The pole of the scattering amplitude fs(E), Eq. (2.16) as a function of �1/a for r0 < 0. As discussed in the
text, only a bound state and a resonance correspond to physical solutions of the Schrodinger’s equation with
proper boundary conditions. The thin dotted line indicates asymptotic linear behavior of the bound state for
small positive a.
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Fig. 14. The pole of the scattering amplitude fs(k), Eq. (2.16), shown in a complex plane of E. The arrows indicate
pole’s motion as �1/a is increased.
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More importantly, however, on the other side of the resonance, where the scattering
length is negative, unlike Eq. (2.9), Eq. (2.16) also describes a resonant state, that appears
for a < 0 and shorter than the effective range r0, i.e., for � 1

a > � 1
r0

, when the real part of
the energy Epole becomes positive. The resonant state is characterized by a peak at energy
Er = Eresonance and a width Cs given by

Eresonance ¼
1

mrr2
0

r0

a
� 1

� �
;

¼x0 �
1

2
C0; ð2:18Þ

Cs ¼
2

mrr2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0

a
� 1

r

¼C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x0

C0

� 1

s
: ð2:19Þ

Hence, we find that in the s-wave resonant case, generically, even potentials that exhibit a
resonance for small |a| (high energy), lose that resonance and therefore reduce to a non-
resonant case for sufficiently large and negative a (low energy).

The transition from a bound state to a resonance as a function of a is exhibited by scat-
tering via a generic resonant potential illustrated in Fig. 5. A sufficiently deep well will
exhibit a true bound state, whose energy will vanish with decreasing depth and corre-
spondingly increasing a, according to Ebound = �1/(2mra

2), Eq. (2.9). We note, however,
that as the potential is made even more shallow, 1/a crosses 0 and the true bound state
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disappears (turning into an unphysical virtual bound state), the resonant state (positive
energy and finite lifetime) does not appear until a later point at which scattering length
becomes shorter than the effective range, i.e., until |a| < |r0|.

This somewhat counterintuitive observation can be understood by noting that the
lifetime of an s-wave resonant state is finite, given by the inverse probability of tunnel-
ing through a finite barrier, which only weakly depends on the energy of the state as
long as the potential in Fig. 5 is not too long-ranged. Thus, even when the energy of
the resonance goes to zero, its width remains finite. Hence, since the bound state’s
width is exactly zero, small deepening of the potential cannot immediately change a
resonance into a bound state, simply by reasons of continuity. There has to be some
further deepening of the potential U(r) (range of a), over which the resonance has
already disappeared, but the bound state has not yet appeared. During this intermedi-
ate range of potential depth corresponding to 0 < 1/|a| < 1/|r0|, when the potential is not
deep enough to support a true bound state but not yet shallow enough to exhibit a
resonance, the scattering is dominated by a virtual bound state pole, as illustrated in
Figs. 13 and 14.
2.2. p-wave scattering

As remarked earlier, in a low-energy scattering of a particle off a potential U(r), the s-
wave (‘ = 0) channel dominates over higher angular momentum ‘ „ 0 contributions, that
by virtue of the generic form of the scattering amplitude, Eq. (2.4) vanish as k2‘, Eq. (2.5).
This suppression for ‘ „ 0 arises due to a long-ranged centrifugal barrier, that at low ener-
gies prevents a particle from approaching the origin where the short range scattering
potential U(r) resides.

Hence, in the case of a Feshbach resonance of two hyperfine species Fermi gas, where
the scattered particles are distinguishable (by their hyperfine state), at low energies, indeed,
the interaction is dominated by the s-wave resonance, with higher angular momentum
channels safely ignored. However, an exception to this is the scattering of identical ferm-
ions, corresponding to atoms in the same hyperfine state in the present context. Because
Pauli exclusion principle forbids fermion scattering in the s-wave channel, the next higher
angular momentum channel, namely p-wave (‘ = 1) scattering dominates, with s-wave and
‘ > 1 channels vanishing at low energies [44]. Thus we see that p-wave Feshbach resonance
is quite special, being the dominant interaction channel for a single species Fermi gas.
With this motivation for our focus on a p-wave Feshbach resonant superfluidity and in
preparation for its study, we next analyze a p-wave scattering amplitude.

Starting with Eq. (2.4) and expanding Fp(k2) similarly to Eq. (2.10) we find

F pðk2Þ ¼ �v�1 þ 1

2
k0k2: ð2:20Þ

Here v is the so-called scattering volume analogous to the scattering length a of the s-wave
case, diverging and changing sign when the system is taken through a p-wave Feshbach
resonance. A characteristic wavevector k0 is everywhere negative and plays a role similar
to that of the effective range r0 in the s-wave channel, but has dimensions of an inverse
length.

Hence at low energies the p-wave scattering amplitude takes the form
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fpðkÞ ¼
k2

�v�1 þ 1
2
k0k2 � ik3

: ð2:21Þ

Although the poles of the scattering amplitude Eq. (2.21) can be found by solving a qubic
equation, their exact positions are not very illuminating and will not be pursued here. In-
stead, it will be sufficient for our purpose to only consider an important low-energy limit
|v�1|� |k0|3, in which the relevant pole of Eq. (2.21) is close to zero and its position can be
found by neglecting (actually treating perturbatively in powers of jvk3

0j) ik3 term in the
scattering amplitude. To lowest order the pole is then simply given by

Epole �
1

mrvk0

: ð2:22Þ

This corresponds to a real bound state for Epole < 0 (when v > 0) and a resonance for
Epole > 0 (when v < 0), with a width easily estimated to be

Cp �
2k3

pole

mrk0

¼ Epole

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32=jvk3

0j
q

; ð2:23Þ

�Epole; ð2:24Þ

near a resonance, where jvk3
0j ! 1. Thus, in contrast to the s-wave case, where at suffi-

ciently low energies (E < C0 ¼ 2=mrr2
0) the width Cs �

ffiffiffiffiffiffiffiffiffi
C0E
p

� E, here, because
Cp � E3/2, a p-wave resonance becomes arbitrarily narrow at low energies. Consequently,
as the inverse scattering volume v�1 is tuned through zero and the relevant two-body ener-
gy Epole = 1/(mrvk0) vanishes, the real bound state immediately turns into a resonance
without going through an intermediate virtual bound state (as it did in the s-wave case).
This is illustrated on Fig. 15. This resonant pole behavior extends to all finite angular
momentum (‘ > 0) channels.

The physical reason behind such a drastic difference between s-wave and p-wave
(and higher ‘ > 0 channels) resonances stems from the centrifugal barrier that adds a
long-ranged 1/r2 tail to the effective scattering potential U effðrÞ ¼ UðrÞ þ �h2‘ð‘þ1Þ

2mrr2 . The width
v

E

bound state Resonance

1

Re

Fig. 15. The pole of a p-wave scattering amplitude Eq. (2.21) as a function of �1/v for k0 < 0.
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of a low lying resonant state in such potential can be estimated by computing the decay
rate through Ueff(r), dominated by the long-ranged centrifugal barrier � 1/r2. Employing
the WKB approximation, at low energy E the decay rate is well approximated by

C � e
�2

�h

R rE

d
dr
ffiffiffiffiffiffiffiffiffiffiffi
2mrU eff

p
; ð2:25Þ

� e
�2

ffiffiffiffiffiffiffiffiffi
‘ð‘þ1Þ
p R rE

d
dr=r
; ð2:26Þ

� rE

d

� ��2
ffiffiffiffiffiffiffiffiffi
‘ð‘þ1Þ
p

; ð2:27Þ

In above d and rE are the classical turning points of the �Ueff(r), where d can be taken as
the microscopic range of the potential (closed-channel molecular size), and more impor-
tantly rE is determined by

E ¼ �h2‘ð‘þ 1Þ
2mrr2

E

: ð2:28Þ

Combining this with Eq. (2.27) gives

C‘ � E
ffiffiffiffiffiffiffiffiffi
‘ð‘þ1Þ
p

: ð2:29Þ

Although WKB approximation does not recover the correct exponent of ‘ + 1/2, Eq. (2.4)
(required by unitarity and analyticity) except for the expected large ‘ limit (consistent with
the fact that for small ‘ the semiclassical criterion on which it is based fails), it does cor-
rectly predict a narrowing of the resonance at low energies and with increasing angular
momentum ‘.

Of course, the expansion Eq. (2.20) is only a good approximation for small k. But in
this regime it captures both low energy real bound state (for 1/v > 0) and narrow resonant
state (for 1/v < 0). Experimentally this regime is guaranteed to be accessible by tuning the
bound state and resonance energy Epole = 1/(mrvk0) sufficiently close to zero so that
jvk3

0j � 1. In this range the scattering amplitude Eq. (2.21) correctly captures the physics
of a resonant scattering potential and the related Feshbach resonance without the need for
higher order terms in the expansion of Fp(k2).
3. Resonant scattering theory: microscopics

3.1. Potential scattering

The next step in our program is to develop a model of a gas of fermions interacting via a
resonant pairwise potential U(r) of the type illustrated in Fig. 5, that exhibits a real bound
state or a resonance, controlled by tuning its shape (e.g., well depth). It is of course pos-
sible to simply use a many-body theory with a pairwise interactions literally taken to be
U(r) of Fig. 5, with a (normal-ordered) Hamiltonian given by

Ĥ ¼
Z

d3r
X

r

ŵyr �
r2

2m

� �
ŵr þ

1

2

X
r;r0

Z
d3r d3r0Uðjr� r0jÞŵyrðrÞŵ

y
r0 ðr0Þŵr0 ðr0ÞŵrðrÞ:

ð3:1Þ
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where ŵrðrÞ ðŵyrðrÞÞ is an annihilation (creation) field operator of a fermion of flavor r at a
point r. We would like first to discuss how a problem defined by the Hamiltonian, (3.1)
leads directly to scattering amplitudes Eq. (2.4).

Motivated by experiments where studies are confined to gases of no more than two fer-
mion flavors (corresponding to a mixture of two distinct hyperfine states) we will refer to r
as simply spin, designating a projection (r) of the corresponding two-flavor pseudo-spin
along a quantization axis as a spin up, ›, and down, fl. In an equivalently and sometimes
more convenient momentum basis above Hamiltonian becomes

Ĥ ¼
X

r

X
k

k2

2m
âyk;râk;r þ

1

2V

X
r;r0

X
k;k0;p

~Uðjk� k0jÞây
k0þp

2;r
ây�k0þp

2;r
0 â�kþp

2;r
0 âkþp

2;r
; ð3:2Þ

where âk;r ðâyk;rÞ is an annihilation (creation) operator of a fermionic atom of flavor r with
momentum k, satisfying canonical anticommutation relations and related to the field oper-
ator by ŵrðrÞ ¼ V �1=2

P
kâk;r eik	r. With our choice of momentum variables above the rela-

tive center of mass momenta before (after) the collision are ±k (±k 0) and p is the
conserved momentum of the center of mass of the pair of scattering particles.

In the rest of this section, we would like to calculate the scattering amplitudes f‘ given in
Eq. (2.1) in terms of the interaction potential ~Uðjk� k0jÞ. With this goal in mind, it is con-
venient to make the symmetry properties of the fermion interaction Ĥ int explicit, by taking
advantage of the rotational invariance of the two-body potential U(|r � r 0|) and the anti-
commutation of the fermion operators. To this end we decompose the angular dependence
(arising through k̂ 	 k̂0, where k̂ is a unit vector parallel to k) of the Fourier transform of
the two-body potential, ~Uðjk� k0jÞ into spherical harmonics via

~Uðjk� k0jÞ � U k;k0 ¼
X1
‘¼0

ð2‘þ 1Þuð‘Þk;k0P ‘ðk̂ 	 k̂0Þ: ð3:3Þ

The ‘th orbital angular momentum channel interaction amplitude uð‘Þk;k0 can be straightfor-
wardly shown to be given by

uð‘Þk;k0 ¼ 4p
Z 1

0

drr2UðrÞj‘ðkrÞj‘ðk0rÞ; ð3:4Þ

where j‘(x) is the ‘th spherical Bessel function.
Using anticommutativity of the fermion operators, it is possible to decompose the inter-

action term in Eq. (3.2) into the singlet and triplet channels by introducing the two-body

interaction vertex ~U
r0

1
r0

2
r1r2ðk; k0Þ defined by

Ĥ int ¼
1

2V

X
r1;r2;r01;r

0
2

X
k;k0;p

~U
r0

1
r0

2
r1r2ðk; k0Þâyk0þp

2;r
0
1

ây�k0þp
2;r
0
2

â�kþp
2;r2

âkþp
2r1
; ð3:5Þ

with

~U
r0

1
r0

2
r1r2ðk; k0Þ ¼

1

2
~Uðjk� k0jÞdr0

1
r1

dr0
2
r2
� 1

2
~Uðjkþ k0jÞdr0

1
r2

dr0
2
r1
Þ; ð3:6Þ

that automatically reflects the antisymmetric (under exchange) property of fermions,
namely
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~U
r0

1
r0

2
r1r2ðk; k0Þ ¼ � ~U

r0
1
r0

2
r2r1ð�k; k0Þ; ð3:7Þ

¼ � ~U
r0

2
r0

1
r1r2ðk;�k0Þ: ð3:8Þ

The vertex can be furthermore decomposed into spin singlet (s) and triplet (t) channel
eigenstates of the two-particle spin angular momentum,

~U
r0

1
r0

2
r1r2ðk; k0Þ ¼ ~U ðsÞr1r2;r01r

0
2
ðk; k0Þ þ ~U ðtÞr1r2;r01r

0
2
ðk; k0Þ: ð3:9Þ

The singlet and triplet vertices

~U ðsÞr1r2;r01r
0
2
ðk; k0Þ ¼ U ðeÞðk; k0ÞvðsÞr1r2;r01r

0
2

~U ðtÞr1r2;r01r
0
2
ðk; k0Þ ¼ U ðoÞðk; k0ÞvðtÞr1r2;r01r

0
2

ð3:10Þ

are expressed in terms of an orthonormal set of singlet and triplet projection operators

vðsÞr1r2;r01r
0
2
¼ 1

2
ðdr0

1
r1

dr0
2
r2
� dr0

1
r2

dr0
2
r1
Þ;

vðtÞr1r2;r01r
0
2
¼ 1

2
ðdr0

1
r1

dr0
2
r2
þ dr0

1
r2

dr0
2
r1
Þ

ð3:11Þ

with coefficients

U ðeÞðk; k0Þ ¼ 1
2

~Uðjk� k0jÞ þ ~Uðjkþ k0jÞ
� �

;

U ðoÞðk; k0Þ ¼ 1
2

~Uðjk� k0jÞ � ~Uðjkþ k0jÞ
� � ð3:12Þ

that, by virtue of decomposition, Eq. (3.3) and symmetry of Legendre polynomials,
P ‘ð�k̂ 	 k̂0Þ ¼ ð�1Þ‘P ‘ðk̂ 	 k̂0Þ are vertices for even and odd orbital angular momentum ‘
channels, respectively, as required by the Pauli exclusion principle. Physically, these
irreducible even and odd verticies make explicit the constructive and distructive
interference between scattering by angle h and p � h of two fermions.

The two-body scattering amplitude f(k,k 0) is proportional to the T-matrix,

f ðk; k0Þ ¼ � m
4p

T k;k0 ¼ �
mr

2p
T k;k0 ; ð3:13Þ

where mr = m/2 is the reduced mass of two fermions. The T-matrix can be computed via
standard methods. As illustrated on Fig. 16, it equals to a renormalized 4-point vertex
(1PI) C(4)(k + p/2, �k + p/2, k 0 + p/2, �k 0 + p/2; e) for particles scattering with initial
(final) momenta ±k + p/2 (±k 0 + p/2), and at a total energy in the center of mass frame
given by

e ¼ ðkþ p=2Þ2

2m
þ ð�kþ p=2Þ2

2m
� p2

4m
;

¼ k2

m
¼ k02

m
¼ k2

2mr

ð3:14Þ
Fig. 16. The renormalized 4-point vertex for potential scattering, determining the T-matrix Tk,k 0.
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with the last relation valid due to energy conservation by a time independent interaction.
Given the retarded Green’s functions of fermions,

Gðk;xÞ ¼ 1

x� k2

2mþ i0
; ð3:15Þ

the main ingredient of the sequence of diagrams from Fig. 16 is the polarization operator,
denoted by a bubble in the figure, and physically corresponding the Green’s function of
the reduced fermion with momentum q and mass mr,

Pðq; eÞ ¼
Z

dx
2pi

G
p

2
þ q; eþ p2

4m
þ x

� �
G

p

2
� q;�x

� �

¼ 1

e� q2

m þ i0

ð3:16Þ

Although perhaps not immediately obvious, P(q, e) as defined above is independent of p,
the center of mass momentum of a pair of fermions.

The sequence of diagrams in Fig. 16 then generates a series for a T-matrix given by

T k;k0 ¼ Uk;k0 þ
X

q

Uk;qPðq; eÞU q;k0 þ 	 	 	 ; ð3:17Þ

that can formally be resummed into an integral equation

T k;k0 ¼ ½ð1� UPÞ�1U 
k;k0 ; ð3:18Þ

where a martix product over wavevectors inside the square brackets is implied.
Utilizing the channel decomposition, Eq. (3.12) of the vertex Uk,k 0 together with the clo-

sure-orthogonality relationZ 1

�1

P ‘ðk̂ 	 q̂ÞP ‘0 ðq̂ 	 k̂0ÞdXq ¼
4p

2‘þ 1
d‘‘0P ‘ðk̂ 	 k̂0Þ; ð3:19Þ

the T-matrix series separates into a partial waves sum

T k;k0 ¼
X1
‘¼0

ð2‘þ 1ÞT ð‘Þk;k0P ‘ðk̂ 	 k̂0Þ; ð3:20Þ

with

T ð‘Þk;k0 ¼ uð‘Þk;k0 þ
1

V

X
q

uð‘Þk;qPðq; eÞu
ð‘Þ
q;k0 þ 	 	 	 ; ð3:21Þ

a T-matrix for scattering in an angular momentum channel ‘, conserved by the spherical
symmetry of the two-body interaction potential. This demonstrates explicitly that the
interaction vertices in different ‘ channels do not mix, each contributing only to the cor-
responding scattering amplitude channel f‘(k) in Eq. (2.4).

Without specifying the interaction potential U(r), a more explicit expression for the
T-matrix can only be obtained for the so-called separable potential, discussed in detail
in Ref. [5]. Such separable interaction is a model that captures well a low-energy behavior
of a scattering amplitude of a more generic short-range potential. To see this, we observe
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that a generic short-range potential, with a range d, leads to a vertex in the ‘th channel,
which at long scales, kd� 1, separates into

uð‘Þk;k0 � kk‘gð‘Þk k0‘gð‘Þk0 � kk‘k0‘; ð3:22Þ

with

k ¼ 4pU 0d2‘þ3

½ð2‘þ 1Þ!!
2
; ð3:23Þ

U 0d2‘þ3
0 �

Z 1

0

drr2‘þ2UðrÞ: ð3:24Þ

Assuming that this separation holds at all k (a definition of a separable potential), we use
this asymptotics inside Eq. (3.21). This reduces the T-matrix to a geometric series that
resums to

T ð‘Þk;k0 ¼
uð‘Þk;k0

1� kPð‘ÞðeÞ
; ð3:25Þ

where P(‘)(e) is the trace over momentum of the atom polarization ‘‘bubble’’ correspond-
ing to the molecular self-energy at energy e,

Pð‘ÞðeÞ ¼ 1

V

X
q

q‘gð‘Þq Pðq; eÞq‘gð‘Þq ; ð3:26Þ

¼
Z

d3q

ð2pÞ3
q2‘gð‘ÞðqÞ2

e� q2

m þ i0
; ð3:27Þ

¼ � mK2‘þ1R
k2

K2

� �
� i

4p
m‘þ3=2 e‘þ1=2: ð3:28Þ

In above R(x) is a Taylor-expandable function of its dimensionless argument, the momen-
tum cutoff K � 2p/d is set by the potential range d, and, as before, k2/m = e. Putting this
together inside the T-matrix, we find the low-energy ‘-channel scattering amplitude

f ð‘ÞðkÞ ¼ � 1

4p
mk2‘

1
kþ mK2‘þ1R k2

K2

� �� �
þ ik

; k � K: ð3:29Þ

This coincides with the general form, Eq. (2.4) arising from the requirement of analyticity
and unitarity of the scattering matrix. However, we observe that in the s-wave case, for the
full range of accessible wavevectors up to ultraviolet cutoff, k < K the scattering amplitude
Eq. (3.29) is well approximated by the non-resonant, scattering-length dominated form
(2.7), with the scattering length given by a�1 = 4p/(mk) + 4pKR(0). The ‘‘effective range’’
r0 extracted from Eq. (3.29) is r0 � 1/K, namely microscopic, positive, and is of the order
of the spatial range of the potential d. Yet, as we saw in Section 2.1, in order to capture
possible resonances, r0 must be negative and much longer than the actual spatial range of
the potential. The fact that our calculation does not capture possible resonances is an arti-
fact of our choice of a separable potential.

Although a more physical (non-separable) potential U(r), of a resonant form depicted
in Fig. 5, indeed exhibits scattering via a resonant state (not just a bound and
virtual bound states), calculating the scattering amplitude f‘(k) (beyond Eq. (3.22)
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approximation) is not really practical within the second-quantized many-body approach
formulated in Eq. (3.1). In fact, the only way to derive the scattering amplitude in that case
is to go back to the Schrödinger equation of a pair of fermions, reducing the problem to an
effective single-particle quantum mechanics. However, because we are ultimately interested
in condensed states of a finite density interacting atomic gas, this two-particle simplifica-
tion is of little value to our goals.

However, as we will show in Sections 4 and 5, a significant progress can be made by
formulating a much simpler pseudo-potential model, that, on one hand reproduces the
low-energy two-atom scattering of the microscopic model (3.1) in a vacuum (thereby
determining its parameters by dilute gas experiments), and on the other hand is amenable
to a standard many-body treatment even at finite density.

Furthermore, as will see below, in cases of finite angular momentum scattering, Eq.
(3.29) can in principle describe scattering via resonances as well as in the presence of
bound states. Thus the assumption of separability is no longer as restrictive as it is in
the s-wave case.

3.2. Feshbach-resonant scattering

As discussed in Section 1, in fact, the physically most relevant resonant scattering aris-
ing in the context of cold atoms is microscopically due to a Feshbach resonance [17].
Generically it can be described as a scattering, where the two-body potential, Ua,a 0(|r � r 0|)
depends on internal quantum numbers characterizing the two-atom state. These states,
referred to as channels, are not eigenstates of the interacting Hamiltonian and therefore
two atoms coming in one channel a in the process of scattering will generically undergo
a transition into a different channel a 0.

The simplest and experimentally most relevant case is well approximated by two chan-
nels a = o,c (often referred to as ‘‘open’’ and ‘‘closed’’), that approximately correspond to
electron spin-triplet and electron spin-singlet states of two scattering atoms; this is not to
be confused with the hyperfine singlet and triplet states discussed in the previous subsec-
tion. Such system admits an accessible Feshbach resonance when one of the channels (usu-
ally the electron spin-singlet) admits a two-body bound state. Furthermore, because pair
of atoms in the two channels have very different magnetic moments, their Zeeman splitting
can be effectively controlled with an external magnetic field. The corresponding micro-
scopic Hamiltonian is given by

Ĥ ¼
Z

d3r
X
r;s

ŵyr;s �
r2

2m

� �
ŵr;s

þ 1

2

X
r;r0

s1;s2;s01;s
0
2

Z
d3rd3r0U

s0
1
s0

2
s1s2ðjr� r0jÞŵyr;s0

1
ðrÞŵyr0 ;s0

2
ðr0Þŵr0;s2

ðr0Þŵr;s1
ðrÞ; ð3:30Þ

where s labels the channel. The interaction U
s0

1
s0

2
s1s2ðjr� r0jÞ can be more conveniently reex-

pressed in terms of the two-atom electron spin-singlet and spin-triplet channels basis,
Ua,a 0(|r � r 0|), where Uo,o(|r � r 0|), Uc,c(|r � r 0|) are the interaction for two atoms in the
open (triplet) and closed (singlet) channels, respectively, and Uo,c(|r � r 0|), characterizes
the interchannel transition amplitudes, i.e., the strength of o–c hybridization due to the
hyperfine interactions.
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The corresponding scattering problem would clearly be even more involved than a
single-channel model studied the previous subsection. Yet, as the analysis of
Section 5 will show, at low energies, the scattering amplitude of two atoms, governed
by Eq. (3.30), is still of the same form, (2.4), as that of a far simpler pseudo-potential
two-channel model. Indeed, the form of a scattering amplitude is controlled by unita-
rity and analyticity, not by precise details of realistic Hamiltonians. Thus, to capture
either a microscopically potential- or a Feshbach resonant scattering we will replace
a realistic Hamiltonian, such as Eq. (3.30) with a simpler model, which, nevertheless
exhibits a low-energy scattering amplitude of the same form. To this end, in the next
two sections we examine two such effective models and work out their scattering ampli-
tudes. We will thereby determine and justify our subsequent choice of a many-body
model with the correct low-energy two-body physics.

4. One-channel model

4.1. s-wave scattering

The most drastic simplification of a resonant Fermi gas is to model the two-body inter-
action by a featureless and short-ranged single-channel pseudo-potential, that at long
scales and low energies is most commonly taken to simply be U(r) = kd(3)(r), with the cor-
responding many-body Hamiltonian

Ĥ 1�ch
s ¼

Z
d3r

X
r

ŵyr �
r2

2m

� �
ŵr þ kŵy#ðrÞŵ

y
"ðrÞŵ"ðrÞŵ#ðrÞ

" #
: ð4:1Þ

In analyzing the Hamiltonian like this one, one has to exercise a certain amount of
caution, as the repulsive d-function potential is known to have a vanishing scattering
amplitude in three dimensions, and therefore does not make sense if understood liter-
ally [57].

Hence d-function potential must be supplemented with a short-scale cutoff 1/K (i.e., giv-
en a finite spatial extent), that we will take to be much smaller than the wavelength of a
scattering particle, i.e., k/K� 1. Furthermore, for calculational convenience, but without
modifying the properties on scales longer than the cutoff, we will impose the cutoff K on
each of the momenta k and k 0 independently, modeling the interaction in Eq. (4.1) by a
featureless separable potential

Uk;k0 ¼ uð0Þk;k0 ¼ khðK2 � k2ÞhðK2 � k02Þ; ð4:2Þ

with h(x) the usual step function, and interactions in all finite angular momentum
channels vanishing by construction. We note that this separability of the potential is
consistent with the general long wavelength form of a generic short-scale potential
found in Eq. (3.22), although it does lead to some minor unphysical features such
as only a single bound state, independent of how strongly attractive the potential
(how negative k) is [5].

As discussed in Section 3.1, the Dyson equation (3.21) can be easily resummed into Eq.
(3.25), with the s-wave polarization bubble Ps(e) ” P(‘=0)(e) (cf Eq. (3.28)) easily computed
to give
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PsðeÞ ¼
Z

d3q

ð2pÞ3
hðK� qÞ
e� q2

m þ i0

¼� m
2p2

K� i
m3=2

4p

ffiffi
e
p
; ð4:3Þ

where we used e� K2/(2m). This then directly leads to the s-wave scattering amplitude
(vanishing in all other angular momentum channels)

fsðk; k0Þ ¼ �
1

4p
mkþ 2K

p þ ik
; ð4:4Þ

which coincides with Eq. (2.7), where the scattering length is given by

aðkÞ ¼ 4p
mk
þ 2K

p

� ��1

� m
4p

kR; ð4:5Þ

¼ m
4p

k
1� k=kc

; ð4:6Þ

where kR can be called the renormalized coupling and

kc ¼ �
2p2

Km
ð4:7Þ

is a critical value of coupling k at which the scattering length diverges.
Hence we find that scattering off of a featureless potential of a microscopic range 1/K

(modeled by the cutoff d-function separable potential), is indeed given by Eq. (2.7), with
this form exact for k/K� 1, i.e., for the particle wavelength 1/k longer than the range
of the potential. We also note that in the limit K fi1, the scattering amplitude vanishes,
in agreement with the aforementioned fact that the ideal d-function potential does not
scatter quantum particles [57].

For finite cutoff, the scattering length a as a function of k is shown on Fig. 17. We note
that in the ‘‘hard ball’’ limit of a strongly repulsive potential, k� 2

mK, the scattering length
is given simply by its spatial extent, a = p/(2K) � d. For an attractive potential the behav-
ior is more interesting. For weak attraction, the scattering length a is negative. However,
Fig. 17. The scattering length a as a function of strength k of the separable d-function potential.
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for sufficiently strong attractive potential, i.e., sufficiently negative k, the scattering length
a(k) changes sign, diverging hyperbolically at the critical value of kc, and becoming posi-
tive for k < kc. The critical value of k at which this takes place corresponds to the threshold
when the potential becomes sufficiently attractive to admit a bound state. There is no more
than one bound state in a separable d-function potential, regardless of how strongly
attractive it is [5].

Finally, as above discussion (particularly, Eq. (4.4)) indicates, although a one-channel
s-wave model can successfully reproduce the very low energy limit of the generic s-wave
scattering amplitude, such ultra-short range pseudo-potential models cannot capture scat-
tering via a resonance. The actual Feshbach resonance experiments may or may not
involve energies high enough (large enough atom density) for the scattering to proceed
via a resonance (most do not, with the criteria for this derived in Section 4.3, below). How-
ever, our above findings show that the ones that do probe the regime of scattering via a
resonance must be described by a model that goes beyond the one-channel d-function
pseudo-potential model. We will explore the simplest such two-channel model in Section
5.1.1.
4.2. Finite angular momentum scattering

Unlike their s-wave counterpart, one-channel models for higher angular momentum
scattering can describe scattering via resonances. This is already clear from the analysis
after Eq. (3.29). Let us analyze this in more detail.

Above s-wave model (4.1) can be straightforwardly generalized to a pseudo-potential
model at a finite angular momentum. This is most easily formulated directly in momentum
space by replacing the two-body ‘-wave interaction in the microscopic model (3.2) by a
separable model potential

uð‘Þk;k0 ¼ kk‘gð‘Þk k0‘gð‘Þk0 ð4:8Þ
¼ kk‘k0‘hðK2 � k2ÞhðK2 � k02Þ: ð4:9Þ
that simply extends the long wavelength asymptotics of a microscopic interaction Eq.
(3.22) down to a microscopic length scale 2p/K.

Using results of the previous section, this model then immediately leads to the scatter-
ing amplitude Eq. (2.4) with

F ‘ðk2Þ ¼ � 4p
mk
� 2K2‘þ1

pð2‘þ 1Þ �
2K2‘�1

p 2‘� 1ð Þ k
2 þ 	 	 	 : ð4:10Þ
The corresponding scattering amplitude is given by

f‘ðkÞ ¼
k2‘

�v�1
‘ þ 1

2
k2‘�1

0 k2 � ik2‘þ1
; ð4:11Þ
with the analogs of the scattering volume (of dimensions 2‘ + 1) and effective range
parameters given, respectively, by
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v‘ ¼
4p
mk
þ 2K2‘þ1

pð2‘þ 1Þ

� ��1

� m
4p

kR
‘ ; ð4:12Þ

k2‘�1
0 ¼� 4K2‘�1

p 2‘� 1ð Þ : ð4:13Þ

We note that v‘ diverges (hyperbollically) for a sufficiently attractive interaction coupling,
reaching a critical value

kð‘Þc ¼ �
2p2ð2‘þ 1Þ

mK2‘þ1
;

From the structure of f‘(k) it is clear that at low energies (length scales longer than k�1
0 ),

the imaginary term ik2‘+1 is subdominant to the second k2 term in the denominator. Con-
sequently, the pole is well approximated by

Epole � �
2

mk2‘�1
0 v‘

� iC‘=2; ð4:14Þ

where we defined

C‘ �
4

m
k�2‘þ1

0 k2‘þ1
pole ; ð4:15Þ

k2
pole � � 2k�2‘þ1

0 v�1
‘ : ð4:16Þ

For a positive detuning, v‘ < 0, leading to the first term of Epole real and positive, while the sec-
ond one�iC/2 negative, imaginary and at low energies (k < k0) much smaller than Re[Epole].
Thus, (in contrast to the s-wave case) for finite angular momentum scattering, even a single-
channel model with a separable potential exhibits a resonance that is narrow for large, neg-
ative v‘. For v‘ > 0, the term�iC/2 becomes real and this resonance directly turns into a true
bound state, characterized by a pole Epole, that is real and negative for v‘ > 0.

4.3. Model at finite density: small parameter

Having established a model for two-particle scattering in a vacuum, a generalization to
a model at finite density n, that is of interest to us, is straightforward. As usual this is eas-
iest done by working within a grand-canonical ensemble by introducing a chemical poten-
tial l that couples to a total number of particles operator N̂ via

Ĥ ! Ĥ � lN̂ : ð4:17Þ
One thereby controls the average atom number and density by adjusting l.

The single-channel models of the type Eq. (4.1) and its corresponding finite angular
momentum channel extensions have been widely studied in many problems of condensed
matter physics. Although (as most interacting many-body models) it cannot be solved
exactly, for sufficiently small renormalized coupling kR(k), (4.6) and (4.13), (whether posi-
tive or negative), we expect that one can analyze the system in a controlled perturbative
expansion about a mean-field solution in a dimensional measure of kR, namely in the ratio
of the interaction energy to a typical kinetic energy �F.

4.3.1. Small parameter in an s-wave model

In the s-wave case this dimensionless ratio is just the gas parameter
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jkRj n
�F

� jajn1=3 / kFjaj: ð4:18Þ

For weak repulsive s-wave interaction, k > 0, an1/3� 1, and the perturbation theory
generically leads to a Fermi liquid [58]. For weak attractive interaction k < 0 and
|a|n1/3� 1, it predicts a weak-coupling BCS superconductor.

However, as k is made more negative (increasing the strength of the attractive interac-
tion) |a| increases according to Eq. (4.6), as illustrated in Fig. 17 and eventually goes to
infinity when k reaches the critical value of kc. Near this (so-called) unitary point, the
gas parameter is clearly large, precluding a perturbative expansion within a one-channel
model.

On the other (BEC) side of the unitary point, a molecular bound state appears and the
phenomenology is that of interacting bosonic molecules with a molecular scattering length
proportional to that of fermionic atoms, am � 0.6a [35,59,6]. Since on the BEC side a also
diverges (this time from a positive side), the bosonic gas of these molecular dimers is
strongly interacting near the unitary point and the situation is as hopeless for quantitative
analysis as it was on the BCS side of the unitary point.

Yet, at large negative k, the bound state drops to a large negative energy and a becomes
small again (this time positive). In this deep-BEC regime, the resulting dilute repulsive gas
of tightly bound molecules then also exhibits the same small gas parameter as that deep in
the BCS regime. Hence its ground state is a weakly interacting superfluid Bose-condensate
[4,5], with properties that can be computed perturbatively in a small parameter an1/3,
although careful analysis of this sort was only done recently [6].

We note in passing, that, at a finite atom density the effective measure of the strength
of interaction is actually a dispersive coupling kkF

, given by the T-matrix T kF;kF
¼

ð4p=mÞjfsðkFÞj

k̂s
kF
�
jT s

kF
jn

�F

; ð4:19Þ

� kFjfsðkFÞj; ð4:20Þ

� kF

ja�1 þ ikFj
; ð4:21Þ

�
kFjaj; for kFjaj � 1;

1; for kFjaj � 1:

	
ð4:22Þ

Thus, in contrast to a two-body case, at finite density the growth of this effective dimen-
sionless coupling, � kF|a|, actually saturates at 1 (i.e., at a large, non-perturbative, but
non-infinite value), due to a cutoff of the growing scattering length a by atom separation
k�1

F .
Hence, despite its many successes to predict qualitative behavior, the Hamiltonian Eq.

(4.1) has a limited ability to describe a resonant interacting Fermi gas. First of all, as we
just saw, its two-body scattering amplitude, as given by Eq. (2.7), does not describe scat-
tering via a resonant state, capturing only a true bound state (for a sufficiently attractive k
and positive a), but not a resonance [29] (possible for negative a). Thus, if resonances
(states at positive energy and finite lifetime) are present, the model given by Eq. (4.1) is
insufficient. Even in the absence of such resonant states, the perturbation theory about
the mean-field state commonly used to analyze Eq. (4.1) breaks down in the course of
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the BCS to BEC crossover, where the scattering length surpasses the inter-particle spacing
and |a|n1/3 J 1 is no longer small.

However, it is quite common in literature to ignore these issues and simply extend the
mean-field analysis of Eq. (4.1) into the non-perturbative unitary regime near kc. Given the
absence of a phase transition in the s-wave case, the prediction of such mean-field theory is
undoubtedly qualitatively correct even in the strong coupling regime that smoothly inter-
polates between Pauli-principle stabilized large Cooper pairs and a BEC of tightly bound
molecules. However, as we just discussed, such approach (all the perturbative embellish-
ments notwithstanding) cannot make any quantitatively trustworthy predictions for
k � kc, a regime where a bound state is about to, or just appeared and |a|n1/3� 1. Since
the question of the s-wave BCS–BEC crossover is intrinsically a quantitative one, quanti-
tatively uncontrolled studies performed within above non-resonant model provide little
information about the details of such crossover, particularly near the so-called unitary
regime.

4.3.2. Small parameter in a finite angular momentum model

As can be seen from the form of the scattering amplitude (4.11) and its parameters v‘
and k0, the case of a gas resonant at a finite angular momentum is qualitatively quite dif-
ferent from that of the s-wave model just considered. The reason is that, as discussed in
Section 4.2, on length scale longer than the spatial range of the potential K�1 (i.e., on effec-
tively all accessible scales) the ik2‘+1 in f‘(k) is subdominant and a one-channel finite angu-
lar momentum model exhibits a resonant state that continuously transforms into a bound
state. As discussed in Section 2.2, physically this stems from the existence of a finite ‘ cen-
trifugal barrier that strongly suppresses the molecular decay rate at low positive energies.

Analogously (but distinctly) to the s-wave case, a dimensionless parameter that mea-
sures the relative strength of interaction and kinetic energy in the ‘-wave case is given by

k̂ð‘ÞkF
�
jT ð‘ÞkF
j k2‘

F n

�F

; ð4:23Þ

� k2‘þ1
F

jjv�1
‘ j þ k2‘�1

0 k2
Fj
; ð4:24Þ

�
k2‘þ1

F jv‘j; for k2‘�1
0 k2

Fjv‘j � 1;

kF

k0

� �2‘�1

; for k2‘�1
0 k2

Fjv‘j � 1:

8<
: ð4:25Þ

Since, (as found above) k0 � K, we find that for a finite angular momentum resonance,
although the effective coupling k̂ð‘ÞkF

grows with v‘ as a resonance is approached, it saturates
at a value�1, cutoff by a finite density. Thus, this heuristic argument suggests that in prin-
ciple a controlled perturbative treatment of full BCS–BEC crossover is possible for finite
angular-momentum Feshbach resonances, even within a one-channel model. Such analysis
has not yet been done, and it is an interesting research problem for future work.

5. Two-channel model

As we have seen, there are considerable shortcomings of a local one-channel model,
particularly for the s-wave case, as it does not exhibit a resonant state, nor does it have
a dimensionless parameter that can be taken to be small throughout the BCS–BEC
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crossover. Thus, we now consider a more involved fermion-boson two-channel model that
is free of these deficiencies. Furthermore, the appeal of this two-channel model is that it is
inspired by and more accurately reflects the microscopics of the Feshbach resonance phys-
ics discussed in Section 1 and above, but applies more universally to any system where a
resonant interaction (e.g., a shape resonance of the type illustrated in Fig. 5) is at work. A
general two-channel model Hamiltonian, that in cold-atom context for the special s-wave
case was first introduced by Timmermans [19], is given by

Ĥ 2�ch ¼
X
k;r

k2

2m
âyk;râk;r þ

X
p;‘;m

l

�
ð‘;mÞ
0 þ p2

4m

� �
b̂

ly
p;‘;mb̂l

p;‘;m

þ
X
k;p;‘
r;r0

gð‘Þkffiffiffiffi
V
p k‘ b̂ p;‘

r;r0
ðk̂Þây

kþp
2;r

ây�kþp
2;r
0 þ h:c:

� �
: ð5:1Þ

In above model Hamiltonian âk;r ðâyk;rÞ is a fermionic annihilation (creation) operator of
an atom of flavor r with momentum k, representing atoms in the open-channel (typically
corresponding to the electron [physical, as opposed to flavor] spin-triplet state of two

atoms) continuum. The annihilation operator b̂ p;‘
r;r0
ðk̂Þ destroys a bosonic diatomic mole-

cule of mass 2m, with a center of mass momentum p, internal (atoms’) momenta ±k. It
is a cartesian spin-tensor that transforms as a tensor-product of two spin-1/2 representa-
tions and an orbital angular momentum ‘ representation. It is convenient to decompose it
into 2‘ + 1 components bp;‘;m

r;r0
corresponding to its projections along an orbital quantiza-

tion axis, according to:

b̂ p;‘
r;r0
ðk̂Þ ¼

X‘
m¼�‘

b̂p;‘;m
r;r0

Y �‘;mðk̂Þ

� b p;‘
r;r0
	 Y�‘ðk̂Þ

ð5:2Þ

where Y ‘;mðk̂Þ are the spherical harmonics, k̂ is a unit vector along k, and in the last line the
scalar product is over 2‘ + 1 components labeled by �‘ 6 m 6 ‘. These bosonic orbital
components can be further decomposed into a singlet (l = s) and a triplet (with three spin
projection components sz = 0, ± 1 linear combinations of l = (x,y,z) cartesian compo-
nents) spinor representations according to:

b̂ p;‘
r;r0
¼ 1ffiffiffi

2
p

X
l¼s;x;y;z

b̂l
p;‘ 	 iðry ; ry~rÞlr;r0 ð5:3Þ

with ~r a vector of Pauli spin matrices; notice that iry is a fully antisymmetric (and thus a
singlet) spin tensor and the components of ry~r are linear combinations of the spin-triplet
projections sz = 0, ± 1, represented by 2 · 2 symmetric matrices, with the relations

b̂
ð0Þ
p;‘ ¼� b̂z

p;‘; ð5:4Þ

b̂
ð�1Þ
p;‘ ¼�

1ffiffiffi
2
p b̂x

p;‘ � ib̂y
p;‘

� �
: ð5:5Þ
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Within a Feshbach resonant system context the molecule b̂l
p;‘ represents a (quasi-) bound

state of two atoms in a closed channel (usually electronic spin-singlet state of two atoms),
a true bound state in the limit of a vanishing coupling gð‘Þk (proportional to o–c channels
hybridization energy Uoc) for the decay of a closed-channel molecule into an open-channel
pair of atoms. As discussed in Section 1, in this case the ‘bare’ molecular rest energy �

ð‘;mÞ
0 (the

detuning relative to the bottom of the open-channel continuum) corresponds to the Zeeman
energies that can be readily tuned with an external magnetic field. For generality we allowed
this detuning to have a non-trivial m dependence, encoding an explicit breaking of orbital
rotational invariance seen in the experimental systems [37]. This ingredient will be central
to our analysis in Section 7, for a determination of the correct ground state of a p-wave paired
superfluid. Focusing on the closed-channel bound state, the model clearly ignores the contin-
uum (with respect to relative coordinate) of closed-channel states. Because for the experi-
mentally interesting regime of a resonance tuned to low energies, these states are at a finite
energy, they can be adiabatically eliminated (thereby only slightly modifying model param-
eters) and can therefore be safely omitted. In the context of a shape resonance the molecule
b̂l

p;‘ represents a resonance that is long-lived in the limit of large potential barrier.
We would like to emphasize that for a non-zero Feshbach resonance coupling gð‘Þk it

would be incorrect to consider b-particles to be the true bound states (diatomic molecules)
of a-particles (atoms). Indeed, freely propagating b-particles are not even eigenstates of the
Hamiltonian Eq. (5.1). The true, physical molecule is a linear combination of b-particles
and a surrounding cloud of a-particles. They can be found by studying the scattering prob-
lem posed by Eq. (5.1). In particular, the true bound states of Eq. (5.1) can be spatially
quite large with their spatial extent set by a scattering length a and at finite atom density
can easily overlap. In contrast, the b-particles (related to the true bound states only in the
limit of vanishing Feshbach resonance couplings gð‘Þk ) are point-like, with their size set by a
microscopic length scale corresponding to the range d = 2p/K of the interatomic atomic
potential, U

s0
1
s0

2
s1s2ðjr� r0jÞ.

With this in mind, we now turn to the analysis of the two-channel model, considering
separately the s-wave and p-wave cases.

5.1. s-wave

5.1.1. Two-atom scattering

As discussed in Section 1, in the case of a two-flavor atomic gas, at low energies it is
appropriate to focus on the dominant s-wave channel, which by virtue of Pauli principle
automatically also selects the singlet two-atom states. Ignoring all other scattering chan-
nels in the model (5.1), the s-wave two-channel model Hamiltonian reduces to

Ĥ 2�ch
s ¼

X
k;r

k2

2m
âyk;râk;r þ

X
p

�0 þ
p2

4m

� �
b̂ypb̂p

þ
X
k;p

gsffiffiffiffi
V
p b̂pây

kþp
2;"

ây�kþp
2;#
þ b̂ypâ�kþp

2;#
âkþp

2;"

� �
; ð5:6Þ

where to simplify notation we defined

b̂p � b̂ð0Þp;0;0; ð5:7Þ

gshðK� kÞ � 1ffiffiffiffiffiffi
2p
p gð0Þk ; ð5:8Þ
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incorporating the short-scale (shorter than the atomic interaction range d = 2p/K) falloff
of the Feshbach resonant coupling gð0Þk as an implicit sharp cutoff at K on the momentum
sums.

Within this model, the fermions of the same spin do not interact at all, and the scatter-
ing amplitude of two fermions of opposite spin can be calculated exactly. In addition to
the free fermion Green’s function Eq. (3.15), the Green’s function for a free boson is given
by

D0ðp;xÞ ¼
1

x� p2

4m� �0 þ i0
: ð5:9Þ

The T-matrix is then given by a geometric series depicted in Fig. 18, and written algebra-
ically as

T ðk; k0Þ ¼ gsD0gs þ gsD0gsPsgsD0gs þ 	 	 	 ¼
1

1
g2

s
D�1

0 �Ps
: ð5:10Þ

Above,

D0 ¼ D0 p; eþ p2

4m

� �
¼ D0ð0; k2=mÞ; ð5:11Þ

Ps ¼ Psðk2=mÞ; ð5:12Þ

latter defined in Eq. (4.3) and e = k2/m is the two-atom center of mass energy. The scatter-
ing amplitude is then given exactly by the low-to-intermediate energy form in Eq. (1.7),
with the s-wave scattering length and effective range given by

a ¼� mg2
s

4p �0 � g2
s mK
2p2

� � ¼ 2

mr0x0

; ð5:13Þ

r0 ¼�
8p

m2g2
s

: ð5:14Þ

We note that as expected from general considerations of Section 2.1.2, the effective range
parameter r0 is indeed negative. Proportional to 1=g2

s , it controls the lifetime of the b-bo-
sons to decay into two atoms, corresponding to the inverse width of the Feshbach reso-
nance. r0 therefore becomes arbitrarily long (compared to the microscopic range 1/K) of
the potential with decreasing gs. We recall from Section 2.1.2 that these two conditions
are precisely those required for the resonance to exhibit a positive energy, finite lifetime
resonant state.

From Eqs. (5.13) and (5.14) we also identify the characteristic crossover energy scale
C0 ¼ 4=ðmr2

0Þ and the parameter x0 = 2/(mr0a) appearing in the s-wave scattering ampli-
tude (2.12), given by
Fig. 18. The diagrams contributing to the T-matrix of the two-channel model Eq. (5.6). The straight and wavy
lines represent fermionic and bosonic Green’s functions, respectively.
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C0 ¼
m3g4

s

16p2
; ð5:15Þ

x0 ¼ �0 �
g2

s mK
2p2

; ð5:16Þ

In terms of these derived quantities, all the scattering phenomenology discussed in Section
2.1.2 follows immediately.

We observe that the scattering length diverges at a critical value of the bare detuning
�c

0 ¼
g2

s m
2p2 K, corresponding to the point at which the bound state appears. This should be

contrasted with the naive expectation that the bound state, being a b-particle, appears
when �0 goes through zero. We refer to this shift as a renormalization of detuning (‘‘mass
renormalization’’ of the closed-channel boson b in the field theory parlance). The origin of
the shift from �0 to x0 lies in the fact that the b-particle is, of course, not the bound state
(physical molecule) of the two a-particles (atoms). Rather, an actual bound state is a
superposition of a b-particle and a cloud of a-particles. The b-particle only corresponds
to the part of the physical bound state (molecule) which lies within the closed-channel.
We emphasize that while the b-particle can be safely treated as a point particle, whose size
is related to the detuning-independent cutoff 1/K, the size of the actual bound state (phys-
ical molecule) can get arbitrarily large, with its size diverging with a fi1, as is further dis-
cussed in Appendix A.

Since a diverges where the parameter x0 vanishes, we identify this additively renormal-
ized detuning parameter x0 with the physical detuning corresponding to Zeeman energy
splitting between closed- and open-channels, controlled by the magnetic field H and van-
ishing at field H0. Comparing the prediction (5.13) for a with its empirical form, Eq. (1.1),
[24], allows us to identify parameters of the two-channel model with the experimental
parameters according to

x0 � 2lBðH � H 0Þ; ð5:17Þ
C0 � 4ml2

Ba2
bgH 2

w=�h2; ð5:18Þ

where we estimated the magnetic moment responsible for the Zeeman splitting between the
open- and closed-channels (corresponding, respectively, to electron spin triplet and singlet,
respectively) to be 2lB.

Hence, the conclusion is that indeed the two-channel model faithfully describes a scat-
tering in the presence of a resonant state, as well as a bound and virtual bound states,
depending on the value of the detuning parameter. It is thus a sufficient model to capture
all the generic features of a Feshbach-resonant atomic gas, without resorting to a fully
microscopic (and therefore typically intractable) description. This should be contrasted
with the one-channel model Eq. (4.1), which is only able to capture scattering in the
absence of a resonant state, i.e., only in presence of either bound or virtual-bound states
and as such insufficient to capture an intermediate energy behavior of a Feshbach-reso-
nant atomic gas.

We close this section with a comment. In the literature it is common to study models
that in addition to the two-channel Feshbach resonant interaction considered above, a fea-
tureless non-resonant four-Fermi atomic interaction is also included. It is simple to show
that in three-dimensions, doing so does not add any new physics to the pure two-channel
model considered here. Instead it just amounts to redefining the relation between model’s
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parameters (�0, gs, k) and the experimentally determined parameters x0 and r0. Please see
Appendix B.2 for details.
5.1.2. Model at finite density: small parameter

As already discussed in Section 1, a finite density s-wave resonant Fermi gas,
described by a two-channel model, Eq. (5.6) is characterized by an average atom spacing
n�1/3 � 1/kF in addition to the scattering length a and the effective range r0, derived
above and discussed phenomenologically in Section 2. Hence, in addition to the dimen-
sionless gas parameter kFa discussed in Section 4.3.1, a two-channel model admits another
key dimensionless parameter cs / 1/(kF|r0|) that is the ratio of the average atom spacing
k�1

F to the effective range length |r0|. Equivalently, cs is related to the square-root of the
ratio of the Feshbach resonance width C0 (controlled by the Feshbach resonance coupling
gs and defined by Eq. (2.12)) to the Fermi energy, and equivalently to the ratio of the
resonance width (at the Fermi energy)

ffiffiffiffiffiffiffiffiffiffi
C0�F

p
to the Fermi energy:

cs �
g2

s Nð�FÞ
�F

¼
ffiffiffi
8
p

p

ffiffiffiffiffi
C0

�F

r
¼ g2

s cffiffiffiffiffi
�F
p ¼ 8

p
1

kFjr0j
: ð5:19Þ

The two-channel model, Eq. (5.6) is described by an interacting Hamiltonian, whose
interaction strength is controlled by a coupling gs. The corresponding dimensionless
parameter cs / g2

s controls a perturbative expansion in the Feshbach resonant interaction
(about an exactly solvable non-interacting gs = 0 limit) of any physical quantity. The key
observation is that cs is independent of the scattering length a and detuning x0, and as
such, if indeed small, remains small throughout the crossover, even for a Feshbach reso-
nance tuned through zero energy, where the scattering length a and the gas parameter
|a|n1/3 diverge.

Hence, we arrive an important conclusion: the two-channel model predictions for a nar-

row Feshbach resonance, (defined by cs� 1, i.e., width of the resonance C0 much smaller
than the Fermi energy, or equivalently effective range r0 much longer than atom spacing
n�1/3) are quantitatively accurate throughout the BCS–BEC crossover, no matter how
large the value of the gas parameter |a|n1/3 gets.

As discussed in Section 4.3.1, this availability of small parameter in the two-channel
model contrasts strongly with the one-channel model, characterized by a dimensionless
gas parameter |a|n1/3 that diverges for a Feshbach resonance tuned to zero (i.e., ‘‘on reso-
nance’’), that therefore does not admit a small perturbative expansion parameter through-
out the entire crossover (with the exception of deep BCS and deep BEC regimes).

In contrast, for the broad-resonance cs� 1 system, the two-channel model is no more
solvable than the one-channel model; in fact, as we will show in the next subsection, in this
limit the two models become identical. The perturbatively accessible and non-perturbative
regions of the two-channel model in the kF and a�1 parameter space are illustrated in
Fig. 4. In terms of the Fig. 13, the broad and narrow resonance limits, respectively,
correspond to kF falling inside and outside the virtual bound state regime, defined by
1/|a| < 1/(2|r0|).

The dimensionless parameter cs naturally emerges in a perturbative expansion in atom-
molecule coupling. More physically, it can also be deduced by estimating the ratio of the
energy associated with the atom-molecule Feshbach-resonance interaction to the kinetic
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energy, i.e, the non-interacting part of the Hamiltonian Eq. (5.6). To see this, note that the
atom-molecule coupling energy Es

FR per atom scales like

Es
FR � gsn

1=2; ð5:20Þ

where we estimated the value of b̂ðrÞ by b̂ðrÞ �
ffiffiffi
n
p

. This interaction energy is to be com-
pared to the non-interacting part of the Hamiltonian, i.e., the kinetic energy per atom

E0 � �F; ð5:21Þ
with the square of the ratio

cs � ðEs
FR=E0Þ2; ð5:22Þ

� g2
s n=�2

F �
m2g2

s

kF

; ð5:23Þ

giving the scale of the dimensionless parameter cs in Eq. (5.19).
In the spirit of the discussion in Section 4.3.1, another instructive way to estimate the

interaction strength and to derive the dimensionless coupling that controls the two-chan-
nel model’s perturbation theory is to integrate out (in a coherent-state path-integral sense)
the closed-channel molecular field b(r) from the action. As b(r) couples to atoms only lin-
early this can be done exactly by a simple Gaussian integration. The resulting action only
involves fermionic atoms that interact via an effective four-Fermi dispersive vertex. After
incorporating fermion-bubble self-energy corrections of the T-matrix the latter is given by
T kF
� ð4p=mÞfsðkFÞ, with a key factor that is the finite-density analog of the scattering

amplitude, fs(k), Eq. (2.11). To gauge the strength of the molecule-mediated interaction
energy we compare the interaction per atom (4p/m)fs(kF)n to the kinetic energy per atom
� F. Hence, dropping numerical prefactors, the dimensionless coupling that is a measure of
the atomic interaction, is given by

k̂s
kF
� 4pn

m�F

jfsðkFÞj; ð5:24Þ

� kFjfsðkFÞj: ð5:25Þ

At large detuning (i.e., deep in the BCS regime) k̂s
kF
� kFjaj � 1 and the theory is pertur-

bative in k̂s
kF

. However, as detuning is reduced |a(x0)| and k̂s
kF
ðx0Þ grow, and close to the

resonance a�1 may be neglected in the denominator of Eq. (2.11). In this regime, the cou-
pling saturates at k̂1kF

:

k̂1kF
� kF

jr0k2
F=2� ikFj

; ð5:26Þ

whose magnitude crucially depends on the dimensionless ratio cs / 1/(kF|r0|), with

k̂1kF
�

1
r0kF

; for jr0jkF � 1;

1; for jr0jkF � 1:

(
ð5:27Þ

Hence, in contrast to a two-particle vacuum scattering, in which the cross-section diverges
when the Feshbach resonance is tuned to zero energy, at finite density, for sufficiently large
a, the effective coupling k̂s

kF
ceases to grow and saturates at k̂1kF

, with the saturation value
depending on whether this growth is cut off by the atom spacing 1/kF or the effective range
r0. The former case corresponds to a narrow resonance [cs / (|r0|kF)�1� 1], with the inter-
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action remaining weak (and therefore perturbative) throughout the BCS–BEC crossover,
right through the strong-scattering 1/(kF|a|) = 0 point. In contrast, in the latter wide-res-
onance case [cs / (|r0|kF)�1� 1], discussed in Section 4.3.1, sufficiently close to the unitary
point 1/a = 0 the effective coupling k̂1kF

, Eq. (5.27), grows to Oð1Þ precluding a perturbative
expansion in atom interaction near the unitary point.

5.1.3. Relation to one-channel model

In this section we would like to demonstrate that in the broad-resonance limit, of rel-
evance to most experimentally realized Feshbach resonances to date, the r0k2 contribution
to the dispersion (arising from the molecular kinetic energy) of the effective coupling k̂s

k

can be neglected and one obtains an effective single (open-) channel description. Thus
the one and two channel models are equivalent in the limit cs fi1.

The reduction to a single-channel model in the broad resonance limit can be executed in
an operator formalism, with the derivation becoming exact in the infinite Feshbach reso-
nance width (cs fi1) limit. (For this same reduction in the functional integral formalism,
see Appendix A of Ref. [6].) The expression for the scattering length, Eq. (5.13)

1

a
¼ � 4p

mg2
s

�0 �
g2

s mK
2p2

� �
; ð5:28Þ

dictates that a proper transition to the broad resonance limit corresponds to gs fi1 while
adjusting the bare detuning according to

�0 ¼ �
g2

s

k
; ð5:29Þ

such that the physical scattering length a remains fixed. This allows us to trade the bare
detuning �0 and coupling gs for a new coupling k that physically corresponds to a
non-resonant attractive interaction depth, that can be used to tune the scattering length.
The Heisenberg equation of motion governing the molecular field b̂p dynamics under
Hamiltonian (5.6), with condition Eq. (5.29), is given by:

_̂bp ¼� i b̂p; Ĥ 2�ch
s

h i
; ð5:30Þ

¼ � i
p2

4m
� g2

s

k

� �
b̂p þ

gs

V 1=2

X
k

â�kþp
2#âkþp

2"

" #
: ð5:31Þ

Now, in the large gs fi1 limit (keeping k fixed) the molecular kinetic energy term /p2/4m

on the right and the
_̂bp term on the left are clearly subdominant, reducing the Heisenberg

equation to a simple constraint relation

b̂p ¼
k

gsV
1=2

X
k

â�kþp
2#âkþp

2": ð5:32Þ

Hence, we see that in the extreme broad-resonance limit the molecular field’s dynamics is
‘‘slaved’’ to that of the pair of atoms, according to Eq. (5.32). Substituting this constraint
into the Hamiltonian, (5.6) allows us to eliminate the closed-channel molecular field in fa-
vor of a purely open-channel atomic model with the Hamiltonian

Ĥ 1�ch
s ¼

X
k;r

k2

2m
âyk;râk;r þ

k
V

X
k;k0;p

ây
k0þp

2"
ây�k0þp

2#
â�kþp

2#
âkþp

2"
ð5:33Þ

a momentum space version of the one-channel model, Eq. (4.1) discussed in Section (4).
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A clear advantage of the one-channel model is that, as shown above, it naturally emerg-
es as the correct Hamiltonian in the experimentally relevant case of a wide resonance,
cs� 1. However, as discussed in Section 4.3.1, a notable disadvantage is that, in the most
interesting regime of a Feshbach resonance tuned to zero energy, its dimensionless gas
parameter kF|a| fi1 precluding a controlled perturbative calculation throughout the
BCS–BEC crossover.

5.2. p-wave

5.2.1. Two-atom scattering

As discussed in Section 1, for a single component Fermi gas Pauli principle forbids
interaction in the s-wave channel, and, consequently the dominant interaction is in the
p-wave channel. In addition to this motivation, a study of a p-wave resonance is attractive
because, as we will see below, (and is already clear from scattering phenomenology discus-
sion in Section 3.1) they can in principle be made arbitrarily narrow by simply decreasing
the particle density (as opposed to increasing n in the s-wave case) and therefore are ama-
nable to a quantitatively accurate description possibly in experimentally accessible
regimes. Finally, as we will see, p-wave superfluids exhibit richer set of possibilities and
thereby allow genuine phase transitions (some quite exotic), not just crossover as a func-
tion of detuning.

With this motivation in mind, in this section we focus on the dominant p-wave, sz = +1
triplet channel (a gas of atoms in a single hyperfine state ›) in the model (5.1), described by
the following p-wave Hamiltonian

Ĥ 2�ch
p ¼

X
k

k2

2m
âyk;râk;r þ

X
p;a

�a þ
p2

4m

� �
b̂yp;ab̂p;a

þ
X
k;p

gpffiffiffiffi
V
p ka b̂p;aây

kþp
2
ây�kþp

2
þ b̂yp;aâ�kþp

2
âkþp

2

� �
: ð5:34Þ

Here, as before, we defined the p-wave coupling to be gp, where the subscript p refers to the
‘‘p-wave’’, not to be confused with momentum. To simplify notation, we defined three
(cartesian tensor components) p-wave bosonic operators (a = x, y, z) in terms of the three
bosonic (closed-channel) operators b̂ðsz¼þ1Þ

p;1;m with definite projections of orbital angular
momentum, m = (±1,0) (and sz = +1), defined in Section 5

b̂p;x �
1ffiffiffi
2
p b̂ðþ1Þ

p;1;1 þ b̂ðþ1Þ
p;1;�1

� �
; ð5:35Þ

b̂p;y � �
iffiffiffi
2
p b̂ðþ1Þ

p;1;1 � b̂ðþ1Þ
p;1;�1

� �
; ð5:36Þ

b̂p;z � b̂ðþ1Þ
p;1;0; ð5:37Þ

and we have dropped the hyperfine subscript › on these molecular operators. We also de-
fined the corresponding Feshbach resonance coupling and bare detunings

gphðK� kÞ �
ffiffiffiffiffiffi
3

4p

r
gð1Þk ; ð5:38Þ

�z ¼ �ð1;0Þ0 ; ð5:39Þ

�x;y ¼ �? ¼
1

2
�
ð1;1Þ
0 þ �ð1;�1Þ

0

� �
; ð5:40Þ
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incorporating the short-scale (shorter than the atomic interaction range d = 2p/K) falloff
of the Feshbach resonant coupling gð1Þk as an implicit sharp cutoff at K on the momentum
sums. The coupling gp is the amplitude for the transition between a pair of identical ferm-
ionic atoms with one unit of orbital (relative) angular momentum into a closed-channel
molecule with an internal angular momentum ‘ = 1.

In Hp, Eq. (5.34), we have specialized to the experimentally relevant time-reversal
invariant Hamiltonian [37] for degenerate m = ±1 resonances and thereby omitted a
contribution

Ĥ t-break ¼
i

2
�
ð1;þ1Þ
0 � �ð1;�1Þ

0

� �X
p

b̂yp;y b̂p;x � b̂yp;xb̂p;y

� �
; ð5:41Þ

that vanishes in the case �ð1;þ1Þ
0 ¼ �ð1;�1Þ

0 of interest to us here.
By construction, the fermionic atoms (a-particles) scatter only in the p-wave channel.

The scattering amplitude can be easily calculated in the same T-matrix formalism, as in
the s-wave case, Eq. (5.10).

The propagator of the ba-particles is given by

Dabðp;xÞ ¼
dab

x� p2

4m� �a þ i0
� Daðp;xÞda;b; ð5:42Þ

Graphically, the T-matrix is represented by the geometric series in Fig. 18, with vertices
proportional to ka. It is given by

T k;k0 ¼ 2g2
p

X
a

kaDak0a þ 2g4
pV �1

X
q;a;b

kaDaqa 2P qbDbk0b þ 	 	 	

¼
X

a

2g2
pkak0a

D�1
a � 2

3
g2

pV �1
P

q

q2P
; ð5:43Þ

where Da stands for Dað0; k2

mÞ, P stands for the polarization bubble Pðq; k2

mÞ, defined in Eq.
(3.16), a = x,y,z, and overall factor of 2 comes from the definition of the T-matrix in this
many-body language (see factor of 1/2 in the definition of the interaction term in Eq.
(3.2)). A related symmetry factor of 2 appearing in front of P in Eq. (5.43) is also a con-
sequence of identical fermions appearing the diagrams in Fig. 18, that allows two possible
contractions of atomic lines inside P, which contrasts to one such contraction for s-wave
scattering of atoms distinguished by (hyperfine-) spin.

Calculating the momentum q sum in the p-wave polarization bubble in the denominator
of Eq. (5.43), we find

PpðeÞ �
1

V

X
q

q2Pðq; eÞ;

¼
Z

d3q

ð2pÞ3
q2

e� q2

m þ i0

¼� mK3

6p2
� m2K

2p2
e� i

m5=2

4p
e3=2: ð5:44Þ

where as before e = k2/m is the molecule’s internal energy in the center of mass frame. Just
as in Eq. (4.3) in Pp(e) we have cut off the (otherwise ultra-violently divergent) integral at
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high momentum K corresponding to the inverse (closed-channel) molecular size, with the
calculation (and the whole approach of treating b as a point particle) valid only as long as
e� K2/m. However, in contrast to the s-wave, Eq. (4.3), here the integral for the p-wave
case scales as p3 at large momenta. As a result, in addition to the constant contribution
(first K3 term that is analogous to linear K term, Eqs. (4.3) and (5.16)) that leads to the
detuning shift, the polarization bubble shows a second K-dependent contribution that
multiplicatively renormalizes the molecular dispersion. For a future reference, we intro-
duce two cutoff-dependent parameters related to these two terms

c1 ¼
m

9p2
K3g2

p; ð5:45Þ

c2 ¼
m2

3p2
g2

pK;

� K
kg
; ð5:46Þ

where c1 is a constant with dimensions of energy, c2 is an important dimensionless con-
stant and we defined a new momentum scale

kg ¼
3p2

m2g2
p

: ð5:47Þ

The two-body scattering amplitude is obtained through its relation f ðk; k0Þ ¼ � m
4p T k;k0 ,

Eq. (3.13) to the T-matrix. Combining this with Eqs. (5.43)–(5.46), we thereby obtain

f ðk; k0Þ ¼
X

a

3kak0a
6p

mg2
p
ð�a � c1Þ � 6p

m2g2
p
ð1þ c2Þk2 � ik3

: ð5:48Þ

For an isotropic interaction, m = 0, ± 1, Feshbach resonances are degenerate, ea = e0,
and the scattering amplitude is (not surprisingly) entirely in the p-wave channel

f ðk; k0Þ ¼ 3f pðkÞ cosðhÞ; ð5:49Þ

where h is the angle between momenta k and k 0 before and after the scattering event. The
partial wave scattering amplitude fp(k) in the p-wave channel, as follows from Eq. (2.1)
and (3.20), is given by

fpðkÞ ¼
k2

6p
mg2

p
ð�0 � c1Þ � 6p

m2g2
p
ð1þ c2Þk2 � ik3

: ð5:50Þ

Therefore, as argued on general grounds, the scattering of identical fermionic atoms is in-
deed exactly of the form Eq. (2.21), with

v�1 ¼� 6p
mg2

p

ð�0 � c1Þ; ð5:51Þ

k0 ¼�
12p
m2g2

p

ð1þ c2Þ;

¼� 4

p
kg 1þ K

kg

� �
; ð5:52Þ
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and this result essentially exact, valid on all momentum scales up to the cutoff K. As
required for a resonant state, indeed k0 < 0 is negative definite.

We note that k0 is the characteristic momentum scale beyond which the width of the
resonance k3 becomes larger than its energy k0 k2/2, i.e., a crossover scale beyond which
the resonant state disappears. It is clear from its form, Eq. (5.52) that k0 is given by the
following limits

k0 ¼�
4

p
�

kg; for kg � K;

K; for kg � K;

	
ð5:53Þ

depending on the ratio K/kg, but with k0 P K for all kg, set by Feshbach resonance cou-
pling gp.

It is useful to introduce the physical detuning x0

x0 ¼
�0 � c1

1þ c2

; ð5:54Þ

that corresponds to the energy of the pole in fp(k), Eq. (5.50) when this pole is tuned to low
energy. In terms of the detuning x0, the p-wave scattering amplitude is given by

fpðkÞ ¼
k2

6p
mg2

p
1þ c2ð Þ x0 � k2

m

� �
� ik3

: ð5:55Þ

Adjusting x0 from negative to positive, turns the scattering in the presence of a low-lying
bound state at �|x0| into the scattering in the presence of a resonance at x0.

Thus, the p-wave two-channel model Eq. (5.34) captures the most general low-energy
scattering in almost exactly the same way as its s-wave counterpart does. The most obvi-
ous difference from the s-wave model lies in how the cutoff K enters the scattering ampli-
tude. In the s-wave case K could be eliminated via a redefinition of the detuning energy
from �0 to x0, as in Eq. (5.16), and thereby disappears from all other computations. In
the p-wave case, however, K enters the scattering amplitude not only additively but also
multiplicatively, and therefore explicitly appears in the scattering amplitude fp(k), Eq.
(5.55) through the dimensionless parameter c2, even after the shift to physical detuning x0.

Interestingly, appearance of c2 persists when we calculate the phases of the p-wave
condensate later in this paper. While the parameter c1 drops out of all predictions when
written in terms of physical parameters, the dimensionless parameter c2, controlled by
the closed-channel cutoff K and coupling gp continues to appear explicitly. Unfortunately,
it is not easy to extract c2 from experimental measurements of the scattering amplitude, as
it enters the amplitude in the combination ð1þ c2Þ=ðm2g2

pÞ. We note that if c2� 1 then it
and the uv-cutoff K indeed drop out from all physical quantities with k0 � �kg. However,
if c2� 1, then k0 � � ð1þ c2Þ=ðm2g2

pÞ � � K reduces to a quantity that is completely
independent of gp. Indeed in this limit, the bare dispersion of the closed-channel b-field
can be ignored (in comparison to the polarization bubble K-dependent corrections) and
the field b can be integrated out, just like in the strong coupling s-wave two-channel model,
and leads to a p-wave single-channel model analog of (4.1).

5.2.2. Model at finite density: small parameter

A finite density p-wave resonant Fermi gas is characterized by the following three
length scales: the average atom spacing (Fermi wavelength) 1/kF, the analog of effective



50 V. Gurarie, L. Radzihovsky / Annals of Physics 322 (2007) 2–119
range (characterizing resonance intrinsic width C0) 1/k0, and the scattering length |v|1/3.
Consequently, we can form two dimensionless constants. One is the p-wave gas parameter
kF|v|1/3, that, although small for large positive and negative detuning, diverges near the res-
onance (tuned to low energy), and thereby precludes a controlled perturbative expansion
in kF|v|1/3 (or equivalently in nv) throughout the phase diagram. However, in the two-chan-
nel p-wave model the second dimensionless parameter, defined in Eq. (1.6) and approxi-
mately given by

cp �
kF

k0

; ð5:56Þ

(that is approximately independent of x0 and v), offers such a controlled expansion even in
the region where v diverges.

As in the s-wave case, we can get a better physical sense of the dimensionless parameter
that controls perturbation theory by looking at the ratio of the p-wave Feshbach reso-
nance interaction energy

Ep
FR � gpn1=2kF; ð5:57Þ

to the typical kinetic energy per atom

E0 � �F; ð5:58Þ

where we estimated the value of b̂ðrÞ by b̂ðrÞ � ffiffiffi
n
p

. and took the value of a typical internal
momentum k (appearing in the p-wave vertex) to be kF. We find

ðEp
FR=E0Þ2 � g2

pnk2
F=�

2
F;

� m2g2
pkF � m2g2

pn1=3;

� kF

kg
; ð5:59Þ

that, as expected is indeed controlled by cp in the limit of large kg, i.e., small gp.
As in the s-wave case above we can more carefully gauge the interaction strength and

the corresponding dimensionless coupling of the p-wave two-channel model by formally
integrating out the closed-channel molecular field b(r). This leads to an effective one-chan-
nel model, with atoms that interact via an effective four-Fermi dispersive vertex. After
incorporating the fermion-bubble self-energy corrections of the T-matrix the latter is given
by T kF

� ð4p=mÞfpðkFÞ, with a key factor that is the finite-density analog of the scattering
amplitude, fp(k), Eq. (2.21). Following the finite angular momentum one-channel model
analysis of Section 4.3.2 we can gauge the strength of the molecule-mediated interaction
energy by comparing the interaction per atom (4p/m)fp(kF)n to the kinetic energy per atom
�F. Hence, dropping numerical prefactors, the dimensionless p-wave coupling that is a
measure of the atomic interaction, is given by

k̂ðpÞkF
� 4pn

m�F

jfpðkFÞj; ð5:60Þ

� kFjfpðkFÞj;

� k3
F

jv�1 þ 1
2
k0k2

F=2� ik3
Fj
; ð5:61Þ
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We first note that, in principle, at high densities (energies) kF > k0, the k0k2
F is subdominant

and the dimensionless coupling is given by the gas parameter vk3
F � vn that saturates at 1

as v1/3 grows beyond atom spacing 1/kF. However, given the k0 asymptotics, Eq. (5.53), we
have kF� k0 P K and in contrast to the s-wave case this non-perturbative regime is never

accessible in the p-wave case. Namely, at all physically accessible densities the width term
k3

F is subdominant and the effective coupling is given by

k̂ðpÞkF
� k3

F

jjv�1
‘ j þ 1

2
k0k2

Fj
; ð5:62Þ

�
k3

Fjvj ¼ kF

k0
ðk0k2

FjvjÞ; for k0k2
Fjvj � 1;

kF

k0
; for k0k2

Fjvj � 1:

(
ð5:63Þ

Since, as emphasized above kF� k0 for all densities of physical interest (see Eq. (5.53)),
we conclude that a p-wave resonant gas is always in a perturbative regime with the pertur-
bation theory controlled via a small dimensionless coupling cp given in Eq. (5.56). It there-
by allows quantitatively accurate predictions given in powers of cp (However, if c2� 1,
this description might go beyond mean field theory [45]. We are grateful to Castin [60]
for pointing this out to us.)

6. s-wave BCS–BEC crossover

In Section 5.1, we developed and justified the proper two-channel model of an s-wave
resonantly interacting atomic gas and related its parameters to a two-body scattering
experiment. We now turn to the main goal of our work, namely a study of this model
at a fixed chemical potential, with the aim to establish the thermodynamics of an s-wave
resonant Fermi gas as a function of temperature T, density n, and detuning x0.

The thermodynamics is encoded in the partition function Z ¼ Tre�bĤ and the corre-
sponding free energy F = �T lnZ. The partition function can be conveniently formulated
in terms the imaginary-time path-integral over coherent states labeled by commuting
closed-channel fields /(r), �/ðrÞ (bosonic molecules) and anticommuting open-channel
fields w(r), �wðrÞ (fermionic atoms), and their complex conjugates

Zs ¼
Z

DwD�wD/D�/e�Ss½/;w
; ð6:1Þ

with the action Ss[/,w] corresponding to the Hamiltonian H 2�ch
s , Eq. (5.6), given by

Ss½/;w
 ¼
Z b

0

ds
Z

d3r
X
r¼";#

�wr os �
r2

2m
� l

� �
wr

"

þ�/ os þ �0 � 2l�r
2

4m

� �
/þ gsð/�w"�w# þ �/w#w"Þ



; ð6:2Þ

where b = 1/T is the inverse temperature. In above, because fermionic atoms and bosonic
molecules are in equilibrium, able interconvert into each other via the Feshbach resonant
coupling gs, the chemical potential l couples to the total conserved particle number, that is
the sum of the number of free atoms (fermions) and twice the total number of bosons.

Given that fermions w appear quadratically in Eq. (6.1), they can be formally integrated
out, giving an effective purely bosonic action
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Zs ¼
Z

D/D�/e�Ss /½ 
; ð6:3Þ

where the effective action Ss[/] is given by

Ss½/
 ¼
Z b

0

ds
Z

d3r�/ os þ �0 � 2l�r
2

4m

� �
/� Tr ln

ix� r2

2m � l gs/

gs
�/ ixþ r2

2m þ l

 !
:

ð6:4Þ
The bosonic action Ss[/] completely characterizes our system. However, it is non-linear in
/, describing effective bosonic interactions controlled by gs and therefore cannot be solved
exactly. Nevertheless it can be studied via standard many-body methods as we will
describe below.

6.1. Infinitely narrow resonance limit

It is enlightening to first consider the limit of a vanishingly narrow resonance,
cs � g2

s m3=2�
�1=2
F ! 0. As can be seen most clearly from the original action, Eq. (6.2) or

the corresponding Hamiltonian, Eq. (5.6), in this gs fi 0 limit the system breaks into
two non-interacting parts: fermionic atoms of mass m and bosonic molecules of mass
2m. Despite of a vanishing interaction, we emphasize an implicit order of limits here.
Namely, the vanishing interaction is still sufficiently finite so that on experimental times
scales the resulting fermion–boson mixture is nevertheless in equilibrium, with only total
number of particles (but not the separate fermion and boson number)

nf þ 2nb ¼ n; ð6:5Þ
that is conserved, with nf, nb the atom and molecule densities, respectively. This key fea-
ture is captured by a common chemical potential l even in the gs fi 0 limit. In this limit the
boson lifetime, even for �0 > 0 when the boson is actually a resonance [29], becomes infi-
nitely long (but still short enough to establish equilibrium with fermions), and therefore
the bosons can be considered as stable particles on equal footing with fermions. Also in
this limit the distinction between parameter �0 and the renormalized physical detuning
x0, Eq. (5.16), disappears

�0 ¼ x0: ð6:6Þ
At T = 0, the condition 2l 6 x0 holds, since the lowest energy level of bosons cannot be

negative. We therefore arrive at the following picture illustrated in Fig. 19. For a large
positive detuning x0 > 2�F, molecules are too energetically costly to be produced in equi-
librium, and all particles are fermionic atoms forming a Fermi sea, with the chemical
potential locked to the Fermi energy l = �F, with

�F ¼
ð3p2nÞ2=3

2m
; ð6:7Þ

set completely by the total particle density n. However, as illustrated in Fig. 19, for an
intermediate range of detuning x0 < 2�F, it becomes energetically advantageous to convert
a fraction of fermions in the Fermi sea between x0 and 2�F into Bose-condensed mole-
cules, thereby keeping the effective bosonic chemical potential 2l � x0 at its lowest value
of zero. This atom-to-molecule conversion regime continues as detuning is reduced, with l
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Fig. 19. An illustration of the BCS–BEC crossover in the limit of a vanishing resonance width cs fi 0. The
evolution with detuning x0 is illustrated, with (a) the BCS regime of x0 > 2�F, where particles are all free atoms
forming a Fermi sea, (b) the crossover regime of 0 < x0 < 2�F, where a fraction of atoms between x0 and �F have
converted into BEC of bosonic molecules, and (c) the BEC regime of x0 < 0, where only Bose-condensed
molecules are present.
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locked to x0/2. It terminates when x0 reaches 0, at which point atom-to-molecule conver-
sion is complete and the system enters into the BEC regime of a pure molecular condensate
for x0 < 0. The full range of behavior can be summarized by the evolution of the molec-
ular boson density, nb(x0) with detuning x0, that can be easily found to be
nb ¼

0; for x0 > 2�F

n
2

1� x0

2�F

� �3=2
� �

; for 0 6 x0 6 2�F

n
2
; for x0 < 0:

8>>><
>>>:

ð6:8Þ
and is displayed in Fig. 20.
For finite temperature the chemical potential is no longer locked to the detuning and is

determined by the particle number equation Eq. (6.5), together with the non-interacting
expressions for the fermionic density



Fig. 20. The normalized density of bosonic molecules n̂b ¼ 2nb=n vs the normalized detuning x̂0 ¼ x0=�F in the
limit of a vanishing resonance width, cs fi 0.
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nf ¼ 2

Z
d3k

ð2pÞ3
1

e
k2

2mT�
l
T þ 1

; ð6:9Þ

and the bosonic density

nb ¼
Z

d3k

ð2pÞ3
1

e
k2

4mT�
2l�x0

T � 1
þ n0; ð6:10Þ

where n0 = |B|2 is, as usual, the density of the bosonic condensate. This total number con-
straint must be supplemented by the free-energy minimization rule that n0 > 0 only if
2l = x0 and vanishes otherwise.

These equations can then be used to determine the normal-superfluid transition temper-
ature Tc(x0), defined as a temperature at a given detuning x0 at which n0 first vanishes.
Setting 2l = x0 and n0 = 0, we find an implicit equationZ

d3k

ð2pÞ3
1

e
k2

2mT c
�x0

2T c þ 1
þ
Z

d3k

ð2pÞ3
1

e
k2

4mT c � 1
¼ n

2
; ð6:11Þ

that uniquely gives Tc(x0). The numerical solution of Eq. (6.11) is presented in Fig. 21.
The limiting behavior of Tc(x0) is easy to deduce. Deep in the BEC regime, for

x0���F, the first integral is exponentially small, reflecting the fact that in this regime
the fermion chemical potential l is large and negative and a number of thermally created
fermionic atoms is strongly suppressed. The second integral then gives the critical temper-
ature, that in this regime coincides with the BEC transition temperature

T cðx0 � ��FÞ � T BEC ¼
p
m

n
2f 3=2ð Þ

� �2=3

; ð6:12Þ

that is indeed on the order of �F. As x0 is increased through the BEC and crossover re-
gimes, Tc(x0) decreases, as the contribution of thermally created free atoms from the first
integral increases. When detuning reaches x0 = 2�F, the solution of Eq. (6.11) drops down
to Tc(2�F) = 0. Beyond this point, for x0 > 2�F in the BCS regime, the bosons are com-
pletely converted into free fermions forming a Fermi sea and Tc(x0) sticks at 0.



Fig. 21. The normalized critical temperature T̂ c ¼ T c=T BEC as a function of the normalized detuning x̂0 ¼ x0=�F

in the limit of a vanishing resonance width cs fi 0.
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6.2. Narrow-resonance limit

We extend our study of the s-wave resonant Fermi gas, described by the Bose–Fermi
mixture action to the limit where cs is small but non-zero. The overall qualitative picture
is quite similar to the gs fi 0 limit discussed in the previous subsection and summarized in
Fig. 19, with only a few new features.

Because of the / non-linearities in Ss[/], Eq. (6.4), the functional integral Eq. (6.3) in
general cannot be evaluated exactly. However, as discussed in Section 1 and in Section
5.1, for small gs (cs� 1) the theory can be analyzed by a controlled perturbative expansion
in powers of cs around the saddle-point (mean-field) approximation of Zs. To this end, we
look for the spatially uniform field configuration /(r) = B that minimizes the action Ss[/].
We find the following saddle-point equation

1

B
dSs½/


d�/

����
/¼B

¼ �0 � 2l� g2
s T
X
xn

Z
d3k

ð2pÞ3
1

x2
n þ k2

2m� l
� �2

þ g2
s
�BB
¼ 0: ð6:13Þ

where xn = pT(2n + 1) are the fermion Matsubara frequencies. The sum over the frequen-
cies can be done in a closed form, leading to the so-called BCS–BEC gap equation for the
mean field B(T,l, �0) (and the corresponding condensate density |B|2)

�0 � 2l ¼ g2
s

2

Z
d3k

ð2pÞ3
tanh Ek

2T

Ek
; ð6:14Þ

where Ek is given by

Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2m
� l

� �2

þ g2
s
�BB

s
ð6:15Þ

The integral on the right-hand side of the BCS–BEC gap equation is formally
divergent, scaling linearly with the uv momentum cutoff K. However, expressing the
bare detuning parameter �0 in terms of the physical, renormalized detuning x0 using
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Eq. (5.16), we can completely eliminate the appearance of the microscopic uv scale K
in all physical quantities, and thereby obtain a uv-convergent form of the BCS–BEC
gap equation

x0 � 2l ¼ g2
s

2

Z
d3k

ð2pÞ3
tanh Ek

2T

Ek
� 2m

k2

� 

: ð6:16Þ

To calculate Zs in the saddle-point approximation, we write the bosonic field

/ðrÞ ¼ Bþ uðrÞ; ð6:17Þ

in terms of a fluctuation field u(r) about the saddle point B. Expanding the action, we find

Ss B;u½ 
 � S0½B
 þ Sfluct½B;u
; ð6:18Þ
where

S0½B
 ¼ Ssj/¼B

¼ V
T
�0 � 2lð Þ�BB� V

X
xn

Z
d3k

ð2pÞ3
ln x2

n þ
k2

2m
� l

� �2

þ g2
s
�BB;

" #
ð6:19Þ

and

Sfluct½B;u
 ¼
X
p;Xn

ð �up;Xn u�p;�Xn Þ
1
2
sBðp;XnÞþR11ðp;XnÞ R20ðp;XnÞ

R20ðp;XnÞ 1
2
sBðp;�XnÞþR11ðp;�XnÞ

 !
up;Xn

�u�p;�Xn

� �
:

ð6:20Þ

Here sBðp;XnÞ ¼ iXn þ �0 � 2lþ p2

4m represents the free part of the bosonic action, R11(p,x)
and R02(p,x) are the normal and anomalous fermion polarization operators, and
Xn = 2pTn are the bosonic Matsubara frequencies. We used here a fact that R20 is symmet-
ric under the sign change of its arguments. The explicit expressions for the polarization
operators are not very illuminating at this stage and will be discussed later (see Eqs.
(6.71) and (6.72)). Within this saddle-point approximation, the partition function Zs is giv-
en by

Zs � expð�S0Þ
Z

DuD�u expð�SfluctÞ: ð6:21Þ

In the applications of Eq. (6.14) to atomic gases, it is the total particle number N, rather
than the chemical potential that is controlled experimentally. Of course, as usual, in the
thermodynamic limit there is no distinction between the two ensembles and it is sufficient
to work in the grand-canonical ensemble (as we have done above), and then eliminate l in
favor of N through the particle number equation

N ¼ T
o

ol
ln Zs: ð6:22Þ

Solving (6.22) simultaneously with the BCS–BEC gap equation (6.16) determines the con-
densate density B and chemical potential l as a function of experimentally controlled
parameters, the detuning x0, temperature T, and particle number N.
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6.2.1. Zero temperature BCS–BEC crossover

At zero temperature the BCS–BEC gap equation reduces to

x0 � 2l ¼ g2
s

2

Z
d3k

ð2pÞ3
1

Ek
� 2m

k2

� 

: ð6:23Þ

The particle number equation can also be evaluated noting that at T = 0 and small cs,
most of the weakly interacting bosons remain in the condensate B (with only a small inter-
action-driven depletion set by cs) and therefore the fluctuations u(r) are small and can be
safely neglected. Omitting Sfluct from Zs above and using Eq. (6.19), the particle number-
density (n = N/V) equation is then given by

n ¼� T
V

oS0

ol
;

¼
Z

d3k

ð2pÞ3
1� nk

Ek

� 

þ 2�BB; ð6:24Þ

where Ek is still given by Eq. (6.15), and

nk ¼
k2

2m
� l: ð6:25Þ

Before solving this equation together with the BCS–BEC gap equation, (6.23) for the
condensate B and the chemical potential l as a function of x0, let us comment on the nat-
ure of the ground state. The bosons, within the narrow resonance approximation, where
the condensate depletion has been neglected, are all located in the condensate. The ferm-
ions, on the other hand, form a paired superfluid described by the BCS-like Hamiltonian

H � lN f ¼
X
k;r

nkâykrâkr þ
X

k

gs Bâyk"â
y
�k# þ �Bâ�k#âk"

� �
; ð6:26Þ

with the condensate B appearing as pairing parameter to be self-consistently determined.
In practice, B can always be chosen to be real due to the symmetry B fi eiuB, so that
B ¼ �B. The role of the BCS gap is played by the bosonic density, via

D ¼ gsB: ð6:27Þ

The ground state of this Hamiltonian is the BCS wavefunction [1]

BCSj i ¼
Y

k

uk þ vkayk"a
y
�k#

� �
0j i; ð6:28Þ

with uk, vk given by the standard expressions

vk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1� nk

Ek

� �s
; uk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ nk

Ek

� �s
: ð6:29Þ

When x0 is large and positive, x0 J 2�F, the closed-channel molecules (bosons b̂p) are
energetically suppressed and Eq. (6.26) predicts phenomenology of a BCS superconductor
[1]. Namely, most of the particles will be fermionic atoms with a weak attraction due to
exchange of virtual bosons (resonances) with energy detuned much higher than the chem-
ical potential. Such degenerate fermions will therefore form a BCS ground state (6.28).
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Due to fermionic pairing, the bosons will still be present, albeit in the exponentially small
numbers since the BCS gap Eq. (6.27) and the associated Cooper-pair density are expo-
nentially small.

In a qualitative picture similar to the gs fi 0 limit (see Fig. 19), as x0 is decreased the
number of boson condensate will grow, while the number of fermions will decrease, with
the substantial change approximately (within a window cs �F) taking place when x0 drops
below 2�F. As x0 crosses 0, the chemical potential that tracks it for x0 < 2�F will also
change sign and become negative. At this point the remaining fermions will form a
‘‘strongly coupled superconductor’’ (in the notation of Ref. [11]) that exhibits pairing in
the absence of a Fermi surface, driven by the existence of a true two-body bound state.
Such situation is not typically encountered nor experimentally accessible in ordinary,
solid-state superconductors. As discussed in Ref. [11], a strongly coupled s-wave supercon-
ductor is not qualitatively different from the more standard one with l > 0. This contrasts
with the p-wave case, where l > 0 and l < 0 regimes are separated by a (possibly topolog-
ical) quantum phase transition, that we will discussed in Section 7 devoted to p-wave
resonances. Because throughout the entire range of detuning x0 (particularly for
0 < x0 < 2�F) the system will be a superposition of Bose-condensed bosons and
Cooper-paired fermions, we refer to it as a BCS–BEC condensate.

It is useful to contrast this small cs picture of BCS–BEC condensate with the earlier
studies of wide resonances (corresponding to the large cs limit in our setting). When the
resonance is wide, most of the particles are fermions regardless of the value of x0

(open-channel fermions in the atomic physics parlance) and only a small fraction of the
condensate will be bosons (closed-channel fermions). As a result, for a wide resonance
no sharp features exist in the BCS–BEC crossover.

Now we are in the position to solve the BCS–BEC gap and the particle number equa-
tions. The former can be written as

x0 � 2l ¼ g2
s 2mð Þ

3
2
ffiffiffiffiffiffi
jlj

p
4p2

I uð Þ; ð6:30Þ

where u = gsB/l (with B ¼ �B), and the integral I(u) is given by

IðuÞ ¼
Z 1

0

dx
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � sign uð Þ2 þ u2

q � 1

2
64

3
75; ð6:31Þ

with sign u = signl. Similarly, the particle number equation reduces to

ð2mÞ
3
2jlj

3
2

3p2
KðuÞ þ 2B2 ¼ N ; ð6:32Þ

where K(u) is defined as

KðuÞ ¼ 3

2

Z 1

0

dxx2 1� x2 � sign uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � signuÞ2 þ u2

q
2
64

3
75: ð6:33Þ

K(u) essentially measures the deviation of the particle number from the usual Fermi dis-
tribution in the absence of pairing, with K(u fi 0+) fi 1.

In the BCS regime we expect a small condensate with u� 1, for which
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IðuÞ � ln
8

e2u

� �
: ð6:34Þ

The logarithmic divergence of I(u) as u goes to zero is the standard Fermi surface contri-
bution to the gap equation. In the same regime we can replace K(u) by K(0+) = 1. We thus
find

B � g�1
s 8e�2l exp � 4p2ðx0 � 2lÞ

ð2mÞ3=2g2
s
ffiffiffi
l
p

 !
; ð6:35Þ

and

ð2mlÞ3=2

3p2
þ 2B2 ¼ n: ð6:36Þ

Since B is exponentially small, Eq. (6.36) gives l � �F. Combined, these two equations
give us B(x0) as a function of detuning. The quantitative validity of this regime, u� 1
is given by

x0 � 2�F þ �Fcs; ð6:37Þ

where cs is the small parameter given by Eq. (5.19) characterizing an s-wave resonant gas
at density n.

As x0 is decreased below 2�F, a crossover regime is entered as fermions begin to be con-
verted into bosons, and the chemical potential l tracks x0/2 to accuracy OðcsÞ. As is clear
from the infinitely narrow resonance analysis, Eq. (6.8) and Fig. 19, most of the atoms will
pair up into bosons that become true bound states inside the BEC regime of x0 < 0. In this
BEC regime, for a sufficiently negative x0, so that u < 0 and |u|� 1, we can use the follow-
ing simple asymptotics Ið�0Þ ¼ � p

2
, and KðuÞ � 3p

16
u2, to reduce the gap and particle num-

ber equations deep in the BEC regime to be

x0 � 2l � � g2
s ð2mÞ3=2

ffiffiffiffiffiffi
jlj

p
8p

; ð6:38Þ

n � ð2mÞ3=2g2
s B2

16p
ffiffiffiffiffiffi
jlj

p þ 2B2: ð6:39Þ

These give a BCS–BEC condensate, in which most particles are molecular (true bound
states) bosons, and only a small fraction of the total number are the Cooper-paired
fermions.

The full solution of Eqs. (6.30) and (6.32) can only be found numerically and is
displayed in Fig. 6 for c = 0.1. We can see that in contrast of the infinitely narrow
resonance case presented earlier on Fig. 20, the molecular condensate density nb = B2

extends to �0 P 2�F, although only as an exponentially small tail. This represents the
BCS condensate absent in the limit of an infinitely narrow resonance, cs fi 0.
6.2.2. Ground state energy across BCS–BEC crossover

It is instructive to also calculate the zero temperature grand canonical ground-state
energy density eGS(l,x0,B), that is given by the T fi 0 limit of TS0/V, where S0 is given
by Eq. (6.19). Calculating it at arbitrary B and then minimizing it with respect to B will be
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of course be equivalent to solving the gap equation Eq. (6.23). As in the previous subsec-
tion, to lowest order in cs, ignoring quantum fluctuations of /, we find

eGS ¼ ðx0 � 2lÞB2 þ
X

k

nk � Ek þ g2
s

B2

2�k

� �
: ð6:40Þ

Here we again chose B to be real, traded �0 for x0, and used the notations Eqs. (6.25) and
(6.15) with the additional notation

�k ¼
k2

2m
: ð6:41Þ

Setting B = 0 the normal state energy is easily computed as

eGSðB ¼ 0Þ ¼
X

k

ðnk � jnkjÞ; ð6:42Þ

¼ � 8

15
cl5=2HðlÞ; ð6:43Þ

where we converted the sum to an integral and used the three-dimensional density of states
NðEÞ ¼ c

ffiffiffiffi
E
p

with

c � m3=2ffiffiffi
2
p

p2
: ð6:44Þ

Combining this with Eq. (6.40) then gives:

eGS ¼ ðx0 � 2lÞB2 � 8

15
cl5=2HðlÞ þ Jðl;BÞ; ð6:45Þ

where

Jðl;BÞ �
Z

d3k

ð2pÞ3
jnkj � Ek þ g2

s

B2

2�k

� �
; ð6:46Þ

and we have converted the momentum sum to an integral.
The gap equation discussed previously, Eq. (6.23), and the particle number equation

Eq. (6.24) obviously follow from

0 ¼ oeGS

oB
; ð6:47Þ

and

n ¼ � oeGS

ol
: ð6:48Þ

For a narrow Feshbach resonance (cs� 1), we can find an accurate analytic approxi-
mations to eGS in Eq. (6.45) in all relevant regimes. The first step is to find an appropriate
approximation to Eq. (6.46), which has drastically different properties depending on
whether l > 0 (so that the low-energy states are near the Fermi surface) or l < 0 (so that
there is no Fermi surface and excitations are gapped with energy bounded from below by
|l|). We proceed by first evaluating the derivative oJ

oB and then integrating the expression
with a constant of integration J(l, 0) = 0.
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oJ
oB
¼� g2

s B
Z

d3k

ð2pÞ3
1

Ek
� 1

�k

� �
; ð6:49Þ

¼ � g2
s B
Z 1

0

ffiffi
�
p

d�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�� lÞ2 þ D2
q � 1

�

0
B@

1
CA; ð6:50Þ

’ � 2g2
s NðlÞB ln

8e�2l
gsB

; l > 0; l� gsB; ð6:51Þ

’ g2
s NðlÞB pþ p

16

gsB
l

� �2
" #

; l� �gsB; ð6:52Þ
This calculation proceeds through the evaluation of the integral for I(u), Eq. (6.31). Inte-
grating back up with respect to B, we thus have

J ’
�NðlÞ g2

s B2

2
þ g2

s B2 ln 8e�2l
gsB

� �
; ðl > 0; l� gsB;

NðlÞ g2
s B2

2
pþ p

32
gsB
l

� �2
� 


; l < 0; jlj � gsB;

8><
>: ð6:53Þ
Having computed eGS(l,B) in the regimes of interest, the phase diagram is easily deduced
by finding B that minimizes eGS(l,B), subject to the total atom number constraint
Eq. (6.48).

a. BCS regime. The BCS regime is defined by x0� 2�F, where gsB� l and l . �F > 0,
with pairing taking place in a thin shell around the well-formed Fermi surface. In this
regime, eGS is given by

eGS ’ � c
ffiffiffi
l
p

2
D2 þ D2

g2
s

ðd� 2lÞ þ c
ffiffiffi
l
p

D2 ln
D

8e�2l
� 8

15
cl5=2 ð6:54Þ
with D ” gsB, see Eq. (6.27).
It is convenient to work with the dimensionless variables defined by

l̂ ¼ l
�F

; D̂ ¼ D
�F

; x̂0 ¼
x0

�F

: ð6:55Þ
The normalized ground-state energy eGS in the BCS regime is then given by

eGS �
eGS

c�5=2
F

’ �
ffiffiffî
l
p

2
D̂2 þ D̂2ðx̂0 � 2l̂Þc�1

s þ
ffiffiffî
l

p
D̂2 ln

D̂
8e�2l̂

� 8

15
l̂5=2; ð6:56Þ
where, cs, defined in Eq. (5.19), is a dimensionless measure of the Feshbach resonance
width C0 to the Fermi energy. With this, Eqs. (6.47) and (6.48) become
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0 ¼ oeGS

oD̂
; ð6:57Þ

’ 2D̂ðx̂0 � 2l̂Þc�1
s þ 2

ffiffiffî
l

p
D̂ ln

D̂
8e�2l̂

; ð6:58Þ

4

3
¼� oeGS

ol̂
; ð6:59Þ

’ 5

4

D̂2ffiffiffî
l
p þ 4

3
l̂3=2 þ 2D̂2c�1

s �
D̂2

2
ffiffiffî
l
p ln

D̂
8e�2l̂

; ð6:60Þ

that admits the normal state (D̂ ¼ 0, l̂ ¼ 1) and the BCS SF state

D̂ ’ D̂BCSðl̂Þ � 8e�2l̂e�c�1
s ðx̂0�2l̂Þ=

ffiffî
l
p
; ð6:61Þ

4

3
’ 4

3
l̂3=2 þ 2D̂2c�1

s ; ð6:62Þ

where in the second line we approximately neglected the first term on the right side of
Eq. (6.60), valid since D̂BCS � 1 (and cs� 1). It is easy to show that the BCS solution
is always a minimum of eGS(B).

The meaning of the two terms on the right-hand side of Eq. (6.62) is clear once we recall
its form in terms of dimensionful quantities:

n ’ 4

3
cl3=2 þ 2jBj2; ð6:63Þ

i.e., the first term simply represents the total unpaired atom density, reduced below n since
l < �F, while the second term represents the density of atoms bound into molecules, i.e.,
twice the molecular condensate density |B|2. Qualitatively, we see that at large x̂0,
D̂� 1, implying from the number equation that l̂ � 1.

b. BEC regime. We next consider the BEC regime defined by x0 < 0. As we shall see, in
this regime l < 0 and |l|� D, so that Eq. (6.53), I(l,D), applies. This yields, for the nor-
malized ground-state energy,

eGS ’ ðx̂0 � 2l̂ÞD̂2c�1
s þ

ffiffiffiffiffiffi
jl̂j

p D̂2

2
pþ p

32

D̂
l̂

 !2
2
4

3
5; ð6:64Þ

and, for the gap and number equations (dividing by an overall factor of D̂ in the former)

0 ’ 2c�1
s ðx̂0 � 2l̂Þ þ

ffiffiffiffiffiffi
jl̂j

p
pþ p

16

D̂
l̂

 !2
2
4

3
5; ð6:65Þ

4

3
’ 2c�1

s D̂2 þ D̂2p

4
ffiffiffiffiffiffi
jl̂j

p : ð6:66Þ

In the BEC regime the roles of the two equations are reversed, with l̂ approximately
determined by the gap equation and D̂ approximately determined by the number equation.
Thus, l̂ is well approximated by neglecting the term proportional to D̂2 in Eq. (6.65),
giving
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l̂ � x̂0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

s p
2

32jx̂0j

s
� cspffiffiffiffiffiffiffiffiffiffiffiffiffi

32jx̂0j
p

" #2

: ð6:67Þ

At large negative detuning, jx̂0j � 1, in other words in the BEC regime, Eq. (6.67) reduces
to l̂ � x̂0=2, with the chemical potential tracking the detuning.

Inserting Eq. (6.67) into Eq. (6.66) yields

D̂2 ¼ 2cs

3
1� cspffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcspÞ
2 þ 32jx̂0j

q
2
64

3
75: ð6:68Þ

Using D̂ ¼ D=�F and the relation D2 ¼ g2
s nb between D and the molecular density, we have

nb ¼
3

4
c�1

s D̂2n; ð6:69Þ

’ n
2

1� cspffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcspÞ

2 þ 32jx̂0j
q

2
64

3
75; ð6:70Þ

which, as expected (given the fermions are nearly absent for l < 0) simply yields nb � n/2
in the asymptotic (large jx̂0j) BEC regime.

These results of course match those derived purely on the basis of the gap and particle
number equations in Section 6.2.1.

6.2.3. Zero temperature collective excitations and condensate depletion

We would now like to calculate the spectrum of collective excitations of the BEC-BCS
condensate, which is contained in the Sfluct part of the effective action. In order to do that,
we need expressions for the self-energies R11 and R20 appearing in Eq. (6.20). At zero tem-
perature these are given by

R11ðq;XÞ ¼
g2

s

2

Z
dx
2p

d3k

ð2pÞ3
i X

2
þ x

� �
� nþ


 �
i x� X

2

� �
þ n�


 �
X
2
þ x

� �2 þ n2
þ þ g2

s B2
h i

x� X
2

� �2 þ n2
� þ g2

s B2
h i ; ð6:71Þ

and

R20ðq;X; Þ ¼
g4

s B2

2

Z
dx
2p

d3k

ð2pÞ3
1

X
2
þ x

� �2 þ n2
þ þ g2

s B2
h i

x� X
2

� �2 þ n2
� þ g2

s B2
h i ;

ð6:72Þ
where

nþ ¼
1

2m
kþ q

2

� �2

� l; n� ¼
1

2m
k� q

2

� �2

� l: ð6:73Þ

The self-energy R11 involves an IR divergent integral over k. This divergence can be reg-
ularized if one notices that R11 enters the effective action Sfluct in the combination
�0 � 2l + 2R11. It is straightforward to check, however, that
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�0 � 2lþ 2R11ð0; 0Þ ¼ 2R20ð0; 0Þ; ð6:74Þ

by virtue of the saddle-point equation Eq. (6.23). This situation is typical in the interacting
Bose gas, and Eq. (6.74) is nothing but the Goldstone theorem ensuring that the collective
excitations remain massless (also referred to as Hugenholtz–Pines relation [61] in the inter-
acting Bose gas literature). Therefore, we are really interested not in R11(q,X), but rather in
the linear combination R11(q,X) � R11(0,0), which remains finite.

The spectrum of collective excitations is given by the condition that the propagator
computed with the help of Eq. (6.20) has a pole. To simply the calculations, we will only
compute the spectrum at low momentum and energy. Following [50], in anticipation that
the collective excitations are sound waves and so, Xq � q, we expand the self-energies in
powers of energy and momentum according to

�0 � 2lþ 2R11ðq;XÞ � 2R0 þ RiXþ R1X
2 þP1q2

R20ðq;XÞ � R0 þ R2X
2 þP2q2 ð6:75Þ

where we have used Eq. (6.74). Therefore, the spectrum is given by the condition that the
determinant of the matrix in Eq. (6.20) vanishes. That matrix in our case takes the form

det

1
2

iXð1þ RÞ þ q2

4mþ 2R0 þ R1X
2 þP1q2

� �
R0 þ R2X

2 þP2X
2

R0 þ R2X
2 þP2X

2 1
2
�iXð1þ RÞ þ q2

4mþ 2R0 þ R1X
2 þP1q2

� �
0
B@

1
CA ¼ 0:

ð6:76Þ
This gives for the spectrum Xq of excitations

X2
q ¼ q2 4R0

1
4mþ ~P
� �

ð1þ RÞ2 þ 4R0
~R
; ð6:77Þ

where we introduced the notation

~P ¼ P1 � 2P2; ~R ¼ R1 � 2R2: ð6:78Þ

In other words, the excitations are indeed sound modes, with the speed of sound

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R0

1
4mþ ~P
� �

1þ Rð Þ2 þ 4R0
~R

s
: ð6:79Þ

We now evaluate R0, R, ~P, and ~R. Doing the frequency integral in R20(0,0) gives

R0 ¼
g4

s B2

8

Z 1

0

k2 dk
2p2

1

k2

2m� l
� �2

þ g2
s B2

� 
3=2
; ð6:80Þ

Differentiating R11(0,X) with respect to X at X = 0 gives

R ¼ g2
s

4

Z 1

0

k2 dk
2p2

k2

2m� l

k2

2m� l
� �2

þ g2
s B2

� 
3=2
: ð6:81Þ

Finally, we also find after some algebra
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~R ¼ g2
s

8

Z 1

0

k2 dk
2p2

1

k2

2m� l
� �2

þ g2
s B2

� 
3=2
; ð6:82Þ

~P ¼ R
4m
þ g4

s B2

8m

Z 1

0

k2 dk
2p2

k2

2m

k2

2m� l
� �2

þ g2
s B2

� �5=2
: ð6:83Þ

In general, evaluation of the integrals in Eqs. (6.80)–(6.83) is straightforward but cum-
bersome. We will present results only in the deep BEC and BCS regimes (that is, x0 [��F

and x0 J �F).
First, consider the BEC side of the crossover. There x0 and l are negative, and it is clear

that at small gs, R� 1, R0
~R� 1, and m ~P� 1, and thus they can be neglected. The speed

of sound is then simply given by

cBEC ¼
ffiffiffiffiffi
R0

m

r
: ð6:84Þ

Since jlj � g2
s B2 in this BEC regime, we can neglect g2

s B2 in the denominator of Eq. (6.80)
to find

R0 �
g2

s B2

8

Z
k2 dk
2p2

1

k2

2m� l
� �3

¼ g4
s B2m3=2

32pjx0j3=2
; ð6:85Þ

where we have used 2l = x0 in this BEC regime. Therefore, the square of the speed of
sound is simply

c2
BEC ¼

g4
s B2m1=2

32pjx0j3=2
: ð6:86Þ

where B2 � n/2. We compare this expression for c2
BEC with a standard expression for a

BEC condensates of point bosons (see, for example, Ref. [36])

c2 ¼ 4pabB2

ð2mÞ2
; ð6:87Þ

where ab is the boson scattering length (not to be confused with the scattering length of
fermions, given by a in Eq. (5.13)). By inspection, we therefore conclude that on the
BEC side of the crossover, the BCS–BEC paired condensates behaves as an effective gas
of weakly repulsive bosons with a scattering length

ab ¼
g4

s m5=2

32p2jx0j3=2
: ð6:88Þ

We note that the scattering length ab, together with the speed of sound c, decreases as the
detuning x0 is made more negative, deeper into the BEC regime. This is of course to be
expected, as paired-bosons interaction arises due to their polarization into their constitu-
ent fermions, followed by a fermions exchange—the process of the order of g4

s . Since this
virtual fermion creation process costs a molecular binding energy, Eq. (2.16), deep in the
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BEC regime approximately given by |x0|, it is suppressed with increasing |x0|, as is the
effective bosonic interaction and ab.

Here an important remark is in order. Our narrow resonance result for ab, Eq. (6.88),
contrasts sharply with the well-known (gs and m independent) result for the molecular
scattering length deep in the BEC regime, namely ab � 0.6a, where a is the fermion scat-
tering length [35]. The short answer explaining this difference is that the ab � 0.6a predic-
tion is for the wide resonance BEC regime, corresponding to cs fi1 instead of the limit of
narrow resonance considered here. In more detail, the results of Ref. [35] apply only in the
regime where a� |r0|. In our narrow resonance problem, this regime is realized only in a
very narrow range of x0, satisfying �C0 [x0 < 0 (C0 is the resonance width given in Eq.
(5.15)). This is not what one should call the BEC regime of the narrow resonance cross-
over, which should be defined as x0 [��F, with �F, in turn, being much bigger than C0.

Moreover, if one does tune x0 to this narrow window, the Fermi energy of the gas
under study here will be much bigger than the binding energy of the bosonic molecules,
and the condensate cannot be treated at all as weakly interacting bosons. So even though
the scattering length of bosons within this window of x0 is indeed 0.6a, this will not get
reflected in the speed of sound in the condensate.

Contrast this with the BEC regime of the broad resonance BCS–BEC superfluid, where
a� r0 for a wide range of the detuning x0 < 0, and where Fermi energy is small compared
to C0. For further details, including the calculation of the speed of sound in the broad res-
onance BEC regime of Eq. (5.6), see Ref. [6].

Thus we conclude that Eq. (6.88) is the correct scattering length of molecules in the nar-
row resonance problem. In fact, Eq. (6.88) can also be derived independently by studying
the scattering of bosons in vacuum perturbatively. We will not do it here.

Let us now turn to the BCS regime x0 > 2�F, where l � �F. We evaluate R0, R, ~R, and
~P, from Eqs. (6.80), (6.81) and (6.82), (6.83). These integrals are easiest to compute if we
change variables k2/(2m) � l = n, and notice that only small n essentially contribute to the
integrals. We find

R0 �
g2

s ð2mÞ3=2

16p2
l1=2; R � x0 � 2l

4l
; ð6:89Þ

~P �
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ3l

q
24mB2p2

; ~R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ3l

q
16B2p2

: ð6:90Þ

The speed of sound, Eq. (6.79), is now dominated by ~R, ~P, and give

cBCS ¼

ffiffiffiffi
~P
~R

s
¼

ffiffiffiffiffiffiffiffi
2

3

l
m

r
¼ vFffiffiffi

3
p : ð6:91Þ

that reassuringly recovers the well-known result for the speed of sound in a neutral BCS
superconductor [62,63].

In the intermediate crossover regime between BEC and BCS, where 0 [x0 [ 2�F, the
integrals in R0, R, ~R, and ~P should be evaluated numerically to give the speed of sound
which interpolates between its BEC and BCS values.

Using our understanding of the collective excitations, we can now compute the interac-
tion-driven depletion of the condensate, namely the number of bosons that are not Bose-
condensed into a single-particle k = 0 state, even at zero temperature. As we will show, the
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depletion number turns out to be much smaller than the number of particles in the con-
densate (with the ratio controlled by the smallness of cs � g2

s m3=2�
�1=2
F ), which justifies

our neglecting it in the analysis of the crossover, above. We also note that smallness of
depletion justifies the expansion in powers of fluctuations (controlled by cs) across the
whole range of the BCS–BEC crossover in a narrow resonance atomic system.

The number of excited bosons can be simply computed from the Green’s function of the
fluctuations,

nexc ¼ lim
s!0þ
h�uð0ÞuðsÞi: ð6:92Þ

Evaluating the Green’s function gives

h�uðX; qÞuð�X;�qÞi ¼ sBðq;�XÞ þ 2R11ðq;�XÞ
det M

; ð6:93Þ

where M is the matrix in Eq. (6.20). Evaluating this expression analytically in general is
difficult, so we concentrate on limiting BEC regime.

In the BEC regime, where we can approximate R20 � R0, �0 � 2l + R11 � 2R0 and sum
over frequency, we find

nexc ¼
Z

d3q

ð2pÞ3
q2

4mþ 2R0 � Xq

2Xq
; ð6:94Þ

where Xq is the spectrum, Xq ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2

8mþ R0Þ2 � R2
0

q
(Eq. (6.77) is the small momentum ver-

sion of it). Doing the integral gives

nexc ¼
8

3p2
mR0ð Þ3=2 ¼ 8

3
n

ffiffiffiffiffiffiffi
na3

b

p

r
; ð6:95Þ

which coincides with the standard expressions of the condensate depletion in a weakly
interacting Bose gas. As advertised above, the depletion is small and vanishes in the limit
of a vanishingly narrow resonance, cs� 1.

As x0 is increased from negative towards positive values, Eq. (6.95) is no longer appli-
cable and analysis is best performed numerically.

6.2.4. Critical temperature

We expect the condensate to be reduced with increasing temperature, vanishing at a
critical temperature Tc(x0), that we compute below. In contrast to superfluids of point
bosons, in paired superfluids there are two physically distinct effects that contribute to
the condensate reduction with temperature[5]. One is the dissociation of Cooper pairs
(and closed-channel molecules hybridized with them), and, simultaneously, thermal
bosonic excitations. One of them is captured by the finite temperature gap equation Eq.
(6.16) and is responsible for Tc in the BCS regime, while the other must be included in
the finite-temperature particle number equation and is at work in the BEC regime.

For simplicity we focus on the Bose–Fermi mixture at the critical temperature, where
the condensate density vanishes. This allows us to take advantage of technique of Ref.
[5] to find the number of particles. This method ignores the interactions between the
bosons and concentrates solely on the bosonic propagator modified by the presence of
fermions. This amounts to approximation of Ss[/], Eq. (6.4) by a quadratic expansion
in /(r) = u(r), reducing it to Sfluct[/], Eq. (6.20). In the case of a broad resonance,
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considered in Ref. [5], this is not quantitatively justified for x0 sufficiently close to zero so
that a� n�1/3. In contrast, in the case of a narrow resonance system studied here, this
expansion is justified, since the strength of interactions, governed by cs, is weak.

At T = Tc the condensate vanishes, B = 0, and the gap equation reduces to

x0 � 2l ¼ g2
s

2

Z
d3k

ð2pÞ3
tanh nk

2T c

nk
� 2m

k2

" #
; ð6:96Þ

with nk given by Eq. (6.25). To find the particle number equation, we need to evaluate the
contribution to the partition function due to fluctuations of / in Eq. (6.4). This can be ex-
pressed in terms of polarization operators R11 and R20. In fact, for B = 0, R20 = 0, and
only R11 survives. This gives for Eq. (6.19)

S0½B
 ¼ �V
X

n

Z
d3k

ð2pÞ3
ln x2

n þ
k2

2m
� l

� �2
" #

; ð6:97Þ

where xn = pT(2n + 1) are fermionic Matsubara frequencies, with fluctuation corrections
to S0[B] given by

Sfluct
0 ½B
 ¼ V

X
n

Z
d3q

ð2pÞ3
ln sn; ð6:98Þ

where

snðq;XnÞ ¼ iXn þ
q2

4m
� 2lþ �0 þ 2R11ðq;XnÞ; ð6:99Þ

and Xn = 2pTn are bosonic Matsubara frequencies. To simplify this expression further, we
can use the technique discussed in Ref. [5]. To that end, we introduce the many-body finite
temperature phase-shift

dðq;XÞ ¼ Im ln X� q2

4m
þ 2l� �0 � 2R11ðq; iXÞ

� �
; ð6:100Þ

that is a generalization of the vacuum phase-shift, which can be deduced from Eq. (1.7)
and the relation f(q) = (e2id � 1)/(2iq). We can now transform the sum over frequencies
in Eq. (6.98) into the integral

Sfluct
0 ½B
 ¼ V

T

Z
d3q
2p3

I
dX
2pi

dðq;XÞ
eX=T � 1

; ð6:101Þ

with the integration over X done along the contour depicted in Fig. 22.
Combining this all together, the particle number equation (6.22)

N ¼ �T
oS0

ol
� T

oSfluct
0

ol
; ð6:102Þ

takes the form

n ¼
Z

d3q

ð2pÞ3
1

e
q2

2mT�
l
T þ 1

�
I

dX
2pi

odðq;XÞ
ol

eX=T � 1

" #
; ð6:103Þ

with the first and second terms giving the number of fermion and bosons, respectively.



Fig. 22. The contour of integration in Eq. (6.101). The crosses depict the positions of the poles of the Bose–
Einstein distribution 1/(eX/T � 1).
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To make further progress, we need to know R11, which, when evaluated at T = Tc is
given by

R11ðq;XÞ ¼ �
g2

s T
2

X
n

Z
d3k

ð2pÞ3
1

nþ � i xn � Xð Þ½ 
 n� þ ixn½ 
 ; ð6:104Þ

where n+, n� are given by Eq. (6.73), above. The sum over the frequencies is elementary,
with the result

R11ðq;XÞ ¼ �
g2

s

4

Z
d3k

ð2pÞ3
tanh nþ

2T c

h i
þ tanh n�

2T c

h i
nþ þ n� þ iX

: ð6:105Þ

Unfortunately the remaining integral can only be done numerically, and we will not eval-
uate it in this paper, except deep in the BEC regime. Fortunately, however, we do not need
to know it in the narrow resonance limit of gs fi 0. In this limit, R11 becomes small and the
phase-shift reduces to

dðq;XÞ ¼ Im ln X� q2

4m
þ 2l� x0

� �
: ð6:106Þ

In this limit, we can use x0 and �0 interchangeably since they now coincide.
Substituting into Eq. (6.103), we can transform the contour integral over X to the form

�2

I
dX
2pi

1

X� q2

4m� x0 þ 2l

1

eX=T � 1
: ð6:107Þ

The contour in this integral can now be transformed to enclose the pole at X ¼ q2

4m going in
the clockwise direction, finally giving for the total particle density
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2
¼
Z

d3q

ð2pÞ3
1

e
q2

2mT c
�l

T þ 1
þ 1

e
q2

4mT c � 1

" #
; ð6:108Þ

where we used x0 = 2l valid the small gs limit.
This equation coincides with Eq. (6.11) which we derived in the gs = 0 limit, as could

have been guessed from the outset. However, here we are in principle in the position to
compute corrections to this equation if R11 is evaluated and included in Eq. (6.103).

Let us now use the gap equation Eq. (6.96) and the particle number equation Eq.
(6.108) to compute the critical temperature as a function of detuning x0.

In the BCS regime, x0 J 2�F, we expect the transition temperature to be exponentially
small. As a result, the particle number equation forces l to be very close to �F (slightly
below it). Indeed, the number of excited bosons at a low temperature is expected to be
small, and the particle number is saturated by fermions, whose chemical potential must
therefore be in the vicinity of �F. We recall that for Tc = 0, Eq. (6.108) would be solved
simply by setting l = �F.

We then need to use Eq. (6.96), with �F substituted for l with sufficient accuracy to
determine Tc. The actual calculations are identical to the ones employed by the BCS the-
ory. One technique for solving Eq. (6.96) in this regime is described in Ref. [36]. Evaluating
the integral in Eq. (6.96) we find

T c ¼
8eC�2

p
�F exp �4p2 x0 � 2�F

g2
s 2mð Þ3=2 ffiffiffiffiffi

�F
p

" #
; ð6:109Þ

where C is the Euler constant, lnC � 0.577. We see that indeed, the critical temperature is
exponentially small in the ratio ðx0 � 2�FÞ=g2

s . This could have been guessed without any
calculation as this simply coincides with the standard BCS result in the same way as
Eq. (6.35) coincides with the appropriate BCS result, with Tc/D = eC/p.

In the deep BEC regime, where x0 is negative, we expect the chemical potential l to
roughly follow x0, in the way quite similar to the infinitely narrow resonance limit
described in section 6.1. The critical temperature will then be given by solving
Eq. (6.108) and noting that the fermion part of the particle number is going to be very
small. Therefore, it will reach its asymptotics coinciding with the critical temperature of
a non-interacting Bose gas, given by Eq. (6.12).

Between the BEC and BCS regime through the crossover the temperature will interpo-
late between the BEC Eq. (6.12) and the BCS Eq. (6.109) values, in the precise way that
can be obtained through a numerical solution.

An interesting question is whether the critical temperature decreases monotonously as the
detuning is increased or perhaps has a maximum at some intermediate value of the detuning.
Recall that Nozières and Schmitt-Rink observed a maximum in the Tc vs x0 diagram, see
Ref. [5], and so did subsequent papers which followed their techniques. However, as these
authors themselves observed, their calculations were done in the case of a broad resonance,
where their approach was an uncontrolled approximation that could not guarantee that the
maximum was not an unphysical artifact of their approximation. In contrast, in our case of
narrow resonance, we can actually calculate the entire curve T0(x0) perturbatively in powers
of gs, and predict the behavior of Tc in a trustworthy way, at least for a cs < 1 system.

For our purpose it is sufficient to concentrate on the deep BEC regime where
x0��2�F. In this regime we expect Tc(x0) to approach the limiting value (6.12) of order
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�F from either above or below. Given that the high x0 BCS asymptotics, Eq. (6.109), is
exponentially small compared to �F, the approach of the asymptotic BEC value (at large
negative x0) from above implies unambiguously that the curve Tc(x0) must have a maxi-

mum somewhere.
In the infinitely narrow resonance case we observe that the transition temperature

decreases with increasing x0, since the fermion number, suppressed in the BEC regime
as ex0=2T , would start increasing in accordance with Eq. (6.11). However, for a narrow
but finite width resonance, fluctuations must also be taken into account.

Let us first evaluate the contribution of the fluctuations to the particle number equation
Eq. (6.108). First, we compute Eq. (6.105), which in the BEC regime can be evaluated and
leads to a correction to the particle number equation which we now discuss. At x0 [�2�F

(and consequently, l[��F), we can safely neglect the hyperbolic tangents in the numer-
ators of Eq. (6.105) to arrive at

R11ðq; iXÞ ¼ �
g2

s

2

Z
d3k

ð2pÞ3
1

k2

m þ
q2

4m� 2l� X
: ð6:110Þ

This expression basically coincides with the corresponding expression for the polarization
operator in a vacuum, Eq. (3.26). Physically this is expected since deep in the BEC regime
there are only exponentially small number of fermions, so from the point of view of bo-
sons, the situation is indistinguishable from a vacuum.

We now observe that the phase-shift d(q,X) has a singularity at

X� q2

4m
þ 2l� �0 � 2R11ðq; iXÞ ¼ 0: ð6:111Þ

The value of X that solves this equation is given by

Xq ¼
q2

4m
: ð6:112Þ

To see this we observe that R only depends on X and q through the combination X� q2

4m,
and therefore the q dependence of the solution to Eq. (6.111) is simply q2

4m. At the same
time, at q = 0, the solution to Eq. (6.111) must be X = 0, owing to the Goldstone theorem
Eq. (6.74), giving the result (6.112).

In addition to this pole, the phase-shift d(q,X) will also have a cut along the real axis of
X, corresponding to the scattering fermionic states. This cut goes from X ¼ q2

4m� 2l to
infinity (notice that l < 0). Using this information, we can transform the contour in the
integral over X in Eq. (6.103) to the one depicted in Fig. 23. The integral around the pole
gives back the atom number confined inside thermally excited bosons,

2

Z
d3q

ð2pÞ3
1

e
q2

4mT c � 1
; ð6:113Þ

while the remaining integral along the cut gives terms suppressed exponentially as e
x0
2T c .

These terms represent corrections to the particle number equation Eq. (6.108). They must
be combined with properly evaluated fermion number in Eq. (6.108) and with the addi-
tional terms given by the expansion of the hyperbolic tangent in Eq. (6.105) to give cor-
rections to the critical temperature in the deep BEC regime x0��2�F. The key
observation is that all these contributions are exponentially small as e

x0
2T c .



Fig. 23. In the BEC regime we can deform the contour from Fig. 22 to this one, which encloses the pole
corresponding to the bound state and goes around the cut corresponding to the scattering states.
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However, all this ignores interactions between the bosons (in other words, higher terms
in the expansion in powers of / in Eq. (6.4)). It turns out that the interactions change the
critical temperature in a way which is not exponentially suppressed in the deep BEC
regime. A weakly interacting Bose gas with a given scattering length (for our case given
by Eq. (6.88)) has been extensively studied in the literature. Although the correction to
the critical temperature due to interactions is still a controversial subject, there is a reason-
able agreement in the literature that this correction is positive and is given by a bosonic gas
parameter (see Ref. [51])

T c � T c0

T c0

� n
2

� �1=3

ab ¼
n
2

� �1=3 g4
s m5=2

16p2jx0j3=2
ð6:114Þ

Here Tc0 represents the critical temperature in the non-interacting limit Eq. (6.12) and n/2
is the density of bosons. This expression is clearly much bigger than the exponentially
small corrections due to fermion number and R11 and hence those other corrections can
be neglected.

Therefore, we conclude that as x0 is increased from large negative values, Tc(x0) actu-
ally increases, according to

T c ¼
p
m

n
2f 3

2

� �
 !2=3

1þ a
n
2

� �1=3 g4
s m5=2

16p2jx0j3=2
þ 	 	 	

" #
; ð6:115Þ

where a is an unknown constant of the order of 1. At the same time, in the BCS regime, at
large positive x0, it drops off exponentially, according to Eq. (6.109). Thus, Tc(x0) must
exhibit a maximum somewhere for the intermediate values of x0.

Although this conclusion about the existence of a maximum in Tc(x0) agrees with those
appearing in a number of papers devoted to broad resonances, beginning from Ref. [5],
here, in contrast to those studies our arguments for a maximum are robust and quite
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general, being based on a quantitatively trustworthy (in a narrow resonance case) calcula-
tion, rather than on an uncontrolled approximations.

A schematic diagram depicting Tc(x0) is illustrated in Fig. 7. To set the proper scale on
the vertical axis, we notice that the ratio of �F given by Eq. (6.7) to TBEC, Eq. (6.12), is
approximately 5. Compare this with the critical temperature of an infinitely narrow reso-
nance, cs fi 0, shown on Fig. 21. For a finite resonance width, the first qualitative differ-
ence is that the critical temperature is non-zero even for x0 P 2�F, representing the BCS
regime, absent in the limit of infinitely narrow resonances. Secondly, a Tc(x0) for a finite-
width resonance exhibits a maximum at intermediate values of x0, reflecting the boson–
boson interaction correction to the critical temperature in the BEC phase.

7. p-wave BCS–BEC crossover and phase transitions

7.1. Coherent-state formulation and saddle-point approximation

In Section 5.2, we established the proper two-channel model for a p-wave resonantly
interacting atomic gas and determined its parameters in terms of results of a two-body
scattering experiment. We now turn to the study of this model at a fixed chemical poten-
tial, with the aim to establish the phases and phase transitions of such a Fermi gas at finite
density.

As usual, the thermodynamics is encoded in the partition function Z ¼ Tre�bĤ and the
corresponding free energy F = �T lnZ. The partition function can be conveniently formu-
lated in terms the imaginary-time path-integral over coherent states labelled by commuting
closed-channel fields /(r), �/ðrÞ (bosonic molecules) and anticommuting open-channel
fields w(r), �wðrÞ (fermionic atoms), and their complex conjugates

Zp ¼
Z

DwD�wD/D�/ e�Sp ; ð7:1Þ

with the action Sp corresponding to the Hamiltonian H 2�ch
p , Eq. (5.34), given by

Sp½/;w
 ¼
Z b

0

ds
Z

d3r �w os �
r2

2m
� l

� �
wþ

X
a

�/a os þ �a � 2l�r
2

4m

� �
/a

"

þ gp

X
a

/a
�w ira

�wþ �/aw iraw
� �#

ð7:2Þ

As with the s-wave case in Eq. (6.3) the fermionic atoms can be formally integrated out
exactly, to give the effective bosonic action

Sp½/
 ¼ �
1

2
Tr ln

1
2

ixn � r
2

2m � l
� �

ig/ 	 r

ig�/ 	 r 1
2
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0
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þ
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0

dsd3r�/a os þ �a � 2l�r
2

4m

� �
/a:

ð7:3Þ

where the trace is over the 2 · 2 matrix structure, space r and the fermionic Matsubara fre-
quencies xn = p(2n + 1)/b.
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The field theory Sp[/] is non-linear in / and therefore cannot be solved exactly. How-
ever, as discussed in Section 5.2.2 for a narrow resonance it is characterized by a dimen-
sionless detuning-independent parameter cp, Eq. (1.6), and can therefore be systematically
analyzed as a perturbative expansion in cp� 1.

A lowest order in this expansion in cp corresponds to a computation of the function
integral over / via a saddle-point method. The dominant saddle-point configuration is
a constant /a(r) = Ba, that is proportional to the condensate of the zero-momentum
bosonic operator according to

Bdp;0 ¼
1ffiffiffiffi
V
p bp¼0: ð7:4Þ

The resulting saddle-point action then becomes quadratic in the fermionic fields and can
therefore be easily computed. Within this approximation it gives the free-energy density
fp = Sp[B]/(b V)

fp½B
 ¼
X

a

ð�a � 2lÞ�BaBa �
T

2V

X
k;xn

lnðx2
n þ E2

kÞ; ð7:5Þ

where

Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2m
� l
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þ 4g2
pjB 	 kj

2

s
ð7:6Þ

and is also the spectrum of the Bogoliubov quasiparticles discussed below. In above, B is
determined by the minimum of fp[B], given by the saddle-point equation dfp½B
=d�Ba ¼ 0:

�a � 2lð ÞBa ¼
X

b

I ðT Þab B½ 
Bb; ð7:7Þ

where

I ðT Þab B½ 
 ¼ g2
p

Z
d3k

ð2pÞ3
kakb tanh Ek

2T

� �
Ek

; ð7:8Þ

obtained by simple contour integration over z ” ixn

Above expressions can also be equally easily obtained by working within the operator
(rather than functional integral) formalism, approximating the Hamiltonian by a fermion-
ic quadratic form with a variational parameter B, performing a standard Bogoliubov
transformation, followed by a trace over decoupled Bogoliubov quasiparticles and mini-
mizing the resulting free energy over B.

The complex vector ‘‘order parameter’’ B can be uniquely and conveniently decom-
posed according to

B ¼ uþ iv; ð7:9Þ

where u and v are two real vectors.
For latter use it is important to establish a relation between vectors u and v (6 real com-

ponents) and states with a definite angular momentum, characterized by 3 complex wave-
functions B(m=0,±1). This connection is contained in Eqs. (5.35)–(5.37). Firstly, we note
that under a global gauge transformation B fi eiuB,
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B 	 B ¼ ðu2 � v2Þ þ i2u 	 v; ð7:10Þ

transforms as a two-dimensional rank-2 tensor, with real and imaginary components
rotated into each other by an angle 2u, while

�B 	 B ¼ u2 þ v2; ð7:11Þ

is a gauge-invariant scalar. Using these transformations, it can be shown that as long as u

and v are not parallel, a phase u can always be chosen to make them perpendicular. If u

and v are parallel, then they remain parallel, and B can be made real by a choice of u;
hence, a u||v state is equivalent to a state with v = 0. We also note that a state characterized
by u = v and u Æ v = 0 retains these properties.

Using Eqs. (5.35)–(5.37) and (7.9) we find

Bð0Þ ¼ uz þ ivz; ð7:12Þ
Bð�1Þ ¼ ðux 
 vyÞ þ iðvx � uyÞ; ð7:13Þ

which shows that the m = 0 p-wave superfluid corresponds to u||v (equivalently v = 0)
pointing along the m = 0 quantization axis, and m = ±1 superfluids are characterized
by states with u ^ v, u = v with the projection of the angular momentum onto u · v equal
to ±1, respectively. All other u, v states are related to a linear combination of above three
eigenstates by a gauge transformation.

It is also important to summarize symmetries of the free energy fp[B], Eq. (7.5) and
(7.6). Firstly, quite clearly fp[B] is invariant under gauge transformations. Secondly, in a
symmetric case of degenerate m = 0, ± 1 Feshbach resonances with �a = �0, the free energy
is also rotationally invariant. Thus, at a quadratic level fp[B] must be a function of the only
rotationally, gauge-invariant quadratic form, (7.11). At a higher order in B, all terms can
be expressed as powers of this quadratic invariant and an independent quartic term
|B Æ B|2, a magnitude-squared of the quadratic form in (7.10). In the physically interesting
case where the rotationally symmetry is explicitly broken by distinct �a’s, generically fp[B]
will not exhibit rotational symmetry. However, within the saddle-point approximation, it
is easy to see that the first, quadratic term in fp[B] is the only one that breaks rotational
symmetry, with higher order terms a function of the two independent gauge- and rotation-
ally invariant combinations �B 	 B and |B Æ B|2.
7.2. Zero-temperature: ground state of a p-wave resonant Fermi gas

7.2.1. Saddle-point equation and ground-state energy

We focus on the case of zero temperature, for which the free-energy density reduces to
the ground-state energy density f T¼0

p ½B
 ¼ eGS½B


eGS½B
 ¼
X

a

ð�a � 2lÞ�BaBa �
1

2

Z
dxd3k

ð2pÞ4
lnðx2 þ E2

kÞ; ð7:14Þ

with the saddle-point (gap) equation given by (7.7) and

Iab½B
 ¼ g2
p

Z
d3k

ð2pÞ3
kakb

Ek

: ð7:15Þ
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It is advantageous at this stage to trade the parameter �b for a physical detuning xb,
according to

xb ¼
�b � c1

1þ c2

; ð7:16Þ

introduced in Eq. (5.54). This gives a renormalized saddle-point equation

ðxað1þ c2Þ � 2lÞBa ¼
X

b

ðIab � c1dabÞBb: ð7:17Þ

To proceed further, we need to calculate Iab, that we do in detail in Appendix C. Since
the integral is formally divergent as k3, the leading contribution to Iab comes from short
scales (high energies), cut off by K corresponding to the inverse size of the closed-channel
molecule. This leading K3 contribution is given by

I
K3ð Þ

ab ¼ c1 dab; ð7:18Þ

with c1 defined in Eq. (5.45) by the two-atom p-wave scattering calculation, Eq. (5.44), that
led to the definition of xa. Hence, as in the s-wave case, this leading uv-cutoff dependent
contribution identically cancels the c1 term in Eq. (7.17), and therefore does not contribute
to any physical quantity expressed in terms of a physical detuning xa.

However, Iab also has a subleading cutoff-dependent contributions that scale linearly
with K, and are given by

I ðK
1Þ

ab ¼ 2lc2dab �
8

5
mg2

pc2 dabjBj2 þ �BaBb þ �BbBa

� �
; ð7:19Þ

with the dimensionless constant c2 identical to that defined by the two-atom scattering the-
ory, Eq. (5.46).

A tensor Iab also contains uv-cutoff independent low-energy contributions coming from
momenta around Fermi surface. Because these are infrared divergent at B = 0, they are
non-analytic in B = |B|, and therefore (as usual) are in fact dominant at small B, relevant
to the positive detuning BCS regime. As detailed in Appendix C these contributions are
easiest to evaluate in the gauge where u and v are perpendicular, and together with Eqs.
(7.18) and (7.19) in the u Æ v = 0 gauge finally give the explicit gap equation

ð1þ c2Þðxa�2lÞBa¼� cpc2

8�F
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ð7:20Þ

Integrating these saddle-point equations over �Ba we obtain the ground state energy density

eGSðu; vÞ
1þ c2

¼
X

a

ðu2
a þ v2

aÞ½xa � 2lþ a1 lnfa0ðuþ vÞg
 þ a1
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2
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; ð7:21Þ
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where
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ffiffiffiffiffi
l
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hðlÞ; ð7:22Þ

a2 ¼
8
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c2cp

1þ c2
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; ð7:23Þ

a0 ¼ e5=6ð�F=lÞ1=2ðcp=8nÞ1=2
; ð7:24Þ

and

cp ¼
ffiffiffi
2
p

3p2
g2

p�
1=2
F m5=2; ð7:25Þ

¼
m2g2

p

3p2
kF ¼ kF=kg ð7:26Þ

is the dimensionless p-wave Feshbach resonance coupling discussed previously. It is
straightforward to check that deGS=d�Ba ¼ 0 gives back Eq. (7.20).

We emphasize that Eqs. (7.20) and (7.21) are written in the u Æ v = 0 gauge. However,
once obtained we can utilize the gauge-invariance of eGS to reexpress it in an arbitrary
gauge. To this end we note that u2 þ v2 ¼ �B 	 B is already invariant. However, while
u2 � v2 is not gauge invariant (being a real part of B Æ B, Eq. (7.10)), its square is a
gauge-invariant operator written in u Æ v = 0 gauge, i.e., in the u Æ v = 0 gauge
(u2 � v2)2 = |B Æ B|2.

Thus, a gauge invariant form of eGS[B] is given by

eGSðu; vÞ
1þ c2

¼
X

a

ðu2
a þ v2

aÞ½xa � 2lþ a1 lnfa0ðuþ vÞg
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� �2 þ 1

2
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; ð7:27Þ

where

u! 1ffiffiffi
2
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v! 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B 	 B� jB 	 Bj

q
; ð7:29Þ

A global minimum of the energy density function eGS[B], Eq. (7.27) then determines the
ground state of a p-wave paired superfluid at fixed chemical potential, and possible quan-
tum phase transitions as a function of detuning and chemical potential as the nature of the
minimum changes.
7.2.2. Particle number equation
As discussed earlier in the context of an s-wave superfluid, for atomic gas experiments

of interest to us, it is more relevant to determine the ground state at a fixed total atom
number N, rather than a chemical potential. As usual, however, this problem is related
to the fixed l result by supplementing a minimization of eGS (the gap equation,
Eq. (7.20)) with the total atom number equation. The latter is given
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n ¼ 1

V
hBjN̂ jBi; ð7:30Þ

¼ � oeGS

ol
; ð7:31Þ

where the right-hand side is the expectation value of the total atom number computed in
the grand-canonical ensemble, i.e., at fixed l, in the ground state |Bæ (a BCS-type varia-
tional one, labelled by B in the case of the saddle-point approximation). This gives a rela-
tion between N and l, thereby allowing one to eliminate the latter in favor of the former.
We thus turn to the computation of the atom number equation.

Within the above saddle-point approximation (that ignores molecular field fluctuations)
valid at a small cp, the atom number density equation is given by

n ¼ 2jBj2 þ nf ; ð7:32Þ
where the fermion density is given by

nf ¼
1

2

Z
d3k

ð2pÞ3
1� k2=2m� l

Ek

� 

: ð7:33Þ

The coefficient 1/2 in front of the integral, absent in the s-wave case, Eq. (6.24) is due to
the fact that here there is only a single species of fermions (‘‘polarized’’ isospin). Clearly,
according to Eq. (7.31), result (7.32) and (7.33) can be equivalently obtained by differen-
tiating eGS with respect to l.

It is essential to note a crucial qualitative difference between Eq. (7.33) and its s-wave
counterpart Eq. (6.24). For g2

s B2 < l, the s-wave fermion density Eq. (6.24) at non-zero B

can be estimated by the density p3
l=ð3p2Þ (pl ¼

ffiffiffiffiffiffiffiffiffi
2ml
p

) of a degenerate non-interactive fer-
mion gas at the same chemical potential. However, because in the p-wave case, for B „ 0
the occupation number nf(k) (integrand in Eq. (7.33)) exhibits a long tail, the integral in
Eq. (7.33) is formally linearly divergent at large momenta, cutoff only by the inverse
closed-channel molecular size K [43,42]. To compute the fermion number, we separate
out this large B-dependent short-scale contribution, finding

nf ¼ n0f þ 2c2jBj2; ð7:34Þ
where c2 ¼ m2g2

pK=3p2 is the dimensionless parameter that already appeared in the two-
body study of the p-wave two-channel model, Section 5.2, see [45], and
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ð7:35Þ

is a remaining contribution to nf that is uv-convergent, i.e., is not dominated by large
momenta, and as a result for g2

pjBj
2 � l, can be estimated by its gp = 0 value

n0f �
2mlð Þ3=2

6p2
hðlÞ; for g2

pjBj
2 � l; ð7:36Þ

where h(l) is the usual h-function, equal to 1 for positive argument and to 0 for negative
argument.

In the range of detuning where l K g2
pjBj

2, the full integral in Eq. (7.35) must be com-
puted more precisely, but this is a very narrow range of the chemical potential and can
(and will) be ignored.



V. Gurarie, L. Radzihovsky / Annals of Physics 322 (2007) 2–119 79
Thus we find that the atom number-density equation is given by

n ¼ 2ð1þ c2ÞjBj2 þ n0f ; ð7:37Þ
to be contrasted with its s-wave analog, Eq. (6.24). As noted above the number equation
can be directly obtained from eGS, Eq. (7.21), via Eq. (7.31) and in particular the key
enhancement factor (1 + c2) above arises from the same factor in eGS. Its implication de-
pends on c2. If c2� 1, then the number equation is no different than its s-wave counterpart
and for example in the BEC regime, where l < 0 the total atom number is ‘‘carried’’ by the
bosons. If, however, c2� 1, [45] then it shows that even deep in the BEC regime, where l
is large and negative and correspondingly n0f is vanishingly small, the density of bosons is
given by n/(2c2) and is a small fraction of the total atom density, n. In this case the total
atom number is in a form of free atoms with density given by 2c2|B|2, the last term in
Eq. (7.34). This is a reflection of the fact that the p-wave interactions (proportional to
k2, due to a centrifugal barrier diverging at short scales) are strong at large momenta
and therefore for large c2 lead to a large depletion of the molecular condensate, even in
the BEC regime where fermions are at a negative chemical potential. This is a phenome-
non not previously discussed in the literature.

7.2.3. Phases and phase transitions of the p-wave BCS–BEC superfluid

Zero-temperature phases, crossover and transitions as a function of detuning in a
p-wave resonant Fermi gas are completely encoded inside the ground state energy function
eGS[B,l], (7.21) or, equivalently the associated gap and number equations, Eqs. (7.20) and
(7.37). From our earlier analysis of the s-wave BCS–BEC crossover for a narrow reso-
nance in Section 6.1, we can already anticipate some of the qualitative phenomenology
associated with changing of the detuning. At zero temperature the gas will condense into
a p-wave superfluid that at large positive x0 will be of a BCS type with weakly paired,
strongly overlapping Cooper pairs and correspondingly an exponentially small boson
number. As x0 is lowered past 2�F, the number of bosons in the condensate will grow
as a power of 2�F � x0, while the number of fermions will diminish, reflected in the track-
ing of the chemical potential with detuning, l � x0/2. This intermediate crossover regime
will thereby consist of a superposition of small (of size K�1) closed-channel molecular
bosons and much larger Cooper pairs. Finally, for x0 lowered below zero, the tracking
chemical potential will change sign to l < 0 and (for small c2) the condensate will trans-
form into a purely molecular Bose–Einstein condensate.

Although very generally this picture remains correct, there are a number of qualitatively
important differences in evolution with the detuning between s-wave and p-wave superflu-
ids. Firstly, p-wave superfluid is characterized by a richer complex vector order parameter
B, associated with ‘ = 1 angular momentum of the condensing boson, and therefore
admits a possibility of a variety of distinct p-wave superfluid ground states and associated
quantum phase transitions between them. Possible superfluid ground states are distin-
guished by a projection of condensate’s angular momentum along a quantization axis.
This allows for a possibilities of a time-reversal breaking m = 1 states (and its rotated
and time-reversed versions) referred to as a px + ipy-superfluid with a projection of the
angular momentum of the condensed bosons onto the z-axis equal to +1, or a pz-superflu-
id (and its rotated analog), with a projection of the condensate’s angular momentum onto
the z-axis equal to 0. As discussed in Section 7.1 these two phases are characterized by u

and v, defined in Eq. (7.9), with the u = v, u ^ v state corresponding to px + ipy phase, and
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v = 0 state the pz phase (which we will often refer to as px phase as well, [64]), respectively.
It is also possible to have a ‘‘superposition’’ phase, where u ^ v, but with unequal lengths,
u „ v, corresponding to a time-reversal breaking state in which all bosons condense into a
linear combination of pz and px + ipy orbitals.

Secondly, and related to above, a p-wave gas is characterized by (potentially) three dis-
tinct detunings, xa, one for each component of the ‘ = 1-field ba. As discussed by Ticknor,
et al. [37], in systems of interest to us, this resonance splitting, d arises due to the inter-
atomic dipolar interaction predominately due to electron spin. Although it is rotationally
invariant in the spin-singlet closed-channel, the source of anisotropy is a small admixture
of the spin-triplet channel, with a result that, with the quantization axis along the external
magnetic field H (that we take to be along x̂), the m = 0 resonance is lower by energy d > 0
than the degenerate m = ±1 doublet. Thus we will take

xx ¼ x0;

xy;z ¼ x0 þ d; ð7:38Þ

This feature will be key to a non-trivial phase diagram possibilities illustrated in
Figs. 8–11.

Finally, another important difference that has already been noted in the previous sub-
section is the large c2 limit of the p-wave number equation, (7.37), in which even for l < 0
(in what one would normally call the BEC regime) the fermion density is large and corre-
spondingly the boson density |B|2 � n/(2c2) is vanishingly small for c2� 1 [45].

To determine which of the p-wave superfluid phases is realized by the BCS–BEC con-
densate, we minimize the ground-state energy eGS, Eq. (7.21) with respect to u and v for xa

of interest, while enforcing the total atom number-density constraint Eq. (7.37).
a. Isotropic p-wave Feshbach resonance. We first consider a simpler isotropic case, where

xa = x0 for all a. Utilizing the rotational invariance of eGS, it sufficient to minimize it over
magnitudes u and v. Analogous to other isotropic problems with a vector order parameter
(e.g., a Heisenberg magnet), the actual global (as opposed to their relative) direction of
vectors u, v in the ordered phase will be chosen spontaneously.

Although ultimately we need to minimize eGS[u,v] at fixed total atom number, i.e., sub-
ject to the atom number equation contraint

2ð1þ c2Þðu2 þ v2Þ þ n0f ¼ n: ð7:39Þ

it is important to first study eGS[u,v] at fixed l. Standard analysis of eGS, Eq. (7.21) shows
that there are four extrema: (i) u = v = 0 (normal state), (ii) u „ 0, v = 0 (px-superfluid
state), (iii) u = 0, v „ 0 (px-superfluid state), and (iv) u = v „ 0 (px + ipy-superfluid state),
where clearly (ii) and (iii) correspond to the same superfluid state.[64] After some standard
algebra, one can show that the normal (u = v = 0) state is always a maximum with energy
eGS½0; 0
 � eN

GS ¼ 0.
The nature and relative stability of the other extrema is decided by the parts of eGS[u,v]

that do not depend on the u2 + v2 combination, namely by terms

a1 ðu2 þ v2Þ lnðuþ vÞ þ u3 þ v3

uþ v

� �
þ a2

2
u2 � v2
� �2

:

As illustrated in Fig. 24 and standard analysis shows that u „ 0, v = 0 and u = 0, v „ 0
extrema are degenerate (guaranteed by u M v symmetry) saddle-points and u = v „ 0 is a



u
0

v

Fig. 24. A contour plot of eGS(u,v) in the absence of splitting, d = 0. The global minimum at u = v „ 0, saddle-
points at u = 0, v „ 0 and u „ 0, v = 0, and a maximum at u = v = 0 can clearly be seen.
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global minimum, independent of the actual values of a1 and a2, as long as they are positive.
In the BEC regime, where a1 = 0, this is clear since the last a2 term prefers the u = v state,
but also remains true throughout the BCS and the crossover regimes.

Because there is only one local minimum, this fixed chemical potential result automat-
ically applies to the minimization of eGS at fixed total atom density n, with l eliminated
through Eq. (7.39). Thus we conclude that at T = 0, the ground state of a Fermi gas inter-
acting with an isotropic Feshbach resonance is a px + ipy-wave superfluid throughout the
BEC–BCS crossover.

In the BCS regime, this results agrees with the well-known prediction by Anderson and
Morel [52], who showed (in the context of A1-phase of 3He) that a polarized p-wave BCS
superconductor at T = 0 is always in the px + ipy state. Thus, our above conclusion
extends their result to the BEC (l < 0) and crossover (0 < l < �F) regimes of a resonantly
paired superfluid.

We now compute this px + ipy ground state explicitly. To this end, we substitute u = v

into the ground state energy, Eq. (7.21) to obtain e
pxþipy

GS ½u
 � eGS½u; u


e
pxþipy

GS

1þ c2

¼ 2u2 x0 � 2lþ a1 lnð2a0uÞ½ 
 þ a1u2 þ 4a2u4; ð7:40Þ

and minimize it with the constraint Eq. (7.39). At fixed l, the saddle-point equation
oe

pxþipy

GS ½u
=ou ¼ 0 is given by

u½x0 � 2lþ a1 þ a1 lnð2a0uÞ
 þ 4a2u2 ¼ 0: ð7:41Þ
As in the s-wave case, once the atom number constraint is implemented, the detailed
behavior is quite different in three regimes, depending on the range of detuning x0.
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BCS regime. For x0 > 2�F, closed-channel molecules (b) and the corresponding conden-
sate are energetically costly leading to a small u. This justifies us to neglect the molecular
contribution (first term) inside the number equation (7.39). Then, with approximation of
n0f(l) by the normal state atom density (i.e., also ignoring the small condensate density
there) (7.36) immediately gives l � �F. Furthermore, similarly neglecting the subdominant
quartic term, a2u4 inside e

pxþipy

GS ðd ¼ 0Þ, Eq. (7.40), the corresponding saddle-point equation
can then be solved analytically, giving

ud¼0
pxþipy

¼ 1

2a0e
e�ðx0�2�FÞ=a1 ;

¼ e�11=6

ffiffiffiffiffi
2n
cp

s
e�ðx0�2�FÞð1þcpK=kFÞ=ð2cp�FÞ;

for x0 > 2�F; d ¼ 0; ð7:42Þ

that is indeed exponentially small in this BCS regime. The corresponding condensation
energy density e

pxþipy

GS ðdÞ � e
pxþipy

GS ½ud
pxþipy

; d
 is given by

e
pxþipy

GS ð0Þ ¼ � ð1þ c2Þa1ðu0
pxþipy
Þ2;

¼� 4e�11=3�Fne�ðx0�2�FÞð1þcpK=kFÞ=ðcp�FÞ;

for x0 > 2�F; d ¼ 0: ð7:43Þ

Within the same set of approximations it is also straightforward to compute the corre-
sponding quantities for the px-state, obtaining (u0 ” ud=0)

u0
px
¼ 1

a0e3=2
e�ðx0�2�FÞ=a1 ;

¼ e�14=6

ffiffiffiffiffi
8n
cp

s
e�ðx0�2�FÞð1þcpK=kFÞ=ð2cp�FÞ; ð7:44Þ

epx
GSð0Þ ¼ � 8e�14=3�Fne�ðx0�2�FÞð1þcpK=kFÞ=ðcp�FÞ;

for x0 > 2�F; d ¼ 0; ð7:45Þ

that gives a ratio Rðd ¼ 0Þ ¼ e
pxþipy

GS ð0Þ=epx
GSð0Þ ¼ e=2 of condensation energies for the two

states, consistent with the numerical value reported in Ref. [52] and thereby confirms that
px + ipy state is energetically more favorable.

Crossover and BEC regimes. For x0 < 2�F, it becomes favorable (even in gp fi 0 limit) to
convert a finite fraction of the Fermi sea (between x0 and 2�F) into a BEC of closed-chan-
nel molecules. Consistent with this, the log contribution in Eq. (7.40) is no longer large,
with e

pxþipy

GS immediately giving a chemical potential that tracks the detuning according
to l � x0/2 with accuracy of O(cp).

As previously noted [28,65], we observe that the roles of number and gap equations
interchange in the x0 < 2�F regime, with the former determining the molecular condensate
density and the latter giving the chemical potential. Consistent with this, the number equa-
tion, Eq. (7.39) then gives the growth of the bosonic condensate according to

u2 þ v2 � n
2ð1þ c2Þ

1� x0

2�F

� �3=2

hðx0Þ
" #

; ð7:46Þ
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reaching a maximum value of

u2 þ v2 ¼ n
2ð1þ c2Þ

; ð7:47Þ

for a negative detuning. As already noted above, it is remarkable that even for a large neg-
ative detuning the boson density never reaches its (ideal, cp� 1) maximum value of n/2
corresponding to the total atom density n. Instead, due to p-wave interaction that is strong
at short scales, c2 > 0, and a p-wave molecular condensate is depleted into open-channel
atoms. We will nevertheless continue to refer to this range of detuning as the BEC regime.

Since as shown above, in the crossover and BEC regimes the ground state remains a
px + ipy-wave superfluid the p-wave order parameter is given by

u0
pxþipy

� n1=2

2ð1þ c2Þ1=2
1� x0

2�F

� �3=2

hðx0Þ
" #1=2

; for x0 < 2�F: ð7:48Þ

b. Anisotropic p-wave Feshbach resonance. We now analyze the more experimentally rel-
evant anisotropic case [37], where the triplet Feshbach resonance is split by dipolar inter-
actions into a m = ±1 degenerate doublet resonance and an m = 0 resonance, with xa

given by Eq. (7.38). With the magnetic field H picking out a special direction (that we take
to be x̂), the ground-state energy function eGS is no longer rotationally invariant. Within
our saddle-point approximation this uniaxial anisotropy only enters through the detuning
part

eanisot:
GS ½u; v
 ¼ x0ðu2 þ v2Þ þ dðu2

y þ u2
z þ v2

y þ v2
z Þ: ð7:49Þ

With d > 0, this uniaxial single-particle energy is clearly minimized by uy = uz =
vy = vz = 0, i.e., when u and v are parallel and point along H ¼ H x̂, corresponding to
the px-wave ground state. In our more convenient u Æ v = 0 gauge choice, this px state is
equivalent to either u or v pointing along H and with the other vanishing. Furthermore,
in this transverse gauge for a px + ipy state [64] (that, as we saw above is preferred by
the interactions) in which neither u nor v vanish, eanisot:

GS is clearly minimized by choosing
the longer of the u and v to be along H ¼ H x̂, while the shorter one spontaneously selects
a direction anywhere in the (yz-) plane perpendicular to H. For u = v, their overall orien-
tation is chosen spontaneously.

An explicit minimization over the direction of u-v orthogonal set confirms these argu-
ments, giving

eanisot:
GS ½u; v
 ¼ x0ðu2 þ v2Þ þ d Min½u2; v2
: ð7:50Þ

It is convenient to take advantage of the exchange symmetry u M v, eGS[u,v] = eGS[v,u],
and for u „ v (without loss of generality) always choose u to be the longer vector, with
the other state physically equivalent. With this choice and Eq. (7.50) the ground-state ener-
gy is minimized by u directed along H. The resulting ground state energy as a function of
magnitudes u and v, with u > v and u ¼ ux̂ takes the form

êGS½û; v̂
 ¼ x̂ðû2þ v̂2Þþðû2þ v̂2Þ2þ1

2
ðû2� v̂2Þ2þ d̂v̂2þ â1 ðû2þ v̂2Þ lnðûþ v̂Þþ û3þ v̂3

ûþ v̂

� 

;

ð7:51Þ
for u> v; u¼ ux̂; u? v:
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where to simplify notation we introduced dimensionless variables

x̂ � x0 � 2lþ a1 lnða0

ffiffiffi
n
p
Þ

� �
=ða2nÞ; ð7:52Þ

d̂ � d
a2n

; ð7:53Þ

â1 �
a1

a2n
; ð7:54Þ

êGS �
eGS

ð1þ c2Þa2n2
� eGS

e0

; ð7:55Þ

û � uffiffiffi
n
p ; v̂ � vffiffiffi

n
p : ð7:56Þ

As in the isotropic case above, the ground state as a function of detuning x0 and dipo-
lar splitting d is found by minimizing êGS½û; v̂
 over magnitudes û and v̂ with the constraint
of the total atom density equation, Eq. (7.39)

û2 þ v̂2 ¼ 1

2ð1þ c2Þ
1� l

�F

� �3
2

hðlÞ
 !

: ð7:57Þ

Standard analysis shows that êGS½û; v̂
 generically has three physically distinct [64]
(confined to û > v̂ > 0 quadrant) extrema: (i) û ¼ v̂ ¼ 0 (normal state), (ii) û > 0, v̂ ¼ 0
(px-superfluid state), and (iii) û > v̂ > 0 (px + ipy-superfluid state [64]). At zero tempera-
ture for a fixed atom density the normal state is always a maximum with energy
eGS½0; 0
 � eN

GS ¼ 0. However, in contrast to the isotropic case, here the relative stability
of the px and px + ipy states crucially depends on the detuning x0 and dipolar splitting
d. This is summarized by the contour plots of eGS(u,v) for d = 0 (Fig. 24), d small
(Fig. 25) and d large (Fig. 26). We now study these in detail.
u
0

v

Fig. 25. A contour plot of eGS(u,v) in the presence of a small splitting d. The global minimum at u „ v „ 0 and
saddle-points at u = 0, v „ 0 and u „ 0, v = 0, can clearly be seen.



Fig. 26. A contour plot of eGS(u,v) in the presence of a large splitting d. Only the global minima at u = 0, v „ 0
and u „ 0, v = 0 are present.
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BCS regime. As a generic property of the BCS regime, for x0 > 2�F, the molecules are
energetically suppressed, and only exponentially small condensate is expected. The num-
ber equation then leads to l � �F. It also allows us to neglect the subdominant quartic
in û and v̂ contributions inside eGS, Eq. (7.51), allowing the corresponding saddle-point
equation to be solved analytically. For the two candidate p-wave superfluid states we find:

upxþipy
¼ ð1þ d=a1Þe�d=2a1 u0

pxþipy
;

¼ 1

2a0e
ð1þ d=a1Þe�ðx0�2�Fþd=2Þ=a1 ;

vpxþipy
¼ ð1� d=a1Þe�d=2a1 v0

pxþipy
;

¼ 1

2a0e
ð1� d=a1Þe�ðx0�2�Fþd=2Þ=a1 ;

e
pxþipy

GS ðdÞ ¼ � ð1þ d2=a2
1Þe�d=a1e

pxþipy

GS ð0Þ;
for x0 > 2�F; ð7:58Þ

and

upx
¼ u0

px
;

¼ 1

a0e3=2
e�ðx0�2�FÞ=a1 ;

vpx
¼ 0;

epx
GSðdÞ ¼ epx

GSð0Þ;
for x0 > 2�F; ð7:59Þ
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where the corresponding ground-state energies at finite splitting d have been expressed in
terms of d = 0 energies, Eqs. (7.43) and (7.44). The ratio of px + ipy and px ground-state
energies is then given by

RðdÞ ¼ e
pxþipy

GS

epx
GS

;

¼ e
2

1þ d2

a2
1

� �
e�d=a1 ; ð7:60Þ

and reduces to the previously found result of e/2 for d = 0.
Consistent with the analysis of the ‘‘isotropic resonance’’ subsection, for low dipolar

splitting d, RðdÞ > 1 and in the BCS regime the px + ipy superfluid [64] is the ground state,
as seen on Fig. 25. However, RðdÞ reaches 1 at dBCS

c , given by

dBCS
c ¼ a1; ð7:61Þ

¼
2cp

1þ c2

�F; ð7:62Þ

signaling a quantum phase transition from the px + ipy to px ground state for d > dc [64].
This is consistent with intrinsically positive quantity vpxþipy

ðdÞ, in Eq. (7.58) turning nega-
tive (unphysical) for d > dBCS

c .
BEC regime. We can similarly evaluate the order parameters, ground state energies and

the px � px + ipy quantum phase transition boundary in the opposite, BEC regime of a
large negative detuning x0 and l < 0, which reduces the number equation, Eq. (7.57) to

û2 þ v̂2 ¼ 1

2ð1þ c2Þ
� n̂B: ð7:63Þ

As discussed for the isotropic resonance case, in the BEC regime the condensate is no long-
er exponentially small (given by a finite fraction of total atom density, as seen above), and
as a result we can neglect the â1 terms in Eq. (7.51) for small â1. Standard minimization of
the resulting ground-state energy function, together with the number equation (7.63) gives
for two extrema, one corresponding to a px + ipy superfluid [64]

upxþipy
¼ 1ffiffiffi

2
p n1=2 n̂B þ d̂=2

� �1=2

;

¼ 1

2
n1=2 1

1þ c2

þ 5ð1þ c2Þ
8c2cp

d
�F

 !1=2

;

vpxþipy
¼ 1ffiffiffi

2
p n1=2 n̂B � d̂=2

� �1=2

;

¼ 1

2
n1=2 1

1þ c2

� 5ð1þ c2Þ
8c2cp

d
�F

 !1=2

;

e
pxþipy

GS ðdÞ ¼ � e0ðn̂2
B þ d̂2=8Þ;

¼�
2c2cp

5ð1þ c2Þ2
þ 5ð1þ c2Þ2

8c2cp

d2

�2
F

 !
�Fn; ð7:64Þ
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and one corresponding to a px superfluid

upx
¼ n1=2n̂1=2

B ;

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ c2Þ

p n1=2;

vpx
¼ 0;

epx
GSðdÞ ¼ �

3

2
e0n̂2

B;

¼ � 3

5

c2cp

ð1þ c2Þ2
�Fn: ð7:65Þ

As argued earlier for the isotropic case, for low dipolar splitting d the ground state is a
px + ipy superfluid, with order parameter and ground-state energy given in Eq. (7.65),
illustrated on Fig. 25. As we can see from the form of vpxþipy

this minimum and the corre-
sponding state disappears for d̂ > 2n̂B � d̂BEC

c , which gives the critical splitting

dBEC
c ¼ 2a2nn̂B;

¼ 8

5

c2cp

ð1þ c2Þ2
�F ð7:66Þ

for the quantum phase transition from px + ipy to px superfluid [64].
The behavior of the p-wave superfluid order parameters and ground state energy as a

function of splitting d and for full range of detuning x0 is best mapped out numerically
and gives a smooth interpolation between above extreme (BCS and BEC) limits derived
above. However, the phase boundary dc(x0) for the quantum phase transition between
px + ipy and px superfluids can in fact be obtained analytically.

To this end we start at a large dipolar splitting, for which the px-superfluid (u > v = 0) is
a stable ground state and therefore the eigenvalues of the curvature matrix of eGS[u,v] are
positive in this state. We then locate the critical phase boundary dc(x0) by a point where
the eigenvalue along v direction changes sign, becoming negative and therefore signaling
an instability toward development of a finite value of v characteristic of the px + ipy-
superfluid.

To carry this out, we first minimize eGS[u,v] to implicitly determine the value of upx
(with

vpx
¼ 0), that is given by:

ð2x̂þ 3â1Þ þ 6û2
px
þ 2â1 ln ûpx

¼ 0: ð7:67Þ

Although above saddle-point equation cannot be explicitly solved for upx
, it can be used to

evaluate the eigenvalues of the curvature matrix at the px minimum, and thereby determine
the transition boundary dc(x0). Computing the eigenvalues of the curvature matrix of the
ground-state energy at the px minimum we find that px superfluid is stable for

d̂� â1 � 2û2
px
> 0; ð7:68Þ

which when combined with the atom number equation (7.57) gives (to lowest order in cp)



88 V. Gurarie, L. Radzihovsky / Annals of Physics 322 (2007) 2–119
d̂ðx0Þ � â1ðlÞ þ 2n̂B 1� l
�F

� �3=2

hðlÞ
 !

;

�
d̂BCS

c ¼ 5
4c2
; for x0 > 2�F

d̂cross:þBEC
c ðx0Þ ¼ 5

4c2
� 1

1þc2

� �
x0

2�F

� �3=2

hðx0Þ þ 1
1þc2

; for x0 < 2�F;

8<
: ð7:69Þ

for the (dimensionless) critical boundary illustrated in Fig. 27, with the system transition-
ing into the px + ipy-superfluid [64] for d < dc(x0). In above we used small cp (narrow Fesh-
bach resonance) approximation for the chemical potential l(x0) (derived above)
appropriate for different regimes. As anticipated the phase boundary dc(x0) smoothly
interpolates as a function of detuning between the BCS and BEC results found in Eqs.
(7.62) and (7.66). Since for all values of the dimensionless coupling c2 = cpK/kF,
d̂BEC

c < d̂BCS
c , for d̂ falling between these two values we predict a continuous quantum phase

transition at a critical value of detuning, given by (to OðcpÞ)

xc
0ðdÞ � 2�F

d� dBEC
c

dBCS
c � dBEC

c

 !2=3

: ð7:70Þ
7.3. Finite temperature: phases and transitions in a p-wave resonant Fermi gas

We now extend our study of the phase behavior of a p-wave resonant gas to finite tem-
perature. This involves a calculation of the free-energy density, fp[B], Eq. (7.5), and its
minimization along the lines similar to the above T = 0 analysis of the ground-state energy
density eGS[B]. The former amounts to a computation of the polarization tensor I ðT Þab ½B
,
Eq. (7.15), details of which we relegate to Appendix C.

The upshot of detailed calculations, presented in the Appendix C, is that (as usual) at
finite T the low-energy singularities arising from Fermi-surface low-energy contributions
to I ðT Þab [B] are cutoff by T. Consequently, (in contrast to the T = 0 case, above), the free
energy, fp[B] is an analytic function of B, that at high temperatures, where |B| is small is
Taylor expandable in powers of the gauge-invariant tensor �BaBb. Naturally, in the
Fig. 27. The phase diagram of an anisotropic p-wave superfluid at zero temperature, illustrating a phase
boundary of (dimensionless) dipolar splitting d̂cðx0Þ as function of detuning, that marks a phase boundary of a
continuous quantum phase transition between a px- and px + ipy-superfluid.
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isotropic case xa = x0 and fp[B] only involves rotationally invariant traces of the powers
of a tensor Qab ¼ �BaBb and its transpose Qba.

Within the saddle-point approximation only the quadratic contribution is anisotropic,
and the resulting free-energy density is given by a standard Landau form

fp½B
 ¼
X

a¼x;y;z

tajBaj2 þ k1
�B 	 B
� �2 þ k2jB 	 Bj2; ð7:71Þ

where, because of the dipolar-anisotropy splitting tx(T,x0) < ty(T,x0) = tz(T,x0) ”
t^(T,x0), reflecting uniaxial symmetry of the system, and these parameters vanish linearly
at respective T 0c s, with

txðT ;x0Þ � T � T x
cðx0Þ;

t?ðT ;x0Þ � T � T?c ðx0Þ; ð7:72Þ

and

T x
cðx0Þ > T?c ðx0Þ: ð7:73Þ

The parameters k1,2 are only weakly temperature dependent.
Beyond the saddle-point approximation, we expect that generically only the gauge-in-

variance is preserved by all the terms in fp[B] and lack of rotational symmetry for finite d
will be reflected by all terms. However, for our purposes it will be sufficient to keep only
the dominant non-rotational invariant contribution entering through the quadratic term
as reflected in fp[B] above. In terms of u and v parametrization the free-energy density is
given by

fp½u; v
 ¼
X

a¼x;y;z

taðu2
a þ v2

aÞ þ k1ðjuj2 þ jvj2Þ2 þ k2 ðjuj2 � jvj2Þ2 þ 4ðu 	 vÞ2
� �

; ð7:74Þ

where the ratio of 4 between the two k2 terms is a generic feature that is a reflection of the
underlying gauge-invariance.

7.3.1. Isotropic

In the isotropic case (d = 0), tx = t^ ” t(T), and the free-energy density is fully rotation-
ally invariant, given by

f iso
p ½B
 ¼ tjBj2 þ k1

�B 	 B
� �2 þ k2jB 	 Bj2: ð7:75Þ

For t > 0 (T > Tc), f iso
p ½B
 is minimized by B = 0 and the gas is in its normal (non-super-

fluid) phase. Upon lowering T below Tc, a minimum develops at a finite value of B. As can
be seen from the its expression in terms of u and v, Eq. (7.77) the minimum is at u = v and
u Æ v = 0 (or any of its gauge-equivalent states corresponding to unequal and non-trans-
verse u and v). Thus, the finite-T normal-to-superfluid transition is to a px + ipy-superfluid
ðSFpxþipy

Þ, consistent with our earlier finding [52] that the ground state is a px + ipy-super-
fluid, for all detunings. At this transition the global U(1) gauge-symmetry is spontaneously
broken, corresponding to a choice of a phase of B or equivalently the relative orientation
and magnitudes of u and v (as long as they are not parallel or one of them does not vanish,
since this would correspond to a px state that is not connected to the px + ipy state by a
gauge transformation). In addition, an arbitrary choice of an overall orientation of B

(i.e., of the u � v frame, that by gauge-choice can be taken to be orthogonal) spontaneous-
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ly breaks O(3) rotational symmetry. Clearly time-reversal symmetry is also spontaneously
broken in the px + ipy-superfluid state.

This finite-temperature transition is in the complex O(3) universality class, which can be
thought of as a well-explored real O(6) model[66], explicitly broken by k2 crystal symme-
try-like breaking fields, analogous to O(3) ferromagnet in a crystal-fields due to spin–orbit
coupling to a lattice. Its critical behavior has been extensively explored by Vicari et al. [67].

7.3.2. Anisotropic

We now turn to the more experimentally relevant uniaxially anisotropic case, of a Fesh-
bach-resonance triplet split by d > 0 (as described above) by dipolar interactions in the
presence of an external magnetic field H ¼ H x̂. The dipolar splitting considerably enriches
the phase diagram, allowing for three possible phase diagram topologies, illustrated in
Figs. 9–11. In terms of the complex O(3) model dipolar-splitting leads to an easy-axis
(Ising) anisotropy, with the free-energy density given by

f anisot
p B½ 
 ¼ txjBxj2 þ t?jB?j2 þ k1

�B 	 B
� �2 þ k2jB 	 Bj2; ð7:76Þ

¼ txðu2
x þ v2

xÞ þ t?ðu2
? þ v2

?Þ þ k1ðjuj2 þ jvj2Þ2 þ k2 ðjuj2 � jvj2Þ2 þ 4ðu 	 vÞ2
� �

;

ð7:77Þ
where ^ indicates two components in the plane perpendicular to the external magnetic field H

axis that we have taken to be x̂. For tx < t^ it is clear that Bx part of B will order first, with
B^ = 0. Namely, since T x

c > T?c , u and v will always both order parallel to the x-axis, showing
that for arbitrary small splitting d > 0 and arbitrary detuning x0, the finite temperature nor-
mal to p-wave superfluid transition is always to the px-superfluid SFpx

. We designate this
upper-critical temperature by Tc2(x0) and expect it to be set (up to renormalization by fluc-
tuations) by T x

cðx0Þ. Clearly from the structure of f anisot
p ½B
, Eq. (7.76), the non-critical (‘‘mas-

sive’’) B^ component can be safely integrated out at the N-SFpx
transition, leaving a Landau

model of a single complex order parameter Bx. Hence the finite-T N-SFpx
classical transition

is in 3D XY universality class, at which only a global U(1) gauge symmetry is broken.
What follows upon further lower the temperature qualitatively depends on the strength

of the dipolar splitting d. This follows from the zero-temperature analysis of Section 7.2.3
and is summarized by phase diagrams in Figs. 9–11.

For weak (normalized) Feshbach resonance dipolar splitting 0 < d̂ < d̂BCS
c , upon further

lowering temperature from a px-superfluid phase, the system always undergoes a transition
to a px + ipy-superfluid for all detuning x0; we designate this critical temperature by
Tc1(x0). To see this, we observe that for this low range of d, the parameter t^ becomes neg-
atives with reduced T and thereby leads to another critical temperature at which the B^
component also orders. This ordering takes place in the presence of a finite px order
parameter Bx0, within mean-field theory given by

Bx0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tx

2ðk1 þ k2Þ

r
: ð7:78Þ

The resulting Landau theory for B^ is then given by

fpx!pxþipy
½B?
¼ðt?þ2k1jBx0j2ÞjB?j2þðk1þk2ÞjB?j4þk2

�B2
x0B? 	B?þB2

x0
�B? 	 �B?

� �
; ð7:79Þ

¼ ~t?þ2~kcosð2u?�2ux0Þ
� �

jB?j2þkjB?j4 ð7:80Þ



V. Gurarie, L. Radzihovsky / Annals of Physics 322 (2007) 2–119 91
where k ” k1 + k2 and

~k � k2jBx0j2 ¼
k2

2ðk1 þ k2Þ
jtxj; ð7:81Þ

~t? � t? þ 2k1jBx0j2 ¼ t? þ
k1

k1 þ k2

jtxj: ð7:82Þ

We note that at this transition the phase u^ of B^ locks to the phase ux0 of Bx0 so that the
relative phase is ±p/2. This is exactly what is expected upon ordering into one of the two
degenerate px ± ipy states. We thus find that the SFpx

to SFpxþipy
transition is modified by

the presence of px order and takes place at

t?ðT Þ ¼ 2ðk2 � k1ÞjBx0j2;

¼ � txðT Þ
k2 � k1

k2 þ k1

; ð7:83Þ

which then in turn determines Tc1(x0). Since the U(1) gauge-symmetry is already broken in
the px-superfluid phase and since, as seen above u^ is automatically locked to ux0, the
remaining symmetries that are broken at this transition are the O(2) rotations of B^ about
the x-axis (set by the magnetic field H) and the time-reversal symmetry associated with a
choice of one of the locking angles ±p/2, corresponding to angular momentum projection
m = ±1. Thus the SFpx

to SFpxþipy
transition is also in the well-studied 3D XY universality

class. Above results are summarized by a finite temperature part of the phase diagram,
illustrated in Fig. 28
Fig. 28. Finite-temperature phase diagram illustrating continuous transitions between normal (N), px-superfluid
(SFpx

) and px + ipy-superfluid ðSFpxþipy
Þ. The parameters tx(T) < t^(T) are reduced temperatures split by d. Only

tx < t^ part of the figure is physically relevant.
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At intermediate dipolar splitting d̂BEC
c < d̂ < d̂BCS

c , the N-SFpx
transition can also be fol-

lowed by the SFpx
to SFpxþipy

transition, but only for detuning x0 > x0c(T), as illustrated in
Fig. 10. The zero-temperature critical frequency x0c (with limits x0cðd! dBCS

c Þ ! þ1 and
x0cðd! dBEC

c Þ ! �1) is given by Eq. (7.70) and x0c(T) is its finite-T extension. Hence,
for this intermediate range of d, we predict on general grounds that this SFpx

–SFpxþipy

phase boundary Tc1(x0) has a maximum. Thus at fixed T the gas for this range of param-
eters should exhibit a reentrant SFpx

! SFpxþipy
! SFpx

transition with detuning x0.

Finally, for large dipolar splitting d̂BCS
c < d̂, px-superfluid is stable below Tc2(x0)

throughout, as illustrated in Fig. 11. We note, however, that for a Feshbach resonance
splitting much larger than the Fermi energy, we expect that on sufficiently short time scales
(set by time scale for energy relaxation in the system) the two (m = 0 and m = ±1) split
Feshbach resonances will act independently, so that one can come in resonance with each
of them separately. If so, either Fig. 11 or 9 will be experimentally observed, depending on
to which of the two resonances, m = 0 or m = ±1, respectively the system has been tuned.

All of the above discussed transitions are quite conventional and should be experimen-
tally identifiable through (among other signatures) their standard universal thermodynam-
ic singularities (e.g., in heat capacity). Furthermore, the phases should be distinguishable
through their spectroscopic properties, with the normal state gapless throughout, and for
positive chemical potential, the px-superfluid displaying a gap with an equatorial line of

nodes, i.e., for k
px
nodes ¼ k?F , and px + ipy-superfluid exhibiting a gap with nodes at the north

and south pole, i.e., at k
pxþipy

nodes ¼ �kFẑ.
In addition to above transitions that are characterizable by an order parameter, we

expect the p-wave superfluid to exhibit a number of non-Landau type of (the so-called)
topological transitions at l = 0. The simplest argument for the existence of such transi-
tions is the fact that a p-wave superfluid exhibits the aforementioned gapless excitations
around Fermi surface for l > 0, and is gapped to single-particle excitations for l < 0, as
clearly seen in Ek, Eq. (7.6). Thus we predict continuous SFgapless

px
! SFgapped

px
and

SFgapless
pxþipy

! SFgapped
pxþipy

transitions at l = 0. One might expect a clear signature of such

transitions from the change in the low-T thermodynamic behavior, e.g., with the heat
capacity changing from a power-law in T to an activated form, with gap for l < 0 set
by the molecular binding energy. However, a collective sound mode, present in any super-
fluid, that contributes power-law in T contributions, might obscure the distinction between
the l > 0 and l < 0 p-wave superfluid phases. Local spectroscopic experimental probes
(some atomic gas analog of tunneling experiments) should prove useful for detection of
these transitions. Despite a lack of local Landau order parameter, these weakly and
strongly paired p-wave superfluids are distinguishable by their topological properties
[10,12,54,46,11], as we discuss in the next section.

8. Topological phase transitions and non-Abelian statistics

In addition to the rich (but conventional) phenomenology of p-wave resonant gases
obtained in previous subsections, as we will show next, they can also exhibit a more subtle
(in some cases topological) order and associated phase transitions, that cannot be classi-
fied by a local order parameter, nor associated Landau theory [68]. The existence of such
continuous non-Landau type phase transitions have long been appreciated in the litera-
ture. Examples range from Anderson’s metal-insulator transition and transitions between
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different quantum Hall ground states to the well-understood Kosterlitz–Thouless transi-
tion (e.g., in superfluid films) and two-dimensional melting, all separating two disordered
states undistinguished by any local order parameter or conventional symmetry operation.
8.1. p-wave superfluid in three dimensions

It is remarkable that px- and px + ipy-superfluids are examples of a system, that can
undergo such non-Landau type phase transition when the chemical potential changes sign.
In three dimensions this can be simply seen from the qualitative change in the spectrum Ek,
Eq. (7.6) of single-particle fermionic excitations, that for the px and px + ipy states

ðBx;By ;BzÞpx
¼ D

2gp
ð1; 0; 0Þ; ð8:1Þ

ðBx;By ;BzÞpxþipy
¼ D

2gp
ð1; i; 0Þ; ð8:2Þ

are, respectively, given by

Epx
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2m
� l

� �2

þ jDj2k2
x

s
; ð8:3Þ

E
pxþipy

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2m
� l

� �2

þ jDj2ðk2
x þ k2

yÞ

s
; ð8:4Þ

with D the maximum gap of each state, related to the corresponding order parameter.
Clearly, in a px-superfluid, for l > 0, Epx

k ¼ 0 (i.e., gapless) for kx = 0 and ky, kz arbitrary,
and for l < 0, Epx

k > 0 (i.e., gapped) for all k. Similarly, in a px + ipy-superfluid, for l > 0,
E

pxþipy

k ¼ 0 (i.e., gapless) for kz ¼
ffiffiffiffiffiffiffiffiffi
2ml
p

and kx = ky = 0, and for l < 0, E
pxþipy

k > 0 (i.e.,
gapped) for all k. Physically these spectral distinctions arise because for l > 0, a phase that
we refer to as SFweak

p , the pairing is a collective Fermi surface phenomenon and finite angu-
lar momentum forces the gap to vanish on some subspace of the Fermi surface. On the
other hand, for l < 0, in the SFstrong

p the gap is single-pair of fermions phenomenon and
is simply set by the molecular binding energy, independent of the angular momentum state
of the molecule.

These changes in the spectrum lead to qualitatively distinct single-particle correlation
functions and therefore require a genuine quantum phase transition (illustrated in Figs. 9–
11 separating two distinct (weakly and strongly paired) px- and two distinct (weakly and
strongly paired) px + ipy-superfluids, as l changes from positive to negative, respectively.

In a classic BCS p-wave paired superfluid, such as He3, l is always positive and these
transitions are not experimentally accessible. However, in p-wave resonant atomic gases
they should be easily realizable (if a p-wave superfluid is produced) by changing the detun-
ing parameter x0 (controlled by an external magnetic field), that is, as we have shown in
Section 7, is closely tracked (up to terms of the order of gp) by l.

In addition to the above quasiparticle spectrum and correlation function argument for

the transition at l = 0, the existence of the SFweak
pxþipy

! SFstrong
pxþipy

transition can be also seen

by noting that the two types of px + ipy-superfluids can be distinguished by topological

order as discussed in detail in Refs. [12,46,54]. Although, as argued above a spectral dis-
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tinction between l > 0 and l < 0 px-superfluids exists, and therefore we expect a corre-

sponding SFweak
px
! SFstrong

px
transition at l = 0, we are not aware of any topological dis-

tinction between these two phases similar to the px + ipy classification. For the rest of
the section, below, we will focus on the analogous transition in two dimensions, where

for a px + ipy-superfluid clearly no spectral distinction exists, with both SFweak
pxþipy

and

SFstrong
pxþipy

gapped, but still distinguishable by topological order.

8.2. p-wave superfluid in two dimensions

The three-dimensional calculations of this paper, arguing for the existence of a p-wave
superfluid can be easily extended to two dimensions, with only minor quantitative distinc-
tions (e.g., the dimensionless parameter c2 in 2D scales logarithmically with the uv
cutoff K). Thus, we expect the existence of a fully gapped two-dimensional px + ipy-
superfluid for l > 0 and l < 0. As we will see, a plethora of especially interesting
phenomena takes place in such a system, that we expect to be realizable by confining
the degenerate atomic gas to a highly oblate magnetic trap.

Although much of our discussion of this system follows an excellent paper by Read and
Green, Ref. [11], as well as Refs. [12,54,55], we elaborate on details of the analysis (partic-
ularly on the existence of the zero modes), and thereby hope to elucidate a number of
points discussed there. Furthermore, while above papers are well known and appreciated
in the quantum Hall community, they are less familiar to the atomic community and thus,
their main results are worth elaborating on here.

Following Ref. [11], let us first construct a ground state wave function of a two-dimen-
sional px + ipy superfluid. As discussed in Section 5.2 its mean-field Hamiltonian (valid in
the narrow-resonance limit) follows directly from Eq. (5.34), with the substitution
b̂p;a ! dp;0Ba and Eq. (8.2), and is given by

Ĥ � lN̂ f ¼
X

k

nkâykâk �
1

2

X
k

Dðkx þ ikyÞâykây�k þ Dðkx � ikyÞâ�kâk


 �
: ð8:5Þ

Here we fix the phase of D by choosing D ¼ �D and, as before, nk is given by Eq. (6.25),

nk ¼
k2

2m
� l:

This Hamiltonian is diagonalized by a unitary transformation to the Bogoliubov quasipar-
ticles

ĉk ¼ u�kâk þ v�kây�k;

ĉyk ¼ vkâ�k þ ukâyk; ð8:6Þ

taking the form

Ĥ ¼ EGS þ
X

k

Ekĉ
y
kĉk: ð8:7Þ

The ground state of this Hamiltonian is similar to its s-wave counterpart Eq. (6.28), and is
given by

BCSj i ¼
Y

k

u�k þ v�kay�kayk
� �

0j i: ð8:8Þ
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with each pair k, �k in the product taken only once. Here uk, vk are p-wave analogs of Eq.
(6.25), and satisfy the Bogoliubov-de-Gennes equations

nk �Dðkx þ ikyÞ
�Dðkx � ikyÞ �nk

� �
uk

vk

� �
¼ Ek

uk

vk

� �
; ð8:9Þ

The solution of these equations is straightforward with the result Eq. (8.4) and with nor-
malized uk, vk being

uk ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek þ nk

2Ek

s
;

vk ¼
ðkx � ikyÞDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ek Ek þ nkð Þ

p ð8:10Þ

We note that unlike the s-wave case Eq. (6.29), the relative phase of uk and vk is non-zero.
Let us construct a real space version of Eq. (8.8). It is given by

Wðr1; r2; . . .Þ ¼
X

P

ð�1ÞP gðrP 1
� rP 2

ÞgðrP 3
� rP 4

Þ . . . : ð8:11Þ

Here ri are two-dimensional vectors denoting the position of the ith fermion, and g(r) is a
Cooper-pair (or molecular) wavefunction given by

gðrÞ ¼
Z

d2k

ð2pÞ2
eik	r vk

uk

: ð8:12Þ

P stands for a permutation of numbers 1,2, . . . ,Nf, where Nf is the total number of ferm-
ions, and (�1)P is the sign of the permutation, thereby enforcing the antisymmetrization of
the many-atom ground-state wavefunction. Notice that g(r) = �g(�r) due to the p-wave
symmetry of the superfluid (since uk = u�k, vk = �v�k).

Now suppose l > 0. Then at small k �
ffiffiffiffiffiffiffiffiffi
2ml
p

or equivalently |r|� n�1/3, we can esti-
mate the function to be integrated in Eq. (8.12) to go as

vk

uk

¼ kx � iky

Ek þ nk
D � kx � iky

k2
: ð8:13Þ

It immediately follows that for |r|� l,

gðrÞ � 1

z
; ð8:14Þ

where z is the complex number representing the two-dimensional vector r ¼ xx̂þ yŷ as
z = x + iy. Therefore, for l > 0 the wave function takes the form

Wðz1; z2; . . .Þ ¼
X

P

ð�1ÞP 1

zP 1
� zP 2

1

zP 3
� zP 4

. . . : ð8:15Þ

This wave function occurs in the context of the quantum Hall effect (modulo the Gaussian
and Jastrow factors not essential for the present discussion) and is called the Pfaffian or
Moore-Read state [69].

To understand the connection with the quantum Hall effect, we recall that for the last
few years attempts have been made to realize quantum Hall states [70,71] out of Bose–
Einstein condensates by rotating them [72]. In the px + ipy condensate, thanks to the
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relative angular momentum ‘ = 1 of each Cooper pair (or closed-channel molecule), the
(fermionic) condensate already automatically rotates and therefore does not require any
externally imposed rotation to be in the quantum Hall ground state.

A key observation is that for l < 0 uk/vk � kx� iky at small k and g(r) no longer has the
power-law fall off characteristic of the quantum Hall-like ground state in Eq. (8.15).
Instead, the integral in Eq. (8.12) is then dominated by large k, and generally we expect
that g(r) will be an exponentially decaying function. The authors of Ref. [11] referred to
the l < 0 as the strongly coupled phase. For BCS–BEC condensates studied here, l < 0
corresponds to the BEC regime obtained for negative detuning x0.

As mentioned above, despite the qualitative distinction in the ground-state wavefunc-
tions, in a two dimensions Ek > 0, i.e., gapped for all k, for both l > 0 and l < 0. The only
special point where there are gapless excitations is l = 0. Nevertheless given the qualitative
distinction between the ground states at l > 0 and l < 0, they much be separated by a
quantum phase transition at the gapless point l = 0. The situation is again reminiscent
of quantum Hall transitions where gapless points separates gapped quantum Hall states.

Although this transition at l = 0 is not of Landau type (not exhibiting any obvious
local order parameter) the weakly (l > 0) and strongly paired (l < 0) px + ipy states are
topologically distinct and therefore the transition is topological. The topological distinc-
tion lies in the properties of the two complex functions uk and vk, constrained by
|uk|2 + |vk|2 = 1. Since their overall phase is unimportant, they are parametrized by two real
parameters. Thus, uk and vk represent a map from a two-dimensional space of k (which
can be thought of topologically as a sphere S2, if the point k =1 is added) to the two-di-
mensional space of uk, vk. Such maps are characterized by the winding numbers, called the
homotopy classes corresponding to the homotopy group p2ðS2Þ ¼ Z. Roughly speaking,
these winding numbers are the number of times uk, vk wraps around a sphere as k varies.
Quite remarkably, one can see that these numbers are different for l > 0 and l < 0.

To see this explicitly we construct a unit vector ~n which points in the direction of the
spinor (uk,vk). To this end, recall the standard relation between a spinor wa and a vector
nl, nl ¼ rl

abw
�
awb, which gives

nx
k ¼ u�kvk þ v�kuk ¼ �

kxD
Ek

;

ny
k ¼ i ukv�k � vku�k

� �
¼ kyD

Ek

;

nz
k ¼ uku�k � vkv�k ¼

nk

Ek

: ð8:16Þ

It is important to keep in mind that D is in fact a function of k2, being a constant for
k� K, but quickly dropping off to zero at k� K, where K is the ultraviolet cutoff asso-
ciated with the interatomic potential range. The winding number associated with p2(S2) is
given by the well-known topological invariant (discussed in our context in Ref. [12], whose
notations we borrow here)

~N 3 ¼
1

8p

Z
d2k ~n 	 oa~n� ob~n�ab


 �
: ð8:17Þ

Substituting ~nk, Eq. (8.16) into the expression for the topological invariant we find, after
an appropriate rescaling of k and with D ¼ D̂=

ffiffiffiffiffiffi
2m
p
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~N 3 ¼
1

2

Z 1

0

k dkD̂
ðk2 þ lÞD̂� 2k2ðk2 � lÞ oD̂

ok2

k2 � l
� �2 þ k2D̂2
� �3

2

: ð8:18Þ

As required by the general form of ~N 3, Eq. (8.17), this expression is a total derivative, and
the integral can be computed directly with the result

~N 3 ¼
1

2

k2 � lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � l
� �2 þ k2D̂2

q
�������
k¼1

k¼ 0

¼ 1

2
1þ signlð Þ: ð8:19Þ

Thus, for l < 0, ~N 3 ¼ 0, while for l > 0 ~N 3 ¼ 1, and indeed uk, vk define a topologically
non-trivial map only for l > 0. Hence, a px + ipy-superfluid ground state exhibits topolog-
ical order only for l > 0.

It is interesting to observe that the topological invariant ~N 3 for the px-state gives ~N 3 ¼ 0
independent of l, since its uk, vk are real and therefore define a trivial map. The same is
true for an s-wave condensate. Thus, at least based on this topological invariant, neither
of these states are topological, nor is the transition between weakly (BCS) and strongly
paired (BEC) states in these systems.

Finally, we remark that the topological invariant ~N 3 constructed here constitutes a par-
ticular case of more general topological invariants studied in Ref. [12].

8.3. Vortices and zero modes of a two-dimensional px + ipy superfluid: non-Abelian statistics

and ‘‘index theorem’’

We can further elucidate the nature of the px + ipy condensates if we study the solutions
to the Bogoliubov-de-Gennes (BdG) equation in the presence of vortices in the condensate
D. In fact as we will see below, a non-trivial topological order exhibited by the weakly
paired (l > 0) px + ipy-superfluid will reflect itself in the nature of the spectrum in the pres-
ence of vortices. Recall that a phase of the condensate wavefunction changes by an integer
number times 2p every time one goes around the vortex. Thus, in the presence of collection
of vortices at positions zi, the gap function D(r), proportional to the condensate wavefunc-
tion can generally be written as

DðrÞ ¼
Y

i

z� zi

�z� �zi

� �mi=2

DðrÞ; ð8:20Þ

where D(r) is a function of position whose phase is single valued. Since its square is the
condensate density, and D(r) is expected to vanish inside vortex cores.

Generically, in the presence of vortices, one expects solutions localized on them. It has
been appreciated for some time, based on a variety of arguments [11,12] (without an
explicit solution of the Bogoliubov-de-Gennes equation), that a px + ipy-superfluid is spe-
cial in that its fundamental 2p vortex in thermodynamic limit is guaranteed to carry a state
(referred to as ‘‘zero mode’’) at exactly zero energy.

Recently, we have studied the question of existence and robustness of such zero modes
for the more general problem of a collection of vortices [55]. As we will show below, we
found that for a macroscopic sample (i.e., ignoring the boundary physics), without fine-
tuning, strictly speaking there is only one or zero Majorana-fermion mode depending only
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on whether the total vorticity of the order parameter (in elementary vortex units of 2p) is
odd or even, respectively. For a collection of well-separated vortices, within an exponential
accuracy one zero mode per an isolated odd-vorticity vortex persists. As two of such vor-
tices are brought closer together the corresponding pair of ‘‘zero’’ modes splits away to
finite ±E (vortex-separation dependent) energies. Generically, even-vorticity vortices do
not carry any zero modes.

Before we proceed to construct these solutions explicitly, let us discuss in general what
we expect from the solutions of these BdG equations. A generic Bogoliubov-de-Gennes
Hamiltonian can always be represented in the form

Ĥ ¼
X

ij

âyi hijâj � âjhijâ
y
i þ âiDijâj þ âyjD

�
ijâ
y
i

� �
: ð8:21Þ

Here the indices i, j represent a way to enumerate fermion creation and annihilation oper-
ators, being for example, points in space and/or spin, if the fermions also carry spin. hij is a
hermitian operator, while Dij is an antisymmetric operator. The study of this Hamiltonian
is then equivalent to the study of a matrix

H ¼
h D

Dy �hT

� �
: ð8:22Þ

This matrix possesses the following important symmetry property

r1Hr1 ¼ �H�: ð8:23Þ

Here r1 is the first Pauli matrix acting in the 2 by 2 space of the matrix Eq. (8.22). In the
terminology of Ref. [73], we say that this matrix belongs to symmetry class D. As a result
of this property, if w is an eigenvector of this matrix with the eigenvalue E, then r1w* has
to be an eigenvector with the eigenvalue �E. Indeed,

Hr1w
� ¼ �r1H

�w� ¼ �Er1w
�: ð8:24Þ

As a result, all non-zero eigenvalues of H come in pairs, ±E. A special role is played by the
zero eigenvectors of this matrix, namely the zero modes discussed above. If w is a zero
mode, r1w* is also a zero mode. Taking linear combinations w + r1w*, i(w � r1w*) of these
modes, we can always ensure the relation

r1w
� ¼ w ð8:25Þ

for every zero mode. In the absence of other symmetries of H it is quite clear that gener-
ically there is nothing that protects the total number Nz of its zero modes under smooth
changes of the Hamiltonian matrix that preserve its BdG form, namely retain the proper-
ties in Eqs. (8.22) and (8.23). However, since non-zero modes have to always appear and
disappear in ±E pairs, as long as the symmetry property (8.23) is preserved by the pertur-
bation, the number of zero modes can only change by multiples of 2. Thus, while the num-
ber Nz of zero modes of the Hamiltonian (8.22) may change, this number will always
remain either odd or even, with ð�1ÞNz a ‘‘topological invariant’’ [74,75].

The value of this invariant is easy to establish if one observes that H is an even-sized
matrix, with an even number of eigenvalues. Since the number of non-zero modes must
be even, this implies that the number of zero modes is also even. Thus ð�1ÞNz ¼ 0, and
generally the BdG problem does not have any topologically protected zero modes. Fur-
thermore, since, as demonstrated above, zero modes must appear in pairs, there can only
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be an even number of accidental zero modes, which will nevertheless be generally
destroyed by any perturbation of H (preserving its BdG structure Eq. (8.22)). We believe
this observation was first made by Read [75].

The situation should be contrasted with that of the Dirac operators D. Those operators,
being generally of one of chiral classes in the terminology of Ref. [73], obey the symmetry

r3Dr3 ¼ �D:
Thus if w is an eigenvector of D with the eigenvalue E, r3w is an eigenvector with the eigen-
value �E. The zero modes of D must obey the relation

r3wL;R ¼ �wL;R:
Here ‘‘left’’ zero modes wL come with the eigenvalue +1, while ‘‘right’’ zero modes wR

have the eigenvalue �1 of the operator r3. As the operator D is deformed, the number
of zero modes changes, but the non-zero modes always appear in pairs where one of
the pair has to be ‘‘left’’ and the other ‘‘right’’. Therefore, while the number of zero modes
is not an invariant, the difference between the number of left and right zero modes has to
be a topological invariant, determined (through the index theorem) by the monopole char-
ge of the background gauge-field.

Contrast this with zero modes of H, which obey the relation Eq. (8.25). Because of com-
plex conjugation of w, these zero modes cannot be split into ‘‘left’’ and ‘‘right’’. Indeed,
even if we tried to impose r1w* = �w, a simple redefinition of w fi iiw brings this relation
back to Eq. (8.25). Thus, the most an ‘‘index theorem’’ could demonstrate in case of the
Bogoliubov-de-Gennes problem, is whether there is 0 or exactly 1 zero mode. Moreover,
since the Bogoliubov-de-Gennes problem is defined by an even dimensional Hamiltonian,
generically there will not be any topologically protected zero modes [75].

Yet it is quite remarkable that in case of an isolated vortex of odd vorticity in a mac-
roscopic sample (i.e., ignoring the sample boundaries) of a px + ipy-superfluid of spinless
fermions, there is exactly one zero mode localized on this vortex [76,11,56,77]. To be con-
sistent with above general property of the BdG Hamiltonian (namely, that the total num-
ber of zero modes must be even) another vortex is situated at the boundary of the system
[11,75], preserving the overall parity of the number of zero modes. Hence, although even in
this odd-vorticity case the one zero mode is not protected topologically, able to hybridize
with a vortex at a boundary of the sample, it survives (up to exponentially small correc-
tions) only by virtue of being far away from the boundary (and from other odd-vorticity
vortices).

To see this explicitly we now consider a px + ipy-superfluid in the presence of a single
rotationally symmetry vortex, characterized by

DðrÞ ¼ i

2
eiluf 2ðrÞ; ð8:26Þ
where f(r) is a real function of r (vanishing at small r), l is the vorticity of the vortex, r, u
are the polar coordinates centered on the vortex, and the factor of i/2 is chosen to simplify
subsequent calculations. In this case the Bogoliubov-de-Gennes equations take the form
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�r
2

2m
� l

� �
uðrÞ � f ðrÞe

ilu
2

o

o�z
e

ilu
2 f ðrÞvðrÞ

h i
¼ EuðrÞ;

r2

2m
þ l

� �
vðrÞ � f ðrÞe�

ilu
2

o

oz
e�

ilu
2 f ðrÞuðrÞ

h i
¼ EvðrÞ; ð8:27Þ

We remark that once solutions to these equations un(r), vn(r), corresponding to energies En,
are known, the Bogoliubov quasiparticle creation and annihilation operators are given by

ĉn ¼
Z

d2r u�nðrÞâðrÞ þ v�nðrÞâyðrÞ

 �

ĉyn ¼
Z

d2r unðrÞâyðrÞ þ vnðrÞâðrÞ

 �

: ð8:28Þ

If the condensate was uniform, then the solutions to the Bogoliubov-de-Gennes equations
would be plane waves, immediately leading to Eq. (8.6). The inverse to Eq. (8.28) reads

âðrÞ ¼
X

n
ĉnunðrÞ þ ĉynv�nðrÞ;

âyðrÞ ¼
X

n
ĉynu�nðrÞ þ ĉnvnðrÞ: ð8:29Þ

Next we observe that for the case of a vortex of even vorticity, l = 2n, we can eliminate the
phase dependence of Eq. (8.27) entirely. Indeed, making a transformation

u! ueinu; v! ve�inu: ð8:30Þ

leads to equations

�r
2

2m
þ n2

2mr2
� l

� �
u� in

mr2

ou
ou
� f ðrÞ o

o�z
f ðrÞv½ 
 ¼ Eu;

r2

2m
� n2

2mr2
þ l

� �
v� in

mr2

ov
ou
� f ðrÞ o

oz
f ðrÞu½ 
 ¼ Ev: ð8:31Þ

Now we note that these equations are topologically equivalent to the BdG equation with-
out any vortices. Indeed, the only difference between these equations and those for a uni-
form condensate is the presence of the terms 2in/r2[o/ou], n2/r2, and f(r) that is a constant
at large r and vanishes in the core of the vortex for r < rcore. We can imagine smoothly
deforming these equations to get rid of the first two terms (for example, by replacing them
with a(n2/r2 � 2in/r2[o/o u])u and taking a from 1 to 0), and smoothly deforming f(r) into a
constant equal to its asymptotic value at large r; in order to be smooth, the deformation
must preserve the BdG structure Eq. (8.22) and the vorticity of the condensate, if there is
any. These equations then become equivalent to Eq. (8.9) for a constant, vortex-free order
parameter with an exact spectrum Eq. (8.4), that for l „ 0 in two-dimensional space clearly
does not exhibit any zero modes.

As Eqs. (8.31) are smoothly deformed to get rid of the vortex, in principle it is possible
that its solutions will change and that it will develop zero modes (although, as demonstrat-
ed above, this can only happen in ±E pairs, leading to an even number of these). However,
these modes will not be topologically protected, and even a small deformation of, say, the
shape of the order parameter shape f(r) will destroy these modes. We note that this argu-
ment easily accommodates vortices that are not symmetric, as those can be smoothly
deformed into symmetric ones without changing the topologically protected parity of
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Nz. The conclusion is that generically there are no zero modes in the presence of an iso-
lated vortex of even vorticity.

The situation is drastically different if the vorticity of the vortex is odd, i.e., if
l = 2n � 1. In this case the transformation Eq. (8.30) cannot entirely eliminate the vortex
from the equations (even with the help of a smooth deformation), leaving at least one fun-
damental unit of vorticity. This thereby guarantees at least one one zero mode localized on
the odd-vorticity vortex. To see this, recall that due to the condition Eq. (8.25), the zero
mode satisfies

u ¼ v�: ð8:32Þ

Combining this with the transformation Eq. (8.30), we find the equation for the zero mode

�f ðrÞe�
iu
2

o

o�z
e�

iu
2 f ðrÞu�

h i
¼ r2

2m
� n2

2mr2
þ l

� �
uþ in

mr2

ou
ou

: ð8:33Þ

We look for the solution to this equation in terms of a spherically symmetric real function
u(r). This gives

� 1

2m
u00 � f 2

2
þ 1

2mr

� �
u0 � f 2

4r
þ ff 0

2
� n2

2mr2

� �
u ¼ lu: ð8:34Þ

A transformation

uðrÞ ¼ vðrÞ exp �m
2

Z r

0

dr0f 2ðr0Þ
� �

ð8:35Þ

brings this equation to a more familiar form

� v00

2m
� v0

2mr
þ m

f 4ðrÞ
8
þ n2

2mr2

� �
v ¼ lv: ð8:36Þ

This is a Schrödinger equation for a particle of mass m which moves with angular momen-
tum n in the potential m f 4(r)/8, that is everywhere positive. We observe that this potential
vanishes at the origin, and quickly reaches its asymptotic bulk value mf 4

0=8 at large r. Then
for l > mf 4

0=8, there always exist a solution to this equation finite at the origin and at
infinity. Moreover, if l < mf 4

0=8, then the solution finite at the origin will diverge at infin-
ity as

v � e
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f 4
0
4 �2ml

q
: ð8:37Þ

Combining this with Eq. (8.35), we see that u(r) will still be a bounded function at infinity
as long as l > 0. Thus the conclusion is, there exist zero mode as long as l > 0. For a spe-
cial case of the n = 0 vortex of vorticity �1, the small and large r asymptotics of the solu-
tion we found here was discussed recently in Ref. [56].

In the simplest London approximation of a spatially uniform condensate when f(r) = f0

for all r except inside an infinitesimal small core, the zero mode localized on an isolated
odd-vorticity vortex is simply given by
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8
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8>>><
>>>:

ð8:38Þ

where Jn(x), In(x) are Bessel and modified Bessel functions.
We note that it may seem possible to construct additional zero modes in the following

way. Instead of the ansatz of a rotationally invariant u(r) just after Eq. (8.33), we could
have chosen an ansatz

uðrÞ ¼ uaðrÞeiau þ u�aðrÞe�iau: ð8:39Þ

Then two second order differential equations follow, relating these two functions. These
are

� 1

2m
u00a �

1

2mr
u0a þ

ðnþ aÞ2

2mr2
ua ¼

f 2

r
1

4
� a

2

� �
u�a þ

f
2

f 0u�a þ fu0�a

� �
þ lua; ð8:40Þ

� 1

2m
u00�a �

1

2mr
u0�a þ

ðn� aÞ2

2mr2
u�a ¼

f 2

r
1

4
þ a

2

� �
ua þ

f
2
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þ lu�a: ð8:41Þ

Generally there are going to be four solutions to these equations which go as r|n�a| or r|n+a|

at small r. The other two will diverge as r�|n�a| or as r�|n+a|.
At infinity the four solutions of these equations go as exp½rð� m

2
f 2

0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 4

0 m2 � 8lm
p

Þ
.
Obviously, only two of these solutions are finite at infinity. However, barring a coinci-
dence, none of those solutions finite at r = 0 are also finite at infinity. Even if they are
for some special value of l, by the above arguments the additional zero modes must
appear in topologically unprotected pairs, that will be split to finite ±E energies by a slight
generic deformation of the potential (order parameter distortion). Hence we conclude that
generically there will be no additional zero modes (except the one found above) for an
odd-vorticity vortex.

Thus we indeed find that the number of zero modes in a symmetric odd-vorticity vortex
must be one. Since a smooth deformations of the order parameter can only change the
zero mode number by multiples of two, an arbitrarily shaped odd-vorticity vortex must
also have an odd number of zero modes. However, any number of zero modes other than
one is not generic and will revert to one under an arbitrary deformation of the order
parameter.

Now for a collection of well-separated r� 1/(mD) vortices of odd vorticity, each of
them will have one zero mode localized on it. However, as they are brought closer to each
other, these zero modes will actually split into a band of low lying ±E modes [11]. How-
ever, since other excited modes are separated from the zero modes by a gap [76], the nar-
row band will only mix very weakly with other states of the system.

It is this band of nearly degenerate zero modes that exhibit non-Abelian statistics. Fol-
lowing Ref. [78], we briefly describe how it is realized here. Each of the zero modes is in
fact a Majorana fermion, as follows directly from Eq. (8.28) and condition (8.32), given by

ĉ ¼
Z

d2r u�ðrÞâðrÞ þ uðrÞâyðrÞ
� �

: ð8:42Þ

It is straightforward to check that
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ĉy ¼ ĉ; ð8:43Þ
ĉ2 ¼ 1; ð8:44Þ

when u(r) is properly normalized. A Majorana fermion is essentially half of a real fermion,
thus they must always come in pairs (in case of an odd number of odd vorticity vortices,
the last remaining Majorana fermion is located at the boundary). Given 2n Majorana
fermions, we can construct creation and annihilation operators of n real fermions, accord-
ing to

ĉj ¼ ĉ2j�1 þ iĉ2j; ĉyj ¼ ĉ2j�1 � iĉ2j: ð8:45Þ

with ĉj a Majorana annihilation operator of a fermion localized on a vortex at position rj.
Thus clearly a real fermion ĉj is actually split between two vortices at r2j�1 and r2j.

In the presence of 2n vortices, there are 2n states corresponding to n pair of vortices
being either occupied or empty. Now it is possible to show that if two vortices are adia-
batically exchanged—moved around each other—these nearly degenerate zero states
mix with each other. More precisely,

w1

w2

	 	 	
w2n

0
BBB@

1
CCCA! U

w1

w2

	 	 	
w2n

0
BBB@

1
CCCA; ð8:46Þ

where U is a 2n by 2n unitary matrix, representing the unitary transformation of the 2n

ground states wj. The matrix U depends on which two vortices are exchanged (and on
the direction of the exchange). It does not, however, depend on the path along which
the vortices are moved, and is thus topological.

The matrix U is not a general unitary matrix. In fact, all the 2n states should be split into
two subsets of size 2n/2, one with even, and the other with odd number of fermions. U only
mixes states within each of these subsets. The reason for this is that the fermions which
occupy or vacate the zero modes must come in pairs, since they are produced from a Coo-
per pair which is being split into two fermions, or being assembled back from two
fermions.

Matrices U can be constructed by considering the change in wj as one vortex is slowly
moved around another, while others are kept fixed. For such adiabatic change, the effect
on the Bogoliubov-de-Gennes equation written in the vicinity of the first vortex is simply
through D slowly changing its phase. This can be incorporated into a change of the phase
of u and v by absorbing half of the phase into u and the other half (with the opposite sign)
into v. As a result, when one vortex moves all the way around another vortex, each of its
Majorana fermions changes sign. A change in sign of the Majorana fermions can be trans-
lated into the change in the states wj, by constructing an appropriate operator such that
U yĉjU ! �ĉj. Then the action of U on states wj constitutes a transformation as in Eq.
(8.46). For a more detailed discussion and an explicit construction of U for a px + ipy-su-
perfluid we refer the reader to Ref. [78].

The transformation (by U) upon exchange of two vortices in a px + ipy-superfluid is a
generalization of a standard quantum statistics of bosons and fermions familiar from stan-
dard quantum mechanics. This exchange transformaton also generalizes the two-dimen-
sional anyonic quantum statistics (familiar from Abelian quantum Hall states), where,
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upon a two-particle exchange a many-particle wavefunction gets multiplied by a phase fac-
tor eih (with a phase h not necessarily just 0 or p). Since generically unitary matrices U,
corresponding to different pairs of vortex exchanges do not commute, the resulting quan-
tum statistics is termed non-Abelian [69]. Thus odd-vorticity vortices in a px + ipy-super-
fluid at positive detuning (l > 0) are excitations (‘‘particles’’) with non-Abelian statistics.

Now, in addition to a basic interest, recent excitement about states that exhibit such
non-Abelian statistics is the observation that they can form a basis for building a fault-tol-
erant ‘‘topological’’ quantum computer [47]. More conventional quantum bit (q-bit)
schemes, such as the Josephson-junction charge, flux and phase q-bits, ions in an electro-
static trap, or spin q-bits suffer from decoherence due to interaction with the environment.
In contrast, a q-bit based on non-Abelian statics, as e.g., a state of 2n vortices is topolog-
ically protected because to change it requires a global operation on vortices such as one
encircling another, something that environmental noise will not generically do.

Based on the analysis presented here we propose [42] that a px + ipy-superfluid, that is
likely to be realized in a resonant Fermi gas interacting via a p-wave Feshbach resonance is
a viable candidate for an implementation of such a non-Abelian q-bit and associated topo-
logical quantum computation. One advantage of the realization of such a q-bit in degen-
erate atomic systems (as opposed to solid state superconductors) is the tunability of their
interaction via an external magnetic field, that allows a tuning of the chemical potential
closer to the l = 0 transition, while taking care to remain in the topological phase
l > 0. This in turn will allow a more energetically stable BEC superfluid, whose transition
temperature and the size of the gap are set by the Fermi energy �F, as opposed to a tiny
fraction of it as in conventional superconductors stuck in the exponentially weak BCS
regime.

Of course, even if such topological p-wave superfluid state and the associated
non-Abelian q-bit are realized in atomic resonantly paired condensates, many challenges
remain, such as a scheme for addressing the q-bits by manipulation of vortices and reading
off the state wj of their zero modes [56].
9. Comparison with experiment

9.1. s-wave

An important remaining question which must be addressed is whether current experi-
ments are characterized by a narrow or a broad resonance. While it is generally believed
that most s-wave Feshbach resonances realized in current experiments are wide, we will
show below that some are indeed narrow in the sense that a relevant dimensionless param-
eter cs controlling the quantitative validity of our theory is small.

As discussed throughout the paper, theoretically, an absolute characterization of a
width of an s-wave resonance is through the value of a dimensionless parameter
cs � g2

s m3=2�
�1=2
F , Eq. (1.5), that is set by the ratio of the resonance energy width to the

Fermi energy. Although this parameter is never measured directly, it can be related to
experimentally determined quantities through the atomic scattering length a(H) as a
function of magnetic field H, that is either measured or calculated (see Fig. 2). From that
data, magnetic field width Hw can be extracted, as the range of the magnetic field change
between the resonance (where a fi1) and the point where a = 0. Alternatively, one can
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look at the range of H where a deviates significantly (e.g., by a factor 2) from the back-
ground scattering length abg. Both methods produce similar definitions of Hw.

By itself, Hw carries little information about the dimensionless many-body resonance
width cs, which, as we recall, is not only a properties of the resonance, but depends also
on the particle density. That is, to assess how wide the resonance is, its width, controlling
strength of interactions must be compared to another energy scale, which in this case is the
typical kinetic energy �F. To establish a relation between cs and Hw, we recall Eq. (5.13)

a ¼ 2

mr0x0

;

where x0 is a detuning, that measures the deviation of the Zeeman splitting (between the
open and closed channel of Feshbach resonance) from its value at the resonance, where
a fi1 (see Fig. 1). By matching our results for the scattering length with its experimental
dependence on the magnetic field, we determined that x0 � 2lB(H � H0), with H0 the
field at which the resonance is tuned to zero energy and lB the Bohr magneton. This allows
us to express the effective-range length, r0 (entering the expression for the energy width of
the resonance; see below) purely in terms of experimentally measured quantities, namely:

jr0j ’
�h2

mabglBH w

: ð9:1Þ

Here �h was restored to facilitate calculations below. Once r0 is found, we can compute cs

by using

cs ¼
l
jr0j

8

3p5ð Þ1=3
� 0:8

l
jr0j

: ð9:2Þ

From r0 we can also estimate the intrinsic (density independent) energy width of an s-wave
resonance,

C0 �
�h2

mr2
0

;

� ðlBH wÞ2

�h2=ðma2
bgÞ

; ð9:3Þ

� ðlBHwÞ2

�F

abg

l

� �2

: ð9:4Þ

We note that in contrast to a naive guess, this energy width of the resonance is not simply
the Zeeman energy (converted with a Bohr magneton) associated with the width-field Hw.
From C0 the dimensionless parameter cs is then found to be

cs �
ffiffiffiffiffi
C0

�F

r
;

� lBHw

�F

abg

l
: ð9:5Þ

Eq. (9.2) can now be used as a criterion on whether a resonance is narrow or wide
(which is of course, equivalent to the one discussed in Section 1.2). We also remark that
the use of abg to find Hw is completely arbitrary; we could have instead define Hw as a
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range of the magnetic field where a(H) exceeds some given value |a| > aw as a reference
point, but this would still lead to an exactly the same |r0|, Eq. (9.1) (with abg replaced
by aw)

jr0j ’
�h2

mawlBHw

: ð9:6Þ

and the same criterion for the narrowness of the resonance; only the product awHw

enters r0.
Physically, cs can be though of as the ratio of the (energy) range of x0, where a exceeds

inter-particle spacing l, to the Fermi energy of the gas. Now, of course, it is in principle
possible to make a resonance narrow by increasing the atom density n (reducing spacing
l). However, it is our understanding that due to experimental limitations, the Fermi energy
is typically in the 1lK or less range and cannot be significantly increased above this value.

We now apply this dimensionless criterion to the experiment reported in Ref. [14]. The
s-wave resonance studied there is in 6Li at H0 � 543.25 G and is probably the most nar-
row one discussed in the literature. These authors report the density of their condensate to
be 3 · 1012 cm�3, corresponding to the inter-particle separation of l � 7 · 10�5 cm �
1.3 · 104 au. We also note that the size of a closed channel molecule is set by the range
of the van der Waals interaction, which is about 50 au. This length d plays the role of
the inverse uv cutoff 1/K of our theory. We note that the ratio d/l � 1/250 thus justifying
our assumption throughout the paper that K2/(2m) (K) can be treated as the largest energy
(momentum) scale of the system.

To estimate cs for the resonance in Ref. [14], we use their Fig. 1 for the scattering length
a(H) to extract Hw and aw. Although from this figure it is difficult to deduce the range of
the magnetic field where a(H) is larger than the background length abg, we use the arbitrar-
iness of aw to pick aw = 500 au. This corresponds to |H � H0| 6 0.015 G, that can be con-
verted into an energy by multiplying by lB. Using Eq. (9.6) then gives

jr0j ’ 6� 104 au; ð9:7Þ
and

cs ’
l
jr0j
� 0:2: ð9:8Þ

We thus conclude that the 543.25 G s-wave resonance in 6Li is in fact quite narrow in the
absolute, dimensionless sense. It is therefore a good candidate for a quantitative compar-
ison with our predictions for a narrow s-wave BCS–BEC crossover.

However, we note that, in contrast to above estimate of cs based on Fig. 1, according to
Fig. 4 of the same Ref. [14] the BCS–BEC crossover occurs over the range of magnetic
fields of the order of 1 G or so, corresponding to the range of the detuning of 100 lK
> > �F � 1.5 lK. Thus based on this Fig. 4, using the narrow-resonance theory we would
instead conclude that the resonance is wide. The reason for this discrepancy is currently
unclear to us. One should also notice that the authors of Ref. [14] were unable to convert
all the atoms into the molecules, so perhaps there were other factors in their experiment
which made its direct comparison with the narrow-resonance theory difficult.

Although the resonance in 6Li at 543.25 G is unusually narrow, more typical resonances
have magnetic width Hw . 10 G with aw . 50 au [22]. For such a resonance (assuming 6Li
for the mass m of the atom),



V. Gurarie, L. Radzihovsky / Annals of Physics 322 (2007) 2–119 107
jr0j ’ 103 au; ð9:9Þ

with

cs ’
l
jr0j
� 10: ð9:10Þ

Thus a more typical s-wave Feshbach resonance experiments lie in the class of wide reso-
nances.

9.2. p-wave

Although so far no atomic p-wave BCS–BEC superfluid has been realized, p-wave Fesh-
bach resonances have been demonstrated and explored experimentally. To get a sense of
future p-wave superfluid possibilities, it is useful to look at the Ref. [37]. Unfortunately, as
we will see below from the data reported there it is not possible to extract gp. Nevertheless
some conclusions can be made about which phases of a p-wave condensate may be realized
with the p-wave Feshbach resonance in 40K.

We first look the data concerning the value of parameter k0 from Eq. (2.21). The
parameter c, as given in that paper (Eq. (8) of Ref. [37]) is magnetic field dependent,
but in the relevant range of the magnetic field it is roughly k0 � � 0.04 au�1. As in
the previous s-wave analysis, we estimate the uv cutoff K to be roughly of the inverse size
of the closed-channel molecule, i.e., K � 0.02 au�1. This indicates that in the expression
for k0, Eq. (5.52),

k0 ¼ �
12p
m2g2

p

1þ m2

3p2
g2

pK

� �

most likely the dimensionless uv parameter c2 ¼ g2
pm2K=ð3p2Þ � 1, which gives

k0 � �
4

p
K: ð9:11Þ

Otherwise, |k0| would have been much bigger than K. Thus we deduced that c2� 1 for the
experiment of Ref. [37].

This implies that this experiment is done in the regime where the mean-field theory con-
sidered in this paper might become quantitatively unreliable [45]. Assuming that it does
not, large c2 indicates that even in the BEC regime of this system, most of the particles will
be in the form of free atoms, not bosonic molecules, as indicated in our analysis above.

Since the experiment reported in Ref. [37] is likely to be in the regime where c2� 1, it is
impossible to extract the Feshbach resonance coupling gp. We expect that gp gets renor-
malized in the regime of large c2, so that its bare value simply drops out. However, since
the complete theory of p-wave superfluids at large c2 is yet to be constructed, we cannot tell
what this implies for the experiment [45].

Next, we note that the dipolar-interaction splitting d between the mz = 0 and mz = ±1
Feshbach resonances is quoted in this paper as approximately 4 lK. This is presumably
several times bigger than currently experimentally achievable �F, that are typically in the
range of 0.5–1 lK. Thus we conclude that under conditions described in Ref. [37], at
low temperatures the gas will be in the px-superfluid state. However, because the splitting
is considerably larger than �F it might be possible to bring mz = ±1 molecules in resonance
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with the atoms independently of mz = 0 molecules. If so, a px + ipy-superfluid state should
be realizable for tuning near the mz = ±1 resonance.
10. Conclusions

In this paper we presented a study of a degenerate Fermi gases interacting through a
tunable narrow Feshbach resonance, as recently demonstrated experimentally. Starting
with an analysis of the two-body scattering physics we developed and justified generic
models for description of such systems. We paid a particular attention to regimes of valid-
ity for a perturbative analysis of such systems at finite density, and showed the existence of
a small dimensionless parameter, the ratio of the Feshbach resonance width to the Fermi
energy. It allows perturbative description throughout the full BEC-BCS range of detuning,
within the framework of two channel model. Focussing on the most interesting cases of the
s- and p-wave resonances, we analyzed in detail the corresponding systems. For the s-wave
resonance, we obtained predictions for the behavior of the system across the BEC-BCS
crossover, that we expect to be quantitatively accurate for the case of a narrow resonance.
For the far richer p-wave resonance, dominant for a single hyperfine species of atoms, we
showed the existence of and analyzed a number of classical, quantum and topological
phase transitions exhibited by this system as a function of temperature, Feshbach reso-
nance detuning and resonance dipolar splitting, and calculated the corresponding phase
diagrams, illustrated in Figs. 9–11. Finally, we studied topological properties of the weakly
paired px + ipy-superfluid, as well as zero-modes inside vortices of such a topologically
ordered superfluid in two dimensions. We hope that our analysis will be useful for probing
the associated non-Abelian quantum statistics of such vortices, and more generally, for
experimental realization and studies of a resonant p-wave superfluidity in degenerate
atomic gases.
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Appendix A. Bosonic vacuum propagator

It is instructive to analyze the renormalized vacuum propagator of the b-particles of the
two-channel model. We will do it in the s-wave case. Since the renormalized propagator is
nothing but the sequence of diagrams depicted on Fig. 18 with external legs amputated, its
calculation parallels that of the two fermion scattering amplitude. The answer is given by

Dðk;xÞ ¼ 1

x� k2

4m� x0 þ i g2
s m3=2

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� k2

4m

q : ðA1Þ
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The renormalized propagator is of course simply proportional to the two fermion scatter-
ing amplitude. Thus the poles of this propagators, which describe the physical bound states
(or resonances) of two fermions, coincide with the poles of the scattering amplitude. They
are given by

x ¼ k2

4m
þ x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 64p2x0

m3g4
s

s
� 1

" #
m3g4

s

32p2
: ðA2Þ

It is now straightforward to calculate the residue of the propagator D at its poles. The
result is

Z ¼ 1þ i
g2

s m
3
2

8p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 64p2x0

m3g4
s

s
� 1

" #
m3g4

s

32p2

 !�1
2
4

3
5
�1

:

Although the result is rather cumbersome, it is straightforward to see that the residue goes
to 1 if gs goes to zero, and it goes to 0 if gs goes to infinity. Thus, the contribution of b to
the actual bound state of two fermions (physical molecule) reduces to zero in the limit of
large gs (wide resonance limit). Notice that while the size of the closed channel molecules b

is of the order of d = 2p/K, the actual size of the molecule, which is a superposition of b

and a cloud of open channel fermions, could be quite large (and is in fact of the order of
the scattering length a). Thus one common perception that since the molecules are large b

cannot be a point particle is incorrect. b is not a molecule, but only its closed channel part,
whose contribution to the actual molecule may in fact reduce to zero in a wide resonance
regime.

Appendix B. Scattering matrix via single-body Hamiltonian

In this appendix we compute scattering amplitudes of a number of models relevant to
the problem of resonantly interacting Fermi gases. The results that we find here have
already been obtained in Sections 3, 4 and 5 of the main text, working directly with
many-body Hamiltonians. However, a problem of two particles interacting with a poten-
tial U(r1 � r2) can always be reduced to a decoupled evolution of their center of mass and
that of their relative coordinate r = r1 � r2, whose dynamics is governed by a Hamiltonian
for a single effective particle with a reduced mass mr = m1m2/(m1 + m2), moving in a sin-
gle-body potential U(r). Hence, a many-body Hamiltonian, when restricted to act on a
two-particle Hilbert subspace (as in the computation of two-particle scattering amplitude)
has an equivalent single-particle Hamiltonian with which scattering physics can be equiv-
alently straightforwardly analyzed. Thus the analysis in this appendix will complement the
main text in that we will compute scattering amplitudes for many-body models studied
there using equivalent relative coordinate single-particle Hamiltonian.

B.1. Fano–Anderson model

This is a model of a particle, created by âyk, moving freely in space (representing the
‘‘open channel’’), which when it hits the origin can turn into another particle, created
by b̂y. The b-particle (representing the ‘‘closed channel’’) cannot move at all and has a fixed
energy �0. The Hamiltonian of this problem can be written as
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Ĥ ¼
X

k

k2

2mr

âykâk þ �0b̂yb̂þ gs b̂yâð0Þ þ âyð0Þb̂
� �

; ðB1Þ

where gs is the interconversion rate between a- and b-particles, and mr is the mass of the a-
particle. This is called the Fano–Anderson model [25], or a model of a localized state in the
continuum [79]. �0 is a parameter which plays the role of ‘‘detuning’’. It is the energy of the
b-particle if it was left alone and did not interact with the a-particle. The model represents
the two-body version of the s-wave two-channel model given by Eq. (5.6) (where mr cor-
responds to the reduced mass of fermions in Eq. (5.6), hence the notation).

The scattering amplitude of the a particles can be easily evaluated using the T-matrix
formalism. The T-matrix is given by

T k;k0 ¼ gsDðEÞgs þ gsDðEÞgsPðEÞgsDðEÞgs þ 	 	 	

¼ g2
s

D�1ðEÞ � g2
s PðEÞ

; ðB2Þ

where D(E) is the Green’s function of the b-particle,

DðEÞ ¼ 1

E � �0 þ i0
; ðB3Þ

and P(E) is the trace of the a-particle Green’s function

PðEÞ ¼
Z

d3q

ð2pÞ3
h k� qð Þ

E � q2

2mr
þ i0

; ðB4Þ

and E = k2/(2mr). The value of P(E) was already computed in Eq. (4.3). Doing the alge-
bra, we arrive at

f ðk; k0Þ ¼ � 1
p

m2
r g2

s
k2 � 2p

mrg2
s
x0 þ ik

; ðB5Þ

where x0 is the ‘‘renormalized’’ energy of the b-particle,

x0 ¼ �0 � g2
s mrK=p

2: ðB6Þ

We see that the scattering length and effective range extracted out of Eq. (B5)

a�1 ¼ � 2p
mrg2

s

x0; r0 ¼ �
2p

m2
r g2

s

: ðB7Þ

coincides with Eqs. (5.13) and (5.14).

B.2. Hybrid model

In the literature it is popular to consider Feshbach-resonant interactions together with
the interactions via a short range potential. The single-particle Hamiltonian which cap-
tures a combination of these interactions takes the form

Ĥ ¼
X

k

k2

2mr

âykâk þ �0b̂yb̂þ kâyð0Þâð0Þ þ gs b̂yâð0Þ þ âyð0Þb̂
� �

: ðB8Þ
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The many-body version would then be a combination of a two-channel model with a direct
four-fermion point interaction scattering term

Ĥ ¼
X
k;r

k2

2m
âyk;râk;rþ

X
p

�0þ
p2

4m

� �
b̂ypb̂pþ

X
k;p

gsffiffiffiffi
V
p b̂pây

kþp
2;"

ây�kþp
2;#
þ b̂ypâ�kþp

2;#
âkþp

2;"

� �

þ k
V

X
k;k0;p

ây
k0þp

2;#
ây�k0þp

2;"
â�k�p

2;"âk�p
2;#: ðB9Þ

It is instructive to calculate the scattering amplitude of the a-particles which follow from
Eq. (B8). The calculation largely parallels that given in Eq. (B2), except gsDgs gets replaced
by gsDgs + k. After some algebra we obtain

f0ðkÞ ¼ �
1

2p
mr

k2
2mr
��0

k k2
2mr
��0

� �
þg2

s

þ 2K
p þ ik

ðB10Þ

We see that the a-particles scatter in a rather complicated fashion. If we are only interested
in low-energy scattering, we can expand the denominator of the scattering amplitude and
read off the scattering length and the effective range as

a�1 ¼ 2p�0

mrð�0k� g2
s Þ
þ 2K

p
; r0 ¼ �

2pg2
s

m2
r �0k� g2

s

� �2
: ðB11Þ

In principle, we can now redefine the parameters �0, gs, and k in such a way that the scat-
tering length and the effective range computed here would coincide with the ones produced
by the pure Fano–Anderson model. We see that ultimately including both the d-like po-
tential and the Fano–Anderson term in the Hamiltonian does not produce new low energy
physics compared to the pure Fano–Anderson case, and amounts to just redefining the
parameters of the Fano–Anderson model—and thus, of the two-channel model Eq.
(5.6). Its only physical effect is to accommodate for abg � d absent in the pure two-chan-
nel model.

We also remark that this may sometimes not be true in lower dimensions. In 1D the
inclusion of the contact interaction term may change the physics described by the two-
channel model qualitatively [80].
B.3. p-wave Fano–Anderson Model

The p-wave version of the Fano–Anderson model Eq. (B1) is given by

Ĥ ¼
X

k

k2

2mr

âykâk þ �0

X3

a¼1

b̂yab̂a þ
gpffiffiffiffi
V
p

X
k;a

ka b̂yaâk þ âykb̂a

� �
: ðB12Þ

Here the a particle scatters in the p-wave channel and can convert into a b particle which
carries internal angular momentum ‘ = 1, since the angular momentum is conserved. The
angular momentum is represented by the vector index a. It is related to the states with def-
inite projections of angular momentum b̂m¼1, b̂m¼0, and b̂m¼�1 via the standard formulae
(Ref. [49]) discussed in Eqs. (5.35)–(5.37), which we repeat here for convenience
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b̂z ¼ b̂m¼0;

� 1ffiffiffi
2
p ðb̂x þ ib̂yÞ ¼ b̂m¼1;

1ffiffiffi
2
p ðb̂x � ib̂yÞ ¼ b̂m¼�1: ðB13Þ

By construction, a-particles scatter only in the p-wave channel. The scattering ampli-
tude can be easily calculated in the same T-matrix formalism, as in the s-wave case,
Eqs. (B2) and (B5).

The propagator of the b-particles is now

DabðEÞ ¼ dabDðEÞ ðB14Þ

with D(E) given by Eq. (B3). The T-matrix is given by the p-wave version of Eq. (B2),

T k;k0 ¼
X

a

gpkaDk0agp þ
X
k00;a;b

gpkaDgpk00aGðk00;EÞgpk00bDgpk0b þ 	 	 	

¼
X

a

g2
pkak0a

D�1ðEÞ � g2
pPðEÞ

; ðB15Þ

where G(E,k) is the Green’s function of the a-particles and P(E) is now

PðEÞ ¼ 1

3

Z
d3q

ð2pÞ3
q2

E � q2

2mr
þ i0

¼� mrK
3

9p2
� 2m2

r K
3p2

E � i

ffiffiffi
2
p

m5=2
r E3=2

3p
: ðB16Þ

Here E = k2/(2mr). Just like everywhere else throughout the paper, we cut off the divergent
integral at q � K. Unlike Eq. (3.28), the integral is divergent as q3 and produces two cut-
off-dependent terms. With the help of the notations Eqs. (5.45) and (5.46), introduced ear-
lier, we find the p-wave scattering amplitude

fp ¼�
mr

6p

g2
pk2

D�1ðEÞ � g2
pPðEÞ

¼ k2

6p
mg2 �0 � c1ð Þ � 3p

m2g2
p

1þ 2c2ð Þk2 � ik3
: ðB17Þ

This coincides with the result of the many-body calculations reported in Eq. (5.48) with the
exception of a numerical coefficient. This difference is the result of the indistinguishability
of identical particles which was important in Eq. (5.48) but played no role here, in the one-
body scattering calculation.
Appendix C. Details of the p-wave saddle-point equation and free energy

The thermodynamics of a p-wave superfluid is completely determined by the free
energy, Eq. (7.5) and the corresponding saddle-point equation, Eq. (7.7), derived from
it. These were expressed in terms of one key tensor I ðT Þab ½B
, defined in Eq. (7.8). Here we
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compute I ðT Þab ½B
 at zero and finite temperatures and thereby obtain the corresponding
ground-state energy and the free energy.

C.1. Zero temperature

At zero temperature I ðT Þab ½B
 reduces to

Iab ¼ g2
p

Z
d3k

ð2pÞ3
kakb

Ek

;

¼ g2
p

Z
d3k

ð2pÞ3
kakb

ð�k � lÞ2 þ 4g2
pjB 	 kj

2
h i1=2

; ðC1Þ

where we used the spectrum Ek, Eq. (7.6). The integral is naturally computed in spherical
coordinates, with the radial part over k conveniently expressed as an integral over the free
spectrum �k = k2/2m

Iab ¼ g2
p2mjljNðjljÞ

Z
dXk

4p
k̂ak̂bIðQk̂Þ; ðC2Þ

where we defined a function

IðQÞ ¼
Z ÊK

0

d�̂
�̂3=2

ð�̂� l̂Þ2 þ Q�̂
h i1=2

; ðC3Þ

that arises from an integral over � scaled by the chemical potential �̂ ¼ �=jlj, N(l) =
m3/2|l|1/2/(21/2p2) ” c|l|1/2 is the density of states, l̂ � l=jlj ¼ �1, ÊK � ðK2=2mÞ=jlj, and

Q ¼
8mg2

p

l
jB 	 k̂j2; ðC4Þ

¼
8mg2

p

l
ðu 	 k̂Þ2 þ ðv 	 k̂Þ2
� �

: ðC5Þ

Because at large �̂, I(Q) scales as �̂3=2, its one set of dominant contributions comes from
the region of integration near the uv cutoff ÊK. We isolate these IK contributions by writing

IðQÞ ¼ IK þ dI ;

with

IK ¼
Z ÊK

0

dx x1=2 þ l̂� Q=2

x1=2

� 

; ðC7Þ

¼ 2

3
Ê3=2

K þ 2ðl̂� Q=2ÞÊ1=2
K ; ðC8Þ

and

dI ¼
Z 1

0

d�̂
�̂3=2

ð�̂� l̂Þ2 þ Q�̂
h i1=2

� �̂1=2 � l̂� Q=2

�̂1=2

8><
>:

9>=
>;: ðC9Þ
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Because the remaining contribution dI is uv-convergent, we have extended its uv cutoff ÊK

to infinity, thereby only neglecting insignificant terms that are down by a factor of order
Oðl̂=ÊK;Q=ÊKÞ � 1.

Combining the uv contribution IK(Q) inside Iab, Eq. (C2), and doing the angular inte-
grals we obtain the uv contribution

IK
ab ¼ g2

p2mjljNðjljÞ
Z

dXk

4p2
k̂ak̂bIKðQk̂Þ;

¼ g2
p2mjljNðjljÞ

Z
dXk

4p
k̂ak̂b

2

3
Ê3=2

K þ 2l̂Ê1=2
K �

8mg2
p

jlj Ê1=2
K ð�B 	 k̂ÞðB 	 k̂Þ

" #
;

¼ 2

3
g2

p

ð2mÞ5=2

4p2

1

3
E3=2

K þ lE1=2
K

� �
dab �

4mg2
p

5
E1=2

K dab
�B 	 Bþ �BaBb þ �BbBa

� �" #
;

¼ ðc1 þ 2lc2Þdab �
8

5
mg2

pc2 dab
�B 	 Bþ �BaBb þ �BbBa

� �
; ðC10Þ
where c1 and c2 constants were defined in Eqs. (5.45) and (5.46), and we used three-dimen-
sional spherical averagesZ

dXk̂

4p
k̂ak̂b ¼

1

3
dab; ðC11ÞZ

dXk̂

4p
k̂ak̂bk̂ck̂d ¼

1

15
dabdcd þ dacdbd þ daddbc

� �
:

This confirms the uv contribution to Iab[B] used in the main text, Eqs. (7.18) and (7.19).
The value of the second contribution, dI(Q) in Eq. (C6) critically depends on the sign of

l. In the BEC regime of l < 0, l̂ ¼ �1 and the integral in dI(Q) is convergent everywhere,
making only a strongly subdominant Oðl̂=ÊK; Q=ÊKÞ � 1 contribution to IK(Q), that can
be safely neglected.

In contrast, in the BCS regime of l > 0 and Q� 1, the integral in dI(Q), while uv con-
vergent, makes a large contribution to IK(Q) that is, in fact, logarithmically divergent with
a vanishing Q. This large contribution arises from a region around �̂ ¼ 1, physically cor-
responding to low-energy excitations near the Fermi surface.

We focus on the integration above and below the Fermi-surface, dI = h(l)(dI� + dI+),
with

dI� ¼
Z 1

0

d�̂gð�̂Þ ¼
Z 1

0

dxgð1� xÞ;

¼ d~I� þ J� ðC12Þ

dIþ ¼
Z 1

1

d�̂gð�̂Þ ¼
Z 1

0

dxgð1þ xÞ þ
Z 1

1

dxgð1þ xÞ;

¼ d~Iþ þ Jþ; ðC13Þ
and the integrand gð�̂Þ given by Eq. (C9) with l̂ ¼ 1. Above we separated the dominant
logarithmic contribution dÎ� out of ~dI�,
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d~I�ðQÞ ¼
Z 1

0

dx

½x2 þ Qð1� xÞ
1=2
; ðC14Þ

¼ ln
2ffiffiffiffi
Q
p þ f �ðQÞ ðC15Þ

with

f �ðQÞ ¼ ln
1þ Q=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Q
p

2þ Q1=2

� 

; ðC16Þ

� � 1

2
Q1=2 þ 7

8
Q�OðQ3=2Þ;

f þðQÞ ¼ ln
2� Q=2

2� Q1=2

� 

; ðC17Þ

� 1

2
Q1=2 � 1

8
QþOðQ3=2Þ;

and the subdominant in small Q contributions

J�ðQÞ ¼
Z 1

0

dx gð1� xÞ � 1

½x2 þ Qð1� xÞ
1=2

" #
; ðC18Þ

JþðQÞ ¼
Z 1

0

dx gð1þ xÞ � 1

½x2 þ Qð1þ xÞ
1=2

" #
; ðC19Þ

that are finite for Q fi 0. Taylor expanding these subdominant contributions to lowest or-
der in Q and combining everything together, we obtain:

dIðQÞ ¼ hðlÞ ln 64e�16=3

Q

� �
þ hðlÞOðQ ln QÞ: ðC20Þ

Combining this with IK(Q) inside Iab(Q), Eq. (C2), we obtain Iab ¼ IK
ab � dÎabhðlÞg2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
2m5l3

p
=p2, where

dÎab ¼
Z

dXk

4p
k̂ak̂b ln ðû 	 k̂Þ2 þ ðv̂ 	 k̂Þ2

h i
; ðC21Þ

and

B̂ ¼ ûþ iv̂ � 1

8
e8=3

ffiffiffiffiffiffiffiffiffiffiffi
8mg2

p

l

s
B: ðC22Þ

The spherical average in Eq. (C21) is easiest to evaluate in the transverse gauge û 	 v̂ ¼ 0,
taking û and v̂ to be the kx ” ku and ky ” kv axes. This reduces it to

dÎab ¼
Z

dXk

4p
k̂ak̂b ln û2k̂2

u þ v̂2k̂2
v

h i
; ðC23Þ

¼
Z 2p

0

d/
Z p

0

dh sin h k̂ak̂b ln½sin2 hðû2 cos2 /þ v̂2 sin2 /Þ
; ðC24Þ

¼Aðû; v̂Þdab þ Cðû; v̂Þûaûb þ Cðv̂; ûÞv̂av̂b; ðC25Þ
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where in the last line we took advantage of the general tensor form and û$ v̂ symmetry of
dÎabðû; v̂Þ to reduce its computation to two functions Aðû; v̂Þ and Cðû; v̂Þ, that can be
obtained by calculating any two combinations of components of dÎabðû; v̂Þ. With this,
we obtain in the transverse gauge

dÎab ¼
2

3
ln e�4=3ðûþ v̂Þ

 �

dab þ
2

3ûðûþ v̂Þ ûaûb þ
2

3v̂ðûþ v̂Þ v̂av̂b; ðC26Þ

which when combined with Eq. (C10) gives the saddle-point equation Eq. (7.20) used in
Section 7.2.1.

By integrating this saddle-point equation,

oeGS½B

o�Ba

¼ ð�a � 2lÞBa �
X

b

Iab½B
Bb ¼ 0; ðC27Þ

over �Ba we can also obtain the ground-state energy density eGS[B]. Utilizing Eq. (C21) to
integrate the last term we find

eGS½B
 ¼ ðx0 � 2lÞð1þ c2ÞjBj2 þ cpc2

8�F

5n
�B 	 B
� �2 þ 1

2
jB 	 Bj2

� 


þ hðlÞ3cpl

ffiffiffiffiffi
l
�F

r Z
dXk

4p
ð�B 	 k̂ÞðB 	 k̂Þ ln a0ð�B 	 k̂ÞðB 	 k̂Þ

h i
� 1

� �
; ðC28Þ

¼ ðx0 � 2lÞð1þ c2ÞjBj2 þ cpc2

8�F

5n
�B 	 B
� �2 þ 1

2
jB 	 Bj2

� 


þ hðlÞcpl

ffiffiffiffiffi
l
�F

r X
a;b

3dÎab½B
 � dab

� �
�BaBb; ðC29Þ

which gives the result quoted in Eq. (7.27) of Section 7.2.1 and used to study phase behav-
ior of a p-wave resonant Fermi gas.

C.2. Finite temperature

Above analysis can be easily extended to finite temperature, by analyzing

I ðT Þab ¼ g2
p

Z
d3k

ð2pÞ3
kakb tanh Ek

2T

� �
Ek

; ðC30Þ

¼ g2
p2mjljNðjljÞ Î ð0Þab þ Î ð1Þab

� �
;

where

Î ð0Þab ¼
Z

dXk

4p
k̂ak̂b

Z ÊK

0

�̂3=2
tanh jlj

2T ĵ�� l̂j
� �
ĵ�� l̂j ;

� hðlÞ 2
3

dab ln
l
T
þ 1

3
Ê3=2

K þ Ê1=2
K

� 

; ðC31Þ

Î ð1Þab ¼
Z

dXk

4p
k̂ak̂b

Z ÊK

0

�̂5=2

2ĵ�� l̂j3
jlj
2T
ĵ�� 1jsech2 jlj

2T
ĵ�� 1j

� �
� tanh

jlj
2T
ĵ�� l̂j

� �� 

Q;

� �
8mg2

p

15jlj Ê
1=2
K dab

�B 	 Bþ �BaBb þ �BbBa


 �
; ðC32Þ
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and we have safely Taylor expanded in Q since Fermi-surface divergences are cutoff by
finite T. Combining these together we find

I ðT Þab � c1 þ 2lc2 þ
2

3
hðlÞg2

p2mlNðlÞ ln l
T

� 

dab �

8

5
mg2

pc2 dab
�B 	 Bþ �BaBb þ �BbBa

� �
;

¼IK
ab þ

2

3
hðlÞg2

p2mlNðlÞ ln l
T

dab; ðC33Þ

where IK
ab is given in Eq. (C10), above. As anticipated, the non-analytic (Fermi surface, a1)

terms have been replaced by dab
2
3
hðlÞg2

p2mlNðlÞ lnðl=T Þ ¼ dabhðlÞ2c2
pl

ffiffiffiffiffiffiffiffiffiffi
l=�F

p
lnðl=T Þ.

The resulting free-energy density is given by

f ½B

1þ c2

¼
X

a

~xaðT Þ � 2lð ÞjBaj2 þ a2
�B 	 B
� �2 þ 1

2
jB 	 Bj2

� 

; ðC34Þ

with

~xaðT Þ ¼ xa � a1 lnðl=T Þ; ðC35Þ
determining T a

c by ~xaðT a
cÞ ¼ 2l.
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[8] C.A.R. Sá de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71 (1993) 3202.
[9] Q. Chen, J. Stajic, K. Levin, Phys. Rep. 412 (2005) 1.

[10] G.E. Volovik, Exotic Properties of Superfluid 3He, World Scientific, Singapore, 1992.
[11] N. Read, D. Green, Phys. Rev. B 61 (2000) 10267.
[12] G.E. Volovik, The Universe in a Helium Droplet, Oxford University Press, Oxford, 2003.
[13] B. DeMarco, D.S. Jin, Science 285 (1999) 1703.
[14] K.E. Strecker, G.B. Partridge, R.G. Hulet, Phys. Rev. Lett. 91 (2003) 080406.
[15] A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92 (2004) 040403.
[16] M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. 92

(2004) 120403.
[17] H. Feshbach, Ann. Phys. (N.Y.) 5 (1958) 357.
[18] E. Tiesinga, B.J. Verhaar, H.T.C. Stoof, Phys. Rev. A. 47 (1993) 4114.
[19] E. Timmermans, P. Tommasini, M. Hussein, A. Kerman, Phys. Rep. 315 (1999) 199.
[20] Here, for simplicity we use a highly oversimplified but qualitatively correct FR model in which a coupled

multi-channel system is approximated by two (nearly degenerate and therefore dominant) channels.
[21] The spin-triplet and singlet channels are coupled by the hyperfine interaction corresponding to a singlet–

triplet transition via electronic spin flip accompanied by a nuclear spin flip, such that the total spin remains
unchanged.

[22] S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Nature 392 (1998)
151.

[23] A.J. Moerdijk, B.J. Verhaar, A. Axelsson, Phys. Rev. A 51 (1995) 4852.



118 V. Gurarie, L. Radzihovsky / Annals of Physics 322 (2007) 2–119
[24] Unfortunately, experimentalists define the Feshbach resonance width Cexp as the detuning window � lBBw

over which the resonant scattering length a(B) exceeds the background, non-resonant scattering
length abg (which is natural for the experiments done in the dilute two-atom scattering limit). The latter
being on the order of the interatomic potential, of the order 10 s of Angstroms, therefore gives a
� 1/(n1/3abg) � 100 � 1000 larger cexp ” lB B/�F, than cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C0=�F

p
� ðkf abgÞðlBB=�FÞ � 1 criterion

relevant for the validity of a perturbative treatment of the condensed many-body system, see Section 5.1.2.
[25] U. Fano, Phys. Rev. 124 (1961) 1866.
[26] E. Donley, N. Claussen, S. Cornish, J. Roberts, E. Cornell, C. Wieman, Nature 412 (2001) 295.
[27] R.A. Barankov, L.S. Levitov, Phys. Rev. Lett. 93 (2004) 130403.
[28] A.V. Andreev, V. Gurarie, L. Radzihovsky, Phys. Rev. Lett. 93 (2004) 130402.
[29] We emphasize the distinction between a resonance, a long lived quasistationary state which eventually decays

into the continuum (as used in particle physics where it describes an unstable particle) and the notion of
resonant scattering due to an intermediate state coming into resonance (coincident in energy) with a
scattering state (a terminology popular in atomic physics). Namely, some resonant scatterings do not exhibit
a resonance. For example, as can be seen in Fig. 13, s-wave Feshbach resonance often occurs in the absence
of any resonances, quasistationary states (corresponding to a pole of a scattering amplitude with a negative
imaginary part with a magnitude much smaller than its positive real part), as is the case in experiments on s-
wave wide Feshbach resonances, which take place in the presence of either bound states or virtual bound
states, but not a quasistationary state. In contrast, narrow Feshbach resonances studied in this paper do
exhibit a resonance. It is somewhat unfortunate that these two distinct notions are referred to with similar
names. In the absence of better terminology, we will use these terms but will try to be as clear as possible
which usage we mean.

[30] D. Sheehy, L. Radzihovsky, Phys. Rev. Lett. 96 (2006) 060401.
[31] Recently, a number of interesting studies have appeared. Guided by success in critical phenomena, these

introduce a small parameter (� = d � 2, � = 4 � d or 1/N, where d is dimension of space and N a number of
fermion flavors) into a generalization of a single-channel model and can thereby treat a full crossover
(including interesting unitary point) of even a broad resonance. See for example [81–84].

[32] M. Holland et al., Phys. Rev. Lett. 87 (2001) 120406.
[33] Y. Ohashi, A. Griffin, Phys. Rev. Lett. 89 (2002) 130402.
[34] A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. Lett. 96 (2006) 090404.
[35] D. Petrov, C. Salomon, G. Shlyapnikov, Phys. Rev. A 71 (2005) 012708.
[36] E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2, Butterworth-Heinemann, Oxford, UK, 1980.
[37] C. Ticknor, C.A. Regal, D.S. Jin, J.L. Bohn, Phys. Rev. A 69 (2004) 042712.
[38] C.H. Schunck, M.W. Zwierlein, C.A. Stan, S.M.F. Raupach, W. Ketterle, A. Simoni, E. Tiesinga, C.J.

Williamsa, P.S. Julienne, Phys. Rev. A 71 (2005) 045601.
[39] T.-L. Ho, R. Diener, Phys. Rev. Lett. 94 (2005) 090402.
[40] Y. Ohashi, Phys. Rev. Lett. 94 (2005) 090403.
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