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Abstract

The ordinary single channel Kondo model consists of one or more spin 1/2 local moments interact-
ing antiferromagnetically with conduction electrons in a metal. This model has provided a paradigm
for understanding many phenomena of strongly correlated electronic materials, ranging from the
formation of heavy fermion fermi liquids to the mapping to a one-band model in the cuprate su-
perconductors. The simplest extension of this ordinary Kondo model in metals which yields exotic
non-Fermi liquid physics is the multichannel Kondo impurity model in which the conduction elec-
trons are given an extra quantum label known as the channel or flavor index. In the overcompensated
regime of this model non-Fermi liquid physics is possible, in contrast to the single channel model.
We overview here the multichannel Kondo impurity model candidates most extensively studied for
explaining real materials, specifically the two level system Kondo model relevant for metallic glasses,
nanoscale devices, and some doped semiconductors, and the quadrupolar and magnetic two-channel
Kondo models developed for rare earth and actinide ions with crystal field splittings in metals. We
provide an extensive justification for the derivation of the theoretical models, noting that when-
ever the local impurity degree of freedom is non-magnetic a two-channel Kondo model must follow
by virtue of the magnetic spin degeneracy of the conduction electrons. We carefully delineate all
energetic and symmetry restrictions on the applicability of these models. We describe the various
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methods used to study these models along with their results and limitations (multiplicative renormal-
ization group, numerical renormalization group, non-crossing approximation, conformal field theory,
and abelian bosonization), all of which provide differing and useful views of the physics. We pay
particular attention to the role that scale invariance plays in all of these theoretical approaches. We
point out in each case how various perturbing fields (magnetic, crystalline electric, electric field gradi-
ents, uniaxial stress) may destabilize the non-Fermi liquid fixed point. We then provide an extensive
discussion of the experimental evidence for the relevance of the two-level system Kondo model to
metallic glasses, nanoscale devices, and of the quadrupolar/magnetic two-channel models to a number
of heavy fermion based alloys and compounds. We close with a discussion of the extension of the single
impurity models which comprise the main focus of this review to other sytems (Coulomb blockade),
multiple impurities, and lattice models. In the latter case, we provide an overview of the relevance
of the two-channel Kondo lattice model to non-fermi liquid behavior and exotic superconductivity
in heavy fermion compounds and to the theoretical possibility of odd-frequency superconductivity,
which is realized (for the first time) in the limit of infinite spatial dimensions for this model.
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1 Introduction

Since the great success of the many body theory of metals and superconductors developed in the 1950’s,
it had been generally believed that the theory of metals is well understood and the only exception is in

magnetic properties. It was accepted that perturbation theory works well for ordinary clean and dirty
metals and no one expected any deviation from the Landau theory at low temperature. Then in 1964

Kondo [Kondo, 1964] discovered a logarithmic divergence in the scattering of electrons by magnetic
impurities in metals. This invoked extensive research since that time using very different tools of
theoretical physics including K.G. Wilson’s work on the renormalization group [Wilson, 1975] honored

by the Nobel Prize in 1982. Indeed, the Kondo effect has become one of the most extensively studied
many body problems in the field of theoretical solid state physics for the last three decades.

In the last 15 years several other problems related to the original Kondo problem have showed up
in the literature, and the present review’s main goal is to summarize the progress on the multi-channel

Kondo model. The possible physical realizations of this model generally depend on local orbital degrees
of freedom as opposed to the local magnetic moment considered originally by Kondo.

Before 1964, the electron-impurity interaction in metals with magnetic impurities had been
studied by calculating the electrical resistivity in the second order of perturbation theory assuming

simple effective Heisenberg exchange interactions between the local moments and the conduction electron
spins. The contribution of the magnetic impurities to the residual resistivity was similar to that of non-
magnetic impurities except in the magnetoresistance. This was despite the very early observation by

W.J. de Haar, J. de Boer, and G.J. Berg in 1933 [de Haar et al., 1933] that in some cases the resistivity
of gold shows a minimum at around 3-4K (Fig. 1) and it was remarked that “...it is of course very

interesting to investigate the influence of the purity of the metals on this minimum.” At that time very
little attention was paid to the observation and only the latter extensive studies in the 1960s clarified

that different magnetic impurities contribute to the logarithmic temperature dependence of the electrical
restivity with minima at different temperatures.

In the milestone work of Kondo in 1964 [Kondo, 1964], the calculation of the electrical resistivity
was extended to third order in the local moment-conduction electron exchange coupling J of the form

(1.1) Hint = J ~SI · ~sc(0)

for a single impurity where ~SI is the impurity spin and ~sc(0) is the conduction electron spin at the

impurity site. Note that positive J corresponds to antiferromagnetic coupling, and negative J to
ferromagnetic coupling. Kondo’s result was that the resistivity took the form

(1.2) ρ(T ) = ρ0(T ) + aN(0)J2 + bN(0)2J3 ln(
D

kBT
)

where ρ0(T ) is the resistivity of the pure metal, N(0) is the conduction electron density of states at the
Fermi energy, D is the bandwidth of the conduction electron system (of the order of the Fermi energy),
T is the temperature, and a, b are constants proportional to the impurity concentration. The origin of

this logarithmic term, as we shall discuss in subsequent paragraphs, is the non-commutative scattering
when the impurity has internal degrees of freedom.

Several interesting results can be inferred from Eq. (1.2). First, given that in a clean metal
such as gold ρ0(T ) ∼ T 5 at low temperatures, a resistivity minimum will appear when J > 0 (antiferro-

magnetic coupling) since the logarithmic term then grows as the temperature is diminished. As Kondo
noted, this minimum temperature should go as c1/5 where, c is the impurity concentration. Second,

given a ' b, the logarithmic term grows to the order of the quadratic in J term at a characteristic
“Kondo” temperature scale

(1.3) kBTK ≈ De−1/N(0)J .

Below this scale systematic weak coupling perturbation expansions must break down, and so it represents

a crossover between a high temperature, high energy regime which may be treated perturbatively and
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Figure 1: Early measurement of a resistivity minimum in metals.

a low energy regime of complex character which must be treated non-perturbatively. This makes the
Kondo problem the first known example of an asymptotically free theory in physics, and the Kondo

scale is analogous to the so-called QCD scale ΛQCD at which perturbative quantum chromodynamics
breaks down (see for example, Aitchison and Hey [1989], p. 298). Finally, it is clear from this remark
and the restriction of unitarity on the scattering rate (a finite scattering probability must exist at the

Fermi energy) that Kondo’s theory is incomplete.
In order to resolve this latter problem, Abrikosov [1965] and Suhl [1965] introduced the concept

of the Kondo resonance. The idea is that the appearance of the logarithm in Kondo’s calculation
signifies the development of a many body scattering resonance at the Fermi energy. These treatments

summed up infinite numbers of diagrams diverging as powers of logarithms using building blocs with
only one-electron or one-hole scattered states. While this led to a finite scattering rate at the Fermi

energy, it did not lead to a complete solution of the problem.
A great boost in understanding the new phenomena came from studies on the x-ray absorp-

tion singularity worked out theoretically by Mahan ([1990], pp. 737-764), and more elaborately by
Nozières and de Dominicis (Nozières and de Dominicis [1969]). The issue for this problem is how the

conduction electrons react to the the appearance of a deep core hole created by x-rays and how this
response affects the x-ray absorption spectrum. The problem can be formulated more generally in terms
of how the conduction electrons relate to a change in a localized external potential. It is well known

that in the electron screening of a localized potential a long range Friedel oscillation is induced with
wave vector 2kF , where kF is the Fermi wave vector. This oscillation signals the presence of a singular

response for electronic states at the Fermi energy. Anderson reconceptualized this problem (Anderson
[1967]) by pointing out that the ground state wave functions with two different localized potentials are

orthogonal to one another in the thermodynamic limit. (This change of impurity potential can intro-
duce a phase shift and amplitude modification to the Friedel oscillations about the defect site.) This

phenomenon has been named the “Anderson orthogonality catastrophe”. The relation of the Kondo
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Figure 2: The two leading diagrams for the scattering of a light electron on a heavy object. The

light electron is represented by the light line and the heavy object by the double line. The wavy lines
indicate the interaction matrix element V . The quantum numbers characterizing the particles are also

shown. The expression below gives the corresponding matrix elements of the interaction to this order
and the minus sign arises from fermion anticommutation (the crossed lines in the second figure–Einstein

convention applies to the indices): V
(2)
βαrp ∼ VβγrqVγαqp − VγαrqVβγqp .

effect to this problem is easy to see: whenever the local moment spin is flipped by interaction with the
conduction electrons, a change in the scattering potential for up and down spins is the result. Hence,

the orthogonality catrastophe arises for every single spin flip.
All these works made it obvious that the x-ray absorption problem and Kondo problem represent

a new type of infrared divergence at low temperature and energy in which an infinite number of particle-
hole pairs are involved on a scale extending to large distances away from the localized perturbation.
On the other hand, there is a very essential difference between these two problems, which is related to

the presence of internal degrees of freedom in the Kondo problem. The resulting scattering potential
seen by conduction electrons is non-commutative in the Kondo case, while it is commutative in the

x-ray core hole problem. In order to demonstrate this idea, we consider a simple scattering problem in
which conduction electrons couple to a single heavy particle (e.g., a localized magnetic ion or a two-level

system). The Hamiltonian is

H =
∑

kµ

εkc
†
kµckµ + ε0

∑

α

b†αbα

(1.4) +
∑

k,k′

∑

µναβ

Vµναβc
†
kµck′νb

†
αbβ

where εk is the electron kinetic energy with momentum k in, e.g., an s-wave projection of plane wave

states, c
†
kµ creates an electron spherical wave with radial momentum k and internal quantum numbers

µ, and b†α creates a heavy particle with quantum numbers α. Note that the internal indices of the
conduction electrons may represent magnetic spin or orbital indices or a combination of the two. The

interaction potential is given by Vµναβ . For the conduction electrons a band cutoff D is applied which
is order of the Fermi energy. In the following remarks, the limit ε0 → ∞ is taken to ensure that there

is only single occupancy of the heavy particle.
In the second order of perturbation theory for the two-particle T -matrix describing electron

scattering off the impurity, there are two diagrams shown in a time ordered way in Fig. 2. The

direction of time corresponds to the directions of the lines on the heavy objects. As the interaction is
assumed independent of k, k′, the scattering amplitude for an incoming electron with energy ω is

(1.5) V
(2)
µναβ(ω) =

∑

ργ

[VµραγVρνγβ − VρµαγVνργβ ] ln(
D

ω
)

where the quantum numbers of the internal lines are summed over and the negative sign arises from the

fermion anticommutation relations (note the crossed lines in the second diagram) as the intermediate
conduction state reflects a particle or hole, respectively. The logarithm is precisely that identified by

Kondo.
Different localized perturbations can be classified by the value of the potential matrix “commu-

tator” appearing in square brackets in Eq. (1.5):
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(i) Commutative model: When

(1.6) [VµραγVρνγβ − VρµαγVνργβ ] = 0

no Kondo logarithms appear. This occurs for a point like structureless interaction between the heavy
object and conduction electrons which is diagonal in the internal indices.

(ii) Non-Commutative model: When

(1.7) [VµραγVρνγβ − VρµαγVνργβ ] 6= 0

the model is non-commutative and logarithmic terms appear.

Case (i) applies to the x-ray absorption problem since the core hole has no internal degrees of
freedom, and this also occurs in heavy particle motion of muons and protons in metals provided we

neglect their spin degrees of freedom and focus only on the charge degrees of freedom. In these cases
the couplings are not renormalized in second order and such theories have an energy and temperature

independent coupling as a result.
Case (ii) is realized when the interaction depends, for example, on the spin variables or the

pseudo-spin (position index) of a two-level system (TLS) describing an atom hopping between the
lowest states of a double well anharmonic potential, or the orbital quadrupolar degrees of freedom of an

open shell ion. In the latter two cases, the local orbital states of the conduction electrons are intrinsically
involved as well. In these examples the effective coupling strength is strongly renormalized as a function
of energy and temperature and can grow to infinity (antiferromagnetic Kondo problem), shrink to zero

(ferromagnetic Kondo problem), or reach an intermediate coupling strength independent of the bare
couplings (overcompensated multichannel Kondo problem).

The present review will be entirely devoted to non-commutative models. In order to clarify
their solutions it is useful to look at the M -channel Kondo model. The interaction Hamiltonian for this

model describes the interaction of conduction electrons living in M identical bands or channels with an
arbitrary localized spin ~SI , and is given by

(1.8) Hint =
J

2Ns

∑

k,k′

∑

µν

M∑

α=1

~SI · c†kµα~σµνck′να

where Ns is the number of atomic sites of the host metal responsible for the orbitals which form the
conduction band, and ~σ is a Pauli matrix. The interaction Hamiltonian is diagonal in the channel index

and an exact degeneracy of couplings is assumed. The original Kondo problem specified in Eq. (1.1)
has M = 1. This multi-channel extension of the Kondo problem was first introduced by Nozières and

Blandin [1980] and we follow their discussion here.
The ground state of the model with impurity SI but different M can fall into three different

classes for antiferromagnetic coupling J > 0, summarized in below and Fig. 3:
(i) Compensated (M = 2SI) In this case the ground state is a singlet in which the impurity spin is

completely screened by the conduction electron spins. The entropy tends to zero as the temperature
tends to zero.
(ii) Undercompensated (M < 2SI). In this case, there is not enough conduction spin to fully screen the

impurity through the interaction of Eq. (1.8). M/2 units of spin are compensated, leaving behind a
local moment of strength SI −M/2 and a corresponding residual entropy at T = 0 of R ln(2SI −M +1)

per mole of impurity ion (see (b) of Fig. 3). This residual entropy would appear to violate the third
law of thermodynamics, but in the presence of more than one impurity intersite couplings will allow the

possibility of spin-spin correlations or spin ordering to reduce the entropy. Note that this limit cannot
be achieved with SI = 1/2.

(iii) Overcompensated (M > 2SI). In this case, there is an excess of conduction spin and depending
on the boundary conditions for a finite size system, the ground state will have spin of either M/2− SI
or SI with residual entropy R ln(M − 2SI + 1) or R ln(2SI + 1) (see (c) of Fig. 3). However, in the
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(S=1)
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I

c1
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(S=1/2)

(S=1/2)

(c)

S   = 0tot S   =1/2 S   =1/2tot tot

Figure 3: Compensated, Undercompensated, and Overcompensated multi-channel Kondo models. (a)
shows an example of a compensated Kondo model. The two spin 1/2 conduction channels exactly cancel

the spin 1 impurity to form a local singlet ground state. (b) shows an example of an undercompensated
Kondo model. In this case, the two spin 1/2 conduction electrons cannot fully screen out the spin 3/2

impurity moment. The total ground state spin is determined by the residual, uncompensated impurity
moment. The residual coupling of this to the conduction electrons is ferromagnetic and thus marginally

irrelevant about the ground state. Finally, (c) shows an example of the overcompensated situation,
in which the two spin 1/2 conduction channels over-screen the spin 1/2 impurity. In this case, the

residual coupling of the bound spin 1/2 complex to conduction electrons at the next length scale is
antiferromagnetic. This situation leads to a non-trivial fixed point.

thermodynamic limit the entropy tends to R ln g(M,SI) where g is a universal non-integer number that
we shall discuss in Secs. 6.3,7.2. The case SI = 1/2,M = 2 is the marginal one, which still yields
the non-trivial physics and appears to be the most realizable model in nature as we discuss in Sec. 2.

This model has a residual entropy of (R/2) ln2. This residual entropy appears to have been observed
in several uranium based alloys recently as we shall discuss later in the review (Sec. 8).

Let us specialize to the case SI = 1/2 and discuss the thermodynamic properties at low tem-
peratures which reflect the low energy excitation spectrum of the system. A convenient quantity to

classify the behavior is the specific heat coefficient Cimp/T defined as the extra heat capacity per im-
purity induced by the impurities. In the case M = 1, the ordinary Kondo problem, Cimp/T tends to

a constant value proportional to 1/TK , with TK the Kondo temperature identified in Eq. (1.3). This
describes a local Fermi liquid about the impurity with effective degeneracy temperature given by TK.

When M = 2, Cimp/T ∼ ln(TK/T )/TK, which illustrates the marginal nature of the M = 2, SI = 1/2
overcompensated state. Finally, when M > 2, the specific heat coefficient shows a power law divergence

given by Cimp/T ∼ T (2−M)/(2+M). Clearly when M ≥ 2 the excitation spectrum has a non-Fermi liquid
character which thus places these models outside the Landau paradigm discussed at the outset of this
introduction. The logarithmic behavior in Cimp/T has been recently observed in numerous materials

as will be discussed in Sec. 8.
The scattering of an electron off the impurity in the low energy limit further reflects the break-

down of the Landau paradigm. We illustrate the scattering possibilities in Fig. 4. We show that
for M = 1, SI = 1/2, the T = 0 scattering is entirely one particle, reflecting the complete screening

of the local moment into a simple charge scattering object. At elevated frequency and temperature
some outgoing states can be dressed by multiple particle hole pairs giving rise to the familiar Landau

9



M  T 0 limit
1       0
2    finite
3       "
4       "

�

M   T 0 limit
1    finite
2       0
3    finite
4       "
:

�

(1)

(n)

Figure 4: Fermi-level scattering states resulting from electrons incident on spin 1/2 Kondo impurities.
For the M = 1 case, all outgoing scattered states at the Fermi energy is one-body in character, and

hence can be parameterized in terms of a phase shift. For M = 2, all outgoing scattered states at the
Fermi energy are many-body in character, and cannot be parameterized by a phase shift. For general

M , the outgoing scattered states are a mix of one-body and many-body in character.

T 2 damping of the excited quasiparticles. In Fig. 4, we also show the case for M = 2, SI = 1/2, in

which single particle scattering is completely shut down on the Fermi surface. Indeed, the surprising
result is that there is no S-matrix element to any outgoing state containing arbitrary finite numbers of
particle-hole pair excitations; rather, as phrased in the original paper, there is a scattering to a “differ-

ent Hilbert space hidden in the free field theory” but “opened up” by the impurity at the non-trivial
fixed point (Maldacena and Ludwig [1996]). These fermionic excitations are non-local in the original

variables. In the general case for M > 2, SI = 1/2, the Fermi level scattering can be a mix of single
particle and multiparticle scattering, as illustrated in Fig. 4. The outgoing scattering state may possi-

bly be visualized as a “screening cloud” with one electron charge which is orthogonal to any states with
finite numbers of simple particle-hole excitations, which phenomenon must be related to Anderson’s

orthogonality catastrophe (Anderson [1967]).
The consequence of these scattering properties on the electrical resistivity as T → 0 is that in

the M = 1, SI = 1/2 case saturation to a value characteristic of the unitarity limit is accomplished with
a regular T 2 behavior typical of a Fermi liquid. For M ≥ 2, the low temperature resistivity goes as
ρ(T )/ρ(0) ' 1 − AT 2/(2+M) which is clearly non-Fermi liquid-like and related to the residual entropy

and power law divergence of the specific heat coefficient. In the case of M = 2, the saturation to the
low temperature limit follows a T 1/2 law which has been observed in recent point contact experiments

to be discussed at length in Sec. 8.1.
A few words on notation. In the discussion of the quadrupolar and two-channel magnetic Kondo

effects for rare earth and actinide ions, we have chosen to denote all crystal field states by the convention
in the tables of [Koster et al., 1963]. For irreducible representations of non-Kramers (non-double group)

character, we also give the symbols used, e.g., in Tinkham’s book on group theory[Tinkham, 1964].
Henceforth, we shall abbreviate “irreducible representation” by “irrep” following a common practice

in group theory texts. Since the Two-Level-System (TLS) Kondo effects and those for rare earth
and actinide ions “grew up” independently, there is not surprisingly a significant set of notational
differences between papers on the two subjects. The TLS literature uses Pauli matrices to represent

the local pseudo-spin variables, σ indices to represent the real conduction spin 1/2 indices, and V x,y,z

to represent the couplings of the various pseudo-spin components to the conduction electrons. In the

sections on quadrupolar and magnetic Kondo effects of actinide and rare earth ions, we shall use spin
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Kondo Local Conduction Conduction
Model Pseudo-spin Pseudo-spin Channel

TLS Atomic Orbital Magnetic
Position

(Parity) (Parity)

Quadrupolar Quadrupolar Quadrupolar Magnetic
(Orbital) (Orbital)

Magnetic Two- Magnetic Magnetic Quadrupolar

Channel (Orbital)

Table 1: Meaning of local spin and channel labels in real two-channel Kondo models.

Kondo Local Coupling Density of

Model Pseudo-spin Constants States

TLS σx,y,z V x,y,z ρ0

Quadrupolar τ1,2,3 −J1,2,3 N(0)

Magnetic S1,2,3 −J1,2,3 N(0)

Table 2: “Rosetta Stone” of notational correspondences between two-channel Kondo models. Note that

the σi operators for the TLS model are Pauli matrices, while the τ, S operators for the quadrupolar
and magnetic two-channel models are spin 1/2 matrices. Notice the relative minus sign between the

couplings in the TLS models and the Quadrupolar and Magnetic Kondo models. Note that while the
TLS literature consistently uses Ns to represent the number of conduction channels, we shall use this

symbol for the number of sites in the lattice in our paper, and shall use M for the number of channels.

1/2 matrices throughout, with τ (1,2,3) representing matrices in the quadrupolar pseudo-spin space, and

S(1,2,3) representing matrices in the magnetic pseudo-spin space. Quadrupolar indices are represented
by α = ±, and magnetic indices by µ =↑, ↓. The reason for the abstract 1, 2, 3 labels on the pseudo-
spin matrices is because they don’t always have clear correspondence to symmetry directions of the

crystal. All exchange couplings for the rare earth and actinide ion models will be labeled by J , not
to be confused with angular momentum of ground state multiplets whose usage will be clear in the

immediate context. Whenever an important formula is derived, such as a Kondo scale, we will report
the results both for Pauli matrix and spin 1/2 form. The conduction density of states at the Fermi

energy has been denoted ρ0 in the TLS literature, and N(0) in the rare earth/actinide papers. To avoid
confusion to readers looking back at the literature, we shall use the same custom here. In either case,

all excitations are measured with respect to the Fermi energy, which is therefore chosen as the zero
of energy. A list of what local spin and channel labels mean in various models appears in Table 1.

A “rosetta stone” clarifying the notational correspondences between the different two-channel Kondo
models to be considered in this paper appears in Table 2. We will always use N to refer to pseudo-spin
degeneracy of the impurity or conduction states; when it is necessary to distinguish the degeneracies,

we will use subscripts I (impurity) and C (conduction). We will always use M to refer to channel
degeneracy.
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Figure 5: Guide to reading this review article
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Figure 6: The potential for a single atom in a TLS is shown; this has two minima. The energies of

the states localized at the minima and of the next excited state are shown by dashed lines. The energy
splitting between the localized states is ∆. The minima are labeled by α = 1, 2.

2 Model Hamiltonians

2.1 TLS Kondo Model and Related Hamiltonians

2.1.1 TLS Kondo Model: Physical Discussion

The simplest realization of a two-level system (TLS) is that of an atom which may sit in a double well

potential, the two wells being localized along a line directed between their centers which are separated
by a displacement vector ~d. In the absence of coupling to a bath of excitations, the lowest two states

of the atom are, approximately, the positional eigenstates associated with harmonic oscillations within
either well. These are not exact eigenstates because of the overlap of their wave functions. The next

level usually has energy above the barrier between the well minima, and therefore is not localized to
either well. The basic picture for the atomic TLS is shown in Fig. 6.

To preview our discussion of the TLS Kondo effect, one should think of the position of the atom

in one well or the other as an Ising spin variable. Electrons may “flip” the spin by assisting the tunneling
between the wells. The usefulness of this spin description will depend upon the degree of splitting of

the eigenstates in the absence of coupling to the electrons. If the splitting is too large, the ground state
will be well separated from the first excited level, and the TLS will essentially possess a single degree of

freedom leading to only potential scattering off the TLS site and no interesting many body phenomena.
Hence, we shall pay close attention to the conditions which determine the splitting of the levels.

We note that the origin of the anharmonicity which produces the double well has not been
extensively considered. It could derive from anharmonic coupling to vibrational degrees of freedom

away from the TLS site [Sethna, 1981], or possibly from coupling to the electrons [Yu and Anderson,
1984]. The above model is certainly not exclusive in terms of the kinds of TLS which may occur in real
materials; for example, one may imagine a local bistable breathing mode, a bistable librational mode for

a cage of light atoms, such as may occur in doped perovskite conductors, or a vibronic TLS associated
with the Jahn-Teller effect [Gogolin, 1995], for example. For further reading see Yu and Leggett [1989],

and Burin and Kagan [1996].
An atomic tunneling TLS may also arise in a glass, due to positional disorder as sketched in
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Figure 7: The atomic arrangement in the formation of a TLS is shown. The two positions belonging to

the TLS are shown by the dashed and shaded circles.

Fig. 7 [Anderson, Halperin, and Varma, 1971; W.A. Phillips, 1972]. Indeed, the original motivation for
studying such a model was the observation of logarithmic anomalies in the resistivity of metallic glasses
[Cochrane et al., 1975; Kondo, 1976(a); Vladár and Zawadowski, 1980]. There the positional disorder

of the atoms could lead to a TLS for individual atoms. The complication with regard to the simple
model presented here is that the TLS model must be concentrated (and disordered). For simplicity, we

shall restrict attention to the simple model of a linear double well.
Given the TLS, in the absence of coupling to other excitations, the atom may move between the

two positions one of two ways:

(i) Thermal Activation. To make thermally activated transitions between the two minima, the
particle must make a real excitation to one of the higher levels within the double well potential. Roughly,

one anticipates that the activated transition rate will be given by

(2.1.1)
1

τthermal(T )
≈ ω0 exp(−Eex/kBT )

where the “attempt frequency” ω0 is of order the characteristic vibration frequency in one of the well

minima. The excitation energies for such processes have been directly measured in time resolved con-
ductance experiments [Ralls and Buhrman, 1988; Zimmerman, Golding, and Haemmerle, 1991; Golding,

Zimmerman, and Coppersmith, 1992] and are typically in the range of tens to hundreds of kelvin. Hence,
these must eventually be frozen out at very low temperatures, certainly below 1-10K.

(ii) Quantum Mechanical Tunneling. In this process, the atom directly tunnels through the

potential barrier between the wells. Given the freezeout of the thermally activated transitions, this
process must dominate at sufficiently low temperatures. In this case, neglecting the coupling to the

conduction electrons, the tunneling rate is given by

(2.1.2)
1

τ squantum
≈ ω0 exp(−w

√
2MVB/h̄) = ω0e

−λ

where the superscript s stands for spontaneous tunneling, the barrier is approximated by a square well
of width w and height VB, and λ is the Gamow factor.

Based upon experimental results on mesoscopic devices, we may roughly distinguish between
three regimes of quantum tunneling, depending upon the observed tunneling time:

(a) Slow tunneling, (τ squantum)−1 < 108s−1. In this case the Gamow factor λ is large. The motion of
the atom for such TLS has been measured by time resolved conductance experiments on nanometer

scale point contacts [Ralls and Buhrman, 1988] and thin metallic films [Zimmerman, Golding, and
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Haemmerle, 1991; Golding, Zimmerman, and Coppersmith, 1992]. The essential, and startling, idea is

that each time the TLS hops between minimum, a measurable (order e2/h) change δG in the device
conductance G is observed, corresponding to an atomic scale change in the scattering cross section.

Bistable switching corresponding to isolated TLS (of unknown character) has been observed directly!
By producing histograms of the times between switching events, tunneling times can be determined. As

our subsequent discussion will clarify, the spontaneous quantum mechanical tunneling rate is directly
proportional to the electron assisted tunneling amplitude for the atom which is responsible for the
TLS Kondo effect. When the TLS falls into this “slow” category, the TLS Kondo effect will occur at

irrelevantly small temperature scales, if at all. This may be modified, however, with the consideration of
excited states of the TLS, such as discussed by Zaránd and Zawadowski [1994(a,b)]. In this circumstance,

it is possible to get an appreciable Kondo scale without a large splitting of the levels; see Sec. 3.4.2 for
a discussion.

(b) Fast tunneling, 108s−1 > (τ squantum)−1 > 1012s−1. In this case, the energy corresponding to the
tunneling rate, determined by the uncertainty principle, is in the range of 1 mK to 10K. As we shall

explain below, this energy determines the level splitting which we should like to have smaller than the
Kondo energy scale kBTK. Given the typical estimates for electron assisted tunneling processes and the

resulting TK values, this range of tunneling times is the most probable for observing the TLS Kondo
effect.
(c) Ultrafast tunneling, 1012s−1 < (τ squantum)−1. In this case, the splitting of the TLS (∼ h̄/τ squantum) is

so large that the ground state is uniformly spread in a bonding orbital between the two wells, and the
Kondo effect never really happens. In this limit we may practically consider only the symmetric TLS,

(V (z) = V (−z)). In the absence of coupling to the conduction electrons, the bonding level in this case
is so well separated energetically from the anti-bonding level that description of the TLS states with

a spin variable is essentially meaningless. Another way of putting it is that the pseudospin variable of
the TLS is completely polarized.

Hence, for our purposes, since we are interested in a TLS Kondo effect, in the absence of excited
states of the TLS, our attention will be directed to case (ii.b) of the above paragraph: fast quantum

tunneling. With excited states included, we may very well obtain a reasonable Kondo scale while pos-
sessing neglibible splitting of the TLS. The reader is directed to 3.4.2 for an explanation.

2.1.2 Hamiltonian for TLS

(a) Non-interacting Hamiltonian

The atomic degree of freedom may be described as either bosonic or fermionic since we are
discussing a single particle in motion. The creation operators at the lowest lying energy levels for

the two minima are labelled by b†1 and b†2 and obey canonical commutation relations; e.g., taking the

operators to be fermionic we have {bi, b†j} = δij . Since the Hilbert space is restricted, we are free to

take these to be bosonic as well. The states |+ >= b†1|0 > and |− >= b†2|0 >, where |0 > is the particle

vacuum for the TLS, may be regarded as pseudo-spin states, since we restrict our Hilbert space to these
lowest two states. The importance of states with higher energies will be discussed in Sec. 3.4.2. Hence,

the most general noninteracting TLS Hamiltonian is given by

(2.1.3) H0
TLS =

1

2

∑

i,α,α′
∆iσiα,α′|α >< α′| = 1

2

∑

i

∆iσi

where the σi are Pauli matrices (i = x, y, z). ∆z measures the splitting between the levels in the two

wells, while ∆x and ∆y are the spontaneous tunneling matrix elements which “flip” the spin with no
assistance from other excitations in the system. If the wave functions of the atom in the two wells

are chosen to be real, then the bare splitting ∆y must vanish. The conventional notation in the TLS

15



literature is

(2.1.4) ∆z = ∆, ∆x = ∆0, ∆y = 0 .

[Note that the correspondence to the spin Kondo problem is that ∆z represents a local longitudinal

magnetic field, while ∆x represents a local transverse magnetic field. In the quadrupolar Kondo problem,
∆z ,∆x measure local stresses. ]

It is straightforward to diagonalize Eq. (2.1.3) by rotating to a quantization direction z̃ in which
one has a diagonal Pauli matrix only, and one finds energies ±E/2 with the splitting E given by

(2.1.5) E =
√

∆2 + ∆2
0 .

The magnitude of the tunneling matrix element ∆0 is approximately h̄ω0e
−λ as determined by applying

the uncertainty principle to the expression (2.1.2) for the spontaneous quantum tunneling time.
The use of projection operators in Eq. (2.1.3) automatically ensures we will not go outside

the subspace of the lowest two levels. The price we pay is that the projection operators no longer
obey standard commutation relations. This may be remedied by use of the Abrikosov pseudo-fermion

method [Abrikosov, 1965], in which a fictitious chemical potential is inserted for the occupancies b
†
ibi

and taken to infinity at the end of all calculations. The effect of the projection is to remove all empty
and doubly occupied states at the end of the calculation. This trick is particularly convenient for the

scaling analysis (Sec. 3) and non-crossing approximation (NCA) integral equation analysis (Sec. 5),
and we shall defer further discussion of the pseudo-particle method to that point in the article. On the

other hand, it is convenient when one is implementing the path integral approach to retain the Hamil-
tonian in the spin representation, and it is typical to then split it into longitudinal and transverse terms.

(b) Coupling to Electrons

We model the conduction electrons as a free electron gas, with Hamiltonian

(2.1.6) Hc =
∑

~k,σ

ε~kc
†
~k,σ
c~k,σ ,

where c†~k,σ and c~k,σ create and destroy free electrons of wave vector ~k and real (magnetic) spin σ. We

measure the excitation energies ε~k from the chemical potential. While the real spin σ will play no direct
role in the coupling to the TLS, it is crucial to retain it, for it plays the role of the channel index in the

mapping of the TLS problem to a two-channel Kondo model.
The interaction Hamiltonian coupling the TLS and conduction electrons has the form

(2.1.7) Hint =
1

Ns

∑

~k,~k′,σ

[V 0
~k,~k′

c†~k,σc~k′ ,σ +
∑

i=x,y,z

V i
~k,~k′

σic†~k,σc~k′,σ ]

where we have used the spin representation for the TLS. The first term in the interaction describes

the scattering off of the average configuration of the TLS, and thus is simply a potential scattering
term, of little importance unless the total scattering strength is large [Kagan and Prokof’ev, 1989]. The

scattering form factors V i~k,~k′ represent the following physical processes (see Fig. 8):

(i) The electrons scatter off of the atom sitting either in position one or two (V z); this process induces
screening of the TLS by the conduction electrons.

(ii) The electron scattering induces a transition between the two minima (denoted by matrix elements
V x,y whose physical meaning shall be described later–see Fig. 9). This is what we mean by electron

assisted tunneling, as opposed to the matrix element ∆0 which we call spontaneous tunneling. (Re-
cently, Moustakas and Fisher [1995] have noted that the V 0 term not only includes “ordinary” potential
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Figure 8: Visualization of screening (a) and assisted tunneling (b) of TLS by conduction electrons.

scattering, but potential scattering which transfers an electron from position 1 to position 2. This term
modifies the physics somewhat as we shall discuss further in Secs. 2.1.2.c. and 3.5.)

The general properties of the scattering form factors V i~k,~k′
are as follows:

(i) Since the Hamiltonian is Hermitian, we must have

(2.1.8) V i~k′,~k = (V i
~k,~k′

)∗ .

(ii) It is easy to determine the transformation properties under time reversal because of the absence of
explicit dependence on the real conduction electron spin. Assuming we may describe the TLS states by

real wave functions, then time reversal invariance implies that

(2.1.9) < ~k, σ, α|Hint|~k′, σ, α′ >=< −k′, σ, α′|Hint| − k, σ, α >

where |k, σ, α > is a direct product state of a single electron with a state of the TLS. By comparison
with (2.1.7), we see that

(2.1.10.a) V z~k,~k′ = V z
−~k′ ,−~k ,

(2.1.10.b) V x~k,~k′ = V x
−~k′ ,−~k ,

and

(2.1.10.c) V y
~k,~k′

= −V y

−~k′,−~k .

(iii) In order to make explicit estimates of the matrix elements, we make the very reasonable assumption
that the electrons couple to the TLS only through the local electronic density operator ρ(~r) given by

(2.1.11) ρ(~r) =
1

Ns

∑

~k,~k′,σ

exp(i(~k′ − ~k) · ~r)c†~k,σc~k′,σ .
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This is an obvious coupling mechanism in the case of the diagonal matrix element V z , since through

Coulombic interactions or the pseudo-potential the electronic density is directly coupled to the density
of the atom as it sits in either well. It is also quite reasonable for the off-diagonal (assisted tunneling)

matrix elements, because fluctuations δρ in the electron density may modulate changes of the tunneling
barrier height through the coupling of the atomic and electronic densities. Hence, one may envision

expanding the Gamow factor in powers of the density fluctuations, i.e., we regard V i~k,~k′ as a functional

of ρ(~r). Since ρ(~r) depends only on the momentum transfer ~k − ~k′ for a given particle hole pair, we

have that

(2.1.12) V i
~k,~k′

= V i(~k − ~k′) .

Property (iii) imposes a strong restriction on the TLS-electron interaction: by combining Eqs. (2.1.10.c)
and (2.1.12) we see that

(2.1.13) V y~k,~k′
= 0 .

We stress that this is a property of the bare couplings; as we renormalize the interactions in the scaling
theory and renormalization group calculations by integrating out virtual electronic excitations, we will

generate couplings of V y form because the higher order terms in δρ are not necessarily local in space
[Kondo, 1976].

We are now in a position to explicitly estimate the matrix elements. The diagonal couplings

V 0andV z were first estimated by Kondo [1976] and Black, Györffy, and Jäckle [1979]. Denote the
wave function for the atom in positions 1 or 2 by φ1,2(~r), and assume that the interaction between

the electronic density and the atom at position ~r is given by U(~r). The potential scattering couples
to the average of the atomic density over the two wells, while the V z scattering couples to the density

difference between the two wells. Hence

(2.1.14.a) V 0
~k,~k′

= U(~k′ − ~k)

∫
d3r exp[i(~k′ − ~k) · ~r]1

2
[φ2

1(~r) + φ2
2(~r)]

and

(2.1.14.b) V z
~k,~k′

= U(~k′ − ~k)

∫
d3r exp[i(~k′ − ~k) · ~r]1

2
[φ2

1(~r)− φ2
2(~r)]

As mentioned earlier, the matrix element V 0 does not significantly impinge on the physics unless the

scattering phase shift of the conduction electrons is near resonance; in particular, it cannot produce any
logarithmic renormalizations in the scaling analysis.

Derivation of the assisted tunneling matrix element is more subtle. We follow Kondo [1976],

who assumed the non-orthogonalized atomic wave functions at the two minima to be identical apart
from displacement factors, i.e.,

(2.1.15) φ1,2(~r) = φ(~r ∓
~d

2
)

where the upper(lower) sign holds for well 1(2). The wave functions are assumed separable in cylindrical

coordinates (φ(~r) = χ(~rperp)Φ(θ)ζ(z), where ~rperp is the displacement transverse to the TLS axis and θ
is the azimuthal angle about the TLS axis along the z direction). The wave function dependence along

the axis of the TLS is taken to be the harmonic oscillator form

(2.1.16) ζ(z) ≈ 1√
πz0

exp(− z2

2z2
0

)
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with z0 the mean square displacement of the atom about the minimum due to zero point motion at

frequency ω0. Explicitly, assuming the atomic mass to be M , we have

(2.1.17) z0 =

√
h̄

Mω0
.

If we consider atoms of intermediate mass M ≈ 50mp (mp the proton mass), and with typical zero point
energies of the TLS in the regime of 100-500K, we obtain z0 values in the range of 0.03-0.1Å.

Our evaluation of the coupling V x borrows from the theory of inelastic tunneling formulated
by Scalapino and Marcus [1967]. This derivation has the advantage of being physically transparent,

and substantially correct quantitatively, in that a more formal derivation (using the Feynman-Hellman
theorem based approach of Ngai et al. [1967] for the square barrier model and for a potential with

quartic anharmonicity) yields the same answer to within factors of order unity. This will be elaborated
in Appendix I. Recently Zaránd [1993] has pointed out that the accurate prefactor of the wave function

given by (2.1.16) is also affected by the barrier fluctuation and it can be dropped only if the Gamow
factor dominates, i.e., if exp(−λ) << 1. The starting point of this analysis is to introduce the exact
eigenstates of the atom in the double well potential extending over both minima but without interaction

with the electrons. The potential Uion,el describing the interaction between the ion and the electrons
induces the matrix elements. This method is suitable to include the higher atomic interaction levels in

the potential in a straightforward manner (Zaránd and Zawadowski [1994(a,b)]) and the inclusion of
those levels may lead to an increase in the Kondo temperature. See Sec. 3.4.2 for further details. The

method of Zaránd is also applied to discusss the accuracy of the concept in which the treatment starts
with the introduction of left and right states.

The idea of Scalapino and Marcus is illustrated in Fig. 9. The inelastic coupling to the
conduction electron density fluctuations modulates the barrier height. Hence, inside the WKB exponent,

we may expand the position dependent inverse decay length to linear order in the modulation. Explicitly,
we take

(2.1.18) VB(~r) = V 0
B(~r) + Uδρ(~r)

where the coupling between electrons and atom is assumed to have a local pseudo-potential form

(2.1.19) Uion,el(~rel − ~rion) = v0Uδ(~rel − ~rion)

v0 being the unit cell volume. The appropriate expression for δρ(~r) is

(2.1.20) δρ(~r) ≈ ρ(~r)− 1

2
[ρ(

~d

2
) + ρ(−

~d

2
)] =

1

Ns

∑

~k,~k′,σ

[exp(i(~k′ − ~k) · ~r)− cos((~k − ~k′) ·
~d

2
)]c†~k,σc~k′,σ

which is intuitively understood as the fluctuation relative to the averaged density at the minimum of the

wells. This expression will be justified in detail in Appendix I. Because of the assumed axial character
of the TLS, only the z dependence is relevant in Eq. (2.1.20). We note that the local potential

approximation can in principle be dropped at the expense of complicating the formalism somewhat; see
Vladár and Zawadowski [1983(a)] and Zaránd [1993] for details.

By approximating the tunneling matrix element in the WKB form we have, for the combined
spontaneous and assisted tunneling ∆x

total

(2.1.21) ∆x
total = ∆x exp[− U

2h̄

∫ d/2

−d/2
dz
δρ(z)

V 0
B(z)

√
2MionV 0

B(z)]

which we may expand to linear order in the presumed small exponent to obtain

(2.1.22) V x = ∆x
total −∆x = −∆x λU

2dVB

∫ d/2

−d/2
δρ(z)dz .
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Figure 9: Fluctuation in the double-well potential for the TLS is shown. These fluctuations are

produced by the density fluctuations δρ in the conduction-electron band. The shift of the potential is
proportional to the pseudopotential U for the electron-atom scattering.

In Eq. (2.1.22) we have made a square barrier approximation, with the barrier height VB and width
d, so that the Gamow factor λ = d

√
2MVB/h̄. Substituting Eq. (2.1.20) for δρ and carrying out the

resulting integration to lowest order in (k′z − kz)d = ∆kzd, we obtain

(2.1.23) V x
~k,~k′

= ∆x λU

24VB
(∆kzd)2 .

The expansion in powers of ∆kzd is justified for the intermediate mass atoms given ∆kz ' kF ' 1Å−1,
and our presumed value d ' 0.1Å.

If we perform the small ∆kzd expansion on V z given by Eq. (2.1.14.b), we obtain

(2.1.24) V z ≈ 1

2
(∆kzd)U

so that the ratio V x/V z is roughly estimated as

(2.1.25)
V x

V z
≈ ∆xλ(kFd)

12VB
≈ e−λ(kFd)

3

where we have used ∆x ≈ h̄ω0e
−λ, λ ≈ d2/4z2

0 as justified in Appendix I, and h̄ω0/VB ≈ 4z2
0/(d/2)2

as justified in Appendix I. Taking λ ≈ 6 so that e−λ ≈ 10−3, we see that the order of magnitude for
V x/V z is given by

(2.1.26)
V x

V z
∼ 10−4 − 10−3 .

Since these will play the role of bare exchange couplings in the mapping to the Kondo problem, and
since V y=0, we see that the initial coupling is extremely anisotropic! For further details, see Vladár and

Zawadowski, [1983(a)]. A numerical study of the square potential model (Zaránd , [1993]) provides fur-
ther justifications for the estimates presented above. The Hamiltonian with excited state will be given

in Sec. 3.4.2.

(c) Angular Momentum Representation of Hint

The momentum dependence of the couplings V x and V z plays a crucial role in the development
of the Kondo effect. The reason is that through the momentum dependence, or the form factors, the

non-commutativity associated with the Kondo scattering as discussed in the introduction will develop.
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The coupling can be expressed in partial waves. Let us first expand the coupling in a complete

set of orthogonal functions fα(k̂) depending only upon direction k̂ so that

(2.1.27) V i
~k′,~k
≈ V i

k̂′,k̂
=
∑

α′,α

f∗α′(k̂
′)V iα′,αfα(k̂)

where we have assumed negligible dependence upon the magnitude of ~k,~k′. The most convenient choice
for the free electron gas is

(2.1.28) fα(k̂) = il
√

4πYl,m(k̂)

where Yl,m is a spherical harmonic of indices l,m. Hence, the matrix elements of the couplings are given
by

(2.1.29) V i
l′m,lm =

il−l
′

4π

∫
dk̂dk̂′Y ∗l′,m(k̂′)V i

k̂′,k̂
Yl,m(k̂)

where we have exploited the axial symmetry of the TLS in that the azimuthal quantum number m must

be conserved in all transitions provided we choose our quantization axis along the direction d̂. Using
the previous approximation that the atomic motion is confined to the z-axis (or, more precisely, that

the electronic scattering off of the atom is s-wave), we may neglect all but m=0 in the matrix elements
of Eq. (2.1.29). This specifies spherical harmonics which are aligned along the tunneling axis d̂. We
shall henceforth suppress the m dependence.

Formally, the conduction “spin” in this model could have an arbitrarily large number of compo-
nents Nc. This is seen from equation (2.1.29): partial waves with all orbital angular momentum values

(the orbital index is the conduction pseudo-spin index) can be coupled to the impurity pseudo-spin. In
practice, as we shall discuss in the scaling theory section, such a highly anisotropic model will always

select out just two of this large number of conduction spin components as the temperature is lowered.
Nevertheless, for various perturbative approaches, it is worth considering models in which Nc is allowed

to be arbitrary.
It is clear from the considerations of the previous subsection that V z ∼ (~k′−~k) · ~d is odd under

inversion symmetry while V x ∼ [(~k − ~k′) · ~d]2 is even. Hence,

(2.1.30.a) V x
l′,l = 0, l + l′ odd

and

(2.1.30.b) V z
l′,l = 0, l+ l′ even .

In the approximation used in (2.1.19), U(~k′ − ~k) = u0. We shall use this and employ the small ∆kzd

approximation. In view of the discussion of the previous paragraph, we then truncate the expansion at
the level of s and p wave harmonics, yielding

(2.1.31) V z
l′,l ≈ Ṽ z

(
0 1
1 0

)

with Ṽ z = kFdu0/2, and

(2.1.32) V xl′,l ≈ −Ṽ x

(
1 0

0 −1

)

with Ṽ x = −[(kFd)2/24][λ∆xu0/VB], and where the matrix indices are l′ = 0, 1; l = 0, 1 with m=0 as

discussed above (see, for further discussion, Vladár and Zawadowski [1983a], and Zaránd [1994]).
The matrices in Eqs. (2.1.31,32) have the form of Pauli matrices, but they are rotated with

respect to the Pauli matrices chosen for the TLS. We can remove this by performing a π/2 rotation
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about the y axis of the space of conduction partial wave indices, taking the matrix for V z to σz , and the

matrix for V x to −σx. In so doing, one effects a π/4 rotation in the space of orbital indices. Namely, if
we denote the unit vectors in the restricted two-component orbital space of conduction states as ê0, ê1

for s and p wave components, respectively, then the rotated basis corresponds to

(2.1.33) ê± =
1√
2

[±ê0 + ê1] .

We can now put everything together to make the mapping of the TLS model with coupling to

conduction electrons to the S = 1/2 two-channel Kondo model. Within the restricted orbital basis,

(2.1.34) HTLS =
1

2

∑

i=x,z

∆iσi +
∑

i=x,z

Ṽ iσiσic(0)

with

(2.1.35) σic(0) =
1

Ns

∑

k,k′,α,α′,σ

σiα,α′c
†
k,α,σck′,α′,σ .

where Ns is the number of sites. Eq. (2.1.34) has the form of a two-channel Kondo model (the real spin of

the electrons is a spectator to the scattering off the TLS) with the local S = 1/2 variable measuring the
position of the atom in the TLS double well, and the corresponding index for the conduction electrons

measuring the angular momentum.
In the introduction, where we discussed the isotropic two-channel Kondo model, we noted that

antiferromagnetic coupling was required to produce a growth of coupling constants. In the present

highly anisotropic model, independent of the signs of V z, V x we shall flow to strong coupling, as we will
discuss in Section 3.3.1.

Note that without the inclusion of Ṽ x, the model would correspond to an “Ising-Kondo” model,
which simply has screening effects and a renormalized tunneling rate due to the orthogonality catastro-

phe associated with every spontaneous tunneling event (see, e.g., Kondo [1976(a)], Black and Györffy
[1979], Black, Vladár , and Zawadowski [1982], Kagan and Prokof’ev [1986,1987,1989]).

We also note that the over-compensation of the two-channel Kondo model discussed in the
introduction is not compromised by the various approximations used to cast (2.1.34) into a form which

has pseudo-spin 1/2 conduction electrons. Were we to generalize to arbitary m values and not truncate
the l expansion at the s, p level, we would simply have conduction states with larger effective spins and
still have a two-channel model with the real conduction spin. In fact, the restriction to two-component

conduction spins is thoroughly justified by the scaling analysis, which shows that only two dominant
spin components are selected out in the absence of additional symmetries in the bare Hamiltonian (see

Sec. 3.2 and Zaránd [1994]).
Hence, on quite general grounds, the TLS undergoing assisted tunneling maps to a highly

anisotropic two-channel Kondo Hamiltonian in which the impurity spin is effectively 1/2.

2.1.3 Related lattice models with Kondo analogies

We will close this subsection with a discussion of two related lattice models in which assisted tunneling
or hopping processes play a key role. The first is just the generalization of the TLS model to the situ-

ation where the atom or heavy particle (say, a muon) may move throughout a crystalline lattice. The
second is the problem of electrons in two different bands, one heavy, one light, in which besides sin-
gle particle hybridization between the bands one includes Coulomb assisted hopping between the bands.

(a) Lattice generalization of TLS with assisted hopping
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The TLS model can be easily generalized in the case of a heavy particle hopping on a lattice. This

could be, for example, either a muon or proton diffusing in a crystal where the massive particle jumps
only on a lattice of interstitial sites (see Kondo [1984(a,b),1985,1986], Zawadowski [1987], Zimányi ,

Vladár , and Zawadowski [1987], and Kagan [1992]).
In the metallic environment, the conduction electrons form a degenerate gas which couples to

the heavy particle. The non-interacting Hamiltonian is

(2.1.36) H0 = Hh +Hc

with Hc the free electron Hamiltonian discussed previously and

(2.1.37) Hh = t
∑

<~R,~R′>

[h†~Rh~R′ + h.c.]

with ~R, ~R′ nearest neighbors on the lattice through which the heavy particle moves, and h†~R creating a

heavy particle at site ~R. Eq. (2.1.37) generalizes the non-interacting TLS Hamiltonian for the moving

heavy particle. For convenience, we shall assume the heavy particles move about on a hyper-cubic
lattice of dimension d, and we assume the spin of the particle has negligible coupling to the conduction

electrons so we suppress that.
The screening interaction corresponding to V z in the TLS case is local and the corresponding

term in the Hamiltonian is

(2.1.38) Hint,z =
V

Ns

∑

~R,σ,

σ~k,~k′ exp(i(~k′ − ~k) · ~R)h†~Rh~Rc
†
~k,σ
c~k′,σ ,

where V is the strength of the screening coupling. The simplest generalization of the electron assisted

hopping V x (see Fig. 9) in this context is when the hopping along a bond depends upon the conduction
electron density at that bond, i.e., we have an interaction term

(2.1.39) Hint,x = ta
∑

<~R,~R′>

∑

~k,~k′ ,σ

exp(i(~k′ − ~k) ·~(~R+ ~R′)/2)h†~Rh~R′c
†
~k,σ
c~k′,σ ,

where ta is the strength of the electron assisted hopping (Zawadowski [1987]).
The problem described by the Hamiltonian H0 +Hint,z has been extensively studied in the lit-

erature for hydrogen and muon diffusion in metals. See, e.g., Kondo [1985,1986], Kagan [1992]. The
physical relevance of the model when ta is included is not yet clear. The model cannot be applied to

the heavy fermion systems, for example, because they have only extremely weak direct hopping matrix
elements for the f -electrons due to the small size of the f -orbitals. Moreover, the f -electron states

hybridize with the conduction states, which are also the electrons that produce the screening. Finally,
while the neglect of the muon or proton spin coupling is quite reasonable since no hybridization can

occur so that only weak, ferromagnetic hyperfine coupling is possible and thus no Kondo effect, it is
of course disastrous to ignore the internal degrees of freedom of the f -electrons in the heavy fermion
systems.

(b) Occupation dependent hybridization between heavy and light electrons

The possible modification of the previous models for electronic systems with heavy and light

electronic bands can be given in the tight binding formalism. The light electrons form a broad tight
binding conduction band with large hopping rate while at certain sites there are heavy orbitals with site

energy εh which have weak hybridization with the conduction orbitals but no direct overlap with heavy
orbitals on other sites. It is assumed there is one heavy site per unit cell but possibly more than one

light site per unit cell so that the corresponding creation operators are indexed by both unit cell vectors
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assisted tunneling

screening

Figure 10: The path of a heavy particle moving on a square lattice is shown by the solid line. The
electron (dashed line) is either scattered by the heavy particle sitting on a lattice position or just moving

between two positions. The positions are represented by circles and the moving particle between two
positions by a double line.

~R, basis vectors ~δ which may extend into neighboring unit cells, and that there may be an internal
orbital degeneracy to the heavy band.

Two physical systems to which such a model might apply are:
(i) Cuprate superconductors. Here the light carrier would be a mobile hole in the bonding oxygen bands

residing in the CuO2 planes, and the heavy carrier to holes in essentially filled non-bonding πx,y orbitals
of the apex oxygen sitting above the copper sites. (See Fig. 10.)
(i) Heavy Fermion metals. In this case, considering for example UBe13, the light carriers would derive

from the Be s − p bands, and the heavy carriers from the U 5f orbitals. In practice, the model will
be more applicable to models where the physical f -level position (and not the renormalized or Kondo

resonance position) is close to the Fermi level, which makes truly mixed valent Sm or Yb ions the most
likely candidates. For further details we refer the reader to Zawadowski [1989(a,b,c)], Zawadowski,

Penc, and Zimányi [1991], and Penc and Zawadowski [1994].
The unperturbed Hamiltonian is given by

(2.1.40) H0 = εh
∑

~R,γ,σ

h†~R,γ,σh~R,γ,σ +
∑

~R,~δ,δ′σ

t(δ, δ′)c†~R,~δ,σc~R,~δ′,σ

+
∑

~R,~δ,γ,σ

[tγ(~R,~δ)h†~R,γ,σc~R,~δ,σ + h.c.] ,

where t(δ, δ′) measures the direct light electron hopping and tγ~R,~δ
the heavy electron-light electron

hybridization.

We assume that the heavy band is either completely empty or completely full, and thus there are
only very few excited particles or holes. We may or may not assume a large on-site Coulomb interaction

for the heavy band (large interaction can be dealt with via slave boson field theory techniques), and we
shall discuss each case in later sections.

The term which we will add to H0 which is analogous to the assisted tunneling interaction
is an occupancy assisted hybridization term. Namely,, we assume that the heavy-light hybridization

is modulated when the light orbital on the target site is simultaneously occupied with an electron of
opposite spin. The corresponding interaction is

(2.1.41) Ht̃ =
∑

~R,~δ,γ,σ

[t̃γ(~R,~δ)h†~R,γ,σc~R,δ,σc
†
~R,~δ,−σc~R,~δ,−σ + h.c.] .

The coupling t̃γ(~R,~δ) may arise in two different ways:

(i) We can assume that the radius of the light orbital depends upon whether the orbital is singly or
doubly occupied. In this case the overlap and hopping rate is also modified [Zawadowski,1989].

(ii) Through the off-diagonal matrix elements of the Coulomb interaction [Hubbard, 1963; Kivelson, et
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al., 1987; D. Baeriswyl, P. Horsch, and Maki, 1988; Gammel and Campbell, 1988; Hirsch, 1988] we may

find a matrix element

(2.1.42) t̃γ(~R,~δ) =

∫
d3rd3r′(φγ~R,σ(~r))∗φ∗~R,~δ,−σ(~r′)

e2

|~r− ~r′|φ~R,~δ,−σ(~r′)φ~R,~δ,σ(~r)

which clearly has the required form.

As we shall briefly discuss in the next section on scaling theory, when the complex character of
the t̃ matrix elements is taken into account through momentum dependent form factors which reflect
the intra-cell nature of the hopping, a Kondo like renormalization of two particle interactions between

light electrons occurs. In this sense, there is a strong resemblance to the TLS and quadrupolar Kondo
effects in which momentum dependent form factors drive the non-commutative algebra for interactions

between the local pseudo-spin variables and the conduction electrons.
(c) Electric Dipole Kondo Model

Emery and Kivelson [Emery and Kivelson, 1992(a)] have considered the possibility of the electric dipole
Kondo effect in the cuprate superconductors. The physical origin of the dipoles is through the formation

of locally charge segragrated regions as has been argued to occur in the t − J model at finite doping.
Orbital coupling of itinerant electrons or holes to the extended electric dipoles maps onto the anisotropic

two-level system Kondo problem discussed in this section. The real carrier spin is not involved in the
coupling and so again serves as a channel index. Because of the electric dipole character of the effective
impurity spin, the current operator is modified in this model and very different electrical conductivity

results may be obtained in comparison with other physical realizations of the two-channel Kondo model.
We defer a discussion to Sec. 9.3 where a one-dimensional concentrated system of electric dipole Kondo

centers is discussed [Emery and Kivelson, 1993].

2.2 Exotic Kondo Models for Rare Earth and Actinide Impurities

2.2.1 Quadrupolar Kondo Model for U4+ ion in cubic symmetry

(a) Physical Discussion and Context

In this subsection, we shall derive the quadrupolar Kondo model for a uranium ion in a crystal

field of cubic symmetry.
The idea of the quadrupolar Kondo effect was first proposed to explain the unusual magnetic

field dependence of the heavy fermion superconductor UBe13[Cox, 1987]. Subsequently, Barnes noted

that the quadrupolar moments of Cu2+ ions in the cuprate superconductors could lead to such a Kondo
effect as well [Barnes, 1988]. Later it was realized that tetravalent U ions in hexagonal symmetry with Γ5

or Γ6 doublets and in tetragonal symmetry with Γ5 doublets will also be subject to a quadrupolar Kondo
effect of slightly different character, as we shall discuss in more detail in Sec. 2.2.4 [Cox, 1993]. Finally,

the suggestion of Cox [1987b] for UBe13 met some understandable skepticism, since in this material
the putative quadrupolar Kondo sites are distributed on a periodic lattice. However, the discovery of

the alloy Y1−xUxPd3[Seaman et al., 1991,1992; Liu, et al., 1992; Andraka and Tsvelik, 1991], which for
concentrations x = 0.1, 0.2 appears to display many of the features of the quadrupolar Kondo effect,

has considerably strengthened the empirical basis for this theory.
The motivation for considering the quadrupolar Kondo effect in UBe13 was that in all prop-

erties except magnetoresistance, this material displays an extremely weak magnetic field dependence.

However, the heavy fermion character is presumed to derive from a Kondo effect. It was noted that
U4+ ions with a nominal configuration of 5f2 have a Hund’s rule angular momentum of J = 4. In

consequence, when placed on a site of cubic symmetry, as in UBe13, the action of the crystal field lifting
the full multiplet degeneracy could produce a non-Kramers Γ3 or E doublet ground state, i.e., whose

degeneracy is not guaranteed by Kramers’ theorem. Kramers’ theorem states that for an electronic
configuration with an odd number of electrons, a minimal two fold degeneracy exists for each level due
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Configuration State Parent J Form < Jz > < 3J2
z − J(J + 1) >

f2 Γ3(+) J = 4
√

5
24 [|4 > +| − 4 >]−

√
7
12 |0 > 0 +8

f2 Γ3(−) J = 4
√

1
2 [|2 > +| − 2 >] 0 -8

f1 Γ7(↑) J = 5/2
√

1
6 | − 5/2 > −

√
5
6 |3/2 > +5

6 0

f1 Γ7(↓) J = 5/2
√

1
6 |5/2 > −

√
5
6 | − 3/2 > -5

6 0

c1 Γ8(2) J = 5/2
√

5
6 |5/2 > +

√
1
6 | − 3/2 > +11

6 +8

c1 Γ8(2̄) J = 5/2
√

5
6 | − 5/2 > +

√
1
6 |3/2 > −11

6 +8

c1 Γ8(1) J = 5/2 |1/2 > +1
2 -8

c1 Γ8(1̄) J = 5/2 | − 1/2 > −1
2 -8

Table 3: Angular momentum character of states for two-channel Kondo models for U4+ and Ce3+ ions in

cubic symmetry. The fourth column gives information about the states of definite azimuthal quantum
number values which are mixed to form the state in cubic symmetry. The last two columns give

information about the expectation values of magnetic and quadrupolar moments corresponding roughly
to the S(3) and τ (3) operators.

to time reversal symmetry that cannot by lifted by any crystalline anisotropy (see, e.g., Lax [1974]). No
corresponding statement can be made for an ion with an even electron number configuration, though

in some lower symmetries symmetry distinct singlet states may have enforced degeneracy through time
reversal symmetry (see, for example, Tinkham [1964], p. 147).

The Γ3 doublet is not the only possible ground state in the field of cubic symmetry for the U4+

ion, but will be over about half the crystal field parameter range. [See Lea, Leask, and Wolf, 1962,

for a discussion of crystal field splittings in cubic symmetry. Some of the relevant states are listed in
Table 3. Note that the sign of the W parameter in Lea, Leask, and Wolf must be negative to realize
the stable Γ3(E) ground state. While this is excluded for a point charge model in simple coordination

environments (e.g., octahedral), it is not excluded for complex coordinations such as in UBe13, or for
splittings induced by terms second order in the hybridization with conduction states, the most likely

origin of the crystal field splittings in the heavy fermion materials. For a simple discussion of this latter
idea, see Zhang and Levy, [1989].

Hence, since the two levels of the Γ3(E) doublet are not connected by time reversal, a magnetic
field does not split the level, at least to linear order, and the field dependent properties will be corre-

spondingly weaker than in a magnetic Kondo system. The double degeneracy of the ground level allows
one to treat it as a two-level system, i.e., as a manifold with a pseudo-spin of 1/2. As we shall discuss

in more detail, such a ground state is indeed susceptible to a Kondo effect when coupled to conduction
electrons.

Any state with internal degrees of freedom must be characterized by a non-trivial multipole

moment other than the simple occupancy or charge operator. The physical meaning of the Γ3(E)
state is that it has a non-vanishing quadrupole moment. Recall from electrostatics that the quadrupole

moment tensor describes the potential from an aspherical distribution of charge which appears in the
energy through a coupling to the electric field gradient tensor. Given a charge distribution ρ(~r), the

quadrupole tensor Q̂ij is defined in cartesian form as

(2.2.1) Q̂ij =

∫
d3rρ(~r)[3rirj − r2δij ] .

Note that:

(i) The tensor Q̂ij is symmetric and traceless, so that it has only five independent components.
(ii) For full rotational symmetry, these five components transform among one another like the elements
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of the function Y2,m(r̂).

(iii) As the point symmetry is lowered to cubic, the case at hand, the tensor splits into a doublet of
tensors (transforming according to a two-dimensional irreducible representation or “irrep” of the point

group), which corresponds to the diagonal elements of Eq. (2.2.1) (in diad form, Q̂ii ∼ 3̂îi− 1I, where I
is the identity tensor), and a triplet of tensors (transforming according to a three- dimensional irrep of

the point group, which in diad form go as Q̂ij = Q̂ji ∼ 3̂iĵ, i 6= j), which corresponds to the off-diagonal
elements of Eq. (2.2.1). The doublet tensor transforms according to the so called Γ3(E) irrep of the
cubic point group, and the triplet tensor according to the so-called Γ5(T2) irrep of the cubic point group.

The reason for only two components in the Γ3(E) doublet tensor is the tracelessness of the quadrupolar
tensor, viz.

(2.2.3) Q̂xx + Q̂yy + Q̂zz = 0

so that only two components are actually independent. It is convenient to write the two components as

the two traceless combinations

(2.2.4.a) Q̂+ =
√

3qΓ3 [x̂x̂ − ŷŷ]

and

(2.2.4.b) Q̂− = qΓ3 [2ẑẑ − x̂x̂ − ŷŷ]

where

(2.2.5) qΓ3 =

∫
d3rρ(~r)x2 =

∫
d3rρ(~r)y2 =

∫
d3rρ(~r)z2 .

The equality of the three integrals above follows from the assumed cubic symmetry. Note that the diad
forms to the tensors of Eqs. (2.2.4.a,b) explicitly demonstrate the tracelessness of Eq. (2.2.3).

(iv) The tensor pair Q̂± will couple linearly to electric field gradients of the same symmetry applied to
the crystal. The most practical way of effecting such gradients is through the application of external

stresses η̂± which will produce a coupling term in the energy of the charge distribution of the form

(2.2.6) Estress = A
∑

a=±
Tr[Q̂aη̂a].

The meaning of a pure stress of the form η̂− is that the crystal is stressed either tensilely (elongated)
or compressively (flattened) along one of the principal axes, in this case the z-axis. Such a uniaxial

distortion lowers the crystal symmetry to tetragonal. This is clear because the stress will couple linearly
to the corresponding strain tensor

(2.2.7) ε̂− = 2εzz − ε̂xx − ε̂yy = 2
∂uz
∂z
− ∂ux

∂x
− ∂uy

∂y
= 3εzz

where ~u(~r) is the atomic density displacement field at position ~r, and where the far RHS of the above
equation follows from the assumption of a pure stress, i.e., the uniform volume term ε0 = εxx + εyy +

εzz = 0. The meaning of a pure stress of the form η+ is that the crystal will distort orthorhombically
since it will linearly couple to ε+ =

√
3[εxx − εyy ] which will elongate(shrink) the x-axis as the y-

axis is shrunk(elongated) while the z-axis is unchanged. Note that this discussion indicates the Γ3

doublet tensor will linearly couple to a strain or vibration field of the same symmetry. A simple, useful

visualization appears in Fig. 11
(v) Turning now to the quantum mechanical situation, we are interested in the charge distribu-

tion associated with a particular quantum mechanical angular momentum multiplet, in which case the
quadrupolar tensor should be viewed as a representation of operators that act within the multiplet. The

Wigner-Eckart theorem may be utilized to write this tensor purely in terms of the angular momentum
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z-axis
Figure 11: Mapping of Uranium quadrupole orientations to pseudo-spin variables in cubic symmetry.
The Γ3 quadrupole moment of the U4+ ion is quantized to two values. Choosing the quantization axis
along the z axis, the stretched or prolate configuration maps to “up” or “+” pseudo-spin, and the

squashed or oblate configuration maps to “down” or “-” variables.

operators ~J ; we follow the derivation of Slichter for nuclei [Slichter, 1989]. Because ~r transforms as a

vector (rank 1 tensor), for an open shell ion with configuration fn and angular momentum J in free
space (full rotational symmetry) we may write

(2.2.8) Q̂ij = qnλJ [
3

2
(JiJj + JjJi)− J(J + 1)δij ] ,

where reduced matrix element qnλ,J is given by evaluation of the above equation in the stretched state

|n, λ, J,MJ = J >; formally

(2.2.9) qnλJ = −e< n, λ, J,MJ = J |∑n
i=1[3z2

i − r2
i ]|n, λ, J,MJ = J >

J(2J − 1)

where λ denotes the other quantum numbers of the system. The sufficiency of using i = j = z and the

stretched state in evaluating the reduced Matrix element is guaranteed by the rotational symmetry of
free space; such tricks are customary in applying the Wigner-Eckart theorem. In principle, one should

proceed by computing the one-particle matrix element and then using angular momentum algebra
to compute the effective matrix element within the lowest multiplet. The idea is analogous to the

calculation of the Landé g-factor. qnλJ measures the strength of the coupling to an applied field gradient,
and thus for the quadrupolar system is analogous to the effective magnetic moment of a magnetic

multiplet. Note that the above formula for qnλ,J only applies for J > 1/2.
Under the reduction to cubic symmetry, we will split the five dimensional tensor operator space

of Eq. (2.2.9) into doublet (Γ3(E)) and triplet (Γ5(T2)) spaces as in the classical discussion above. For

the Γ3(E) space, the explicit operator forms are

(2.2.11.a) Q̂+ = qnλJ
√

3[J2
x − J2

y ] = qnλJ

√
3

2
[J2

+ + J2
−]

and

(2.2.11.b) Q̂− = qnλJ [3J2
z − J(J + 1)] .

In Eq. (2.2.11.a), J± = Jx ± iJy are the angular momentum raising and lowering operators. Note that
Q̂− is diagonal in the J basis, while Q̂+ is off diagonal in the J basis.
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Figure 12: Actual orbital shapes for 4f ,J = 5/2,Γ8 conduction electrons. The upper picture is for the
elongated “+” orbital, the lower for the compressed “-” orbital. Each plot is a constant probability

density contour. Taken from Kim [1995], and Kim and Cox [1997] (with permission).

Let us now connect these ideas to the Γ3(E) doublet on the U4+ site in cubic symmetry. The
two states of the doublet are listed in Table 3. We see that under the action of the operator Q− (apart

from the proportionality factor of qnλJ ) the + state corresponds to a positive quadrupolar deformation,
the − state to a negative quadrupolar deformation. In the plus state, for which MJ = 0 is the dominant
component, we will measure an elongation along the chosen quantization axis in the z-direction. For

the − state, with dominant MJ = ±2 components, the U4+ charge density will be squashed along the
z direction. An over-simplified picture is shown in Fig. 11), where we view the ion as a “cigar” in the

+ state and a “pancake” in the − state. In fact, there is considerably more structure to the charge
distribution as shown in the realistic depiction of Fig. 12

At this point, the reader might be confused as to why we don’t have access instead to three
“cigar”-shaped states along the three principal axes. The reason is that the ± states transform like

a quadrupolar doublet themselves–while three cigars would be described by the 90o rotation of the +
state lined up along the z-axis to instead lie along the x- or y-axes, the x and y states are not in

fact orthogonal to the original + state. This statement for the states is precisely analogous to the
tracelessness condition for the tensors. Orthogonalization produces a linear combination of the x, y
“cigar” orbitals which is overall flat.

Examining the forms of the states in Table 3, we see that the Γ3(±) states contain states of the
original J manifold which differ by two units of angular momentum. Hence these two states will be

connected by the operator Q̂+ which raises or lowers angular momentum by two units.
If we now recall Eq. (2.2.6) which describes the classical energy of a charge distribution with

cubic symmetry under the influence of an external stress tensor field of Γ3(E) symmetry, we see that
the external stress will have two possible effects on the Γ3(E) ground doublet of the U4+ ion:

(i) If η̂− is non-zero, we will couple to Q̂−. Since Q̂− linearly splits the ± states, this is analogous the

29



the effect of a longitudinal magnetic field applied to a spin-1/2 state. This corresponds to a uniaxial

(tetragonal) distortion. The Γ3(+) state transforms as a Γ1(A1) singlet in the tetragonal symmetry,
while the Γ3(−) state transforms as a Γ3(B1) ∼ x2 − y2 singlet in the tetragonal symmetry.

(ii) If η̂+ is non-zero, we will be allowed to mix the two doublet states. Recall that this corresponds
to an orthorhombic distortion. Indeed, as we lower from cubic to orthorhombic symmetry, the Γ3(±)

states both transform as Γ1(A1) irreps since now there are no symmetry transformations of 90o rotations
about the principal axes to distinguish the two states.

Instead of using the representation of the impurity tensor operators in terms of the angular

momentum, we may restrict our attention to the operator basis of the Γ3(E) doublet of states directly.
Since the manifold is two dimensional, there are only four second rank tensor operators we may form.

These operators are

(2.2.12.a) τ
(0)
I =

1

2
[|f2Γ3,+ >< f2Γ3,+| + |f2Γ3,− >< f2Γ3,−|] ,

which describes just the charge (monopole) distribution of the U4+ ion,

(2.2.12.b) τ
(1)
I =

1

2
[|f2Γ3,+ >< f2Γ3,−| + |f2Γ3,− >< f2Γ3,+|] ,

(2.2.12.c) τ
(3)
I =

1

2
[|f2Γ3,+ >< f2Γ3,+| − |f2Γ3,− >< f2Γ3,−|] ,

and

(2.2.12.d) τ
(2)
I =

1

2i
[|f2Γ3,+ >< f2Γ3,−| − |f2Γ3,− >< f2Γ3,+|] .

The three operators τ
(1)
I , τ

(2)
I , τ

(3)
I clearly form a closed algebra in the SU(2) space defined by transfor-

mations within the manifold of Γ3(E) states.

Clearly, τ
(3)
I which is diagonal and of opposing sign for the two states is proportional to Q̂−.

Also, τ
(1)
I which “flips” between the two members of the doublet, is clearly proportional to Q̂+. Hence,

the τ
(1)
I , τ

(3)
I pair transforms as a doublet tensor of Γ3(E) symmetry which measures the corresponding

Γ3(E) symmetry quadrupole tensor of the ion as restricted to the two lowest states. The action of

a uniaxial stress η̂ of pure Γ3(E) symmetry thus adds a term to the Hamiltonian of the quadrupolar
doublet which has the form

(2.2.13) Hstress = −Ã[τ
(1)
I η+ + τ

(3)
I η−]

where η± =
√
Tr[η̂±]2/2. Thus, the doublet external stresses η± for the quadrupolar Kondo model

are analogous respectively to the spontaneous tunneling ∆x and splitting ∆z of the TLS model. This

discussion is slightly over-simplified: the τ
(1)
I , τ

(3)
I pair of tensors may also have components from all

multipole moment tensors of even rank ≤ 2J .

The operators τ
(1)
I , τ

(3)
I , τ

(0)
I clearly produce only real matrix elements. The operator τ

(2)
I , just

like the σy operator of the TLS discussion, is complex. The physical nature of this operator is made

more clear by considering the commutation relation

(2.2.14) [τ
(3)
I , τ

(1)
I ] = iτ

(2)
I ∼ [Q̂−, Q̂+] ∼ iJxJyJz

as may be readily verified by working out the commutators [J2
i , J

2
j ] using Eqs. (2.2.11a,b). Thus the

operator τ
(2)
I transforms as a Γ2(A2) irrep of the cubic group. Since this tensor has three Ji operators,

it is clearly odd under time reversal, and thus represents a magnetic octupole moment tensor.
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The octupole tensor will couple to third order polynomials in the magnetic field, or alternatively,

to the combined action of an applied magnetic field and an applied external stress that lowers the

symmetry to rhombohedral . We may use this latter fact to understand the meaning of τ
(2)
I more

deeply. First, apply a pure rhombic deformation (stress of Γ5(T2) symmetry: η̂ = η0(x̂ŷ + ŷẑ + ẑx̂))
along the body diagonal. This lowers the point symmetry of the uranium site from O to D3d. Now

apply a magnetic field along the body diagonal. The degeneracy of the Γ3 doublet is now lifted. This
lowers the symmetry from O to C3, and breaks time reversal T . The Γ3 state transforms into a pair

of singlets under C3 which are however degenerate in the absence of a T -breaking field; the applied
magnetic field then splits these states. Thus, a term in the Hamiltonian arises of the form

(2.2.15) Hstr.−field = −B̃τ (2)
I

∑

ijk

η̂Γ5,ijHk (i, j, k cyclic)

where Hi is the i-th component of the applied magnetic field, and η̂Γ5,ij is the ij-th component of the Γ5

symmetry external stress tensor. A magnetic field pointing along a body diagonal will also induce this
coupling since the field will induce the equal magnetostriction induced strains tensors εΓ5ij ∼ H2îĵ, i 6=
j.

It should be mentioned that the subject of crystal field levels in actinide intermetallics has been

controversial [see, e.g., Ramakrishnan, 1988]. While 5f electrons have larger spatial extent should in
general lead to larger crystal field splittings, sharp excitations attributable to crystal fields have been

clearly seen only in a few uranium based compounds, most notably UPd3 [Buyers et al., 1980] and
URu2Si2[Broholm et al., 1992]. In contrast, relatively sharp crystal field excitations are frequently seen

in rare earth intermetallics, e.g., in the heavy fermion superconductor CeCu2Si2[Horn et al., 1981]. This
situation will be discussed in somewhat more detail in Sec. 5.2.3, where the NCA equations are devel-
oped. Application of this theory to the appropriate model for a crystal field split uranium ion makes it

clear that the excited crystal field level widths should be generically broader in the uranium materials
[Cox, 1992a)]. This material shall be discussed in detail in the section on experimental manifestations

of the two-channel models.

(b) Coupling to Conduction Electrons

Analogy to TLS model. In this subsection we shall develop the Kondo Hamiltonian for the
coupling of the U4+ ions to the conduction states. We may think of the resulting coupling in a manner

very similar to the TLS Hamiltonian. Namely, if the levels are polarized virtually so that τ
(3)
I would be

non-zero, the electrons will attempt to relieve this polarization through a screening process producing

a coupling J3 analogous to V z . Alternatively, we may view this screening term as representing the
coupling of an electronic charge fluctuation of uniaxial (tetragonal) symmetry modulating the levels of

the Γ3(E) doublet on the U4+ site. A fluctuation of the local electron charge density with orthorhombic
symmetry coupled with strength J1 will modulate the Γ3(E) states by producing transitions between

them analogous to the assisted tunneling (V x) term in the TLS model. Unlike the generic TLS model, the
couplings J1,3 are guaranteed to be equal due to the cubic point symmetry. Finally, a local octupolar

distortion of the conduction electron charge density will modulate the Γ3(E) states by producing a

mixing and an orbital magnetic moment. Since the τ
(2)
I operator transforms as a Γ2(A2) irrep, nothing

generically guarantees the equality of J1,3 with J2, though we shall see that a good starting model in

fact yields isotropic bare coupling. In addition, in the absence of significant disorder or external stress,
there will be no bare splittings or spontaneous tunneling terms in the quadrupolar Kondo model. Thus,

we expect the quadrupolar Kondo models to typically be nearly isotropic in the starting Hamiltonian,
and to possess no bare splittings or “spontaneous tunneling” terms.

Coupling to Conduction Electrons: Anderson Model The direct Coulombic couplings of the
conduction electrons to the U4+ Γ3(E) doublet are likely to be much smaller than the effective

couplings mediated through the hybridization of uranium 5f states with the conduction band. Thus
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Figure 13: Simplified level scheme for U4+ ions in cubic symmetry undergoing quadrupolar Kondo effect.

This simplest model involves a ground doublet in each of the two lowest lying configurations, with the
f2 having the quadrupolar or non-Kramers Γ3 doublet, and the f2 configuration having the magnetic or

Kramers’ Γ7 doublet. Conduction electrons mix the two configurations through hybridization processes.
Only a Γ8 conduction state can couple these two doublets. Similarly, if f3 rather than f2 is presumed

to lie lowest, the ground doublet of the excited configuration would be a Γ6 Kramers’ doublet, which
can mix with the Γ3 ground state of the f2 again only through Γ8 conduction states.

our derivation of the Kondo model must proceed in two steps here: first, we write down the relevant
hybridization Hamiltonian which includes the strong atomic correlations on the U4+ site, and then we

transform this model to the Kondo form.
In order to develop a Kondo effect, we must couple this quadrupolar moment to the conduction

electrons. The appropriate framework for this is the Anderson Hamiltonian, in which atomic levels on
the uranium site hybridize with the conduction states. The original paper by Anderson was motivated
by a desire to understand the formation of local moments in solids, and assumed a single s = 1/2 electron

present in an s − wave impurity orbital [Anderson, 1961]. In order to provide realistical discussion of
rare earth, actinide and transition metal impurity ions the model has been generalized to include orbital

degeneracy by a number of workers [Coqblin and Schrieffer, 1969; Hirst, 1970, 1978; A. Yoshimori [1976];
L. Mihály and A. Zawadowski , [1978]]. A particularly helpful review of realistic, orbitally degenerate

impurities was given by Nozières and Blandin [1980]. In this subsection we shall discuss the simplest
model which gives rise to the quadrupolar Kondo effect. In fact, as will be justified in the sections of

the paper discussing scaling theory (Secs. 3.3, 3.4) and the non-crossing approximation (NCA) integral
equations (Sec. 5.3), this mapping is valid so long as the Γ3(E) level lies lowest in the f2 configuration.

The picture of the level scheme for the Anderson model relevant for tetravalent uranium ions
in cubic symmetry appears in Fig. 13. The most stable state is a Γ3(E) non-magnetic doublet of the
f2 configuration, and the first excited level is a Γ7 magnetic doublet in the f1 configuration. In fact, it

is most likely that the f3 configuration which has a Γ6 magnetic doublet lies lower in energy, but the
qualitative features will not depend upon this detail. We index the Γ3(E) states by the label

α = ±

and the Γ7 excited states by the label
µ =↑, ↓ .

The promotion of f1 → f2 by removing a conduction electron, or from f2 → f1 by emitting

a conduction electron specifies the symmetry of the conduction states about the impurity which may
hybridize with the uranium 5f states. Group theoretically, since Γ3(E)⊗ Γ7 = Γ8, only the Γ8 con-

duction quartet partial waves may couple to the impurity through hybridization. These are derived
from conduction partial waves with orbital angular momentum l = 3 spin-orbit coupled to produce

j = 5/2, 7/2 manifolds, with each angular momentum manifold giving a Γ8 partial wave quartet.
The projection to the l = 3 partial waves is implemented in terms of conduction electron

annihilation operators, through the operation [Krishna-murthy, Wilkins, and Wilson, 1980a)]

(2.2.16) ck3mσ =

∫
dk̂

4π
Y ∗3m(k̂)c~k,σ ,
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and the coupling of these operators to produce j = 5/2 states is effected with standard Clebsch-Gordan

technology, viz.

(2.2.17) ck5/2m =
∑

σ

2σ

√
3− 2σ(m− σ)

7
ck3,m−σ,σ .

The Γ8 quartet from the j = 5/2 manifold will be retained for the discussion at hand; we defer

a justification for this restriction to the later sections on scaling theory (Sec. 3) and NCA equations
(Sec. 5). By looking at Table 3, we see that the combinations of states which produce the conduction

Γ8 creation and annihilation operators are written in the angular momentum basis as

(2.2.18.a) ck8+,↑ = ck8,2 =

√
5

6
ck5/2,+5/2 +

√
1

6
ck5/2,−3/2 ,

(2.2.18.b) ck8+,↓ = ck8,2̄ =

√
5

6
ck5/2,−5/2 +

√
1

6
ck5/2,+3/2 ,

(2.2.18.c) ck8−,↑ = ck8,1 = ck5/2,+1/2 ,

and

(2.2.18.d) ck8−,↓ = ck8,1̄ = ck5/2,−1/2 .

The 2(2̄) and 1(1̄) subscripts in the middle part of the above equations gives the correspondence to
the notation of Table 3 and the original paper [Cox [1987]]. The upper(lower) signs in the right hand

side (RHS) of the above equations correspond to µ =↑ (↓) The ± labels on the left hand side (LHS)
correspond to the Γ3(E) index α.

The conduction electrons are assumed to reside in a broad band with a flat density of states

N(ε) parameterized by a width D, which for convenience is typically taken to have the form

(2.2.19) N(ε) =
1

2D
θ(D − |ε|) .

In order to implement this restricted Hilbert space, some appropriate limits of the atomic limit
parameters must be taken. Essentially, we must take all crystal field, spin orbit, and exchange splittings

to infinity. This done, we must take the limit of the direct f − f repulsion Uff to ∞ in a curious
way. Denote the one-particle energy εf . To restrict to just the f1 and f2 configurations, we must

have the energy difference E(f2) − E(f1) = ε̃f = εf + Uff remain finite. Clearly this is achieved if
εf = −Uff + ε̃f and Uff is taken to∞. One may always restrict to just two configurations with similar

tricks. However, to restrict to three or more configurations can only be done by hand and must be
viewed as an approximation to the full Hilbert space, rather than an exact limiting case of the full

model Hamiltonian with all configurations included. We remark that for 4f systems, |εf | is of the order
of 2-4 eV, while Uff is of the order of 6-10 eV [Herbst and Wilkins, 1987; Lang et al., 1981]. In the

actinide systems, the greater spatial extent of the 5f orbitals leads to correspondingly smaller values of
1-2 eV for εf and 3-6 eV for Uff [Actinide Pars. Reference, :::].

With the above assumptions, the Anderson Hamiltonian in this restricted Hilbert space, which

has been previously called the “3-7-8” model, may be written down as

(2.2.20) H378 =
∑

kαµ

ε~kc
†
k8αµck8αµ + ε̃f

∑

α

|f2Γ3, α >< f2Γ3, α|+Hhyb

(2.2.21) Hhyb = − V√
Ns

∑

kαµ

sgn(µ)[|f2Γ3, α >< f1Γ7,−µ|ck8αµ + h.c.]
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where V is the hybridization strength and Ns is the number of atomic unit cells in the crystal. We

have assumed the impurity to be located at the origin and have taken the f1 configuration at the
Fermi energy–clearly, this is sensible since energy differences between the configurations correspond to

electron addition and removal energies which must be measured with respect to the Fermi energy. Note
the presence of the phase factor sgn(µ) in the hybridization term. This arises because the Γ3 doublet

of the f2 can mix with two particle states formed from a conduction electron and a single f electron
which are a singlet in the channel variable µ and a doublet in the spin variable α.

The use of the “Hubbard” operators such as |f2Γ3, α >< f1Γ7,−µ| in Eq. (2.2.19) is necessitated

by the Hilbert space restriction. The advantage of using these operators is that strong correlations of
atomic character are built in to the bare Hamiltonian, and the hybridization which is the smallest

energy scale is to be viewed as the perturbation. The technical nuisance of these Hubbard operators is
that they don’t obey canonical commutation operator identities. Neveretheless, a direct perturbation

theory may be developed [Keiter and Kimball, 1971; Inagaki, 1979; Grewe and Keiter, 1981; Grewe,
1983,1984; Coleman, 1983; Kuramoto, 1983; see also Bickers’ review, 1987], or one may use pseudo-

particle techniques to map the perturbation theory on to Feynman diagrams followed by a projection
to the physical space [Abrikosov, 1965; Barnes, 1976; Coleman, 1983]. We shall implement the latter

method in the NCA presentation later in the paper (see Secs. 3.3.1, 5).
Note that the general process to derive the Anderson Hamiltonian in the restricted subspace we

have specified above requires explicit assumptions about the atomic states. This has been discussed in

general detail by Hirst [1970,1978], and in detail for the problem at hand by Cox[1987b,1988a),1988b),
1991a),1992a)]. Specifically, while the single particle hybridization term may be written down inde-

pendent of angular momentum coupling scheme (Russel-Saunders, intermediate, or j − j) when it is
projected to the relevant many body states appropriate to the restricted set of configurations, then the

strength of the matrix element depends upon which coupling scheme is used. However, the symmetry
properties are unaffected by the choice of coupling scheme, as are the details about the ground state

multiplets: J = 4 is the ground multiplet in both extremes for Russell-Saunders and j − j coupling.
We shall assume that one or the other projection scheme has been employed, and incorporated into the

overall magnitude of the hybridization matrix element.
The hybridization matrix element is more naturally parameterized through the “hybridization

width” Γ, which measures the rate at which a single localized f -electron would tunnel off of the impurity

site and into the electronic continuum. This level width is given by

(2.2.22) Γ = πN(0)V 2 .

Typically, for f -electron systems, this matrix element is in the range of 0.1-0.5 eV, with 4f electrons

occupying the lower end of this range and 5f electrons the upper end of this range.
Mapping to Kondo model: Schrieffer-Wolff transformation. It has long been known that if charge

fluctuations are rare, that is, if Γ/|ε̃f | << 1, then for low energy scales the Anderson Hamiltonian may
map onto an effective exchange interaction for the lowest lying degenerate manifold. Physically, Γ/|ε̃f |
measures the deviation of the f -occupancy from 2, in this case, due to virtual fluctuations to the

excited f1 configuration. This mapping, under the name of the Schrieffer-Wolff [Schrieffer and Wolff,
1965; Schrieffer, 1967] transformation, for the non-orbitally degenerate Anderson model, or the Coqblin-

Schrieffer transformation [Coqblin and Schrieffer, 1969], for the orbitally degenerate case, is by now well
known. It may be implemented either through second order perturbation theory, or by applying a

canonical transformation which eliminates the hybridization through second order. The strength of the
effective exchange interaction is proportional to the square of the hybridization matrix element divided

by the inter-configuration energy splitting. The most crucial result of the mapping, of course, is that the
effective exchange interaction is antiferromagnetic as an example of the general ideas of superexchange

formulated by Anderson [Anderson, 1950], and hence the Kondo effect is possible.
There are no subtleties in applying the canonical transformation to the current model, despite

the fact that we are interested in an orbital doublet. The resulting exchange interaction in the space of
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the Γ3(E) orbital degrees of freedom is

(2.2.22) HQuad.Kondo =
∑

kαµ

ε~kc
†
k8αµck8αµ − J~τI · (~τc8↑(0) + ~τc8↓(0))

where J = 2V 2/ε̃f < 0 and, e.g.,

(2.2.23) τ
(i)
I =

∑

α,α′
τ

(i)
α,α′|f2Γ3, α >< f2Γ3, α

′|

describes one of the multipole operators of the Γ3(E) doublet, τ
(i)
α,α′ being one of the spin 1/2 matrices

(i = 1, 2, 3), and

(2.2.24) τ
(i)
c8µ(0) =

1

Ns

∑

k,k′,α,α′
τ

(i)
α,α′c

†
k8αµck8α′µ

describes the corresponding multipole operator formed from the conduction states. Note that the

exchange interaction of Eq. (2.2.22) is isotropic, which is indeed expected from the 3-7-8 model. In

general, the different symmetry properties of τ
(2)
I (which transforms as the Γ2(A2) irrep) from the

τ
(1)
I , τ

(3)
I pair which forms a Γ3(E) tensor doublet will lead to anisotropic exchange, with Jy 6= Jx = Jz .

Since this exchange anisotropy is irrelevant about the non-trivial fixed point, as will be discussed in

subsequent sections, and since in no case is the exchange anisotropy expected to be as large as for the
TLS case, we are certainly justified in writing down isotropic exchange in Eq. (2.2.22).

Koga and Shiba [1995] have studied a model which includes this exchange anisotropy together
with scattering between Γ8 and Γ7 conduction states (cf. Sec. 4.1 of their paper). The latter scattering

generates a coupling only to the τ
(1)
I , τ

(3)
I operators since Γ7 ⊗ Γ8 = Γ3 ⊕ Γ4 ⊕ Γ5 and only the Γ3

conduction tensors couple to the impurity. The resulting interaction takes the form

(2.2.25) Hex,78 = J̄(τ
(1)
I τc78x + τ

(3)
I τc78z)

where

(2.2.26) τc78x =
∑

k,k′,µ

c†k′Γ8,−,µckΓ7,−µ + h.c.

and

(2.2.27) τc78z =
∑

k,k′ ,µ

c†k′Γ8,+,µ
ckΓ7,−µ + h.c. .

They find (using the numerical renormalization group) that the low energy physics is still given by Eq.

(2.2.22). Their results will be discussed in more detail in Section 4 of our paper.
We note here that the model of Eq. (2.2.22) has a counterpart for any non-Kramers doublet

of U4+ ions in tetragonal or hexagonal symmetry. The differences are as follows: (i) first, the bare

exchange is fully anisotropic for the tetragonal case, and has an Ising anisotropy in the hexagonal case;
(ii) in each case, since the c-axis pseudo-spin of the U4+ ion couples linearly to the magnetic field,

there is an unusual conduction channel spin-impurity pseudo-spin coupling for c-axis spins. This term
appears to be irrelevant in renormalization group calculations. We discuss the origins of the hexagonal

and tetragonal models below in Sec. 2.2.3.
The most notable thing about the Hamiltonian in Eq. (2.2.22) is that it has the two-channel

Kondo form: two degenerate species of conduction electrons couple with identical exchange integrals
to the local S = 1/2 object. In this case, the channel indices are the magnetic indices of the local

conduction partial wave states, and hence the degeneracy is guaranteed by Kramers’ theorem since
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Figure 14: Mapping of the quadrupolar Kondo Hamiltonian to the two-channel Kondo model. At left is
the standard picture of the two-channel model in spin space–two species of conduction electrons couple

anti-parallel to the impurity spin at the center of the picture. In the quadrupolar Kondo case, “spin”
is measured by quadrupolar or orbital deformations. The two-channels arise from the real magnetic

spin of the conduction electrons (the Pauli principle allows a real-spin up electron and a real-spin down
electron in the “negative pseudo-spin” squashed orbital of the conduction electrons.

this is a one electron state. Fig. 14 illustrates the principle and makes it clear why this is for
very much the same reason as in the TLS case: the quadrupole moment, like the atomic position in

the TLS, is invariant under time reversal. The pseudo-spin measures the shape of the local orbital.
Hence, conduction electrons of opposite magnetic index must couple completely equivalently to the

local quadrupole moment. In the limit of zero spin-orbit coupling, in fact, the Γ7 index µ becomes
the real spin index of the conduction electrons. The only complexity in this latter case is that it is

impossible to achieve a pure orbital doublet ground state. We shall discuss this point in detail in one
of the last sections.

Jahn-Teller effect. There is often considerable concern about the stability of the uranium ion

against the Jahn-Teller effect [see for example, Fulde 1978]; ordinarily, an orbital doublet ground state
will split spontaneously upon inclusion of the linear mixing to local nuclear coordinates. That will

certainly happen here as well, but the Kondo effect provides a degree of stability against the Jahn-
Teller effect in much the same way as the spin Kondo effect stabilizes against magnetism: the reduction

of the on-site susceptibility by the Kondo effect from a Curie law form renders the ion stable against
magnetic order below a critical strength to the intersite coupling of order TK . Since the quadrupolar

Kondo effect is of two-channel character, the susceptibility still diverges (logarithmically) but for a
collection of such ions the collective Jahn-Teller instability is pushed to far lower temperature scales

[Cox, 1987]. Similar conclusions have been reached about the single site Jahn-Teller effect by Gogolin
[1995]. We shall discuss this point further in later sections of the paper.

Use of plane wave basis. The reader may be concerned about the use of plane wave states

here when in many cases a tight-binding basis would be more appropriate. In this latter instance, one
must only ensure that the ligand orbitals are not forbidden by symmetry from hybridizing with the

uranium ion to write down an Anderson Hamiltonian. Even if the hybridization is symmetry forbidden,
multipolar Coulomb coupling to the uranium ion can drive the quadrupolar Kondo effect through highly

anisotropic bare couplings in precisely analogous fashion to the TLS example discussed in the previous
subsection. Both possibilities have been discussed in detail in a tight binding basis using scaling theory

[Deisz and Cox, 1995], and we shall outline some of these results in the next section. The main point
is just this: given a local non-commutative algebra associated with the uranium ion, the Kondo effect

will ensue, and it does not require two bands degenerate throughout the Brillouin zone.

2.2.2 Two-channel Magnetic Kondo effect for a Ce3+ impurity

(a) Physical Discussion and Context

The original work of Nozières and Blandin [1980] focussed on magnetic Kondo effects. The

authors in fact concluded that realistic crystalline field anisotropy would make it unlikely to ever observe
a multichannel magnetic Kondo effect: the anisotropies would always tend to make the system flow
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eventually to the ordinary Kondo fixed point with a singlet ground state and Fermi liquid excitation

spectrum.
The possibility of non-trivial two-channel physics has largely been overlooked in the last decade

with the advent of expansion techniques based upon large orbital degeneracy NI . Noting that Ce had
a single f electron with total degeneracy of 14 neglecting spin orbit coupling, and 6 including spin or-

bit coupling, Anderson suggested that 1/NI should serve as an expansion parameter [Anderson, 1981].
Subsequently, a number of workers developed approaches to and applications of the 1/NI expansion
[Ramakrishnan and Sur, 1982; Zhang and Lee, 1983; Read and Newns, 1983; Newns and Read, 1987;

Coleman, 1983,1984,1987; Rasul and Hewson, 1984a,b; Kuramoto, 1983; Gunnarsson and Schonham-
mer, 1983,1984; Bickers, Cox, and Wilkins, 1985,1987; Auerbach and Levin, 1986; Millis and Lee, 1987].

Some efforts were also made to extend these ideas to models for uranium and thulium ions [Read et
al. 1986; Nunes et al. 1986]. An extensive review of these methods appears in Bickers’ article [Bickers,

1987].
In all of the above works, excepting the variational approaches of Gunnarsson and Schonhammer

and the variational approaches to the uranium and thulium ions, the Coulomb repulsion Uff was taken
to be infinitely strong. In all cases, a non-degenerate singlet ground state is obtained meaning that the

properties will be that of a Fermi liquid.
The point of this subsection will be to derive a Hamiltonian for Ce which indicates that in many

cases, the considerations of Nozières and Blandin and the various large NI efforts are entirely correct.

Nevertheless, the possibility remains that Ce impurities may display a two-channel magnetic Kondo
effect which lies outside the domain of 1/NI theories. We shall see that the conditions allowing this

physics are far more restrictive than for the quadrupolar Kondo effect. In particular:
(i) The ground state weight of fluctuations to the doubly occupied configuration must be higher than

for fluctuations to the unoccupied configuration. For this reason, it is unlikely that Yb ions, the hole
analogue to Ce, will ever exhibit two-channel physics.

(ii) Symmetry constrains the model to occur for only Kramers’ doublets in cubic and hexagonal sym-
metry, and in the latter case only one such doublet exists [Cox, 1991,1992a)]

Ce ions are nominally trivalent in the metallic environment, and thus possess a single 4f electron
with Hund’s rule ground state angular momentum J = 5/2. The crystalline field will lift this degeneracy;
in cubic symmetry, the ground state may be either a Γ7 doublet or Γ8 quartet [Lea, Leask, and Wolf,

1962]. Both ground states have been realized experimentally. For example, in La1−xCexAl2 [see,
for example, Maple, 1984] and La1−xCexPb3 [Chen et al., 1987], the ground state is Γ7, while in

La1−xCexB6, the ground state is Γ8 [Winzer, 1975]. Unlike the non-Kramers’ Γ3(E) doublet discussed
in the previous subsection, the Γ7 doublet must remain degenerate in the absence of a magnetic field,

i.e., its degeneracy cannot be lifted by a Jahn-Teller effect.
(b) Couplings to conduction electrons

Anderson Model for Ce3+ ion in cubic symmetry. As in the case of the U4+ ion, we must derive

the Kondo model by first developing the appropriate Anderson model which includes the 4f -conduction
hybridization and the strong electronic correlations on the 4f site.

We shall be concerned with the Γ7 doublet in this subsection. The level scheme of the simplest

model which can produce the two-channel Kondo effect is illustrated in Fig. 15. In this case, three
configurations must be included, but in the spirit of simplicity the f2 configuration is taken to have

only the Γ3(E) ground doublet. Inclusion of higher levels can in principle produce new physics; see the
last few paragraphs of this section (2.2.2.(b)), Sec. 2.2.4, and Sec. 5.2 for a discussion.

In this simple model, in essence, the level stability of the f1 and f2 have been inverted with
respect to the model of the previous subsection. A simplifying feature of this model is that only Γ7

symmetry partial waves of the conduction electrons will mix the f1 doublet to the f0 singlet, and only
Γ8 symmetry partial wave states will mix the f1 and f2 doublets.
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Figure 15: Simplest model for Ce3+ ions to produce the two-channel Kondo effect. This requires three
configurations, since the f0 − f1 only model will always produce a single channel Kondo model. The

virtual charge fluctuations to the Γ3 doublet of the f2 configuration induce a two-channel coupling of the
ground Γ7 doublet in the f1 configuration to the Γ8 conduction electrons. In that case, the spin index
of the electrons is their magnetic spin, and the channel index is the quadrupolar/orbital pseudo-spin of

the conduction states.

The Anderson Hamiltonian describing this restricted Hilbert space is much longer than for the

uranium ion of the previous subsection, and is given by

(2.2.28) H = Hc7 + Hc8 +Hion + H771,mix +H378,mix

where

(2.2.29.a) Hc7 =
∑

k,µ

ε~kc
†
k7µck7µ ,

(2.2.29.b) Hc8 =
∑

k,α,µ

ε~kc
†
k8αµck8αµ ,

(2.2.29.c) Hion = εf
∑

µ

|f1Γ7, µ >< f1Γ7, µ|+ (2εf + Uff)
∑

α

|f2Γ3, α >< f2Γ3, α| ,

(2.2.29.d) H771,mix =
V17√
Ns

∑

kµ

(|f1Γ7, µ >< f0,Γ1|ck7µ + h.c.) ,

and

(2.2.29.e) H378,mix =
−V37√
Ns

∑

k,µ,α

sgn(µ)(|f2Γ3, α >< f1Γ7,−µ|ck8αµ + h.c.) .

Again, the phase factor which appears in the last equation derives from the proper admixture of f2

states with states of one f and one conduction electron.

Schrieffer-Wolff transformation. Once again, we apply the Schrieffer-Wolff transformation

[Schrieffer and Wolff, 1965; Schrieffer, 1967; Coqblin and Schrieffer, 1969] to convert the Ander-
son Hamiltonian of Eq. (2.2.29a-e) into a Kondo Hamiltonian. This transformation will produce

a valid description of the low energy scale physics provided that N(0)V 2
17/|εf | = w0 << 1 and

N(0)V 2
37/ε̃f = w2 << 1, with ε̃f = εf + Uff as in the previous subsection. The significance of the

labels w0, w2 is that these are essentially the quantum weights of f0, f2 configurations in the ground

state due to charge fluctuations. Provided the inequalities hold, we have the effective Kondo Hamilto-
nian

(2.2.30) HKondo = Hc7 +Hc8 + J7
~SI · ~Sc7(0) + J8

~SI · (~Sc8+(0) + ~Sc8−(0))

38



with J7 = 2V 2
7 /εf > 0, J8 = 2V 2

8 /ε̃f > 0 and, e.g.,

(2.2.31) S
(i)
I =

∑

µµ′
S

(i)
µµ′ |f1Γ7, µ >< f1Γ7, µ

′| ,

(2.2.32) S
(i)
c7 (0) =

1

Ns

∑

k,k′ ,µ,µ′
S

(i)
µ,µ′c

†
k7µck′7µ′ ,

and

(2.2.33) S
(i)
c8α(0) =

1

Ns

∑

k,k′ ,µ,µ′
S

(i)
µ,µ′c

†
k8αµck′8αµ′ .

Here, S
(i)
µ,µ′ are spin-1/2 matrices living in the Γ7 space, with i = x, y, z. The exchange couplings in Eq.

(2.2.30) are antiferromagnetic.

The first Kondo term in Eq. (2.2.30) involving J7 is no surprise–it just reflects the effective
exchange interaction mediated by virtual charge fluctuations to the excited empty configuration. This

coupling yields the standard physics incorporated in the Uff →∞ large NI theories, with NI = 2 here.
This term, if J8 were set to zero, would produce a singlet ground state and Fermi liquid excitation
spectrum by the standard methods. The second term (J8) is of course more interesting and has a

two-channel character, with the channel indices here being the local Γ3(E) orbital labels. (Again, two
degenerate bands throughout the Brillouin zone are not required–only local degeneracy is necessary to

map to the two-channel Kondo effect.) As we shall show explicitly in later sections, provided |J8| > |J7|,
which practically corresponds to w2 > w0, the two-channel physics will dominate the low temperature

behavior. An intriguing third possibility exists when J8 = J7: the physics of the three channel Kondo
model will be realized. While this requires fine tuning of the coupling strengths, it is in fact potentially

realizable with the application of pressure, as we shall discuss in detail in the review of experiments
(Sec. 8.2).

It is worth noting at this point that the two-channel behavior is unlikely for Yb3+ ions because
of the requirement |J8| > |J7|. Yb3+ has a single 4f hole (f13) and excited f14 (no hole) and f12 (two
hole) configurations. Once the particle-hole mapping is effected, the physics is completely analogous

to the Ce case. However, the details are different. First, since for Yb3+ the Hunds’ rules ground state
has angular momentum J = 7/2, either Γ6 or Γ7 doublets may lie lowest, besides the Γ8 quartet [Lea,

Leask, and Wolff, 1962]. This is not of concern, since Γ6 ⊗ Γ3(E) = Γ8 as well as if the Γ7 doublet lies
lowest in energy. More significant is that previous studies have indicated that |εf | << |εf +Uff | (these

are now hole energies) for Yb [Herbst and Wilkins, 1987; Lang et al., 1981], so that it will be difficult
to ever realize w2 > w0.

Effects of excited states in the f2 configuration

There are several consequences which arise from including excited states in the f2 configuration.
This discussion follows primarily the work of Kim [Kim, 1995; Kim and Cox, 1995; Kim and Cox, 1996;
Kim and Cox, 1997; Kim, Oliveira and Cox, 1996] and Koga and Shiba [1995] who applied a similar

analysis to a model with an f3Γ6 ionic ground state. The effects are as follows:
1) Enhancement of two-channel coupling. The two-channel antiferromagnetic coupling mediated by

excited state Γ3 states is enhanced when one accounts for the presence of nine such excited states.
However, this can be reduced somewhat by the excited state triplets, which contribute negatively to the

two-channel coupling. In the work of Koga and Shiba [1995] for the f3Γ6 ground state, it was found
that the net two-channel coupling arising from the f2 configuration is antiferromagnetic.

2) Reduction of one-channel coupling While excited state singlets contribute to an enhancement of the
antiferromagnetic one-channel coupling that is already present due to f0−f1 virtual charge fluctuations,

the excited triplet states suppress this coupling strength. In their f3Γ6 model, Koga and Shiba [1995]
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find a net ferromagnetic coupling of the Γ6 pseudo-spin to the conduction Γ7 states.

3) Γ7 − Γ8 exchange coupling. The presence of excited state Γ4 triplet states can give rise to exchange
interactions which scatter electrons between the Γ7 and Γ8 partial wave channels. The terms are rather

complicated to write down.
4) Channel-spin/spin coupling in the Γ8 sector. Both excited state Γ4 and Γ5 triplets can mediate a

new coupling term in which the conduction spin and channel spin can couple. To understand why such
a term exists, we note that Γ8 ⊗ Γ8 tensor space of the conduction states contains two Γ4 symmetry
tensor triplets[Kim, 1994;Kim and Cox,1995a,1995b,1996; Kim, Oliveira, and Cox, 1996]. The first

transforms as a scalar under quadrupolar indices and couples to the Γ7 doublet with the usual two-
channel form. The second transforms as an outer product of quadrupolar pseudo-spin and magnetic

pseudo-spin operators. These operators have the form

(2.2.34) S̃ic8(0) = τ̃ ic8(0)Sic8(0)

with i = x, y, z, the Sic being spin 1/2 magnetic pseudo-spin matrices for the Γ8 states, and the τ ic8(0)

are suitable combinations of quadrupolar spin 1/2 matrices given by

(2.2.35.a) τ zc8(0) = τ
(3)
c8 (0)

(2.2.35.b) τxc8(0) = −1

2
τ

(3)
c8 (0) +

√
3

2
τ

(1)
c8 (0)

(2.2.35.c) τyc8(0) = −1

2
τ

(3)
c8 (0)−

√
3

2
τ

(1)
c8 (0) .

Note that these τ matrices obey a traceless condition, viz.,
∑
i τ

i
c8(0) = 0. As an example of the tensor

product, we write out S̃zc8(0) as

(2.2.36) S̃zc8(0) = c†8↑+c8↑+ − c†8↑−c8↑− − c†8↓+c8↓+ + c†8↓−c8↓− .

For further purposes in Sec. 3, we note that these operators obey the commutation relations

(2.2.37) [S̃ic8(0), S̃jc8(0)] =
−i
2
εijkS

k
c8(0) =

−i
2
εijk

∑

alpha

Skc8α(0)

and

(2.2.38) [S̃ic8(0), Sjc8(0)] + [Sic8(0), S̃jc8(0)] = −iεijkS̃kc8(0) .

The latter relation, while not immediately evident, follows with application of the tracelessness condition
on the τ ic8 matrices. The corresponding coupling to the Γ7 pseudo-spin has the form

(2.2.39) H̃78 = J̃8
~SI · ~̃Sc8(0) .

Koga and Shiba [1995] discuss a related model for f3 states. Indeed, in Sec. 4.2 of their paper, the

exchange Hamiltonian of Eqs. (4.19), (4.20) has the form of H78 + H̃78 provided we neglect exchange
interactions which scatter between Γ7 and Γ8 conduction states. Specifically, we replace our Γ7 spin

operators with Koga and Shiba’s Γ6 spin operators, and we can identify J7 = −J0/3− 19J1/63, J8 =
2J0/3 + 49J1/126, and J̃8 = −10J1/63.

We will argue in Sec. 3.4.3 that provided J̃8 is sufficiently small (|J̃8| < 2J8) it is irrelevant and
the low temperature fixed point will still be that of the two-channel model when J8 exceeds J7. However,

interesting new physics arises when |J̃8| > J8. Kim [1995] has observed that the special combination
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of operators I
(i)
c8 = −∑α S

(i)
c8α(0)± 2S̃

(i)
c8 (0) obey the standard SU(2) angular momentum algebra [Kim,

1995; Kim, Oliveira, and Cox 1996]. Since they span a fourfold degenerate manifold, it is natural to guess
that they serve as spin 3/2 operators. Indeed, with simple algebraic manipulations, one can show the

I(i) operators are those of a spin 3/2 manifold. A combination of strong coupling perturbation theory,
weak coupling scaling analysis, NRG calculations, and conformal field theory confirm that for |J̃8| > J8,

the model flows to fixed points governed by an exchange coupling between the spin 1/2 impurity and
spin 3/2 conduction electrons [Kim, Oliveira, and Cox, 1996]. Kim has observed that the form of this

Hamiltonian can be obtained by keeping only an excited Γ4 or Γ5 triplet state in the f2 configuration.
While there is only a single channel of conduction spin, the ground state is overcompensated because of

the large conduction spin. Hence, a different non-Fermi liquid fixed point is possible. We defer a more
complete discussion of this issue to Sec. 6.3.2.

In summary, in this subsection we have demonstrated that when one includes the possibility

of fluctuations to a realistic f2 configuration which includes degenerate levels, a Ce impurity in cubic
symmetry may have low temperature physics governed by the two-channel Kondo Hamiltonian (or,

alternatively, a novel Sc = 3/2 model). However, to ensure this, the fluctuation weight of f2 in the
ground state must exceed that of f0, so it is by no means the generic case.

2.2.3 Excited Crystal Field States

For both the Ce3+ and U4+ models discussed above, we have excluded excited crystal field levels in the
lowest configurations. In fact, it is straightforward to include these in the Hamiltonian, and we shall

show in detail that the low energy scale physics will still map onto the two-channel Kondo physics in the
appropriate limit when we discuss the NCA approach to the problem (see Secs. 6.2,6.3). The situation

is similar to the TLS with excited states which is discussed in detail in Sec. 3.4.2.
For the f2 configuration, the additional states in the lowest J = 4 multiplet are |f2,Γ4, η >

, |f2,Γ5, ε >, |f2,Γ1 >. To the diagonal f2 terms of Eqs. (2.2.19) and (2.2.29.c), we must add

(2.2.40)
∑

Γcef ,ηcef

(E(Γ3) + ∆Γcef )|f2,Γcef , ηcef >< f2,Γcef , ηcef |

where Γcef , ηcef run over the excited crystal field levels split from the ground Γ3(E) doublet by amounts

∆Γcef , and E(Γ3) is the energy of the Γ3 level (ε̃f for the U4+ model; 2εf + Uff for the Ce3+ model).
ηcef indexes the states of any degenerate multiplets. The cef subscript is a reminder that these are

states in the presence of the crystalline electric field (CEF). For the f1 configuration, retaining only the
J = 5/2 multiplet, the only excited level is a Γ8 quartet, so to Eqs. (2.2.19) and (2.2.26.c) we must add

(2.2.41)
∑

η8

(E(Γ7) + ∆Γ8)|f1,Γ8, η8 >< f1,Γ8, η8|

where E(Γ7) is the energy of the Γ7 level (0 for the U4+ model; εf for the Ce3+ model). In the above
two equations, the η labels run over internal states of degenerate crystal field manifolds.

We must also generalize the hybridization term. Focussing only on the term which mixes f1, f2

configurations, the most general form is

Hhyb =
V√
Ns

∑

Γ(f1),η(f1)

∑

Γ(f2),η(f2)

∑

k,Γc,ηc

Λ(Γ(f1)η(f1); Γ(f2)η(f2); Γcηc)×

(2.2.42) [|f2,Γ(f2), η(f2) >< f1,Γ(f1), η(f1)|ckΓc,ηc + h.c.]

where the sums run over all states of the lowest f1,2 multiplets (Γ(f1,2), η(f1,2)) and all conduction
partial waves (Γc, ηc), and Λ(Γ(f1), η(f1); Γ(f2), η(f2); Γc, ηc) contains the Clebsch-Gordan coefficient

for the cubic irreps and the reduced matrix element measuring the strength by which the f1 may attach
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Figure 16: Simplest level scheme to produce a two-channel Kondo effect. The two-channel Kondo effect
requires minimally that one have low lying configurations with doublets in each. These doublets may

be magnetic (Kramers’ doublet) or non-magnetic (non-Kramers’ doublet) depending upon whether the
configuration has an odd or even number of electrons.

to the f2, J = 4 multiplet. This has been worked out extensively in the case of Russell-Saunders (LS)

coupling of angular momentum, and the detailed presentation appears in Kim and Cox [1996].
Now, each crystal field level must be treated on equivalent dynamical footing, which means when

we introduce Green’s functions for the local levels, we must introduce a new Green’s function for each
excited crystal field level. We shall discuss in Sec. 3.4.2 how the excited states of the TLS corresponding

to higher vibrational levels play a similar role to the crystal field levels here.

2.2.4 Group theory of two-channel Kondo models for Ce and U impurities

The purpose of this section is to state five selection rules which contain minimal necessary conditions

requisite to have the low energy scale physics for a single U4+ or Ce3+ ion to be described by a two-
channel Kondo model. We shall first produce a physical motivation for the selection rules, and then

summarize the selection rules. This section is adopted from Cox [1993].
Fig. 16 displays the basic picture of the states of an impurity lanthanide/actinide ion and

conduction electrons which are minimally required to achieve a two-channel Kondo model description
of low energy scale physics. This restriction to two configurations is sufficient for U4+(5f2) because
the two lowest excited configurations must have odd numbers of electrons and therefore have at least

doubly degenerate crystal field states. For definiteness, we assume the first excited configuration is f1.
For Ce3+, we need to augment this picture to include three configurations as shown in Fig. 13 because

the excited f0 state must be a singlet.
Regardless, we see that two configurations of the impurity ion have doublets as the lowest crystal

field states. These states span vector spaces which transform under the irreps Γgrd,Γex of the group
Ḡ×T where Ḡ is the double point group of the crystal and T is the group of time reversal (containing

the identity and time reversal operators). The states in the Γgrd,ex spaces have labels αgrd,ex. The
extension to include T covers groups such as C6 under which certain pairs of irreducible representations

are complex singlets whose degeneracy is not assured by Ḡ but is assured by T . The double group is
required because one of the hybridizing configurations will always contain an odd number of electrons.
The subscripts grd, ex refer to ground and excited configurations.

We express the conduction operator c†~k,σ which creates a Bloch state of momentum ~k, spin σ,

and energy ε in a symmetry adapted basis around the impurity, i.e.,

(2.2.43) c†~k,σ =
∑

Γc,αc

aΓc,αc(εk)c†kΓcαc

where Γc, αc label irreps of Ḡ × T where the point group Ḡ is defined at the impurity site. The

local conduction states are derived from partial waves in a plane-wave basis, or from suitable linear
combinations of ligand orbitals in a tight-binding basis.

The Anderson Hamiltonian for U4+ ions then takes the form

(2.2.34) H = Hcond +Hgrd + Hex +Hmix
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with

(2.2.45) Hcond =
∑

kΓcαc

εkc
†
kΓcαc

ckΓcαc

(2.2.46) Hgrd = E(f2)
∑

αgrd

|Γgrdαgrd >< Γgrdαgrd|

(2.2.47) Hex = E(f1)
∑

αex

|Γexαex >< Γexαex|

and

(2.2.48) Hhyb =
1√
Ns

∑

k

∑

Γcαc

∑

αgrd,αex

V [Γcαc;αgrd;αex][|Γgrdαgrd >< Γexαex|ckΓcαc + h.c.]

where V [Γcαc;αgrd;αex] includes the single particle matrix element, a reduced matrix element expressing

the attachment probability for adding an f electron to get this f2 state from this f1 state, and a Clebsch-
Gordan coefficient in the crystal field representation basis. Again, the restriction to f1 for the excited

configuration is purely a matter of convenience for the exposition purposes here. In fact it is sometimes
more realistic to consider an excited f3 configuration.

For the Ce3+ ions, we interchange ground and excited levels and (with E(f0) set at zero in this

case) add the hybridization term

(2.2.49)
V0√
Ns

∑

εαgrd

[|Γgrdαgrd >< f0|cεΓgrdαgrd + h.c.] .

In addition to discussing the symmetry properties of the states themselves, it is important to

discuss the symmetry properties of the ground configuration tensor operators which live in the product
space transforming according to Γketgrd ⊗ Γbragrd. The superscripts are a reminder that the tensors are

formed from outer products of the states. The form of the low energy scale interactions which will
correspond to the two-channel coupling of Eq. (2.2.22) are entirely specified by the symmetry properties
of these tensors. The interactions arise when we integrate out the virtual charge fluctuations to the

excited configuration to derive an effective interaction between the conduction electrons and the ground
configuration degrees of freedom of magnitude ∼ V 2/∆E, where ∆E is the interconfiguration energy

difference (Schrieffer and Wolff, [1966]). (Note: all notation for point group representations used in this
paper follow those of Koster et al. [1963].)

We now state the necessary (and not sufficient) selection rules which will minimally ensure that
the effective Hamiltonian at low energy scales derived from an underlying Anderson Hamiltonian has

the two-channel S = 1/2 Kondo form:

Selection Rule 1 (Ground Doublet Selection Rule): Under the action of the crystal field, the
lowest state of the lowest angular momentum multiplet of the ground configuration should

be a degenerate doublet which transforms as the irrep Γgrd of the group Ḡ× T .

Selection Rule 2 (Excited Doublet Selection Rule): Under the action of the crystal field, the

lowest state of the lowest lying angular momentum of the excited configuration must be a
degenerate doublet transforming as a representation Γex of the group Ḡ× T .

Selection Rule 3 (Hybridization Selection Rule): The conduction band must contain states
which, when projected to the impurity site, transform as the direct product representation

Γc such that Γc = Γgrd ⊗ Γex.
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Corollary Selection Rule 4 (Tensor Selection Rule): When Γc is a reducible representation of

the group Ḡ×T of the form Γc = Γc1⊕Γc2 where Γc1,2 are irreducible doublet representations
of Ḡ × T , then the tensors Γketgrd ⊗ Γbragrd which are off diagonal in the Γgrd space must be

contained in the space of the product representation Γc1⊗Γc2 and not in (Γc1⊗Γc1)⊕(Γc2⊗
Γc2).

Selection Rule 5 (Dynamic selection rule): When Γgrd is the lowest level of an odd number
electron configuration, the exchange coupling generated by virtual excitations to Γex must

be larger than the coupling induced by virtual charge fluctuations to excited singlet states.

Selection Rule 1 ensures that the lowest impurity states have internal degrees of freedom so that

a Kondo effect is possible. Selection Rules 2,3 are necessary for two-channel behavior in conjunction
with Rule 1. The excited doublet state labels are the channel indices, and if the conduction band doesn’t
have local Γc = Γgrd ⊗ Γex symmetry states, no Kondo effect is possible.

The basis for Corollary Selection Rule 4 is an examination of the tensor operator structure.
This rule is irrelevant for cubic structure because the irreducible Γ8 representation is the only quartet

of conduction states allowed for the Γ3 and Γ6,7 doublets of the different configurations. It is essential
for the lower symmetry crystal syngonies. To see why, note that we form the exchange term of Eq.

(1) by coupling tensors of the impurity states Γgrd to those with the same symmetry derived from the
conduction states Γ̃c. In the lower symmetry syngonies of interest (hexagonal, tetragonal, rhombohedral)

Γ̃c is reducible, decomposing into Γc1 ⊕ Γc2. The magnitude and antiferromagnetic sign are set by the
integration out of virtual fluctuations to the Γex states; hence, as in the conventional Anderson impurity,

the exchange J < 0 always. Now, the tensor operators forming the basis for Γketgrd⊗Γbragrd include two which

are diagonal in the Γgrd indices and two which are off-diagonal corresponding to S
(1,2)
I in the pseudo-spin

1/2 space. The identity operator in the Γgrd space gives charge scattering, while the other diagonal

term corresponds to the S
(3)
I component of the impurity pseudo-spin. This is always contained in both

the tensor spaces Γketc1 ⊗ Γbrac1 and Γketc2 ⊗ Γbrac2 . If the off-diagonal impurity operators were contained in
these tensor product spaces, then no symmetry conditions would ensure the exact equality of exchange

coupling constants between the channels (now indexed simply by the irreducible representation labels
Γc1,2). This is always the case in rhombohedral symmetry, so that two-channel coupling will not be

generically present in this case for f -ions. However, if the off-diagonal operators are contained in the
mixed-direct product Γketc1 ⊗ Γbrac2 , then the “spin-flip” conduction tensors must mix states of the two

doublets, and the channel degeneracy is automatically ensured.
With regard to the conduction tensor operators, we note that only the case of the Ce3+ ion in

cubic symmetry gives rise to the additional pseudo-spin tensor, such as appears in Eq. (2.2.36). For all
other cases, the relevant pseudo-spin tensors of the conduction electrons appear only once.

Strictly speaking, Corollary Section Rule 4 is redundant given rules 1,2, and 3 in that for the
assumed ground doublets of the lowest configurations and appropriate conduction hybridization, the
presence of the appropriate conduction tensors is guaranteed (Han [1995]). However, the physical

importance of this rule leads us to state it precisely here as a corollary to these first three rules.
Table 4 specifies all the possible two-channel S = 1/2 combinations of Γgrd,Γex,Γc states for

U4+ and Ce3+ ions. We note that a split doublet could display two-channel behavior above a crossover
scale below T0. Tables 5 and 6 summarize all the relevant tensor operators for impurity doublet states

and conduction states together with their transformation properties in analogy to spherical harmonics.
These tables give information about their multipole content as well.

Each of the tensors discussed in preceding paragraphs corresponds to some multipole moment
tensors of the ion. Since the multipole formalism is very physical and familiar from electromagnetism

and elementary quantum theory, it is worth exploring this connection further.
The matrix elements of multipole tensors of l− th rank in first quantized notation are given by

< η|Ôl,m|η′ >∼
∫
d3rψ∗η(~r)r

lYl,m(r̂)ψη′(~r)
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Ion Ground Point Γgrd Γex Conduction

Config. Group Quartet

U4+ 5f2(J = 4) Cubic(O) Γ3(E) Γ7 Γ8 = Γ3 ⊗ Γ7

U4+ 5f2(J = 4) Hexag.(D6) Γ5(E1) Γ7 Γ7 ⊕ Γ9

Γ8 Γ8 ⊕ Γ9

Γ9 Γ7 ⊕ Γ8

Γ6(E2) Γ7 Γ8 ⊕ Γ9

Γ8 Γ7 ⊕ Γ9

Γ9 Γ7 ⊕ Γ8

U4+ 5f2(J = 4) Tetrag.(D4) Γ5(E) Γ6 or Γ7 Γ7 ⊕ Γ6

U4+ 5f2(J = 4) Tetrag.(D4) Γ1(A1)⊕ Γ3(B1) Γ7 Γ7 ⊗ (Γ1 ⊕ Γ3)

Ce3+ 4f1(J = 5/2) Cubic(O) Γ7 Γ3 Γ8

Ce3+ 4f1(J = 5/2) Hexag(D6) Γ9 Γ5 or Γ6 Γ6 ⊕ Γ7

Table 4: Symmetries of ground, excited, and conduction states for two-channel Kondo models of
U4+ and Ce3+ ions. The ionic configuration is listed in the second column, with the Hunds’ rules

ground angular momentum in parentheses. The crystal point symmetry is in the third column; though
we choose the most symmetric group from each syngony, equivalent results are found for all smaller
point groups in the given syngony. The fourth column lists the ground doublet Γgrd, the fifth column

the doublet of the excited configuration in the simplest model Γex, and the last column the symmetry
of the conduction quartet which mixes the levels and screens the moment of the ground doublet.

Ion Point Group Γgrd (1) (2) (3)

U4+ τ
(1)
I τ

(2)
I τ

(3)
I

O Γ3(E) Γ3(+)[Y2,2 + Y2,−2] Γ2[Y3,2 + Y3,−2] Γ3(−)[Y2,0]

J2
x − J2

y JxJyJz 3J2
z − J2

D6 Γ5orΓ6 Γ6(1)[Y2,−2 + Y2,2] Γ6(2)[Y2,2 − Y2,−2] Γ2[αY3,0 + βY1,0]
J2
x − J2

y JxJy + JyJx ρJ3
z + γJz

D4 Γ4 Γ3[Y2,−2 + Y2,2] Γ4[Y2,2 − Y2,−2] Γ2[αY3,0 + βY1,0]

J2
x − J2

y JxJy + JyJx ρJ3
z + γJz

D4 Γ1 ⊕ Γ3 Γ3[Y2,2 + Y2,−2] Γ3[Y3,2 + Y3,−2] Γ1[Y2,0]

J2
x − J2

y JxJyJz 3J2
z − J2

Ce3+ S(1) S(2) S(3)

O Γ7 Γ4(1)[Y1,1 − Y1,−1] Γ4(2)[Y1,1 + Y1,−1] Γ4(3)[Y1,0]

Jx Jy Jz
D6 Γ9 Γ3[Y3,3 − Y3,−3] Γ4[Y3,−3 + Y3,3] Γ2[Y1,0]

J3
y − 3JyJ

2
x J3

x − 3JxJ
3
y Jz

Table 5: Tensors of the local pseudo-spin for model U4+ and Ce3+ impurities. The operators indices

correspond to the 1, 2, 3 labels of the pseudo-spin operators. Their symmetry label for the appropriate
group is the first label, and in square braces appears the “multipole content”, i.e., which set of spherical

tensor operators Yl,m( ~J) regarded as polynomials in the angular momentum corresponds to dominant
term in the crystalline tensor. For the hexagonal and tetragonal cases involving Γ5,Γ6 (hex.) and Γ4

(tet.) doublets, the τ (3) operator is predominantly octupolar (l = 3), with a weak dipolar admixture,
so that β >> α. Beneath each tensor symmetry, we display the corresponding cartesian form in
polynomials of the angular momentum operator.
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Ion Pt. Group Conduction Conduction
Quartet Tensors

U4+ τ
(1)
c (0) τ

(2)
c (0) τ

(3)
c (0)

O Γ8 = Γ7 ⊗ Γ3 Γ7×7
1 ⊗ Γ3×3

3 (+) Γ7×7
1 ⊗ Γ3×3

2 Γ7×7
1 ⊗ Γ3×3

3 (−)

D6 Γ7 ⊕ Γ8 Γ7×8
6 (1) + h.c. Γ7×8

6 (2) + h.c. Γ7×7
2 + Γ8×8

2

Γ7 ⊕ Γ9 Γ7×9
6 (1) + h.c. Γ7×9

6 (2) + h.c. Γ7×7
2 + Γ9×9

2

Γ9 ⊕ Γ8 Γ9×8
6 ⊕ (1) + h.c. Γ9×8

6 (2) + h.c. Γ9×9
2 + Γ8×8

1

D4 Γ7 ⊕ Γ6 Γ7×6
5 (1) + h.c. Γ7×6

5 (2) + h.c. Γ7×7
2 + Γ6×6

2

Γ7 ⊗ (Γ1 ⊕ Γ3) Γ7×7
1 ⊗ Γ3×1

3 Γ7×7
1 ⊗ Γ3×1

3 Γ7×7
1 ⊗ (Γ3×3

1 − Γ1×1
1 )

Ce3+ S
(1)
c (0) S

(2)
c (0) S

(3)
c (0)

O Γ8 = Γ3 ⊗ Γ7 Γ3×3
1 ⊗ Γ7×7

4 (x) Γ3×3
1 ⊗ Γ7×7

4 (y) Γ3×3
1 ⊗ Γ7×7

4 (z)

D6 Γ7 ⊕ Γ8 Γ7×8
3 + h.c. Γ7×8

4 + h.c. Γ7×7
2 + Γ8×8

1

Table 6: Tensors of Conduction States. This table enumerates the symmetries of conduction tensors

which may couple to the impurity (quadrupolar if U4+ , magnetic if Ce3+ ; see Table 2.3 for further
information on the impurity tensors). The meaning of a superscript 3× 3 for example, means that this

operator is formed from the tensor (outer) product of Γ3 bra and ket states.

(2.2.50) ∼< η|[Yl,m( ~J)]|η′ >

where η, η′ label states of the ion, and the second line follows from the Wigner-Eckart theorem. With
regard to [Yl,m( ~J)], it is to be understood that: (i) the square braces indicate symmetrized combinations

of the angular momentum operator components J i, (ii) each time a particular direction cosine î appears
in the explicit polynomial expansion of Yl,m one should insert J i and properly symmetrize, and (iii)

each time a power of (J i)l−p, with p < l even, appears in the polynomial expansion of Yl,m one should
multiply that term by a factor of factor of [J(J + 1)]p/2.

As an example of the use of multipole terminology, consider the Γ3(E) doublet of a U ion in

cubic symmetry. The Γ1(A1) tensor is of predominant monopole (charge, l = 0) character, but also
contains components of fourth rank (hexadecapole, l = 4) as well as sixth rank (l=6) multipoles. The

Γ3(E) doublet is of predominant quadrupolar (l = 2) character. It is a generic fact that one of the
three non-trivial tensors formed from the quadrupolar doublets, in this case the Γ2(A2) tensor, will be

odd under time reversal. The predominant multipole character of the Γ2(A2) singlet tensor is octupolar
(l = 3). Hence, a non-zero expectation value to this operator will correspond to a combined lattice

distortion and non-vanishing magnetic moment. The operator will couple to the third power of the
magnetic field, or a combined product of electrical field gradient (uniaxial stress) and magnetic field.

The multipole character of the relevant tensor operators is summarized in Table 7.
In the lower symmetry cases, one can see that the diagonal pseudo-spin operator for the U ions

has predominant octupole character, with a weak admixture of magnetic dipole character. The trans-

verse operators, which are essential for the Kondo effect, have predominantly quadrupolar character.
This justifies the labelling of the two-channel Kondo effect in these circumstances as quadrupolar. For

the Γ9 Ce doublet in hexagonal symmetry, it is interesting that the transverse operators must exchange
three units of angular momentum and hence have predominantly octupolar character. Hence, it is

perhaps most appropriate to label the Kondo effect in this case as an “octupolar” Kondo effect!
We now return to a discussion of the selection rules. Selection Rule 5 follows from scaling along

the lines of Nozières and Blandin [1980], and from NCA analysis for the model Ce3+ ion (Cox [1993];

Kim, [1995]; Kim and Cox [1995a,b]). Specifically, we define two crossover temperatures T
(I,II)
x where

the superscript refers to single or two-channel crossover. Consider the case in cubic symmetry, with
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Irred. Rep. Dim. Labels J-basis Spherical Basis

Γ1(A1) 1 - J(J + 1) Y0,0

Γ2(A2) 1 - JxJyJz Y3,3( ~J) + Y3,−3( ~J)

Γ3(E) 2 Γ3(+) J2
x − J2

y Y2,2( ~J) + Y2,−2( ~J)

Γ3(−) 3J2
z − J(J + 1) Y2,0( ~J)

Γ4(T1) 3 Γ4(x) Jx Y1,1( ~J)− Y1,−1( ~J)

Γ4(y) Jy Y1,1( ~J) + Y1,−1( ~J)

Γ4(z) Jz Y1,0( ~J)

Γ5(T2) 3 Γ5(xz) {Jx, Jz} Y2,1( ~J) + Y2,−1( ~J)

Γ5(yz) JyJz + JzJy Y2,1( ~J)− Y2,−1( ~J)

Γ5(xy) JxJy + JyJx Y2,2( ~J)− Y2,−2( ~J)

Table 7: Table of second rank tensor operators for U4+ and Ce3+ ions in cubic symmetry (point groupO).
The first column gives the label of the irreducible representation, the second column its dimensionality.

The third column gives the label associated to the vectors spanning the space of the representation, and
the fourth column gives a basis for the vector space in the Cartesian operator representation (or Qubic

harmonics). Finally, the fourth column gives the corresponding basis in the spherical tensor language.

Γgrd = Γ7, Γex = Γ3, and Γc = Γ8. Define dimensionless effective exchange coupling constants g̃7, g̃8 by

(2.2.51) g̃7 =
N(0)V 2

7

E0 −E(f0)
; g̃8 =

N(0)V 2
37

E0 −E(f2)

where E0 is the ground state energy, N(0) is the conduction electron density of states, and V17,37 the
hybridization matrix elements with Γ7,8 partial waves. The Kondo scale for the single channel model

is T
(2)
0 ' D exp(1/2g̃7), and for the two-channel model is T

(2)
0 ' D exp(1/2g̃8) to leading exponential

accuracy. As we shall explain in Sec. 5.2, for T below the crossover scale T x(1)

(2.2.52) T x(1) ≈
T

(1)
0

3
| 1
g̃8
− 1

g̃7
|3/2

single channel behavior will dominate for |g̃7| > |g̃8|. For T below the crossover scale T x(2) given by

(2.2.53) T x(2) ≈
T

(2)
0

2
| 1
g̃7
− 1

g̃8
|2

two-channel physics will dominate for |g̃8| > |g̃7|. Practically, this is tested by examining the sign of
the thermopower, given the particle-hole asymmetry of the model. Dominant f0-induced one-channel

coupling will tend to produce positive thermopower, while dominant f2-induced two-channel coupling
will tend to produce a negative thermopower. For hexagonal symmetry, consider the D6 point group
for concreteness. Analogous arguments go through provided Γgrd = Γ9 ∼ | ± 3/2 >, and Γex = Γ5,6,

with Γc = Γ7 ⊕ Γ8.
For Yb3+ ions with Γ6,7 ground states in cubic symmetry or Γ9 in hexagonal symmetry similar

arguments go through, with fn → f14−n. However, the very large f12 − f13 splitting (order 10 eV)
makes it unlikely that Selection Rule 5 can be satisfied (where we now require w(f12) > w(f14)).

U4+ ions with f2 ground configurations have Hund’s rules angular momentum J = 4, so that
non-Kramers doublets are possible. Consider the ground doublets for the hexagonal and tetragonal

syngonies. All of these doublets have the property that the non-trivial diagonal operator transforms
like the z-component of a real spin, while the off-diagonal elements are quadrupolar and contained only

in direct products of two distinct irreps of local conduction states. The physical reason is simple, and
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easily understood by considering states with MJ = ±1 pair of states in the presence of a crystal field

Hamiltonian of pure axial character, viz Hcef = ∆cef [3J2
z − J(J + 1)]. This term is even under time

reversal and thus maintains doublet degeneracy of the ±1 states. Hence, the non-trivial diagonal tensor

is just |1 >< 1| − | − 1 >< −1| which transforms like Jz as restricted to the doublet. The off diagonal
tensor must change the angular momentum by two units, and hence must have quadrupolar character.

Turning now to Γex,Γc1,2 in the same axial field, we must have doublets of the form ±(2n+ 1)/2, since
the excited configuration has an odd number of electrons and the conduction states always transform
as double valued representations which are descended from half integral angular momentum in the

full isotropic symmetry. Hence, the off diagonal conduction tensors in a given representation can only
change angular momentum by an odd number of units, and cannot ‘flip’ the impurity spin. However, it

is possible to form tensors from the cross products Γc1 ⊗ Γc2 which can change the angular momentum
index by two units. For example, for conduction states derived from j = 5/2 partial waves, the operator

|3/2 >< −1/2| changes the angular momentum by two units. Note that the results we have discussed
are properties only of the representations, but easily illustrated in this pure axial limit.

From the discussion of the preceding paragraph it is apparent that any Kondo model derived
from a degenerate doublet ground state of U4+ ions in hexagonal or tetragonal symmetry will be of

the quadrupolar form, because the only degenerate levels in ground or excited states are doublets, time
reversal guaranteeing the channel degeneracy (indexed by the excited state in effect). To make the
idea more explicit, assume for definiteness that we have hexagonal D6 point symmetry and Γgrd = Γ5,

Γex = Γ7 in an excited f1 configuration. This yields Γ̃c = Γ5 ⊗ Γ7 = Γ7 ⊕ Γ9. Taking the simple axial
crystal field model and using conduction plane waves in a j = 5/2 partial wave manifold, representative

states in J,MJ form are |Γ5± >= |4,± >, |Γ7± >= |5/2,±1/2 >, and |Γ9± >= |5/2,±3/2 >. Let us
reorganize the labelling of the conduction states. Define channel 1 as labelling the states created by the

pair of operators c†kΓ7+, c
†
kΓ9−, and channel 2 as labelling the pair of states created by c†kΓ9+, c

†
kΓ7−. Now

let α be the spin index, equal to ±, and µ = 1, 2 be the channel index. Denote channel spin operators

by τ (i), i = 1, 2, 3. Thus, for example, c†k,+,1 = c†Γ7+. By performing a Schrieffer-Wolff transformation,

with the interconfiguration energy splitting given by εf = E(f2Γ5) − E(f1Γ7), we obtain the Kondo

coupling

(2.2.54) HKondo = − 1

Ns

∑

i,k,k′ ,α,α′,µ

J(i)S
(i)
I S

(i)
α,α′c

†
kαµck′α′µ −

K

Ns
S

(3)
I

∑

k,k′,µ,α

τ (3)
µ,µc

†
kαµck′αµ

where J(1,2) = V7V9/εf , J(3) = (V 2
7 + V 2

9 )/2εf , and K = (V 2
7 − V 2

9 )/2εf . Here V7,9 are the hybridiza-
tion matrix elements coupling the Γ7,9 conduction states to the impurity. Note that: i) this exchange

Hamiltonian is intrinsically anisotropic but the diagonal (J(3)) term is antiferromagnetic which is suf-
ficient to ensure the Kondo effect, and (ii) this Hamiltonian has the peculiar term coupling diagonal

spin and channel spin operators. These are not of concern, since it is now well established that ex-
change anisotropy is irrelevant in the M = 2, SI = 1/2 model (Affleck, Ludwig, Pang, and Cox [1992])

and scaling calculations about the non-trivial fixed point indicate that the spin-channel spin coupling
is marginally irrelevant (H.-B. Pang, [1992]). We note that for the case of tetragonal symmetry the

spin-channel spin coupling again arises, and all bare exchange constants are generically unequal. Again,
as we shall discuss in later sections the exchange anisotropy is irrelevant.

Koga and Shiba [1995] have studied a model related to Eq. (2.2.43) in which excited crystal field
singlet states are retained in the f2 configuration. The excited states yield a triplet when the crystal
field splitting ∆ is taken to zero. The idea of the study is that in the zero splitting limit the “triplet

impurity” spin is exactly compensated, yielding a Fermi liquid fixed point at low temperatures, while
for a range of finite splitting the two-channel fixed point is stable. In particular, the two-channel fixed

point is found to be stable for all values of parameters in tetragonal symmetry, and for a wide range of
parameters in the hexagonal crystal field. As the details of their model are rather technical, we refer

the reader to section 3 of their paper for a complete discussion.
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We note that the two-channel Kondo coupling for a Ce3+ ion in hexagonal symmetry has a

precisely analogous form to Eq. (2.2.54).
A final comment on symmetry concerns the particle-hole transformation. Provided the conduc-

tion band of the host metal is symmetric about the Fermi energy, which it will always be for sufficiently
small energy scales, and provided the exchange coupling is only easy axis-anisotropic in the case of the

non-magnetic Kondo effects, the model Hamiltonians we have discussed in this section enjoy a discrete
particle hole symmetry, which has a different meaning in the case of two-channel magnetic Kondo ef-
fects as opposed to the TLS and quadrupolar Kondo effects. No matter what the degree of exchange

anisotropy, the particle-hole symmetry will be present in the asymptotic low energy spectrum, since, as
we shall show, the exchange anisotropy is irrelevant about the non-trivial two-channel fixed point (and

about the ordinary strong coupling Kondo fixed point as well).
For the spin Kondo models, the particle hole transformation is the usual charge conjugation

operation. Suppressing all but magnetic labels µ on conduction states we map particle creation operators
to hole annihilation operators according to

(2.2.45) c†µ = iσyµ,µ′hµ′

where summation convention has been used, and σy is the Pauli matrix introduced in Sec. II.A. This
transformation reverses both charge and spin, and hence leaves the spin tensor operators unaffected

in the Kondo coupling. This symmetry is present for magnetic Kondo effects even when one admits
anisotropic exchange couplings.

For the non-magnetic Kondo effects, the transformation is different. We must first restrict our
quantization axis in pseudo-spin space to the direction along which the lone octupolar operator points,
and perform the usual particle hole transformation described above. The octupolar operator is odd

under time reversal T and hence the coupling along that direction is invariant under the usual particle-
hole transformation. However, the transverse operators, with this choice of quantization axis, have

quadrupolar character and are thus even under time reversal but odd under the reversed sign of charge.
Flipping the sign of transverse couplings does not remove the Kondo effect, as is well known, so that

the spectrum will be unaffected by this transformation. However, to finish the transformation, we are
free to follow the particle-hole transformation by a π rotation about the octupolar quantization axis.

By the end of the procedure, we have performed the transformation

(2.2.46) c†α = iσyα,α′hα′

where we have suppressed all but the quadrupolar index of the conduction states.

To summarize the results of this subsection, we have demonstrated that the mapping of low
energy scale properties to the two-channel quadrupolar Kondo model is robust for U4+ ions with doublet

ground states in hexagonal and tetragonal symmetries in that all such doublets will be described by this
model on coupling to the conduction states. We have also shown that under more restrictive conditions

the model will apply to Ce3+ ions in cubic and hexagonal symmetry, but is unlikely to apply to Yb3+

ions.

2.2.5 Additional ions which may display two channel Kondo effects

Among the actinide ions, U4+ remains the best candidate for the two-channel quadrupolar Kondo

effect. Np2+(5f4) or Np4+(5f2) would also have a J = 4 ground state and possibly the quadrupolar
Kondo effect when one of the doublet levels lies lowest in cubic, hexagonal, or tetragonal symmetry.

Np3+(5f3, J = 9/2) and Pu3+(5f5, J = 5/2) ions could display the two-channel magnetic Kondo effect
in cubic or hexagonal symmetry provided they have the appropriate ground doublets. In the Np3+ case,

the chances would be excellent since both the excited 5f2 and 5f4 configurations have J = 4 ground
multiplets and thus possibly quadrupolar doublet ground states for Γex as required by the selection

rules. For the Pu3+ case, the ground multiplet of the f4 excited configuration is J = 4, but for the
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f6 it is J = 0, so that a similar competition to Ce3+ models between single and two-channel Kondo

effects arises. Heavy fermion like behavior has been reported in some concentrated Np and Pu based
materials.

In the rare earth row, Sm3+(4f5, J = 5/2) and Yb3+(4f13) could in principle exhibit two-channel
magnetic Kondo effects, but unfortunately the very large energy splitting to excited configurations with

degenerate ground multiplets (4f4(J = 4) for Sm3+, 4f12(J = 6) for Yb3+) makes it far less likely than
in the Ce case. With regard to the quadrupolar Kondo effect, Pr3+(4f2) is the most direct analog to
U4+ , and indeed shows valence fluctuation tendencies in some compounds [Cox, 1988b)]. Recent work

on PrInAg2 has renewed this promise (Yatskar et al. [1996]). Tb3+(4f8, J = 6) and Tm3+(4f12, J = 6)
ions both display mixed valence tendencies and could exhibit the quadrupolar Kondo effect when the

appropriate doublets lie lowest. Indeed, dilute Tb in cubic Th appears promising as a candidate [Sereni
et al., 1986; Cox, 1988b)]. A complication in cubic symmetry in this case is that for J = 6 the Γ3

doublet has a much smaller window of stability, and when it is stable, the magnetic Γ5 triplet tends to
be very close energetically [Lea, Leask and Wolf, 1962]. That means the system will always be quite

susceptible to magnetic ordering, or at the very least the magnetic excited state will obfuscate attempts
to prove the quadrupolar ground state exists. For example, the low temperature susceptibility of Tb in

Th at low concentrations is 2-4 emu/mole-Tb [Sereni et al., 1986].
Generically, the odds of observing the two-channel behavior are higher for the actinide ions

rather than the rare earth ions because of the greater extent of the 5f wave functions. This larger size

of the orbitals both increases the hybridization and lowers the correlation energies, both of which serve
to enhance the Kondo temperature. What allows the Kondo scale of the U4+ ions to be small (order

10-100K for the U4+ -based heavy fermion materials) in the actinide case is the multiplication of the
hybridization by a fractional parentage coefficient (to project to the lowest states) which is a number

smaller than unity. As a corollary, the effects of excited crystal field splittings are likely to be less,
because the crystal field splitting in these intermetallics is expected to scale with the square of the

hybridization [Zhang and Levy, 1988a,b)]. In Y1−xUxPd3, for example, the first crystal field splitting
appears to be 5-6 meV [Mook et al. 1993; Dai et al. 1995, McEwen et al., 1995], while in UBe13 it

appears to be 15 meV [Shapiro et al., 1985; Cox, 1987]. In contrast, PrPb3 is a collective Jahn-Teller
system with an apparent Γ3 ground doublet on the Pr sites, and the overall crystal field splitting there
is of order 1 meV (Ott, [1982]).

2.3 Models with arbitrary NI , NC,M

.
We have now derived several model Hamiltonians which have the properties of spin 1/2 Kondo

models possessing M=2 (or possibly 3) “channels” of electrons. As we have made clear in the introduc-
tion, by channel we mean those internal degrees of freedom of conduction electrons which are decoupled

from the impurity. We are primarily interested in models in which the degeneracy of the conduction
and impurity spins are Nc = NI = N = 2, but we have encountered models in which NI , Nc > 2 as

well. Because these different degeneracy factors may serve as expansion parameters for organizing terms
in perturbation theory, it is worth considering models in which we allow these parameters to acquire

arbitrary values. We shall briefly list a few such models in this subsection.
SU(Nc = 2) ⊗ SU(M), NI ≥ Nc models. These are the “overscreened” models originally con-

sidered by Nozières and Blandin, and are specified in terms of a Kondo coupling

(2.3.1) HKondo = − J

Ns

~SI ·
M∑

α=1

~Scα(0)

where SI is allowed to take any value and Scα(0) is the conduction spin density in channel α at the

impurity site, with all conduction electrons having S = 1/2.
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SU(Nc = NI = N)⊗ SU(M) models. These are a straightforward generalization of Eq. (2.3.1)

with the restriction of NI = Nc. These models are amenable to the NCA treatment. In the Kondo
form, the interaction Hamiltonian is given by

(2.3.2) HKondo = − J

2Ns

∑

k,k′ ,µ,µ′,α

|µ′ >< µ|c†kµαck′µ′α

where |µ > is one of the NI states of the local “spin”. One may also write an equivalent Anderson

Hamiltonian, placing the local spin states at energy εf and introducing an excited state field indexed
by label α, leading to the hybridization Hamiltonian

(2.3.3) Hhyb =
V√
Ns

∑

kαµ

[−sgn(α)|µ >< −α|ckµα + h.c.]

where the match to Eq. (2.3.2) is through the Schrieffer-Wolff transformation with J = V 2/εf . This
simple decoupling is only possible when NI = Nc.

SU(min(NI, Nc))⊗ SU(M) models. These models are the most general form and include cou-
plings which are symmetric under unitary transformations of the smaller of the impurity or conduction

spin degeneracy. They are difficult to write down, and probably of marginal relevance to real materials,
except in the case NI = 2 ≤ Nc in which case we can simply use Eq. (2.3.1) with ~Scα(0) being given by

(2.3.4) Sicα(0) =
1

Ns

∑

µ,ν

Siµ,νc
†
k,µ,αck′να

with Siµ,ν being the i-th component of the Jc = (Nc−1)/2 angular momentum representation of SU(2).
This model could be of possible relevance to the TLS theory, once the two-site problem is generalized

to a multi-site problem, as discussed recently by Zaránd [1996]. As mentioned in Sec. 2.2, this model
could also be of relevance for Ce3+ impurities.
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3 Scaling Theory of Kondo Models

3.1 Overview of the Physics and Interelatedness of Methods

3.1.1 Concepts and Terminology of Scaling and Renormalization Group Theory

The basic philosophy of any renormalization group theory is to describe the physics of the problem
in terms of an effective Hamiltonian at each length scale which is expressed in terms of a small basis

set of operators multiplied by coupling constants which depend upon the length scale. Following the
notions of Kadanoff and Wilson, we imagine integrating out variables on small length scales to derive

Hamiltonians on large length scales. The first to apply such concepts to the Kondo problem in a
straightforward manner was Anderson [1970]. Later this idea was formulated in the framework of the

multiplicative renormalization group (Zawadowski and Fowler [1970]; Fowler and Zawadowski [1971];
Abrikosov and Migdal [1970]). In this subsection, we wish to lay out some of the relevant concepts and

terminology.
Equivalence of Space and Time in Kondo models. We may interchange length scale with time

scale in our impurity problems. The reason is simple: effectively, any impurity model presents a quantum
problem in one spatial dimension equivalent to the radial direction away from the impurity. This is often
called a “1+1” dimensional problem, where the “+1” refers to the time direction. The conversion factor

between space and time or energy and momentum is simply the Fermi velocity vF of the conduction
electrons, which hinges on the fact that the dispersion of the electrons near the Fermi energy may

always be linearized. In fact, the problem may be viewed as a Lorentz invariant model with speed of
light equal to vF . This simple idea underlies much of the physics of the Kondo model, and is essential

for its solution using the the renormalization group theory (Sec. 4), conformal field theory (Sec. 6), and
the Bethe-Ansatz (Sec. 7). Hence, our approach in the scaling and numerical renormalization group

approaches shall be to determine the effective Hamiltonians describing the problem at different energy
scales, which are set, for example, by the frequency of an external probe, the temperature, the magnetic

field, or simply by the magnitude of the conduction bandwidth.
Appearance of Logarithms in Perturbation Theory. The methods we will employ in discussing

the two-channel Kondo problems and Kondo analogues have features in common which derive from the

appearance of logarithms in the high energy scale (ultraviolet region) perturbation theory which diverge
upon approach to the low energy scales (infrared region). As Wilson has noted, the appearance of

logarithms indicates that all energy scales are of equal importance which strongly supports the relevance
of a renormalization group approach. Practically, we will imagine accessing the infrared regime through

the reduction of the temperature, frequency, magnetic field, or conduction bandwidth.
The individually logarithmically divergent terms in perturbation theory may be treated collec-

tively by the various techniques to generate models characterized by renormalized couplings appropriate
to whichever infrared energy scale we are sitting at in the calculation. The spirit here is very much

the same as the “running coupling constant” scheme in quantum field theory. Unlike quantum field
theory, the lattice always provides us with an ultraviolet cutoff (maximum energy scale) which will be
the Fermi energy or conduction bandwidth in our work. Indeed, in those models where the coupling

constants grow with reduced energy scale, we have in our hands a precise mathematical analogue of the
asymptotically free models (such as quantum chromodynamics) studied in high energy theory.

Fixed Point Taxonomy. We are said to be at the fixed point of a renormalization group transfor-
mation if upon further rescaling the Hamiltonian remains unchanged. The fixed point may be charac-

terized in terms of its excitation spectrum that may be either: (i) Fermi-liquid-like with a 1:1 map near
the Fermi energy to the spectrum of one (or more) one-dimensional Fermi gases which have uniform

level spacing vFπ/L, L the radial extent of the metal. A trivial modification of this spectrum occurs in
the presence of an ordinary potential scattering center which imparts a phase shift δ to the conduction

states; this phase shift manifests in the energy levels through an additional shift of the amount −vF δ/L
with respect to the free gas; (ii) non-trivial or non-Fermi-liquid-like in which case the excitations appear
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at non-uniform, fractional spacings of the Fermi gas, and for which application of the phase shift con-

cept δ is not meaningful. The states are characterized by separated spin, charge, and channel numbers,
relative to the free fermion gas. (In between fixed points, the spectrum is a typically complex many

body spectrum.)
We shall generically flow to four kinds of fixed points:

(1) Zero Coupling Fixed Point: This fixed point has precisely the free Fermi gas spectrum

for each spin and channel of conduction electrons, and corresponds to an impurity uncoupled
from the electrons, whence the phase shift δ = 0. This is the stable infrared fixed point of

the ferromagnetic isotropic Kondo model.

(2) Strong Coupling Fixed Point: As applied to some of the single channel Kondo models
of interest here, at this fixed point, the effective coupling of the impurity to the conduction

electrons is infinitely strong, and the excitation spectrum is Fermi liquid like with a phase
shift fixed “universally” (i.e., independent of input parameters to the model) by the degen-

eracy of the impurity and conduction electrons. This is the infrared stable fixed point of the
isotropic antiferromagnetic single-channel Kondo problem, where δ = π/2.

(3) Intermediate Coupling Fermi-Liquid Fixed Point: These fixed points are Fermi liquid in

character but possessed of non-universal phase shift values between 0 and π/2. Such fixed
points typically arise when some low energy field is present in the problem that cuts off

the scaling to strong or non-trivial fixed point, such as the level splitting and spontaneous
tunneling in the case of the TLS model.

(4) Non-trivial intermediate coupling fixed point. This is the interesting fixed point of the

multi-channel Kondo models first identified by Nozières and Blandin [1980]. At this kind
of fixed point, the internal degrees of freedom of the impurity are never completely com-

pensated, and the excitation spectrum is non-trivial. In consequence, instead of obtaining
Fermi liquid properties at low T , one obtains critical phenomena: the incremental specific

heat coefficient and susceptibility diverge as T → 0. This divergence may be logarithmic
(n = 2) or power-law in character (n > 2). Indeed, this fixed point is a true critical point–the

impurity has driven the entire metal to the edge of a phase transition.

Stability of Fixed Points. A fixed point is also characterized by its stability properties: namely,
if you begin with coupling constants arbitrarily close to the fixed point, will you flow into the fixed

point with rescaling (lowering of energy) or will you flow away? The answer may be mixed–some
couplings or parameters may drive you away, others towards the fixed point. Any coupling constant

measured relative to the fixed point value which vanishes upon rescaling is said to be irrelevant, if the
coupling difference grows, the coupling is relevant, and if the coupling to leading order is unchanged,

it is marginal. Examination of next-leading order effects can further identify if a marginal operator is
“marginally irrelevant” or “marginally relevant.”

Universality. Asymptotically close to some of the above fixed points, properties may be universal,

i.e., they can be expressed as universal functions of thermodynamic or dynamic variables measured with
respect to a single energy scale that depend only upon properties of the fixed point and not the bare

couplings. For example, at the strong coupling fixed point of the ordinary one-channel spin 1/2 Kondo
problem, the phase shift of the conduction electrons is π/2, a universal number independent of the bare

exchange value, and at low temperatures the susceptibility times the temperature with the non-universal
effective magnetic moment divided out (Tχ(T )/µ2) is a universal function of temperature measured in

units of the Kondo temperature TK, a natural energy scale that divides high and low energy regimes
and may be determined in the perturbative scaling analysis. When it is meaningful to use it, the

effective scaled Fermi temperature T0 differs from the Kondo scale TK only by pure numerical factors of
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Figure 17: Scaling of dimensionless exchange coupling vs. logarithm of the bandwidth for the
two-channel spin 1/2 Kondo model. Whether starting from initially strong (J → ∞) or weak

(J → 0)coupling, the arctangent of the dimensionless exchange coupling scales to the fixed point value
of π/4 as the bandwidth is reduced. The crossover scale for weak coupling is identified as the Kondo

temperature. If one begins right at the fixed point, the coupling will be unchanged under renormaliza-
tion.

order unity. However, independent of the properties of the infrared fixed point, the Kondo scale retains
meaning as the boundary between high and low energy physics.

3.1.2 Illustrative Example: Two-channel model in applied spin and channel fields

The concepts discussed in the previous subsection have been discussed somewhat in the abstract. We
would like to illustrate their meaning by providing an overview of the physics of the two-channel spin

1/2 Kondo model in applied spin and channel fields. The derivation of these results will follow in later
sections. For the purposes of discussion, we shall assume the exchange interaction to be isotropic.

Zero Field Case. Fig. 17 displays the behavior of the effective exchange coupling as a function of
the logarithm of the temperature beginning at high T ∼ D/kB and flowing to low T (much smaller than

the Kondo scale, TK , in the case of initial weak coupling). The meaning of this plot is that the first few
levels of the excitation spectrum can be fit by a simple model in which conduction electrons exchange

couple to an S∗I = 1/2 impurity. In fact, the “impurity” is a complicated bound object consisting
of the original impurity at its core, but surrounded by shells of alternating conduction spin. (An

amusing metaphor is to think of the impurity spin as the seed of a pearl, with the layers of conduction
spin accreting like the layers of the pearl as the temperature is lowered [S. Williams, 1992].) At low

temperatures (large values of − log(T/D)) we “flow” to the fixed point coupling, regardless of the size
of the initial, high temperature coupling. Nothing cuts off this scaling process, and the spin can never
be compensated away as in the single channel Kondo effect, so that the properties of the system as the

fixed point is approached are those of a critical point in which the system looks the same on all length
scales.

Applied Spin Field. By applied spin field, e.g. in the Kondo problem, we mean a local field which
couples to the impurity spin linearly, or a bulk field which also couples to the conduction spin. This

could correspond to the spontaneous tunneling and level splitting terms in the TLS model, to a uniaxial
stress in the quadrupolar Kondo model, or to an applied magnetic field in the magnetic two-channel

model. The spin field cuts off the scaling process of the previous paragraph, so that below a “crossover
temperature” T xsp determined by the field strength the system will behave like a Fermi liquid with energy

scale set by the crossover temperature. If we begin from the physically relevant case of weak coupling,
then assuming the spin field splitting ∆z << TK , we will have T xsp ≈ (∆z)2/TK (see Secs. 4.2.e, Sec.
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Figure 18: Scaling of the spin 1/2 two-channel Kondo model in the presence of a spin-field. In this
case, where a field that linearly splits the spin of the local moment is applied, then provided the applied
field is small compared to the Kondo scale, the system will first flow close to the fixed point coupling

strength of the two-channel model, then flow to a value determined simply by the product of the bare
exchange strength and the impurity spin as the system flows to the “polarized scatterer fermi liquid”

fixed point. The crossover scale to the latter is T xsp ∼ H2
sp/TK , where Hsp is the applied spin-field.

5.1.6, 6.1,7). This crossover effect on the effective coupling constant is illustrated in Fig. 18.

The low temperature fixed point in this case is of variety (3) (intermediate coupling, Fermi
liquid) because the ground state phase shift will obtain a value determined by the magnetic field and

the bare coupling constants. Because up and down spin electrons experience equal and opposite phase
shifts, we must view the excitation spectrum as deriving from two independent Fermi gases. Fig. 19
illustrates how the spin field crossover manifests itself in the value of the conduction electron phase

shift for up-spin electrons at the Fermi energy [Affleck et al., 1992]. As we discuss in Sec. 7.2, this
effect has a rather spectacular manifestation in the specific heat: above the crossover temperature, the

specific heat displays the logarithmic behavior characteristic of the two-channel model, while below the
ground state residual entropy is shoved out into a Schottky-like peak which for a range of temperatures

is actually larger than the zero field specific heat by nearly an order of magnitude.
Applied Channel Field. By channel field, we mean an external probe which couples to the channel

index of the conduction electrons and acts to lift the degeneracy of the exchange coupling. Practically,
this is effected in the quadrupolar Kondo model by the application of a magnetic field, which splits the

excited Γ7 doublet and thus through the Schrieffer-Wolff mapping splits the exchange integrals for the
different conduction channels by an amount ∆J ' (V/ε̃f)2µeffH where µeff is the effective moment of
the excited doublet and H the magnetic field strength. In the TLS model, magnetic field would also be

a channel field in principle, but there is no obvious mechanism by which the couplings for up and down
spin can be split. In the magnetic two-channel model, uniaxial stress will split the excited quadrupolar

doublet and lift the channel degeneracy.
The channel field also cuts off the scaling of Fig. 17, but in a very different way than for the spin

field, as made clear by Nozières [1980]. Assume initial weak coupling. Below a crossover temperature
T xch ≈ (∆J)2/TK (see Secs. 4.2.d,5.1.5,6.1,7), the more strongly coupled channel will tend towards the

strong coupling ordinary single channel Kondo fixed point for which the phase shift is π/2, and the
weakly coupled channel will tend towards the zero coupling fixed point with zero phase shift. Hence, as

with the applied spin field, the excitation spectrum is composed of two fermi gas excitation spectra with
different phase shifts. In this case This is illustrated in Fig. 20(a) where below Tch the single line of
high T scaling “bifurcates” with the upper branch corresponding to the strongly coupled channel, and

the lower branch to the weakly coupled channel. In Fig. 20(b) we show the scaling flows in the space
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Figure 19: Physical effects of applied spin field on the two-channel spin 1/2 Kondo model. At left we
display the phase shift as a function of field as determined by numerical renormalization group calcula-

tions (see Affleck et al. [1992]). As noted in the text, this may be used to calculate the magnetization.
At right, we show that properly scaled this numerically calculated phase shift displays the logarithmic

singularity expected in the differential susceptibility as a function of field.

of coupling constants, where the non-trivial fixed point of the flows is evident in the center. This fixed

point is stable for J+ = J−, but unstable to any small differences. We note that in the case of the TLS
Kondo model, the magnetic field splitting of conduction states will not induce a splitting of exchange

integrals in the same way. The only possible influence on the fixed point is for physically irrelevant
fields µH ' D which cannot be realized experimentally.

A last point about the two-channel model is that it is stable with respect to anisotropy of the
exchange integral while maintaining the channel degeneracy (see Secs. 3.4.1,4.2.c,6.1). Thus, while
applied spin and channel fields destabilize the model and take it away from the non-trivial fixed point

to one of the other three generic fixed points, the model enjoys stability against the realistic feature of
exchange anisotropy.

3.2 Formal Development of Scaling Theory

3.2.1 Organization of Perturbation Expansion In Logarithms; Methods of Resummation

We have already pointed out in the introduction and elaborated above on the origin of logarithmic
corrections in the perturbation expansion of the impurity models considered here due to the non-

commutative character of the conduction electron scattering processes off the impurity. The logarithmic
factor which occurs is

(3.2.1) L(max{T, ω, E}) = log(
D

max{T, ω, E})

where D is the high energy cutoff which will always be the conduction bandwidth in the problems
interesting us, and max{T, ω, E} is the largest of the other external parameters in the system, such

as the temperature T , the driving frequency of an external probe ω, or the splitting of the TLS,
E =

√
(∆z)2 + (∆x)2. E ultimately serves as the small energy infrared cutoff.
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Figure 20: Scaling of the spin 1/2 two-channel Kondo model under application of a channel field.

A channel field couples linearly to the conduction electron channel spin density and thus lifts the
degeneracy of the two exchange integrals. (a) shows that one coupling will pass to strong coupling and

the other to weak coupling at a crossover scale T xch ∼ (δJ)2/TK , where ∆J is the exchange integral
splitting. (b) shows the corresponding flow diagram in the space of coupling constants. The flows are
stable along the J1 = J2 separatrix, moving to the non-trivial fixed point. They are unstable away from

this separatrix, moving the strong coupling fixed point of which ever exchange is initially stronger.

In the treatment of the models of interest in this Review, we may organize the perturbation

theory for any quantity according to powers of the coupling g between impurity and conduction electron
states, times powers of the logarithmic factor L. Assuming a given quantity Q has a minimal power gp

of the coupling (e.g., for the resistivity in the Kondo problem, p = 1), we have the following hierarchy:

(3.2.2) Q = gp

+gp+1L +gp+1

+gp+2L2 +gp+2L +gp+2

+gp+3L3 +gp+3L2 +gp+3L +gp+3

....

....

....

In this array, clearly the rows represent the order in a systematic expansion of the coupling constants.
The columns give us the logarithmic hierarchy: since the logarithmic factors diverge as one tunes the
infrared cutoff to zero, summing up the logarithms in the first column will produce a stronger singularity

than summing up the logarithms in the second, third, fourth, etc. columns. We call the resummation
of logarithms in the first column the leading logarithmic approximation, which sums one set of diagrams

to all orders in perturbation theory of the coupling g. By including also the summed up logarithms of
the second column, we include another set of diagrams to all orders in the perturbation expansion, and

this is called the next leading logarithmic approximation.
We could of course proceed in this way through all the columns, which in principle would yield an

exact calculation of the quantity Q. In practice, however, a considerable amount of information may be
obtained by considering only the first and second columns. (Indeed, in certain limits this approximation

may be shown to be exact.) For example, the Kondo scale TK is quite accurately estimated by the next
leading logarithmic approximation; indeed, as shown by Wilson [1975] the next to leading order scaling
theory determines the universal parts of the TK expression. In the limit of large numbers of channels M ,

the non-trivial Nozières and Blandin fixed point is correctly uncovered by the next leading logarithmic
approximation.
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The systematic collections of terms in the logarithmic hierarchy may be accomplished by several

methods. We shall discuss five strongly related methods here:
(i) Leading logarithmic order resummation of diagrams. This is equivalent to the direct diagrammatic

summation methods of Abrikosov [1965], as well as to the “poor man’s scaling” method of Anderson
[1970]. In this case, the summation problem is cast in the form of a differential or integral equation

for the relevant quantity (such as the conduction electron T -matrix describing scattering off of the
impurity). This method is known as the “parquet” method, and is analogous to the lowest order RPA
approximation in a metal, where one sums the diagrams built from spin-conduction particle/hole bub-

bles to all orders. We discuss this approach in section 3.3.
(ii) Multiplicative Renormalization Group in the Leading and Next Leading Orders of Diagrams. This

method has been developed by Gell-Mann and Low, Bogulubov and Shirkov for treating infrared and
ultraviolet divergences in field theory. This approach was first applied to the Kondo problem by

Zawadowski and Fowler [1970] (see also Fowler and Zawadowski [1971]), and by Abrikosov and Migdal
[1970]. The method was later simplified by Sólyom and applied for to the one-dimensional electron gas

(Sólyom [1974,1979], Zawadowski [1973]). We shall discuss this in Sec. 3.4.
(iii) Path Integral Method. This approach used first by Anderson, Yuval and Hamann [1969] and sub-

sequently by Zimányi ,Vladár , and Zawadowski [1988a,b]. We shall discuss this in Sec. 3.5.
(iv) Numerical Renormalization Group. This non-perturbative approach was developed by Wilson
[1973,1975; Krishna-murthy, Wilkins, and Wilson, 1980a,b); Cragg and Lloyd, 1979; Cragg, Lloyd, and

Nozières, 1980]. In essence, one solves the rescaled equations exactly on a cleverly discretized mesh by
finding the lowest energy levels of the system at each renormalization step. It is possible to compute

properties with this method if sufficiently many steps are retained. For example, Wilson provided the
first calculation of the magnetic susceptibility which was accurate over the entire temperature range.

We shall discuss this method in more detail in Sec. 4.
(v) Next-leading order resummation and NCA. As we shall discuss, this procedure sums a class of per-

turbation theory diagrams to all orders and includes to leading and next leading order the corrections
to the vertex of the conduction electron-local spin scattering, and to leading order the corrections to

the “self-energy” of the local spin variable, which shall be precisely defined in the next subsection. The
resummation takes the form of coupled non-linear differential or integral equations. This approximation
was first employed in the x-ray edge singularity problem by Moulet et al. [1969], and Nozières et al.

[1969] where it was called the “self consistent parquet approximation.” This method was first applied
to the Kondo problem by Nozières [1969]. A somewhat different approximation appeared in the work of

Keiter and Kimball [1971]. Subsequent use of the approximation as written by Keiter and Kimball for
Anderson and Kondo models has gone under the name of the “NCA” or non-crossing approximation,

since in the formalism of Keiter and Kimball, the diagrams retained have no crossed propagator lines.
Although this approximation may seem crude, it in fact can be justified within a large N expansion.

For all Kondo problems, it gives a good extrappolation of the high temperature physics into the low
temperature regime, well below TK (though it eventually fails to give the correct ground state for the

single channel model). For the multi-channel model, it has been shown exact for the limit N → ∞,
M/N held fixed [Cox and Ruckenstein, 1993] and reproduces thermodynamic properties quite accu-
rately even for N = 2 and M = 2, 3 [Kim, 1995; Kim and Cox, 1995,1997]. The NCA approach for the

multi-channel Kondo problem is discussed in Sec. 5.
(vi) Conformal Field Theory and Bosonization Techniques. Conformal field theory may also be viewed

in somewhat the same light as the scaling and renormalization methods, since it exploits a scale invari-
ant critical point in 1 + 1 dimensions which is also conformally invariant, and builds a description of

the physics in terms of relevant and irrelevant operators about the conformal point. Conformal field
theory is a kind of “non-Abelian bosonization” scheme, since the low lying excitations are written in

terms of current operators which satisfy the Kac-Moody algebra commutation relations of non-Abelian
symmetry groups. An extensive development of this theory for the Kondo problem has been carried out

recently [Affleck and Ludwig, 1991a,b,c;1992;1993;1994a,b; Ludwig and Affleck, 1991; Ludwig, 1994].
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We shall discuss this approach in Sec. 6.1. Separately, an Abelian bosonization scheme with ordinary

harmonic oscillator operators has been developed by Emery and Kivelson [1992]. We shall discuss this
approach in Sec. 6.2.

We note that methods (ii) and (v) are in fact similar, except that most formulations of (ii) have
not included the imaginary part of the dressed exchange interaction and of the spin self-energy, while

these are included in (v), so that all response functions have the appropriate analytic behavior. It is
possible to apply (ii) in the energy region below the ground state threshold at zero temperature where
all response functions are purely real (for negative energy, there are no allowed decay processes) and

then to analytically continue the solution into the positive frequency region (Zawadowski, unpublished,
[1970]; Sólyom [1971]). This appears to be substantially equivalent to the differential form of the NCA

developed by Kuramoto and Kojima [1984] and Müller-Hartmann [1984].
The common feature in methods (i)-(iii) and (v) is that they are based on an expansion in the

coupling which presumably should not be applied when the renormalized dimensionless coupling grows
to order unity. Method (iv) does not suffer from this approach of course. In fact, method (v) appears to

cross into the non-perturbative regime quite adequately as well, although the reasons are not completely
clear as to why this works. What is useful about methods (i) and (ii) is that they correctly predict

the growth of the couplings, and they can in some instances correctly predict other phenomena such as
non-trivial fixed points.

In closing this subsection, we make two final observations:

(1) Absence of Asymptotic Freedom in commutative models. We still obtain logarithmic corrections
in commutative models such as the x-ray edge singularity and the TLS model with V z 6= 0, V x = 0.

However, in these cases, there is no renormalization of the bare coupling constant as we go to the
infrared region. Nevertheless, power law singularities may result in physical quantities with the power

laws related to the phase shift associated with the commutative coupling constants. As an example, in
the commutative TLS model, for sufficiently large V z , one finds that the spontaneous tunneling rate

∆x is renormalized at low temperatures according to

(3.2.3) ∆x(T ) = ∆x(T = D)(
T

D
)K

where K is proportional to the square of the phase shift δ(V z) = tan−1(πV z) (Kondo [1976], Libero
and Oliveira [1991]).

(2) Conformal Field Theory Approach and Abelian Bosonization. Although we didn’t include it in
the list of methods based upon resumming logarithms, the conformal field theory approach first

applied by Tsvelik [1990], and substantially evolved by Affleck [1990a,1995], Affleck and Ludwig
[1991a,b,c;1992;1993], Ludwig and Affleck [1991,1994]; Ludwig [1994a,b], and Affleck et al.,1992] has a

strong relationship to these other methods. This method exploits conformal invariance of the Kondo
models at the fixed points to provide exact forms of universal functions (both thermodynamic and

dynamic) and exact values for universal amplitudes (such as the residual ground state entropy). The
method is very similar in character to the eigen-operator expansion of the renormalization group, but

provides considerably more information due to the local character of the conformal invariance. The
method can also be applied to the calculation of finite size excitation spectra, where detailed quantita-
tive agreement with numerical renormalization group calculations has been found [Affleck et al., 1992].

Unlike methods (i-v) above, however, the conformal theory is incapable of calculating full crossover
behavior between fixed points. In principle, as well, the conformal theory requires additional confirma-

tion that models displaying conformal invariance correspond to fixed point Hamiltonians of the original
models. In practice, there no doubt that this is the case for the models considered by Affleck and

Ludwig (Affleck [1990a], Affleck and Ludwig [1991a,b,c; 1992, 1993]; Ludwig and Affleck [1991]; Ludwig
[1994a,b]). In addition, an approach based upon an Abelian bosonization of the anisotropic two-channel

model has been introduced by Emery and Kivelson [1992] which reproduces many of the features of
the conformal theory in perturbing around a special fixed point of the model. We shall discuss the

conformal theory approach in some detail in Section 6.1, and the Abelian bosonization in Sec. 6.2.
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Finally we must emphasize that the methods (i) and (ii) describe the high temperature results, and

methods (vi) give the correct low temperature behavior in terms of non-universal amplitudes which can
be determined by a match to other approaches (such as the numerical renormalization group). The

NCA and NRG approaches are methods which also describe well the crossover regime between high and
low energy scales.

3.2.2 Multiplicative Renormalization Group

The multiplicative renormalization group is based upon the following observation: let us consider an in-
teraction between two different kinds of particles described by Green’s functions G, G which are functions

of frequency, temperature, field, momentum, etc. The G Green’s function denotes a “heavy particle”
which shall correspond to the localized pseudo-spin variables or mobile heavy particles in our models,

and the G Green’s function corresponds to a “light particle” which shall be the conduction electrons
or light band electrons in our models. In the interaction terms of interest in our model Hamiltonians,

a light particle is scattered by a heavy particle (Fig. 2). The bare scattering interaction between the
particles (the coupling which appears in the Hamiltonian) is given by V (i), and the corresponding vertex

which includes all multiple scattering processes is given by Γ(i).
Now, consider the following transformation of the Green’s functions and couplings, where z1, z2,

and z(i) are arbitrary numbers:

(3.2.4)

G→ z1G
G → z2G

Γ(i) → (z(i))−1Γ(i)

V (i) → (z1z2)(−1)z(i)V (i)

.

Then in any internal point of the general scattering diagram beyond lowest (bare) order, the z-factors
cancel out because any higher than lowest order diagram may be expressed as powers of the factor

(3.2.5) V (i)GGΓ(i)

which is manifestly invariant under the above transformation. So far, this statement of the invariance

under the rescaling specified by Eq. (3.2.4) is totally topological and general in character, and devoid
of any specific contact to the problems of interest. What we shall proceed to demonstrate is that the

rescaling of the conduction bandwidth in our models will generate a transformation of the form Eq.
(3.2.4).

The main idea of the renormalization group, as emphasized in the previous subsection, is that
the particle or hole excitations with large energy values do not directly participate in real processes

at low energies. They only have an effect through virtual excitations of the low energy states to high
energies through the scattering process. These high energy virtual processes may be taken into account
for the low energy electrons by introducing renormalized parameters (or couplings V (i), Fermi velocities

etc.) which sum up the high energy processes above a certain cutoff in energy. The goal will be to
describe the model for all energies below a new cutoff D′ instead of the bare cutoff D by integrating

out the virtual excitations to states between D′ and D and compensating by adjusting the couplings so
that the same physics remains, i.e., Eq. (3.2.5) remains invariant.

It is useful to conceptualize the smaller bandwidth as proportional to the temperature T if that
serves as the infrared cutoff in our perturbation expansion. As we lower the temperature of the system

from order D, only those real excitations with significant Boltzmann weights, i.e., Eex ≤ 10kBT '
D′(T ), say, will contribute significantly to the low energy physics. On the other hand, through the

scattering of Fig. 2, processes with energies above D′(T ) will contribute to the low energy physics. We
are not free to simply include the real processes within D′(T ) to get the physics correctly, so we must
adjust the Hamiltonian appropriate to computing properties from purely real processes within D′(T )
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Figure 21: General scheme of the renormalization group. The bandwidth cutoff is reduced step by
step. The parameters like ∆ and ∆0 must be changed also with the coupling. The procedure stops

when the new cutoff reaches one of the parameters like ω, T or the renormalized ∆,∆0 values.

by adjusting the couplings to reflect the virtual excitations to higher energies. This general scheme is

illustrated in Fig. 21.
We can illustrate this idea by considering what happens when we resum only leading logarithmic

terms in the Kondo problem. The resummation, as is clear from Eq. (3.2.2), will simply result in a
geometric series-like formula times the leading power g of the dimensionless coupling. Taking the
temperature as the infrared cutoff, the factor obtained in the geometric series is F (g,D, T ) = (1 −
g log(D/T ))−1. We may rewrite this expression in a trivial way that shows the effect of the bandwidth
rescaling:

(3.2.6)
1

1− g log(DT )
=

1

1− g[log(D
′
T ) + log( DD′ )]

= z(g,
D

D′
)

1

1− g′ log(D
′
T )

where

(3.2.7) z(g,
D

D′
) =

1

1− g log( DD′ )

and

(3.2.8) g′ = z(g,
D

D′
)g .

Thus the original analytical form of F (g,D, T ) may be preserved with the new parameters g′, D′ instead

of g,D, provided we multiply by the factor z(g,D/D′) which depends upon g,D but not T .
This behavior under bandwidth rescaling makes it possible to eliminate the virtual high energy

phase space in the framework of the renormalization group and to introduce new effective couplings.
Note that while the rescaling specified by Eqs. (3.2.4-5) is always possible, it is not always possible to

find models which satisfy these properties in the multiplicative form manifest in Eqs. (3.2.6-8) charac-
teristic of Kondo models. Thus, the ability to define and implement a multiplicative renormalization
group transformation is only realizable for particular classes of models. In many problems, there are

further parameters which might be changed as the width of the excitation spectrum is reduced (virtual
excitations integrated out) such as the mass, Fermi velocity, etc.
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Note that while the rescaling of the bandwidth corresponds to redefining the scale of energy

on which we measure, we may also think of it as rescaling the length. This fact follows from the one-
dimensional character of the impurity models we are considering in this paper, where only the radial

direction is important, so that energy and momentum are related through the conversion constant vF .
Thus, when we talk about looking at problems on lower temperature or energy scales, we are equivalently

talking about looking at longer length scales.
The change in effective coupling strength may be cast in the form of a differential equation by

reducing the bandwidth D → D′ infinitesimally. The general form of the differential equation is

(3.2.9)
∂V (i)

∂ logD
= β(V (i))

which defines the β-function of the multiplicative renormalization group. The β function will always
vanish when the couplings vanish, and tend to infinity when the coupling strength tends to infinity,

though it need not interpolate between these two points monotonically. Eq. (3.2.9) is quite general, but
we shall typically approximate the β-function by a low order polynomial obtained from perturbation
theory.

The perturbative approach breaks down when the couplings V (i) expressed in dimensionless
form (measuring them in units of the bare conduction bandwidth D) grow to order unity. We define

the value of the renormalized bandwidth D or the equivalent temperature T where the couplings grow
to order unity as the Kondo Temperature, TK . This is a kind of crossover temperature, which separates

the high energy regime for which perturbation theory is valid, from the low energy regime where the
electrons and heavy particles are strongly coupled.

If the β-function obtains zero for some value of couplings, (V (i))∗, then under further rescaling
at this value, the couplings will remain unchanged. That point in the space of couplings is called a fixed

point, as we have discussed in Sec. 3.1.1. Usually, in the models of interest here, that point is outside
the regime of perturbative scaling theory apart from the trivial fixed point where all V (i) = 0 which
corresponds to decoupled heavy and light particles. As an example, since the beta function diverges as

V (i) diverge, infinite coupling strength will also always be a fixed point. We may artificially tune certain
parameters, such as the channel number M , to bring the fixed points into the perturbative regime. In

that case, as we shall demonstrate explicitly, for isotropic couplings (all V (i) equal) the β-function has
the form (in terms of dimensionless couplings g < 0 )

(3.2.10) β(g) = g2 +
M

2
g3 + .....

so that a fixed point at g∗ = −2/M occurs in the perturbative regime for M >> 1. Wilson and

Fisher introduced the ε = 4 − d, d the spatial dimensionality, to obtain a similar perturbative control
in problems where the renormalization group is applied to critical phenomena [K.G. Wilson and M.E.

Fisher, 1969]. Otherwise non-perturbative methods must be employed to evaluate the β-function or
perform equivalent calculations.

The crossover temperature scale calculated from the scaling equation depends upon the accuracy
to which the β-function is estimated. For example, in the isotropic Kondo problem with antiferromag-

netic exchange coupling J , we have

(3.2.11) kBTK = D exp[
1

ρ0J
+

1

2
log(|ρ0J |) + P (ρ0J)]

≈ D|ρ0J |1/2 exp[
1

ρ0J
]

where P (x) is a polynomial, so that for |ρ0J | << 1, we may neglect P (ρ0J) compared to the singular
terms in the exponent. These leading two terms will be shown to derive from the leading and next

leading logarithmic approximations to the perturbation theory which provide terms of order J2, J3 in
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the β-function. Thus, provided we begin with a small bare coupling strength meaning |J | << D, we

need only the leading two orders in the perturbative expansion of β(J) to obtain an accurate estimate
of the Kondo scale.

3.3 Scaling in Leading Logarithmic Order

In this subsection, we shall present a number of results of physical interest readily derivable from

leading logarithmic scaling. Since there are rather different physics issues to be addressed in each model
case, we shall organize the derivations by reference to the Hamiltonian being studied. We shall spend

the most time, however, on the TLS model which displays the broadest range of coupling space to
which the method can be applied. We note that Anderson’s “poor man’s scaling” [Anderson, 1970] is
entirely equivalent to the results presented here, and that this approach may be generalized beyond the

leading logarithmic order (Sólyom and Zawadowski, [1974]). We also note that at this order, there is
no distinction between single- and multi-channel Kondo models; the channel number M enters at next

leading order. Before we begin discussing the physics of each model, we will introduce the Abrikosov
pseudo-particle trick (Abrikosov, [1965]), together with the generalization by Barnes [1976], which is

useful in evaluation of perturbation theory diagrams.

3.3.1 Pseudo-particle method

We wish to treat the dynamics of the local pseudo-spin variable as manifested in the Green’s function
G discussed in the previous subsection in a manner which as much as possible resembles that of mobile

particles with access to the full range of occupancies. To do so, we follow Abrikosov [1965]. Namely,
when dealing with a local spin variable, we choose to represent the spin in a fermionic form, viz.

(3.3.1) σi =
∑

µ,ν

σiµ,νf
†
µfν

where f †µ creates a local fermion of spin index µ. However, the spin variable can only have two states,
corresponding to the single occupied states of the local fermion. The correspondence of states is

(3.3.2) |µ >= f †µ|0ps >

where |0ps > is the vacuum of the pseudo-fermion. Thus, to faithfully represent the Hilbert space of
the local spin variable, we must add to our Hamiltonian a fictitious chemical potential term

(3.3.3) Hpseudo = −λps(
∑

µ

f †µfµ − 1)

in which the chemical potential λps is taken to −∞ at the end of calculations to project to the physical

subspace where the fermion occupancy is unity. In so doing, we must also shift the arguments of all
pseudo-fermion frequencies to be measured with respect to the infinitely negative chemical potential

λps. The one pseudo-particle state has a statistical weight (2S + 1) exp(βλps) with S = 1/2, and thus
physical quantities should be normalized by this factor. The normalization factor is not affected by

renormalization in low orders (Black, Vladár , and Zawadowski [1982]). Other than the minor nuisance
of the projection, all the standard rules of Feynman perturbation theory in the interaction may be
carried out since the bare Hamiltonian is quadratic in the fermion operators.

Thus, prior to projection, the pseudo-fermion propagator in Matusubara frequency has the form

(3.3.4) G(λps)
µ (ω) = −

∫ β

0
dτeiωτ < Tτfµ(τ)f †µ(0) >=

1

iω −Eµ + λps

where ω = 2πkBT (n + 1/2) is a Fermion Matsubara frequency. The superscript on G is a mnemonic
notation indicating that the projection and frequency shift have not yet taken place. We shall always

drop these superscripts after projection.
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For the purposes of discussing the rescaling of the one particle Green’s function of the pseudo-

fermion spin variable, and the two-particle Green’s function describing the localized spin and the con-
duction electrons, this prescription alone is sufficient and has the effect of suppressing the unphysical

states where the fermion level is empty or doubly occupied. However, when we wish to calculate measur-
able properties, we must explicitly project to the occupancy 1 subspace with a normalization factor that

depends upon λps. We defer discussion of this point to Section 4 where we discuss the NCA method.
In the case of the Anderson Hamiltonian, discussed in conjunction with the models for U4+ and

Ce3+ ions, we have a larger local Hilbert space. For example, in the Anderson model for the U4+ ion,

we may fluctuate between the f1 states labelled by magnetic index µ and the f2 states labelled by
quadrupolar index α. In this case, we follow Barnes [1976], who pointed out that while you may

retain the pseudo-fermion label for the ground configuration, you can generalize by describing the
excited configuration by a bosonic variable so as to retain a net fermionic character to the change

of configuration. Hence, in this example, we augment the pseudo-particle space by a pseudo-boson
operator b†µ with the state correspondence

(3.3.5) b†µ|0ps >= |f1,Γ7, µ > ; f †α|0ps >= |f2,Γ3, α > .

Correponding to the pseudo-fermion occupancy in the previous paragraph, we define the “f-charge” as

(3.3.6) Qf =
∑

α

f †αfα +
∑

µ

b†µbµ

which commutes with the Hamiltonian of Eq. (2.2.19), in which we write the hybridization term as

(3.3.7) Hhyb = − V√
Ns

∑

kαµ

sgn(µ)[f †αb−µck,8,α,µ + h.c.] .

Physically this commutation is obvious, since each time we create a pseudo-boson, we destroy a pseudo-

fermion, or vice versa. We then add a fictitious chemical potential term of the form

(3.3.9) Hpseudo = −λps(Qf − 1)

and take λps → −∞ at the end of all calculations. As alluded to in the last part of Sec. 2, we may
regard the pseudo-boson as being the boson mediating the exchange between the heavy particle and

conduction electrons; in the Kondo form, its dynamics is completely generated by the states of the
electronic system, while in the Anderson form it has independent meaning as an excited configuration

state. The boson carries the labels of the channel index of the conduction electrons, the fermion the
label of the spin index.

Thus, when working in the Anderson formulation where Eq. (3.3.7) specifies the perturbation
term, we must also introduce the pseudo-boson Green’s function

(3.3.10) G(λps)
α (ν) = −

∫ β

0
dτ < Tτbα(τ)b†α(0) >=

1

iν − Eµ + λps

where ν = 2πkBTn is a bosonic Matsubara frequency, and again the superscript means prior to any
projection procedure.

Note that we are completely free to interchange the boson and fermion representations for the
two configurations since on carrying out the projection only Boltzmann statistics remains. We must

however always ensure that one configuration is fermionic and one bosonic to guarantee that the electron
addition and removal processes are fermionic in character, i.e., so that each hybridization event conserves

fermion number. We also observe that the extension to inclusion of higher fermion or boson excited
levels is straightforward: we must simply add the occupancy factors for the new states to the conserved

charge Qf . This is true in the case of the excited states for the tunneling center as well (see Sec. 3.4.2).
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3.3.2 Leading Order Scaling in the TLS Model

The idea of the leading order scaling is based upon the second order perturbation theory diagrams

already discussed in the introduction and displayed in Fig. 2. Referring back to that figure, we see
that the lowest order correction to the two-particle interaction between the local spin and conduction
electrons is either of the form where the intermediate state includes an excited particle (Fig. 2(a)) or

hole 2(b)). This holds for all of the models of interest in our review.
Turning to the TLS model with couplings specified by Eq. (2.1.7), we see that each of these

diagrams contributes a logarithmic dependence. To evaluate, we represent the dashed line of the diagram
by the pseudo-fermion propagator of Eq. (3.3.4). We see that the sign of the logarithmic corrections

is different, and also the ordering of the spin matrices and momentum dependent couplings is different.
The total coefficient of the diagram corresponding to Fig. 2(a) is

∑

i,j

V i~k2,~k
V j
~k,~k1

σiσj

where k1,2 are the incident(outgoing) momenta, k is the internal momentum, and we see that the

coefficient of the term corresponding to Fig. 2(b) is given by
∑

i,j

V i~k,~k1
V j
~k2,~k

σiσj

so that the conduction momentum indices are reversed on the second term. If we now evaluate the

total two-particle scattering amplitude corresponding to Fig. 21 to second order, at zero temperature,
we find

(3.3.11) Tm
k̂2,k̂1

(ω,D, V i) = Vm
k̂2,k̂1

− 2iρ0

∑

i,j

∫
dSF (k̂)

SF
[V i
k̂2,k̂

V j
k̂,k̂1

εijm log(
D

ω
)]

where dSF (k̂) is an element of Fermi surface area in the direction of k̂ of the total Fermi surface area
4πk2

F , we have neglected the radial dependence of the matrix elements upon k, and the Levi-Civitta

symbol arises from the algebra of the Pauli matrices. We have taken the density of states to be constant
within the band of full width 2D.

The change in the bandwidth D→ D′ discussed in the previous subsection can be compensated
by readjusting the couplings V i. That scaling dependence may be written as

(3.3.12)
∂Tm

k̂2,k̂1

∂D
dD +

∑

i,k̂,k̂′

∂Tm
k̂2,k̂1

∂V i
k̂,k̂′

dV i
k̂,k̂′

= 0

which implies that the equation for the rescaled coupling constants is given by

(3.3.13)
∂Vm~k2,~k1

∂lnD
= 2iρ0

∑

i,j

εijm
∫
dSF (~k)

SF
V i
k̂2,k̂

(D)V j
k̂,k̂1

(D) .

The logic of (3.3.12) is that the physics may be specified in terms of the amplitudes of the T -matrices
for 1,2,3,... particle scattering. Thus to ensure that the physics is unchanged, we must ensure that after

renormalization we obtain the same T-matrix which means that in lowering the cutoff which explicitly
affects the second term we must modify the couplings accordingly.

Following Zawadowski [1980], we may write this equation in a more convenient form by using
the matrix representation V m

α,α′ given in Eq. (2.1.27), and by introducing the dimensionless variable

x = log(D0/D) where D0 is the original bare bandwidth and D the rescaled bandwidth. Then the
leading order scaling equation is

(3.3.13)
∂Vmα,α′

∂x
= −2i

∑

i,j

εijm
∑

γ

V i
α,γ(x)V jγ,α′(x)
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subject to the boundary condition that we match the bare couplings at the original bandwidth, so that

(3.3.14) V iα,α′(0) = V i
α,α′

where the r.h.s. of the last equation just contains the couplings that appear in the Hamiltonian.

We shall now list several characteristic features of the equations for the leading order scaling:
(i) Lack of dependence on the channel number M . In the derivation of Eq. (3.3.13), we used the

diagrams of Fig. 2. Notice that since these diagrams have no closed loops, all dependence on the
channel index is through the label α which is conserved throughout the scattering. At next leading

order, we will obtain a closed electron loop inside the diagram and thus pick up a dependence upon the
number of channels.

(ii) Results for a two-dimensional subspace: irrelevance of anisotropy. Let us for a moment
accept that the dominant space of conduction electron orbital indices will be two-dimensional as we

scale from the band edge, a point we shall prove shortly. Given this assumption, we shall illustrate
that exchange anisotropy is irrelevant as we scale, and that if we begin scaling in a subspace where just
two couplings are non-zero, that independent of their sign we will ultimately flow towards the isotropic,

antiferromagnetic coupling regime as we rescale.
As we have already seen in Sec. 2.1, even when restricted to the two component space of orbital

indices, the quantization axis of the electron pseudo-spin need not align with the quantization axis of the
TLS pseudo-spin. This means that the most general form of the coupling matrices in a two dimensional

subspace is

(3.3.15) V i
α,α′ = V ix̃σ

x̃
α,α′ + V i

ỹσ
ỹ
α,α′ + V iz̃ σ

z̃
α,α′

where we remind the reader that i = x, y, z are the directions in the TLS pseudo-spin space for quanti-
zation axis z, and x̃, ỹ, z̃ are the directions in the conduction orbital pseudo-spin space for quantization

axis z̃. Now the scaling equations will determine the nine coupling coefficients V i
β . With this Ansatz,

the leading order scaling equation has the form

(3.3.16)
∂Vmγ
∂x

= −2ρ0V
i
αV

j
β ε
ijmεαβγ .

Let us now view the couplings as vectors in the space of conduction pseudo-spin. Thus, ~V i =

(V ix̃, V
i
ỹ , V

i
j̃
) and, for example,

(3.3.17) ~V p · ~V s =
∑

α

V p
αV

s
α .

Using the properties of the Levi-Civitta symbols, it is straightforward to show that

(3.3.18)
∂(~V p · ~V s)

∂x
= δps[−8ρ0(~V x × ~V y) · ~V z ] .

We should make a couple of notes about the derivation of Eq. (3.3.18):
(i) The factor of eight follows from one factor of two when differentiating for p = s, one factor of two
already present in the scaling equation, and one factor of two for the two possible orderings of i, j in

εijp to give a non-vanishing contribution.
(ii) We used the invariance of (~V i× ~V j) · ~V k upon permuting i, j, k cyclicly to write the RHS of (3.3.18)

in a form manifestly independent of the choice of p.
From Eq. (3.3.18), we may infer that the magnitude of each coupling constant vector is indepen-

dent of its index in the TLS space. So long as the product (~V i × ~V j) · ~V k > 0, the vectors ~V p increase
in length as D is reduced, and the ratio of the couplings |~V p|/|~V s| tends to unity. Further, since the

RHS of Eq. (3.3.18) vanishes if p 6= s and since the lengths of the vectors grow towards∞, we see that
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Figure 22: The scaling trajectories are depicted for Eq. (3.3.16) in the real space vaiable related to the
lower indices. The starting vectors ~V x and ~V z are shown by solid lines, while ~V y starst from ~V y = 0.
~V x and ~V z are scaled in the plane determined by them and ~V y is moving in the normal direction to
that plane. The scaling trajectories are depicted b dash-dotted lines, the asymptotes of vectors ~V x and
~V z are represented by dotted lines. The arrows indicatedthe vectors at different stages of the scaling,

labeled by numbers. From Zawadowski [1980].

the vectors must become perpendicular upon scaling. If we start with (~V i× ~V j) · ~V k < 0, the couplings
tend towards zero, like the ferromagnetic Kondo model.

Hence, once we restrict the conduction orbital degrees of freedom to the two component space
we see that the scaling drives the system towards isotropic coupling, allowing a simple rotation in the

conduction orbital pseudo-spin space to give the Heisenberg form to the exchange coupling between the
TLS and the electrons. Given the appropriate sign to the couplings, the effective Hamiltonian form at

full strong coupling is (Viso(D) = |~V p(D)|)

(3.3.19) Hint(D) = Viso(D)~σTLS · (~σc↑(0) + ~σc↓(0))

where the quantization axis of the conduction electrons has been rotated to line up with the TLS
axis, and the real spin labels have been put on the conduction spin densities at the TLS site. Since

the coupling is written without the conventional minus sign of the Kondo model, our positive choice
of coupling coencides with the antiferromagnetic Kondo model. A schematic of the generic scaling

trajectories in the coupling space for this antiferromagnetic case are illustrated in Fig. 22.
In the original TLS model, we have |V z | >> |V x|, V y = 0. In this case, upon initially scaling

we will generate V y ∼ V zV x. Thus the triple product (~V i × ~V j) · V k ∼ |V xV z|2 > 0 independent of
the signs of V x, V z initially. That means we will always scale to strong coupling (towards the isotropic

antiferromagnetic exchange model) in this extreme anisotropic limit.
(iii) Reduction to the two-dimensional subspace. The scaling equations themselves in the extreme

anisotropic limit justify the restriction to the two-dimensional subspace of the conduction electron orbital

pseudo-spin. This will hold provided the couplings ~V x,yα,β in Eq. (3.3.13) have magnitudes much smaller
than V z

α,β, as shown by Vladár and Zawadowski [1983(a)].

In order to prove this, we first perform a unitary transformation V z → Ṽ z in the conduction
space such that

(3.3.20) ρ0Ṽ
z
α,β(0) = ṽzα,β(0) = ṽzα(0)δα,β .

We now linearize the RHS of Eq. (3.3.13) in the small quantities vx, vz to obtain

(3.3.21.a)
∂ṽz

∂x
= 0 +O(ṽ3)
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(3.3.21.b)
∂ṽx

∂x
= −2i[ṽx(x), ṽz(x)]−

and

(3.3.21.c)
∂ṽy

∂x
= 2i[ṽx(x), ṽz(x)]−

where the v′s are understood to be matrices and the square brackets indicate commutators. We can
separate the variables by differentiation with respect to x again, and for i = x, y we find

(3.3.22)
∂2ṽi(x)

∂x2
= 4[[ṽi, ṽz]−, ṽ

z]− .

Using the diagonal form and the fact that ṽz is unchanged in this linearized form, we see that (putting

matrix indices back in)

(3.3.23)
∂2ṽiα,β
∂x2

= 4ṽiα,β(x)[ṽzα(0)− ṽzβ(0)]2 .

Given the boundary condition ṽy(0) = 0, the solution to the linearized equations may be given as

(3.3.24.a) ṽzα,β(x) = ṽzα(0)δα,β ,

(3.3.24.b) ṽxα,β(x) = ṽxα,β(0)cosh[2(ṽzα(0)− ṽzβ(0))x] ,

and

(3.3.24.c) ṽyα,β(x) = iṽxα,β(0)sinh[2(ṽzβ(0)− ṽzα(0))x] .

What we learn from Eqs. (3.3.24.a-c) is that barring unforeseen degeneracies in the matrix
vz , whichever two elements of ṽz(0) which produce the largest difference |ṽzα(0)− ṽzβ(0)| will produce

the most rapid growth of the ṽx,y elements of the coupling. Because the functions grow exponentially
with rescaling, any other splittings with even slightly smaller differences will grow negligibly fast upon
scaling compared to the dominant subspace. In our TLS model, the axial character will always in

practice restrict this dominant subspace to a linear combination of conduction orbitals with m = 0 and
l = 0, 1, 2.

We stress that this argument depended upon the assumption of extreme anisotropy with zero
initial coupling V y , and that it has only been carried out so far in the context of second order scaling.

We shall demonstrate that it is also valid if we go to all orders in V z while remaining at lowest order
in V x,y . We conjecture that it is valid even in instances where the couplings are closer to isotropic and

the perturbative approach breaks down, but this remains to be proven. As we shall explain, this result
may have important implications for the Kondo models of U4+ and Ce3+ ions. In our discussion of

these ions, we shall show that in the quadrupolar Kondo case the two-channel coupling to an additional
symmetry allowed Γ8 quartet is irrelevant through the two leading orders of scaling theory.

In fact, there is a symmetry based reason for this flow to a dominant two-dimensional subspace

which holds at strong coupling. Namely, at strong coupling we have ample evidence that the exchange
anisotropy vanishes. In this case, one can write down an SU(2) invariant coupling deriving from the

2-dimensional manifold of the local pseudo-spin. We may then decouple this exchange via a Hubbard-
Stratonivich transformation, as discussed in Sec. 2.3, and find that there are only two “exchange

fluctuation” fields, indexed by the channel label, which are necessary to decouple the entire interaction.
However, there is only a 1:1 match of the pseudo-spin index–a bonding combination of conduction

operators will be selected which has a 1:1 match in pseudo-spin space with the labels of the TLS. The
antibonding combination will decouple. We shall demonstrate this explicitly in the quadrupolar Kondo

case.
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(iv) General Form of the Fixed Point Hamiltonian. We will now offer some discussion of the

form of the fixed point Hamiltonian for our two-channel Kondo models, although the discussion should
be regarded as extrapolation at this point of the review, because the actual fixed point lies outside the

perturbative regime. The point is that the perturbative scaling equations at lowest order provide con-
siderable insight into the structure of the fixed point physics. This kind of analysis is supported in detail

by the considerations of the numerical renormalization group and conformal field theory calculations.
Given the flow towards isotropy as the couplings grow, following Vladár and Zawadowski [1983(a)]

we may write the couplings in the separated form

(3.3.25) viα,β(x) = vi(x)Ṽ iα,β

where the first factor contains the scale dependence and the second factor the matrix structure which
does not change upon further scaling. Then the scaling equations split into an equation describing the

scaling, and one describing the operator algebra near the fixed point. The scaling equation is

(3.3.26)
∂vm(x)

∂x
= 2vi(x)vj(x) , i, j,m cyclic ,

and the matrices are specified by the algebra

(3.3.27) Ṽmα,β =
∑

i,j,γ

Ṽ i
α,γṼ

j
γ,βε

ijm ,

from which it is clear we simply scale to some irrep of SU(2). Of course, it is possible that in the case
of matrices of higher order, in a subspace the couplings follow SU(2) symmetry while in the remaining

subspace the coupling disappears. It has been shown by Zaránd [1995] that the representation of SU(2)
is always two dimensional for M >> 1 except in the presence of extra symmetry. We discuss this further

in Secs. 3.3.3, 3.4.3 for rare earth and actinide impurity models. The analysis in the preceding note
(iii) above makes clear we expect this to be generally a two dimensional representation to be dominant.

The solution of Eq. (3.3.26) may be written as

(3.3.28) vi(x)2 = ψ2(x) + vi(x0)2 ,

where

(3.3.29)
∂ψ2(x)

∂x
= 4vxvyvz

with boundary condition ψ2(x0) = 0.
What is intriguing about this scenario is that we begin with an apparently artificial spin variable

describing the TLS which is not conserved, even if we shut off the spontaneous tunneling terms. In
examining the scaling of the exchange terms alone, we develop this picture that at the fixed point one

has a full isotropy in the combined pseudo-spin space of the TLS plus conduction electrons, although
this space has no obvious reason to become so symmetric from purely high energy considerations.

Thus, the Kondo effect serves to restore symmetries which are not present in the bare Hamilto-

nian, which is a fairly remarkable result. This contrasts with the usual scenario in high energy physics,
in which symmetry is high at high temperatures and reduced as we lower the temperature.

This increase of symmetry on approach to the fixed point also holds for the quadrupolar Kondo
effect, where generically only two of the local spin tensors should transform as an irrep of the point

group that is quadrupolar in character, yet an extra tensor of octupolar character is generated and at
the two-channel fixed point there is full isotropy in this unusual combined space.

We close this note on the general properties of the fixed point with an open question about
the nature of the scaling. In the previous note we argued that when the bare couplings are extremely

anisotropic, the scaling will preferentially select a two-dimensional subspace in the conduction orbital
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pseudo-spin space as the dominant one. What is not clear is whether the couplings in the excluded

space will grow or shrink as well when one moves out of the perturbative regime and into the fixed point
region. This growth is ruled out by the arguments of Zaránd [1995] for M >> 1. While it is physically

unlikely that such growth occurs for the physically relevant M=2 case, no rigorous proof yet exists to
support this intuition.

(v) Leading order estimate of the Kondo scale.

If we first consider the fully isotropic limit, we will have to integrate the leading order differential
equation

(3.3.30)
∂v(x)

∂x
= 4v(x)2

and identify where the coupling strength grows unity. This yields the estimate

(3.3.31) T
(I)
K ≈ D0 exp(− 1

4v(0)
)

where the superscript (I) denotes leading order. If we were to use instead spin 1/2 matrices, we would
replace the exponent by −1/v(0).

In the TLS case where the starting parameters are extremely anisotropic, the perturbation

theory will break down and the couplings grow to order unity when the energy scale from the leading
order equations is such that vx(x) ≈ vz(0), which produces the leading order estimate for the Kondo

scale, T
(I)
K as

(3.3.32) T
(I)
K ≈ D0(

vx(0)

4vz(0)
)

1
4vz(0)

when we use Pauli matrices (see Vladár and Zawadowski [1983(a)]). If we use spin 1/2 matrices, this
expression changes only in that the singular exponent is modified according to

1

4vz(0)
→ 1

vz(0)
.

3.3.3 Leading Order Scaling for model U4+ and Ce3+ ions

Much of the work has already been done in the development of the equations for the TLS. We shall
present some useful generalizations of these equations appropriate to the physics of the models for

U4+ and Ce3+ ions.

(a) Leading order Kondo scale

This is the simplest modification to the TLS result. We utilize the isotropic result of Eq. (3.3.31)

and replace 4v(0) by |g(0)|= N(0)J , where J is the maximum (in magnitude) of J7, J8 in the Ce3+ case.
Hence

(3.3.33) T
(I)
K = D0 exp(

1

g(0)
) .

(b) Flow to two-dimensional subspace for U4+ ion in cubic symmetry
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Figure 23: Leading order multiplicative renormalization group diagrams for the quadrupolar Kondo
model with two conduction quartets. The lines marked with 3 are pseudo-fermion propagators for the

non-Kramers Γ3 doublet. The lines marked with a, b, c are conduction electron lines which may come
from either Γ8 quartet (labeled by a, b, c =8,8’ in the text and derived from the j = 5/2, 7/2 partial

waves about the impurity). The vertices are coupling strengths gab which are symmetric in a, b and
scatter from quartet a to quartet b. In the simplest model, g88 > g88′ > g8′ 8′ , and g2

88′ = g88g8′ 8′ .

We could have generalized the discussion of the quadrupolar Kondo Hamiltonian in Sec. 2.2.1 to
have allowed for exchange coupling to more than one Γ8 quartet. What we shall demonstrate presently

is that at leading order scaling, this produces a flow to a dominant two-dimensional subspace as has been
found in the extremely anisotropic TLS case above. The interpretation is simply that one is selecting the

relevant bonding combination of the Γ8 states. Our scaling analysis follows similar reasoning developed
for a different problem by Cragg, Lloyd, and Nozières [1980].

The physical source of the second Γ8 state is the j = 7/2 angular momentum multiplet of the
conduction electron partial wave states. Let us denote the Γ8 level from the j = 5/2 partial wave

manifold with no prime, and that from the j = 7/2 multiplet with a ′. The exchange Hamiltonian of
Eq. (2.2.6) is then generalized to

(3.3.34) Hex =
−1

Ns

∑

l,l′=8,8′
Jl,l′~τI ·

∑

k,k′ ,α,α′,µ

~τα,α′c
†
klαµck′l′α′µ ,

where the couplings J8,8′ = J8′,8. In fact, since the bare couplings are determined by the Schrieffer-
Wolff transformation, we may say more about the relative size of the bare couplings. Assume that the

strength of hybridization of the 8 quartet with the excited Γ7 and ground Γ3 doublets is a8V0, where the
hybridization strength V0 is independent of the labels 8, 8′, and the corresponding hybidization strength

for the 8′ quartet is a8′V0. Then we have that

(3.3.35) Jl,l′ = ala
′
l

2V 2
0

ε̃f

so that, e.g, J8,8′ = −√J8,8J8′,8′ . Note that the appropriate way to think about the above exchange

interaction is in terms of a conduction electron spin which is large, i.e., Nc = 4. The reason is that the
channel index is still the two-dimensional magnetic index, and we have simply enlarged the space of

orbital labels which couple to the impurity. Thus, this model is analogous to the TLS model with Nc

actually arbitrary.
Using the diagrams shown in Fig. 23, we obtain the following leading order scaling equations

for the three dimensionless couplings g8,8, g8,8′, g8′,8′ :

(3.3.36.a)
∂g8,8

∂x
= −g2

8,8 − g2
8,8′ ,

(3.3.36.b)
∂g8,8′

∂x
= −g8,8′[g8,8 + g8′,8′ ] ,

and

(3.3.36.c)
∂g8′,8′

∂x
= −g2

8′,8′ − g2
8,8′ .
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Notice that we lack a factor of four compared with TLS scaling from our use of S = 1/2 matrices here,

and that the different sign convention has flipped the sign of the β-functions relative to the TLS case.
These scaling equations may be separated into soluble form in two stages. First, we identify a

constant of the motion. By subtracting Eq. (3.3.36.c) from Eq. (3.3.36.a) and taking the ratio with
Eq. (3.3.36.b), we see that

(3.3.37)
d(g8,8− g8′,8′)

dg8,8′
=

(g8,8 − g8′,8′)

g8,8′

from which we infer that

(3.3.38) g8,8′ = c0(g8,8 − g8′,8′) .

We may infer the constant c0 from the initial conditions and Eq. (3.3.35) as

(3.3.39) c0 =
a8a8′

(a2
8 − a2

8′)
.

Next, we define the coefficients

(3.3.40.a) α8 = a2
8/(a

2
8 − a2

8′)

and

(3.3.40.b) α8′ = −a2
8′/(a

2
8 − a2

8′) .

Define the linear combinations of exchange couplings

(3.3.41.a) g̃ = α8g8,8 + α8′g8′,8′

and

(3.3.41.b) g̃′ = α8′g8,8 + α8g8′,8′ .

Note that α8 + α8′ = 1, so that g̃(0) = g8,8(0) + g8′,8′(0). Then the scaling equations, with use of the

constant of motion identified in the preceding paragraph, decouple giving

(3.3.42.a)
∂g̃

∂x
= −g̃2

and

(3.3.42.b)
∂g̃′

∂x
= −(g̃′)2 .

In principle, both couplings will grow. However, with the use of the initial conditions, we see that

g̃′(0) = 0, so that this set of couplings just drops out. This is not the case for g̃, and if we solve to
estimate the leading order Kondo scale, we obtain

(3.3.43) T
(I)
K (g̃(0)) ≈ D0 exp(

ε̃f
2[a2

8 + a2
8′ ]N(0)V 2

0

) .

Clearly, we can interpret the factor in square braces in this equation as simply representing the nor-

malization of the “bonding combination” of Γ8 orbitals. We shall show in the next subsection that this
result also holds in next leading order scaling as well.
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Figure 24: Leading order multiplicative renormalization group processes in the presence of excited

crystal field levels for a Ce3+ impurity. The dashed line is a pseudo-fermion propagator for the impurity
states. The label a refers to the intermediate states of both impurity and conduction electrons, which

can be either Γ7 (assumed to be the impurity ground state) or Γ8 (assumed to be the impurity excited
state). Assuming only f0 − f1 virtual charge fluctuations, all coupling strengths are equal.

(c) Effect of excited crystalline electric field levels

We may see using leading order scaling methods that excited crystalline electric field levels

produce an enhancement of the Kondo scale estimated without the excited states. Our derivation is
restricted to the rescaling of the J7 exchange for the model Ce3+ ion, and follows the original analysis

of Yamada, Yosida, and Hanzawa, [1984] and the analogous analysis for the TLS model of Zaránd and
Zawadowski [1994(a),1994(b)] (see Sec. 3.4.2).

The idea is similar to the preceeding subsection. The diagrams are shown in Fig. 24. By

virtually scattering into the Γ8 conduction and f1 manifolds through the coupling J78 = J7 (due to
the assumption of mixing only with f0,Γ1 excited configuration) we obtain the leading order scaling

equation

(3.3.44)
∂g7

∂x
= −g2

7[1 + 2
D

D + ∆8
]

where ∆8 is the splitting between the f1Γ7 and f1Γ8 levels. The extra energy appears in the denominator
due to the virtual excitation to the Γ8 level, which is much larger than D when we shrink D to order

T
(I)
K . The factor of 2 is the ratio of the degeneracies of the Γ8 quartet to the Γ7 doublet, which reflects

the greater number of ways to scatter into the Γ8 state.

It is straightforward to integrate these equations, and we find that

(3.3.45) T
(I)
K = D0(

D0

T
(I)
K + ∆8

)2 exp(
1

g7(0)
) .

This represents a self-consistent equation to solve for the Kondo scale. In the limit where T
(I)
K << ∆8,

we obtain an enhancement over the Kondo scale without crystal field excitations by the rather large

amount of (D0/∆8)2. Given D0 ' 104K, ∆8 ' 102K) this enhancement can be of order 104! This is

obviously a significant effect. In the limit when T
(I)
K >> ∆8, we find that T

(I)
K tends to the value of

the six-fold degenerate multiplet obtained by forcing the Γ8 level to be degenerate with the Γ7 level.
We will obtain the physics of the ground doublet provided that the Kondo scale of the full multiplet

is smaller than ∆8, because then the crystal field scale cuts off the logarithmic growth associated with
the full multiplet.

Hence, the excited crystal field state produces a crossover between a high temperature Kondo ef-

fect associated with the entire multiplet and a low temperature Kondo effect associated with the ground
multiplet, but significantly enhanced over the value with ∆8 =∞. Within the NCA analysis of Sec. 5,

it is easy to generalize this picture from the simple example treated here, and below all crossovers one
generically finds a Kondo scale enhanced by factors of ∼ (D/∆cef)Ncef/Ngrd for all levels at energy ∆cef

with degeneracy Ncef (the ground level has degeneracy Ngrd). Similar results obtain for each excited
spin-orbit multiplet and LS term in multielectron configurations.
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(d) Leading order scaling for a Ce3+ ion with spin/channel-spin coupling included

Following Kim [1995], Kim and Cox [1995,1996,1997], and Kim, Oliveira, and Cox [1996], we

examine the effects of the channel-spin/spin coupling developed in Eqs. (2.2.34-2.2.38). We restrict
ourselves to the space of Γ8 coupling alone, i.e., neglect the scattering between Γ8 and Γ7 conduction

partial waves. In this case, the coupled equations for the dimensionless interaction strengths g8 = N(0)J8

and g̃8 = N(0)J̃8 are

(3.3.47)
∂g8

∂x
= g2

8 −
1

2
g̃2

8

and

(3.3.48)
∂g̃8

∂x
= −g̃8g8 .

These equations follow from the unusual commutation relations of the S̃c8 operators specified in Eqs.
(2.2.37) and (2.2.38). What can be verified from the above scaling equations are the following:

1) For 2g8 > |g̃8|, g8 grows and |g̃8| shrinks.
2) For 2g8 = |g̃8|, both coupling strengths shrink to zero.

3) For 2g8 < |g̃8|, g̃8 grows without any sign change, and g8 is driven towards the lines defined by
2g8 = −|g̃8|.
4) For g̃8 = 0 and g8 < 0, there is no growth in g̃8 and g8 shrinks to zero. This is of course the usual
ferromagnetic case.

Clearly the lines 2g8 = ±g̃8 occupy a special place in this scaling analysis, and the reason as

indicated in Sec. 2.2 is that the tensors I
(i)
c8 (0)−S(i)

c8 (0)±2S̃
(i)
c8 (0) obey the ordinary angular momentum

commutation relations and define a pseudo-spin 3/2 irrep. Along these lines the effective exchange

coupling is −J8
~SI7 · ~Ic8(0). It is clear that for positive g8 = |g̃8|/2 one has ferromagnetic coupling of

the pseudo-spin 3/2 conduction operators to the impurity spin, while when g8 = −|g̃8| we obtain an

antiferromagnetic coupling of the impurity pseudo-spin to the conduction pseudo-spin. Collapse to the
line g8 = −g̃8/2 indicates dominant virtual fluctuations to the Γ4 excited state, while collapse to the

line g8 = g̃8 indicates dominant virtual fluctuations to the Γ5 excited state. We note that the symmetry
constraints along these lines imply that their special role in the coupling constant phase diagram will

be maintained non-perturbatively.

3.4 Next Leading Order Scaling

The power of the multiplicative renormalization group equations is not evident at leading order scaling,

because the most important corrections to the wave function renormalization factors z occur at next
leading order. In this subsection, we shall explore the next leading order scaling equations for the
Kondo models of interest using the multiplicative renormalization group equations. In parallel to the

previous subsection on leading order scaling, we shall first present the results for the TLS model, which
represents the most general formulation of the fully anisotropic Kondo model, and then present briefly

results for the models of U4+ and Ce3+ ions. In the last part of this subsection, we will perform
some stability analyses of the next leading order scaling equations about the non-trivial fixed point, to

illustrate the destabilizing effects of channel fields, and the stability against exchange anisotropy in the
simplest cases.

3.4.1 Next Leading Order Scaling for the TLS model

(a) Overview
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What we seek are equations relating the original couplings V i,∆i and Green’s functions at

bandwidth D to the rescaled couplings V i′ ,∆i′ and Green’s functions at bandwidth D′ using the mul-
tiplicative renormalization group formalism developed in Sec. 3.2.2. We will write all electron-TLS

couplings in dimensionless form (vi = V iρ0). We shall perform the scaling analysis at zero temperature,
with the external conduction electron frequency ω serving as the infrared cutoff in our equations.

The multiplicative renormalization group equations for the TLS model read (Vladár and
Zawadowski [1983b])

(3.4.1) Gk(ω/D
′, vi

′
,∆i′) = Gk(ω/D, v

i,∆i) ,

(3.4.2) G(ω/D′, vi
′
,∆i′) = Z2(D′/D, vi)G(ω/D, vi,∆i) ,

(3.4.3) Γ̃iα,β(ω/D′, vi
′
) = (Ziα,β(D′/D, vi))−1Γ̃iα,β(ω/D, vi) ,

and

(3.4.4) vi
′
α,β = (Z2(D′/D, vi))−1Z

(i)
α,β(D′/D, vi)viα,β

where the functions Gk,G, Γ̃i only depend upon dimensionful quantities. Note that: (i) the renormal-
ization factor Z1 has been dropped because corrections to the conduction electron Green’s function in
the dilute limit are of order 1/Ns. This point will clearly need reexamination in lattice models. (ii) The

meaning of Γ̃i is that the full interaction vertex is given by

(3.4.5) Γiα,β = V i
α,βΓ̃iα,β

so that Γ̃iα,β(D0) = 1. We use Γi when some of the V i are zero, because then Γ̃i is not well defined.

(iii) The pseudo-fermion Green’s function G is generalized from the bare form of Eq. (3.3.4) to include
a self-energy term. Written in matrix form for real frequencies at T = 0, we have

(3.4.6) G(λps)(ω/D, vi,∆i) =
1

(ω + λps)I−∆i/2σi − Σps(v, ω)

where I is the identity matrix in the 2× 2 space, and Σps is the pseudo-fermion self-energy.

(b) ∆i = 0 case

To proceed with these equations, let us start with the special case ∆i = 0. As mentioned, we
needn’t compute Gk beyond zeroth order in perturbation theory for the purposes of the scaling. We

compute G, Γ̃i in the leading two orders. We find that Γ̃i is already renormalized at first order in scaling;
in fact, this is clear from the discussion surrounding Eq. (3.2.7), in which the renormalization factor z

corresponds to Zi in our present discussion. The renormalization of the pseudo-fermion Green’s function
occurs at next leading order, i.e., the leading order term in the perturbation expansion is order v2 for

Σps.
The scaling transformation proceeds as follows:

(i) First the leading order term of the vertex are calculated and then Zi is obtained in the
leading logarithmic approximation; this corresponds to the diagram of Fig. 25(a). Self consistent

determination of Zi follows by inserting the unperturbed (D = D′) value of v for Γi. What we obtain
is just (suppressing matrix indices)

(3.4.7) (δvi)(1) = −2i
∑

ij

vjvkεjki log(
D

D′
)
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where the superscript (1) denotes leading order scaling. This is clearly just a repeat of the discussion

in the previous subsection and if stopped at this point leads to precisely the same scaling equations.

(ii) At next leading order we compute Z2, Z
i being careful not to include terms which will be

obtained by the solution of the leading order order scaling equation. Since, as remarked earlier, solving

that equation is equivalent to summing an infinite order of diagrams, we must take care order by order in
the renormalized couplings that we generate unique non-parquet diagrams. Such a diagram is illustrated
in Fig. 25(b). The test is simple: at a particular higher than leading order of the renormalized coupling,

if the diagram can be cut in two by snipping one pseudo-fermion line and one conduction line, it is a
parquet diagram. Once we compute the non-parquet third order diagram of Fig. 25(c) we must snip

two pairs of conduction/pseudo-particle lines to break the diagram up, a test we can apply to higher
order diagrams to determine if they are due to iteration of this diagram. Clearly the complexity of the

procedure makes it unfeasible to apply beyond a few orders of perturbation theory. The lowest order
self energy term for the pseudo-fermion is shown in Fig. 26. The corresponding renormalization factor

Z2 is given by

(3.4.8) Z2 ' 1 + (
∂[Σps(ω/D

′, vi
′
)− Σps(ω/D, v

i)]

∂ω
)0

and is shown in Fig. 25(b). This figure makes it clear why it appears only at next leading scaling: we

must multiply the second order correction coming from the frequency derivative of the self-energy times
one factor of vi to produce a third order renormalization of the vi’s. It is straightforward to show that

the diagram of Fig. 25(c) is proportional to log(D/ω), while the (shifted) pseudo-fermion self-energy
goes as ω log(D/ω), so that the derivative in Eq. (3.4.8) produces a logarithm.

Note that the dividing out of Z2 in the renormalization of V makes physical sense when viewed

from the perspective of Landau’s Fermi liquid theory. We are looking for the interaction between
the conduction electrons and the fully dressed pseudo-fermion, or the pseudo-fermion “quasi-particle.”

Hence, since the quasi-particle has spectral weight Z2, we should divide the relevant coupling by that
quantity to correctly normalize in the quasi-particle space.

Since the next leading order term is more difficult to compute correctly than the leading order
term, we will spell out a few details here. The changing of D → D′ now leads to a total next leading

order correction (δvi)(2) to vi which is given by (suppressing matrix indices)

(3.4.9) (δvi)(2) = vi[(O(vi)2 from Zi)− (O(vi)2 from Z2)]

= Mvi[(Tr(vi)2 −
∑

j 6=i
Tr(vj)2)− (

∑

j

Tr(vj)2)] log(
D

D′
)

= 2Mvi[Tr(vj)2 + Tr(vk)2] log(
D

D′
) ,

where the terms in parentheses in the second line have a direct correspondence to the terms in paren-
theses immediately above. Notice the explicit appearance of the number of channels here, which derives

from the closed conduction loop in Fig. 25(c) in which we may freely sum on channel index.
Putting (i),(ii) together, we see that through the leading two orders we have, putting all matrix

indices back in, that

(3.4.10)
∂vmα,β
∂x

= −2i
∑

i,j,γ

vjα,γ(x)vkγ,β(x)εijm − 2Mvmα,β(x)
∑

l6=m
Tr[(vl(x))2] + ....

which may be solved with the anticipation of flow to a two-dimensional subspace by substituting

(3.4.11) viα,β(x) = vi(x)σiα,β
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(a)

(b) (c)

Figure 25: The vertex diagrams in the leading and next-leading logarithmic orders. The solid lines
stand for the conduction electron and the dashed line for the heavy particle. Note that (c) is not an

actual vertex correction.

Figure 26: The first non-vanishing logarithmic self-energy diagram for the heavy particle. The solid
line represents the electron and the dashed line the heavy particle.

which gives us (for m 6= i 6= j)

(3.4.12)
∂vm(x)

∂x
= 4vi(x)vj(x)− 4Mvm(x)[(vi(x))2 + (vj(x))2] +O((vi)4) .

Note that if we had chosen to use spin 1/2 matrices instead of Pauli matrices, we would change the
prefactor of the O(v2) term to 1 from 4, and the prefactor of the O(v3) term to 1/4 from 4. The flipping

of sign between the TLS convention and the typical Kondo convention (vi > 0→ J i < 0) would flip the
sign of the first term and leave the sign of the second term which expresses the fact that the couplings

grow more negative as you reduce the bandwidth (increase x).

(c) ∆i 6= 0 case

Now we are interested in deriving equations for the renormalization of the splitting ∆i. In view

of Eq. (3.4.2), we see that since ∆i appears in G−1 that it must renormalize according to

∆i′(D′, vi) = Z2(D′/D, vi)∆i(D, vi)

(3.4.13) + [Σps(ω = 0, D′, vi
′
,∆i′)− Σps(ω = 0, D, vi,∆i)]

where we must include the latter term as a price for taking Z2 independent of the splittings ∆i. This
term reflects the shifts of the splittings through self-energy effects. It is straightforward to estimate this

by observing that the self-energy diagram of Fig. 26 vanishes when the combination ω + λps −∆iσi/2
vanishes, so we may linearize the Green’s function, and employ ω as the infrared cutoff of the resulting

logarithmic divergence so that we find

(3.4.14) Σps(ω,D, v
i,∆i) ≈ −M

∑

l

Tr[(vl)2]σl[(ω − λps)I−
∑

i

∆iσi]σl
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and thus with the use of Eq. (3.4.13) we obtain

(3.4.15)
∂∆i(x)

∂x
= −2M

∑

j 6=i
∆iTr[(vj)2] .

Note that: (i) The sign in front of the RHS for this equation: the fact that it is negative means
that as we move in from the weak coupling fixed point, the splittings and spontaneous tunneling of the

TLS actually renormalize downwards with reduced bandwidth. However, we shall see that this is not
the correct interpretation overall: the dimensionless splitting ∆i/D grows and is thus to be viewed as

a relevant perturbation near the fixed point of Eq. (3.4.12). We shall elaborate on this point below.
(ii) In this case where the impurity pseudo-spin is equivalent to spin 1/2, the rescaling cannot generate
any splittings unless there is a bare splitting present. This corresponds to the fact that a real spin-1/2

doublet must remain degenerate in the absence of an applied magnetic field, i.e., it is not susceptible to
quadrupolar splittings. If we were to allow for higher pseudo-spin, as in the generalized multi-channel

models of Sec. 2.3, we would find quadrupolar splittings generated by anisotropic exchange couplings
[H.B. Pang, 1992]. We shall return to this point in the numerical renormalization group (Sec. 4.2) and

conformal field theory (Sec. 6.2) discussions and in the fixed point stability analysis below.

(d) Analysis of the Fixed Point

We note that the RHS (the β-function) of Eq. (3.4.12) vanishes when

(3.4.16) vx = vy = vz = v∗ =
1

2M
.

This is then a non-trivial fixed point of the fourth type, discussed in Sec. 3.1.1. Clearly the couplings

are isotropic at this fixed point. However, caution is required in accepting the validity of this finding.
Consider these cases:

M = 1. In this case, the fixed point occurs for v∗ = 1/2 which is certainly outside the
perturbative regime. We cannot trust the low order expansion of the β function. Strong
coupling calculations first performed by Wilson [1973,1975] show that in this case, which

corresponds to the single channel anisotropic Kondo model, the fixed point is of the strong
coupling form, type (3) of Sec. 3.1.1.

M = 2. In this case, the fixed point occurs for v∗ = 1/4, for which the perturbation
expansion is still of questionable valididity. Nonetheless, the qualitative correctness of the
fixed point is confirmed by non-perturbative methods such as the Bethe-Ansatz and NRG.

In this case, the physical arguments presented in the beginning regarding the inability of
the two conduction channels to exactly compensate the impurity pseudo-spin taken together

with non-perturbative calculations confirm that the non-trivial fixed point is indeed obtained
in the zero temperature limit, provided the splittings and spontaneous tunneling are zero.

However, this is precisely the marginal case: rather than power law critical divergences in
physical quantities, logarithmic divergences are obtained.

M >> 2. In this case, the fixed point is small and well within the bounds of the perturbative

expansion of the β-function. In principle, all properties may be obtained as an expansion
in powers of 1/2M , the fixed point coupling strength, and therefore one has a clear hint

of universality. For a more detailed discussion of this issue, we direct the reader to Sec.
(3.4.3), which reviews the work of Muramatsu and Guinea [1986] and especially Gan, Andrei

and Coleman [1993] on the calculation of physical properties at the nontrivial fixed point.
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Note that a different kind of large M expansion is provided by the NCA analysis of the

SU(N)⊗ SU(M) multichannel model in which N → ∞ while M/N = γ is held fixed; see
Sec. 5.1 for a review of this work.

(e) Linearized Stability analysis of the Fixed point

We may obtain further insight into the physics by linearizing the multiplicative renormalization

group equations around the fixed point coupling. Such an approach will be valid for couplings vi(x)
near v∗. This corresponds to an analysis of the stability of the fixed point against the introduction of
various fields and couplings. We shall discuss, in order, exchange anisotropy, the relevance of the ∆i

about the fixed point, and channel field splitting.
Exchange Anistropy. We write δvi(x) = vi(x)− v∗ and expand the β-function to linear order in

the deviations. We begin scaling at a bandwidth parameter value of x0. The result is

(3.4.17)
∂δvi

∂x
= − 2

M
δvi

which is readily solved to yield

(3.4.18) δvi(x) = δvi(x0)(
x

x0
)−

2
M .

Clearly, the introduction of anisotropic couplings is completely irrelevant around the fixed point: as we
increase x from our initial value of x0, the couplings actually diminish. We note that Muramatsu and

Guinea [1986] obtained the same scaling equations using a different diagrammatic technique.
It is worth noting in this context, following Affleck and Ludwig [1991a)], that while the fixed

point coupling is non-universal (clearly we can insert an overall arbitrary scale factor in the energy) the
slope of the β-function at the fixed point which determines the scaling exponent in Eq. (3.4.19) must
be universal.

This argument is actually independent of the magnitude of the localized pseudo-spin [H.B. Pang,
1992]. In the special case of a spin 1/2 localized pseudo-spin, then when the ∆i are set to zero, then no

further splitting can be induced by the exchange anisotropy in this case. However, if we were to allow
the impurity spin to be greater than 1/2, and keep M large, we would induce through the self-energy

quadrupolar splittings of the pseudo-spin, and in this way the exchange anisotropy would generate a
relevant perturbation.

Relevance of the splittings ∆i about the fixed point. If we linearize the scaling equation for the
renormalized splittings ∆i(x) about the fixed point (Eq. (3.4.15)) we find that since the splittings are

zero at the fixed point (this is the only way to make the RHS of Eq. (3.4.15) vanish) then

(3.4.19)
∂∆i

∂x
≈ − 2

M
∆i

which is integrated to give

(3.4.20) ∆i(x) = ∆i(x0)(
x

x0
)
−2
M .

If we were to stop the analysis here, we would incorrectly conclude that the splittings ∆i are irrelevant
about the fixed point. What is incorrect about this statement is that while the physical splittings

do actually shrink, they do so (for M >> 1 where the perturbative analysis is valid) at a rate much
smaller than the bandwidth itself shrinks. Hence, relative to the decrease of the bandwidth, the splitting

actually grows. The dimensionless splitting δi = ∆i/D obeys the scaling equation

(3.4.21)
∂δi(x)

∂x
= (1− 2

∑

j 6=i
Tr[(vi(x))2])δi(x)

79



which, when linearized about the fixed point, integrates to give

(3.4.22) δi(x) = δi(x0)(
Max{x, T/D,E/D}

x0
)1− 2

M .

We can obtain the same result from Eq. (3.4.20) by simply dividing by D. As we have discussed in Sec.
3.2.1, all the logarithmic integrals have an infrared low energy cutoff which is either the temperature or
the renormalized value of the splitting E.

We shall demonstrate using the NCA and conformal theory that Eq. (3.4.22) gives the correct
scaling to leading order in 1/M , as we would expect, for the local field ∆i. This result may also be

obtained within the Bethe-Ansatz approach.
Relevance of fields breaking channel symmetry. Channel symmetry breaking is practically ef-

fected by applying a field that couples to the electron channel index so that the exchange integrals are
split, i.e., the couplings for different channels are no longer precisely identical. The magnetic field does

not directly appear in the theory, but the magnetic field splits the Fermi energy for up and down spin
electrons. Thus the densities of states at the Fermi energy for the different spins can differ by the scale

of µBH/EF ' 10−5 for a 1 T field, which results in an equal fractional difference in the dimensionless
exchange couplings. Such a small change is practically negligible. Nevertheless, we shall investigate the
effects here.

For simplicity, we shall present the stability analysis for this perturbation to next leading order in
the M=2 isotropic case, although we realize that the analysis is somewhat questionable in this limit. We

will obtain the correct qualitative results as will be demonstrated when we discuss the non-perturbative
approaches, but our exponents characterizing the growth of the perturbation will be incorrect.

The equations in the isotropic limit for the couplings in the two channels are

(3.4.23)
∂vσ
∂x

= 4(vσ)2 − 8vσ [(v↑)
2 + (v↓)

2]

where the coupling subscript is the channel label, which is the real spin of the conduction states. This

equation follows from observing the decoupling of channel labels in the leading order diagrams, and
the coupling of channel labels through the conduction electron intermediate state bubble in the next
leading order diagram. Linearizing these scaling equations about the fixed point v↓ = v↑ = v∗ = 1/4,

we find the scaling equations

(3.4.24)
∂(vσ − v∗)

∂x
= −(v−σ − v∗) = −δv−σ

which are easily solved to give

(3.4.25) δv± = (δv↑(x)± δv↓(x)) ≈ (δv↑(x0)± δv↓(x0))(
x

x0
)±1

where we have assumed that δv↑(x0) > 0, δv↓(x0) < 0. What this solution implies is that the sum of
the linearized couplings tends to zero as we rescale, which implies that as v↑ grows (towards strong
coupling, where the perturbative analysis surely breaks down) then v↓ shrinks towards zero. This pic-

ture is completely confirmed by the numerical renormalization group, conformal field theory, and NCA
analyses. The physical view is that the stronger coupling tends towards an ordinary Kondo effect, while

the weaker coupling tends towards the zero coupling fixed point. What we shall see is that at zero
temperature, this rescaling behavior is discontinuous.

(f) Numerical integration of scaling equations

Fig. 27 illustrates the results for the solution of the next leading order scaling equations

(3.4.12,15) with vz(0) >> vx(0), vy(0) = 0 and M = 2. The right most curves in Fig. 3.11.a) which
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Figure 27: Scaled couplings vi (i = x, y, z) and energy splitting ∆ as a function of kBT/D for M = 2.

The initial vx coupling is 0.2 and the initial ratio vx/vz is 10−3. The narrow (heavy) lines represent
the first-(second-)order scaling. T IK and T IIK are the Kondo crossover temperatures in the first- and

second-order scaling, respectively. The dotted line is the asymptote of the coupling in the first-order
scaling. The heavy lines for vi are obtained analytically in second-order scaling. The region where

vx ≈ vz does not hold is not represented. The ratio of the scaled and initial energy splitting ∆/∆(0)
is calculated for the symmetridc TLS by using Eq. (3.4.13). The index of x for ∆x is dropped. From
Vladár and Zawadowski [1992].

blow up at the vertical line marked T
(i)
K correspond to the leading order equations. The other two curves

which show a rise to strong coupling on the next leading order Kondo scale

(3.4.26) T
(II)
K ≈ D0(

vx(0)

4vz(0)
)

1
4vz(0) [vx(0)vz(0)]

M
4

go all the way into the fixed point at v∗ = 0.25 smoothly. In the vicinity of T
(I)
K , the couplings

vx(x), vy(x) are nearly equal in magnitude. We should contrast Eq. (3.4.26) which corresponds to the

fully anisotropic Kondo limit solved by Shiba [1970] with the isotropic limit result

(3.4.27) (T
(II)
K )iso = D0(v(0))

M
2 exp[− 1

4v(0)
] .

The spontaneous tunneling matrix element in the extreme anisotropic limit is strongly renor-
malized downwards, as seen in Fig. 27(b). While the ∆z value is also renormalized downwards, the

reduction is less severe since the downward renormalization is driven by the weaker, planar couplings.
In the limit of full isotropy, the downward renormalization would be independent of direction and ∆z

would thus be strongly reduced in absolute value.
(g) Dimensionality of the fixed point Hamiltonian

In Sec. 3.3.3, it has been shown using the leading logarithmic approxmiation that the structure

of the matrices V i
αβ (i = x, y, z) at the strong coupling fixed point is such that they are proportional

to a representation of SU(2). (Note that the leading logarithmic approximation generates a flow to the
strong [infinite] coupling fixed point regardless of channel number since the channel number enters only

at next leading logarithm level.) The following questions remain, however, without answers from this
discussion:

1) Are these fixed point matrices reducible representations or always irreducible, and
2) Are there any restrictions on the dimensions of the irreducible matrices? It has been argued following
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Vladár and Zawadowski [1983a] that at the beginning of scaling a two-dimensional subspace emerges

due to the scaling. Nonetheless, it could still happen that going beyond the leading logarithmic order of
scaling could lead to a larger relevant subspace. In the limit of large number of channels, this possibility

has been ruled out by Zaránd [1995].
These questions cannot be generally answered from the scaling analysis and require non-

perturbative resolution from such methods as conformal theory and Bethe Ansatz. To get at some
more rigorous understanding, let us first assume that there is no additional symmetry which could
influence the dimension of the subspace. Furthermore, in order to make a rigorous statement, let us

(artificially) increase the channel number from M = 2 to M >> 1 so that the 1/M expansion is valid
(this is discussed more extensively in Sec. 3.4.4). In this case the scaling equations given by (3.4.12)

are correct and the higher order corrections on the RHS are controllably neglected as they contribute
in higher powers of 1/M . By proceeding in the scaling, the 2-D subspace bcomes dominant and con-

tributed to the second term of Eq. (3.4.12), which slows down scaling. In this spirit, Zaránd [1995] was
able to show that this next leading term suppresses the conduction orbital states with small amplitude

coupling finally only a 2-D subspace remains.
This result can be summarized as follows: in the two-channel TLS Kondo problem we conjecture

based upon the analysis of Zaránd [1995] that the original number of conduction orbitals in the matrices
V i
αβ is reduced to 2 at the fixed point. Thus the orbital coupling matrices must be simple Pauli matrices

at the fixed point. On the other hand, the impurity spin matrix usually is also reduced to a two-

dimensional matrix. Thus we complete the mapping to the spin 1/2 two channel Kondo model for this
TLS model given that the two-channel degeneracy is required by time reversal.

3.4.2 TLS Model Including Excited Atomic States

The TLS is defined by truncating the excitation spectrum of the atom in the double well keeping only

the two lowest levels (see Fig. 6). This projection certainly gives the nature of the low temperature
behavior correctly, but the higher level may contribute to the renormalization of the prameters of the

truncated system. Similar renormalization has already been discussed for the original and orbital Kondo
effect where the influence of the higher states split by the crystalline electric field is discussed in Sec.

3.3.c. Such renormalization can be crucial concerning the value of the Kondo temperature T
(II)
K given

by Eq. (3.4.26) which is very sensitive to the initial parameter values. We postpone a more detailed

discussion related to the ex periments to Sec. 7.1. The following theoretical discussion is based on the
work of Zaránd and Zawadowski [1994a,b].

For simplicity we treat the situation where all the higher excitations are extending over both
minima of the double well. Instead of the left and right states, the exact states are introduced here

which are symmetric and antisymmetric in the case of a symmetric double well. (See Fig. 28). All of
these states are orthogonal, and thus there are no spontaneous transitions between them. The electron

density interacting with them is not, however, homogeneous in real space and thus the interaction with
the electrons can induce transitions between the states of the double well.

The wave functions and energies are denoted by φi and εi (i = 1, 2, ....) with ε1 < ε2 < ε3.....

The generalized version of Hamiltonian (3.3.3) with creation operators b†i and pseudo-particle chemical

pote ntial λps is

(3.4.28) H0 =
∑

i

(εi − λps)b†ibi .

The electron-tunneling center interaction is

(3.4.29) Hint =
∑

i,j,k,k′ ,σ

V i,j
k,k′b

†
ibja

†
kσak′σ
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Figure 28: The double potential well is shown by the solid line. The linear combinations of the lowest
left and right states are presented by heavy solid and dashed lines. Two further excited states labeled
by 3 and 4 are also represented by heavy lines. The light lines represent the level of zero amplitudes of

the wave function.
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Figure 29: The different regions of the scaling. The excited states with energies E3, E4 are gradually
frozen out.

where the matrix element in the scheme proposed by Zaránd [1993] is

(3.4.30) V i,jk,k′ = U(~k − ~k′)
∫
drexp[−i(k− k′)r]φ∗i (r)φj(r)

which is a generalization of Eq. (2.2.14.a,b). Later notation ρ0V
i,j
k,k′ = vi,j

k̂,k̂′
is introduced indicating the

dependence only on the direction of the momenta in the vicinity of the Fermi surface.
The first relevant vertex correction is just a straightforward generalization of Eq. (3.3.11) which

has the form

(3.4.31) T k,l
k̂1,k̂2

= vk,l
k̂1 ,k̂2

+

∫
dSF (k̂)

SF

∑

i

ln(
max(|εi|, T, |ω|)

D
)[vk,i

k̂1,k̂
vi,l
k̂,k̂2
− vi,l

k̂,k̂1
− vk,i

k̂,k̂2
] .

Note that the factor of 2i is missing compared with Eq. (3.3.11) since we have not assumed a Pauli

spin algebra here. The scaling equation is just a generalization of Eq. (3.3.13) given by

(3.4.32)
∂vkl

k̂1 ,k̂2

∂ ln(x)
= θ(D′ − |Ei|)

∫
dSF (k̂)

SF
[vk,i
k̂1 ,k̂

vi,l
k̂,k̂2
− vi,l

k̂,k̂1
vk,i
k̂,k̂2

]

where the θ-function assures that only those states contribute to the sum which are below the scaled

bandwidth D′ and Ei = εi − ε1. As a result of these restrictions at a given energy or temperature
only those states play a role in dynamics for which Ei < kBT and the others just contribute to the

renormalization of the remaining effective coupling constants (see Fig. 29).
The solution of these scaling equations were studied numerically and analytically in great detail

(Zaránd and Zawadowski [1994(a,b)]). The Kondo temperature can be enhanced or reduced depending
on the values of the prameters, but for most of the physically interesting set of couplings, the Kondo

temperature is enhanced by a factor of 2-3 orders of magnitude.
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Figure 30: The left and right states of the TLS with the first excited state with energy E3. The double

line represents the heavy particle and the electron with solid line induces the transitions.

Just to emphasize the role of the excited states, the scaling calculations were performed under
the fictitious assumption that the direct assisted tunneling between the left and right positions are zero,

so that for the unrenormalized couplings V 12(0) = V 21(0) = V 12 = V 21 = 0 holds. Even in this case,
the large enhancement of the Kondo temperature is reduced only by a factor of 0.6-0.7, which implies

the excited levels are playing a crucial role in the dynamics.
This result is of special importance. To understand it, consider one of the dominant processes

included in the scaling analysis in which the electron hits the atom, say, on the left and virtually excites
the atom to, for example, the third level (see Fig. 30). That level covers both the left and right minima,

so that from there the atom can fall into the right minimum with the assistance of the same electron.
This result normally follows from the behavior of the matrix elements given by Eq. (3.4.29), which in

the limit kF r << 1 are the dipole matrix elements between the wave functions ψi of the atom. The
interesting new feature is the following: Neglecting the overlap between the left and right wave functions,
the induced effective electron assisted matrix elements are less sensitive on the distance despite the fact

that the dipole matrix element even increases with the distance; for too large a distance the original
expression must be used in favor of the dipole approximation. This has the great advantage that the

direct hopping which is neglibible in this case does not split the ground state and first excited states;
nonetheless, the excited state assisted tunneling is large enough and actually grows with distance as

shown in Table 8. Previous to this analysis, any increase in the assisted matrix element was associated
with the increase of the direct hopping and thus the splitting, which of course mitigates the possibility

of observing the non-trivial fixed point physics. To obtain a sufficiently large Kondo scale together with
a sufficiently small level splitting required in the most optimistic scenario a delicate balance of these

effects. The inclusion of the excited levels now makes the observability of a TLS with sufficiently large
Kondo scale and negligibly small splitting appear quite plausible.

The importance of the broad barrier is demonstrated by the data in Table 8, where the following

parameters are chosen for the square well potential discussed in App. I and shown in Fig. 129: 1/2mR2
0 =

50K, VB = 490.5K, and the width of the barrier is given by the parameter α as d = 2r0α. Table 8 clearly

shows that the Kondo temperature in the leading order is strongly reduced in the next to leading order
due to the factor (vxvz)1/2 of Eq. (3.4.26). The enhancement due to the excited states is essential. The

second excited state has a minor effect due to the reduced coupling strength arising from the presence
of more wave function nodes. The splitting ∆ is negligible in the broad barrier of interest here.

3.4.3 Formation of the TLS double well: Einstein phonon model

Concerning the anomalous behavior of the A15 compounds, P.W. Anderson and C.C. Yu proposed a

model to clarify the role of the strong electron-phonon interaction in the formation of a double well
potential for a TLS. The basic idea is similar to the physics of the Jahn-Teller distortion. A single well
potential for a single atom can be deformed by the strong electron-phonon interaction to form a double

well potential. Thus the coupling to the electronic heat bath is responsible for the TLS formation similar
to the insulating case where the coupling to the phononic bath plays this role (Sethna [1981]).

The idea has recently been reinvestigated by H. Kusunose and K. Miyake [1996], where it is
assumed the atomic motion is in a simple parabolic potential which can be regarded as a localized

84



α 1.0 1.5 2.0 2.5

E1 331 277 255 245

E2 540 406 337 330

∆0 4.47 0.53 0.063 0.0076

vz -0.061 -0.086 -0.112 -0.142

vx 0.0005 0.0009 0.0013 0.0018

T̃K 7.16 ×10−7 0.00187 0.152 2.46

T̃
(1)
K 9.14× 10−9 0.00342 1.29 67.2

T̃
(2)
K 1.97× 10−7 0.005 1.29 65.1

T̃
(1)
K |vx=0 2.3×10−7 2.02×10−5 0.41 44.9

TK 4.13×10−9 1.64×10−7 0.00186 0.0343

T
(1)
K 3.05×10−11 3.31×10−5 0.026 2.76

Table 8: Kondo scales for a TLS model including excited states. Calculations are performed for a
symmetric double square well potential (c.f. Appendix I) with a variable width following Zaránd and

Zawadowski [1994a,b]. The width of the double well barrier is controlled by the parameter α = r0/2d,
where r0 is the width of an individual well and d the barrier thickness (See Fig. I.1). Plane wave
conduction states are assumed. All energies are measured in K. The notation is as follows: E1(E2)

is the energy of the first (second) excited state. ∆0 is the splitting of the lowest TLS states due to
spontaneous tunneling through the square barrier. vz, vx are the bare dimensionless TLS coupling

constants which measure the interaction strength with the ground doublet levels. T̃K is the Kondo

scale in the leading logarithmic order neglecting excited states. T̃
(1)
K is the Kondo scale in the leading

logarithmic approximation including the first excited state, and T̃
(2)
K includes both first and second

excited states in leading logarithmic order. T̃
(1)
K |vx=0 is the leading logarithmic estimate with the first

excited state kept but the bare vx artificially set to zero; this illustrates the strong effect of assisted
tunneling induced by virtual excitations to the first excited state. TK is the next leading logarithmic

approximation estimate without excited states, and T
(1)
K is the next leading logarithmic estimate with

the first excited state retained. We learn from these calculations that for sufficiently narrow barrier

(relative to the square well width) the excited states enhance the estimated Kondo scales significantly
(by as much as two orders of magnitude). and that the most crucial state to include is the first excited

state–the second excited state has small additional effect. With the additional states Kondo scales
within the correct order of magnitude of experiment to explain the resistance data on quenched metallic

point contact devices (Ralph and Buhrman [1992,1995], Ralph et al. [1994,1995], Upadhyay, Louie, and
Buhrman [1996]).
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Einstein phonon described by the Hamiltonian

(3.4.33) Hph = Ω(b†b+ 1/2)

on each site, where Ω is the phonon frequency and b† is the phonon creation operator. The phonon

operators are described alternatively in terms of a pseudo-fermion operator bn which annihilates the
state with n excitations, so we may write equivalently

(3.4.34) Hph = Ω
∑

n

nb†nbn .

Kusunose and Miyake truncated this model to the states n = 0, 1. For matrix elements involving
the atomic coordinate Q in the direction along the possible deformation (Z-direction) then the harmonic

oscillator wave functions for the n = 0, 1 levels are used. The atom electron interaction is similar to the
one given by Eq. (3.4.30). The n = 0, 1 states are even and odd under z reflection (z → −z). Then the

Hamiltonian (3.4.3) is expanded in r (in the notation of Kusunose and Miyake, Q = q(b+ b†)) keeping
only the first and second order terms. In order to mimic the left and right states for this starting

parabolic potential, the states with pseudo-spin ↑, ↓ are introduced as

(3.4.35) b↑ =
1√
2

(b0 − b1) , b↓ =
1√
2

(b0 + b1) ,

and then all the operations for the atomic states can be described by Paul operators acting in the

pseudo-spin space. Using Eq. (3.4.30), the interaction V ij
kk′ can be calculated and decomposed into

Pauli matrices in the pseudo-spin states in the ij space of conduction partial waves. The Hamiltonian

then takes the form described in Sec. (2.1.2)b, with a spcial initial value of the couplings vz, vx, with
vy = 0. Kusunose and Miyake then apply the renormalization group in the form described in Sec.

3.4.2. When the relatively large value of the initial splitting ∆x ' Ω scales to smaller values, this
is interpreted as the formation of a TLS by effecting smaller direct coupling and overlap between the

states with pseudo-spin ↑, ↓. It can be seen that the formation of the two-channel Kondo ground state
requires very special initial parameters as has been discussed in Sec. 3.4.1.f. Kusunose and Miyake do
not solve this problem by starting with larger overlaps.

This scheme represents a good starting point for further work, but for a more realistic and
elaborate theory it will likely be necessary to include the higher excited states n ≥ 2 and perhaps the

continuum states must also be taken into account (see Sec. 3.4.2). More states may lead to better
localization of the atom in the left and right wells and smaller overlap for the lowest left and right

states.

3.4.4 Next Leading order Scaling for Model U4+ and Ce3+ Ions

(a) Kondo scale in the U4+ case

As derived above in the isotropic limit, the Kondo scale in this case where the bare couplings

are isotropic is, for the quadrupolar Kondo model

(3.4.36) T
(II)
K = D0|g| exp(

1

g
)

with g = 2N(0)V 2/ε̃f .

We shall consider the Ce3+ case separately.

(b) Stability analysis for U4+ ions

86



c

d

a
a

3 3

3 3

b

b

Figure 31: Next leading order scaling corrections to the quadrupolar Kondo model with two Γ8 quartets.

The indices a, b, c, d refer to the possible 8, 8′ labels derived from the two conduction electron Γ8 quartets
which come from the j = 5/2, 7/2 partial waves (see 23 for the leading order diagrams). The diagram
on the left is a vertex correction, while the diagram on the right gives the self energy renormalization

which must be subtracted as discussed in Sec. 3.4.1.

As in the discussion above for the TLS, we anticipate a non-trivial fixed point for the quadrupolar
Kondo effect of a U4+ ion. This fixed point is stable against anisotropic exchange, and destabilized by

applied spin field (precisely analogous to the relevance of the TLS splitting and spontaneous tunneling
discussed above) and applied channel field (splitting of the exchange integrals). In these cases, all of
the analysis carries over completely from the TLS discussion, modulo the change of sign of coupling

constants and the use of spin 1/2 matrices.
We also would like to show that the scaling to a two-fold degenerate conduction pseudo-spin

space discussed in the leading order scaling analysis (Sec. 3.3.3.b) also carries through in next leading
order. We employ the same notation as Sec. 3.3.3.b. The generalization of Eqs. (3.36.a-c) in next

leading order follows from the renormalized parquet diagrams of Fig. 31 and gives

(3.4.37.a)
∂g8,8

∂x
= −[g2

8,8 + g2
8,8′]− g8,8[g2

8,8 + g2
8′,8′ + 2g2

8,8′]....

(3.4.37.b)
∂g8′,8′

∂x
= −[g2

8′,8′ + g2
8,8′]− g8′,8′[g

2
8,8 + g2

8′,8′ + 2g2
8,8′]....

(3.4.37.c)
∂g8,8′

∂x
= −g8,8′[g8,8 + g8′,8′]− g8,8′[g

2
8,8 + g2

8′,8′ + 2g2
8,8′]....

By taking the difference of the first two equations and comparing to the third, we again conclude that

(3.4.38) g8,8′(x) = c0[g8,8(x)− g8′,8′(x)] ,

meaning that the integration constant c0 = a8a8′/(a
2
8 − a2

8′) once again. Now, with a little algebra it is

possible to show that

(3.4.39) [g2
8,8 + g2

8′,8′ + 2g2
8,8′] = [(g̃)2 + (g̃′)2]

so that the scaling equations for g̃, g̃′ are

(3.4.40.a)
∂g̃

∂x
= −(g̃)2 − g̃[(g̃)2 + (g̃′)2]

and

(3.4.40.b)
∂g̃′

∂x
= −(g̃′)2 − g̃′[(g̃)2 + (g̃′)2] + .......

These equations admit the non-trivial fixed points g̃ = −1, g̃′ = 0, g̃ = 0, g̃′ = −1 (both two-

channel fixed points) and g̃ = g̃′ = −1/2 which is a new non-trivial fixed point, which is the four-channel
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Figure 32: Next leading order vertex corrections for a Ce3+ ion with both f0 − f1 and f1 − f2 va-
lence fluctuations. Corresponding wave function renormalization factors must be subtracted as per the

procedure of Sec. 3.4.1, and in the case of Fig. 31.

Kondo model fixed point (the scaling equations and fixed point value are the same at this order). How-

ever, an analogous analysis to that of the channel field splitting applies here as well (see Sec. 3.3.3.b)
and we see that that the new non-trivial fixed point is unstable so that whichever coupling g̃, g̃′ is larger,
we will flow to the two-channel fixed point associated with that coupling. Then a linearized stability

analysis around, e.g., g̃ = 1, g̃′ = 0 shows that an added perturbation in g̃′ is irrelevant. Hence, even if
we begin with g̃′(0) 6= 0, if it is smaller than g̃(0) we will quickly flow to the subspace where only g̃ is

present. In the present model, since we begin with g̃′(0) identically zero, we will always simply select
out the bonding combination of Γ8 orbitals and flow to the two-channel fixed point associated with that

combination.

(c) Next leading order analysis for Ce3+ ions

For Ce3+ ions, the different exchange strengths for the Γ7 partial waves and the Γ8 partial waves
couple at third order, as shown by the diagrams in Fig. 32, and the resulting scaling equations are (Kim
[1995], Kim and Cox [1995,1996,1997])

(3.4.41.a)
∂g7

∂x
= −g2

7 −
1

2
g7(g2

7 + 2g2
8)

and

(3.4.41.b)
∂g8

∂x
= −g2

8 −
1

2
g8(g2

7 + 2g2
8) ,

with g7,8 = N(0)J7,8.
These equations have three possible low temperature behaviors:(i) When g7 → ∞, g8 = 0 then

we get the normal Kondo behavior for the Ce3+ ion. (ii) When g7 = g8 = −2/3, we obtain the three
channel Kondo fixed point. (iii) When g7 = 0, g8 = −1, we obtain the two-channel Kondo model fixed

point. In case (i), we see from the lowest order results (quadratic term in Eqs. (3.4.38.a,b)) that if we
start with |g7(0)| > |g8(0)| , g7 will grow more rapidly than g8 with initial scaling, so we conjecture
that we will flow to the normal Kondo fixed point. This is substantiated by the non-perturbative NCA

results we shall discuss in a later section. If we make g7 = g8 initially, we will remain on the g7 = g8 line
throughout the scaling and thus flow to the three channel Kondo fixed point at low temperatures. This

fixed point is unstable against any deviation from the equality of the couplings: the linearized stability
analysis shows that if one applies δg7 < 0, δg8 > 0 one will begin to flow towards the normal Kondo

fixed point, while reversing the inequality will drive one to the two-channel fixed point associated with
the Γ8 coupling. Finally, if we begin with initial couplings such that |g8(0)| > |g7(0)|, we will flow to

the two-channel fixed point with g7 = 0, and any added g7 coupling is irrelevant about this fixed point
within the linearized analysis. These results are summarized in the schematic flow diagram depicted in

Fig. 33.
The dividing criterion on the dimensionless couplings corresponds to the comparison of the

quantum fluctuation weights of f0, f2 in the ground state. Using second order perturbation theory, one
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Figure 33: Multiplicative renormalization group flow diagram for the Ce3+ ion in next to leading order.
The horizontal axis is the dimensionless coupling of the Γ7 Ce3+ spin to the Γ7 conduction states, and
the vertical axis is the dimensionless coupling strength of the Γ7 Ce3+ spin to the Γ8 conduction quartet.

Along the line g7 = g8, the three channel fixed point is stable. A slight deviation from this behavior
gives rise to the two-channel fixed point (assuming |g7| < |g8|), or the single channel strong coupling

fixed point (|g7| > |g8|). For more details, see Kim [1995], Kim and Cox [1995,1996,1997].

can easily show that the lowest order estimate for the occupancy deviation of f1 towards f0 is ' g7(0),
and similarly for f1 towards f2 the occupancy deviation is ' 2g8(0).

(d) Next leading order scaling for Ce3+ ion with channel spin/spin coupling included.

Extending the leading order analysis of the last section, we follow Kim (Kim [1995]; Kim and

Cox, [1996]; Kim, Oliveira and Cox, [1996]) and develop next leading order scaling equations for the
Ce3+ model in which we set couplings to the Γ7 partial waves to zero and retain only the J8, J̃8 couplings
of Sec. 2.2. The development of the next leading equations follows precisely that of the preceding

subsections, and we obtain

(3.4.42)
∂g8

∂x
= g2

8 −
1

2
g̃2

8 − g8[g2
8 + g̃2

8]

and

(3.4.43)
∂g̃8

∂x
= −g8g̃8 − g̃8[g2

8 + g̃2
8] .

These equations have four fixed points:

(i) g8 = g̃8 = 0 (the weak coupling fixed point)
(ii) g8 = 1, g̃8 = 0 (the two-channel SI = 1/2 fixed point)

(iii) g8 = −1/5, g̃8 = 2/5 (SI = 1/2, Sc = 3/2 fixed point)
(iv) g8 = −1/5, g̃8 = −2/5 (SI = 1/2, Sc = 3/2 fixed point)
A linearized analysis about the fixed points (ii-iv) confirms their local stability in the g̃8 − g8 plane,

and the non-trivial character of the fixed points (iii, iv). As indicated in the discussion of leading order
scaling, the special properties of the lines g8 = ±g̃8/2 are maintained due to the special symmetry

properties of the system along these lines. A complete schematic scaling diagram is displayed in Fig. 34
.

3.4.5 Physical Properties in the 1/M Expansion

According to the suggestion of Nozières and Blandin [1980], for large channel number M >> 1,

the fixed point vx = 1/2M (see Eq. (3.4.16)) is in the weak coupling limit. As a result, the analytic
renormalization group calculations based on a perturbative expansion will be perfectly adequate to treat
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Figure 34: Multiplicative renormalization group flow diagram for Ce3+ ion when channel spin/spin cou-

pling is included (and coupling to the Γ7 conduction space is set to zero). In this case the Γ8 conduction
quartets can either couple as two-spin 1/2 objects to the Γ7 Ce3+ conduction quartets (dimensionless

coupling strength g8), or can couple through a mixed spin/channel spin tensor (dimensionless coupling
strength g̃8). This leads to competing fixed points. The fixed point for positive g8 and zero g̃8 is the

usual two-channel one. The fixed points for negative g8 and finite g̃8 are such that the Γ8 manifold acts
as a single channel spin 3/2 band coupling to the spin 1/2 impurity. For further details, see Kim [1995],
Kim and Cox [1996], and Kim, Oliveira, and Cox [1997].

the properties at all temperatures. The physics may be computed in an expansion of powers of 1/M .
This contrasts to the conformal field theory which is only applicable in the low temperature regime.

Furthermore, within the perturbative renormalization group treatment, dynamical quantities may be
computed as well which is beyond the scope of the Bethe-Ansatz method. (We remark that the large
N,M NCA approach discussed in Sec. 5.1 also can treat all properties.) Thus, the 1/M expansion gives

two different types of information:
(i) The result can be compared to the conformal field theory approach to check the assumed conformal

invariance and related hypotheses;
(ii) The method can be used to evaluate physical properties in the entire temperature regime.

The actual performance of perturbation theory to higher orders in the coupling constant and
the feedback into the renormalization group equations are very technically involved matters, and so we

shall quote only some of the main results from the literature. The interested reader may turn to the
original articles for further detail.

Muramatsu and Guinea [1986] were the first to make use of the 1/M expansion, and Gan, Andrei
and Coleman [1993] carried out a more extensive set of calculations up to the next to leading logarithmic
order The former work is based upon application of the bosonization technique developed by D.J. Amit,

Y.Y. Goldschmidt, and G. Grinstein [1980], while the latter authors used a path integral method. The
latter authors assumed an isotropic exchange and spin 1/2 impurity and conduction spins, as we shall

throughout this subsection. We shall refer to the work of Gan, Coleman, and Andrei henceforth.
In the vicinity of the weak coupling fixed point, the effective exchange coupling g behaves as

(see Eq. (3.4.18))

(3.4.44) g(x) =
1

2M
+ [g(0)− 1

2M
](
x

x0
)∆

where

(3.4.45) ∆ =
2

M
(1− 2

M
)

as computed to the two leading orders by Gan, Andrei and Coleman [1993]. Assuming x measures the

frequency, this equation may be rewritten

(3.4.46) g(ω) = g∗ − ζ( ω
TK

)∆
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where to leading order ζ = 4/eM2, e the natural log basis, and TK = DgM/2exp(−1/g). Making use

of the linked cluster theorem, they obtain the free energy through order g4 and from this compute
the impurity contributions to the specific heat Cimp(T ), magnetic susceptibility χimp(T ), and zero

temperature residual entropy Simp(0). The results are

(3.4.47) Cimp(T ) =
3π2

2
ζ2∆[

T

Tk
]2∆

(3.4.48) χimp(T ) = [
Mζ

2
]2

1

T
[
T

TK
]2∆

(3.4.49) Simp(0) = ln 2− π2

2M2
.

The resulting Wilson ratio (the dimensionless ratio of susceptibility to specific heat coefficient) depends
on M as

(3.4.50) R = limT→0
χimp
Cimp

Cbulk
χbulk

=
M3

36
,

where Cbulk = 2Mπ2TN(0)/3 and χbulk = 2MN(0). The Bethe-Ansatz and conformal theory exact
results give χimp(T ), Cimp(T )/T ∼ T 2/(M+2)−1, which clearly agrees to within leading order in 1/M

in the exponent. For comparison of the amplitudes, Bethe-Ansatz and conformal theory give for the
entropy

(3.4.51) Simp(0) = ln[2 cos(
π

M + 2
)] ≈ ln 2 + ln[1− π2

2M2
] ≈ ln 2− π2

2M2
, M →∞

and for the Wilson ratio

(3.4.52) R =
(4 + M)(2 +M)2

36
≈M3/36 ,M →∞ .

Gan, Andrei and Coleman also computed several dynamical quantities. The electrical resistivity
is found to be

(3.4.53) ρ(T ) = [
3π2

4M2
]cρU [1−Mζ[

T

TK
]∆]

where c is the impurity concentration and ρU corresponds to unitary scattering off of the impurity. The

exponent of the next leading correction obtained by conformal theory is 2/(M + 2) which agrees to
leading order in 1/M with the above expression. Notice that the prefactor in square braces may be

interpreted as spin disorder scattering–computing the spin disorder scattering from an impurity with
dimensionless coupling strength 1/2M gives precisely this estimate. Clearly, this saturation of ρ(T )

contrasts with the T 2 saturation found in the conventional Kondo problem.
The lack of Fermi liquid behavior is made more concrete by studying the dynamic spin suscep-

tibility χ′′. It is found that the spin fluctuation power spectrum

(3.4.54)
χ′′(ω, T )

ω
≈ 3

4T
[
Max(T, ω)

TK
]2∆ Λ(T )

ω2 + Λ(T )2

where Λ(T ) = 4πT/M . In the single channel Kondo problem, a Lorentzian form works rather well to

describe χ′′/ω, but Λ ' TK . The vanishing width at low T found here contrasts with the local Fermi
liquid theory of the single channel model, and agrees with results found for the two- and three-channel

model using the NCA method (Kim [1995]; Kim and Cox [1995,1997]) (see Secs. 5.1,5.2).
We will further compare these large M results with the NCA (Sec. 5.1), Conformal Field Theory

(Sec. 6.1), and the Bethe-Ansatz (Sec. 7) later in the paper.
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Figure 35: Leading order multiplicative renormalization group diagram for the SU(N) × SU(M)

Coqblin-Schrieffer Model (N=spin degeneracy, M=channel degeneracy). The wavy line is an SU(N)
exchange vertex, the dashed line a pseudo-fermion line for the local SU(N) impurity spin, and the solid

line a conduction electron line (these carry both channel and spin).

3.4.6 Next Leading Logarithm Results in the SU(N)⊗ SU(M) Coqblin-Schrieffer Model

In this subsection we wish to just briefly point out that with a Hamiltonian of the form in Eq. (2.3.2)

is used, the origin of the next to leading order term in the β function has a different origin than in the
spin exchange form.

The first point is that at second order in the coupling strength, the only diagram possible is that
of Fig. 35. Note that we have drawn the exchange vertex as an extended wavy line. This diagram corre-

sponds to a dynamical dressing of the exchange interaction through pseudo-fermion particle-conduction
hole pairs. The contribution to the β function from this diagram is simply −Ng2 where g = N(0)J is

the dimensionless coupling strength.
The next point is that at third order in the coupling strength, no vertex correction can be written

down for the Coqblin-Schrieffer Hamiltonian. Thus, all corrections to third order arise solely from the
pseudo-fermion self-energy [Coleman, 1983]. When this is evaluated for the Coqblin-Schrieffer model
we find

(3.4.55) Σ(ω, T ) ≈ −MNg2ω ln(
D

max{ω, T})

and the resulting scaling equation for the coupling is

(3.4.56)
∂g

∂x
= −N [g2 + Mg3 + ....] .

If we solve for the Kondo scale at this order, we find

(3.4.54) TK = D|g(0)|γ exp(
1

Ng(0)
) .

Eq. (3.4.57) gives the fixed point coupling strength g∗ = −1/M ; the slope of the β function at the
fixed point is β′(g∗) = −N/M , so that g(x) ≈ g∗ + δg(x/x0)

−N/M . Defining γ = M/N , we see that

an expansion in 1/γ is possible about the fixed point. We see that the leading deviations from the
fixed point are irrelevant, since as x grows the second term shrinks. Clearly this results agrees with Eq.
(3.4.45) when N = 2, so the physics is the same as the more conventional Kondo exchange model in

that case.
From this perspective, it is clear that the NCA to be discussed in Sec. 5, which produces

self consistent analytic solutions for the self-energy of the pseudo-fermion and pseudo-boson of the
SU(N)⊗ SU(M) Anderson model is in some sense just the proper analytic continuation of the third

order scaling theory. The pseudo-boson self-energy should just be viewed in the Coqblin-Schrieffer
context as dynamical dressing of the exchange by pseudo-fermion particle, conduction-hole pairs (or

particle-particle, depending on which configuration the pseudo-boson resides in).
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3.5 Path Integral Approach to the TLS Problem

A separate approach which has been frequently used is the path integral method first pioneered by

Anderson, Yuval and Hamann (Hamann [1970], Yuval and Anderson [1970], Anderson, Yuval, and
Hamann [1970]). This approach yields renormalization group differential equations which have many
of the features of the leading and next leading scaling theory but are different in a number of respects

we shall make clear. The basic idea is to map the problem to a classical one dimensional Coulomb
gas problem. Renormalization group equations are then derived for this Coulomb gas. The screening

interaction V z gives rise to phase shifts which will be expressed in terms of the “charges” of the Coulomb
gas, while the tunneling processes give rise to “fugacities,” and may make contributions to the charges

as well. The contributins to the charges are determined by the electronic transitions combined with the
tunneling processes. In making this mapping, the local conduction green’s function is approximated

with a long time form which allows one to pick up leading logarithmic behavior to all orders in V z .
Hence, the path integral approach allows the phase shift to be introduced in the place of V z for terms

that are of the leading logarithmic order. However, the tunneling terms which give the fugacity must
still be treated perturbatively, and the long time approximation does not allow next leading logarithms
associated with V z to be picked up. Hence, the RG equations are something of a mix of leading and next

leading log theory treated both perturbatively and non-perturbatively. While it is a great advantage
to have V z treated non-perturbatively at least in leading logs, the phase shift is ill defined at the non-

trivial fixed point. Hence, the present method is useful for giving some overall view of the scaling flow
tendencies, and is not to be relied upon in the vicinity of the non-trivial fixed point.

The path integral approach to the TLS model is very elaborate and cannot be followed with-
out studying the original papers (Zawadowski and Zimányi [1985], Vladár , Zawadowski , and

Zimányi [1988a,b]). The present section provides only a brief outline by pointing out some of the cru-
cial steps and the additional complications in comparison to the treatment of the Kondo problem by

Yuval and Anderson [1970].
In the previous treatment of Secs. 3.3 and 3.4, the renormalization group was constructed by

determining the β-function up to the third order in perturbation theory. This is an internally consistent

approach in the weak coupling limit. In physical applications, however, the screening coupling vz can
be large while the other two remain small vx, vy << 1. This situation is thus a hybrid of weak and

strong coupling. A systematic treatment has been worked out in which the phase shift associated with
an arbitrarily large vz is combined with small vx, vy. The renormalization group is constructed by using

the path integral method only in the leading order of vx, vy and thus the next leading results given
by Eq. (3.4.12) cannot be reproduced exactly (the terms are similar, but there are differences in the

coefficients).
We now describe the main procedure following Anderson, Yuval, and Hamann (AYH) (Hamann

[1970], Yuval and Anderson [1970], Anderson, Yuval and Hamann [1970]). The TLS flips between two
states. Following each flip the screening cloud starts to build up. If the flips are far enough apart in
time (see Fig. 36 ), the the screening can be described by the long time shift. Assuming that the flips

are spontaneous, the problem was solved by Yu and Anderson [1984] using the AYH method, where
the free energy is constructed with the imaginary time path integral method. The electron variables

are integrated out so that the free energy only depends on the classical path of the TLS on the time
interval (0, β) (see Fig. 36). The interaction along the time axis between the flips is logarithmic as in

a one dimensional Coulomb gas. We note that Yu and Anderson also [1984] considered how the TLS
forms beginning with a single well potential and assuming strong electron-phonon coupling.

The current problem is more complex than that considered by Yu and Anderson, as discussed
by Vladár , Zawadowski , and Zimányi [1988a,b], since even if the electrons are integrated out the

partition function still depends explicitly on the particular choice of the interaction at the different
time points and the summation over the different realizations of those interactions cannot be given in
a closed form. The problem without assisted hopping was studied by Black and Györffy [1978] using

AYH techniques. In what follows, we will summarize some of the main ideas to give an overview to the

93



�
1

-1

0 � 1

� z

�
2 � 3 � n-1 � n

Figure 36: The classical path of the pseudo-spin σz is shown as a function of the imaginary time τ .

τ1, τ2.... are the times of the jumps.
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Figure 37: (a) The jumps of the quasi-spin are shown and the fugacities are also indicated. (b) A

particular choice of the connecting of the different fugacities by electron lines is shown.

work in the original papers, leaving the technical details to those texts.

For the sake of simplicity, assume that a linear combination of angular momentum channels is
used which diagonalizes the screening interaction so that V zmm′ = δmm′ (see Eq. 2.1.29 for the definition

of V zmm′ . Now, consider a the classical path σz(τ) of the tunneling atom shown in Fig. 36 where the states
of the atom are characterized by the Ising variable σz = ±1. (We note that the representation in terms

of these Ising variables may be effected directly by the discrete Hubbard-Stratonovich transformation
introduced by Hirsch [1983] and Hirsch and Fye [1986] [ Zhang, 1994]. If one considers only the V z

interactions, then different time dependent potentials V zm(τ) = V z
mσ

z(τ) are acting on the electrons of

angular momentum m. This potential is shown in Fig. 37(a). Each flip of σz is associated with either
a spontaneous flip or an assisted hopping process that turns the pseudo-spin either up or down, and

which must also be characterized by the angular momentum channels of the incoming and outgoing
electrons. In statistical physics, the probabilities of these hoppings are introduced as fugacities, which

we define here as

(3.5.1) y = ∆0τ0, y+
mm′ = V +

mm′ρ0, y−mm′ = V −mm′ρ0

where τ0 is a short time cutoff replacing the bandwidth, i.e., τ0 ' h̄/D0. Notice that even if the
interaction V z is diagonal, the interactions V ± need not be diagonal in the angular momentum indices.

In Fig. 37(b), we illustrate the electron hops by projection of the Ising variable flips down to interaction
points labelled by the angular momentum index. Note that the V z interactions are not represented by

points as they must be treated as time dependent potentials. These are constant between points along
the projection line.

The continuous electron lines which connect the interaction points in Fig. 37(b) can have either
up or down real spin. The continuous lines must form loops with the number of loops depending on the

way the connections between points are made.
Let us first consider the effect of the time dependent field on an electron in angular momentum

state m. In the presence of the potential V zm(τ), the Dyson equation of the one electron Green’s function
is solved. Applying the technique of Nozières and de Dominicis [1969], the Green’s function depends
on the time positions τi of flip i. The on-site Green’s function in angular momentum state m has the
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form for long times |τ − τ ′| >> τ0 (where τ0 is a short time cutoff)

(3.5.2) Gm(τ, τ ′) =
ρ0

τ − τ ′ cos2 δµ exp[
∑

i

cmi ln |τi − τ
′

τi − τ
|] .

The denominator (τ − τ ′)−1 is due to the long time approximation of an unperturbed electron leaving
and arriving at the TLS. The phase shift δm is used instead of V z

m with

(3.5.3) δm = −tan−1(πρV zm) .

The coefficients of c
µ
i are introduced to indicate whether the spin flips up or down at flip time i, so that

(3.5.4) cµi =
δµ(τi +O+)

π
− δµ(τi − 0+)

π
.

Calculation of the part of the electron line contribution to the diagram of Fig. 37(b) from the
exponential factor on the right hand side of Eq. (3.6.3) gives a result independent of the way in which

the different interaction points are connected. This does not hold for the products of the first factor
1/(τ − τ ′). Anderson and Yuval [1970] noticed that for a given channel M the sum of the various

contributions of the products of those factors forms a Cauchy determinant of order N which is

(3.5.5) det(τi − τ̄j)−1 =

∏
i<i′(τi − τ ′i)

∏
j>j′(τ̄j − τ̄ ′j)∏

ij(τi − τ̄j)

where τ1, τ2, ....τN and τ̄1, τ̄2, ...τ̄N are the time orderings of the times where the electron is created and

annihilated, respectively. This is valid only if the electrons are created and destroyed at different times
which we assume for the time being.

With this assumption, the partition function can be written in the form of a sum over config-
urations which we explain presently. The interaction points τi are on the imaginary time axis in the

interval (0, β) as shown in Fig. 37(a) . Each point is associated with one of the fugacities y, y±mn. (There
are other fugacities yz, yz± generated for technical reasons we shall not discuss here.) That association

is called a configuration {α}. If the fugacity descibes the assisted process, the the angular momentum
indices of the outgoing and incoming electron lines (m,n) must also be added, which forms another

configuration {m,n}. Finally we need a combinatorial factor R = ±1 which is defined in the original
paper of Vladár , Zawadowski , and Zimányi [1988a]. The resulting partition function is summed over
loops of length N and the configurations, giving after much work the result

(3.5.6) Z =
∞∑

N=0

(−1)N
∑

{α}

∑

{m,n}

N∏

j=1

yjTrσ

N∏

i=1

[σ(αi)]

×τ−N0

∫ β

0
dτN ...

∫ τi+1−τ0

0
dτi.....

∫ τ2−τ0

0
dτ1R exp[

∑

i<j

~Ci · ~Cj ln |τi − τj
τ0
|]

where the real spin degeneracy has been set to 1 for the moment for simplicity. The time τ0 ∼ D−1

serves as a short time cutoff for the problem. The matrices σ(αi) are σ+, σ−, σz at a given time point for

the fugacity configuration {α(τi)} depend on whether the TLS pseudo-spin is flipped up,flipped down,
or does not change. The vector “charge” ~Ci has components indexed by the angular momentum label
m and is given by

(3.5.7) Cim =
[δm(τi + 0+)− δm(τi − 0+)]

π

for spontaneous tunneling, and

(3.5.8) Cim =
[δm(τi + 0+)− δm(τi − 0+)]

π
+ δm,m − δm,n
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for assisted tunneling, with the index pair m,n associated to the charge. (For technical reasons in the

initial papers of Vladár , Zawadowski , and Zimányi [1988a,b] charge matrices were used instead of
vectors in order to avoid the diagonalization of V z

mn.) The phase shifts are due to the exponents in Eq.

(3.5.2), while the Kronecker delta terms take into account the determinants. Note the analogy to the
1D Coulomb gas with a logarithmic interaction; the vectors ~Ci take the place of the charges.

Clearly at this point a great complication has occured relative to the ordinary spin Kondo
problem. In the latter case the configurations {α} and {m,n} don’t occur because the spin flips occur
in a simple alternating way (+-+-+-....). Because of this, the more complex charge factor of Eq. (3.5.6)

is simply replaced by (−1)i−jδ/π in the ordinary Kondo problem.
A second complication is even more serious. It can happen that at a time point τi of an assisted

tunneling process, the electron is annihilated and created with the same angular momentum index
m = n. In that case, τi = τ̄i, so a divergence appears in the expression of the Cauchy determinant

in Eq. (3.5.5). The divergence can be eliminated by the short time cutoff τ0, by splitting the time of
annihilation and creation by τ0 (i.e., as τi = τ̄i + τ0). This complication results in a separate treatment

of the Hartree-Fock (HF) terms in which a single electron line is attached to the aforementioned time
point. This leads to the introduction of HF fugacities.

The main consequence of this complication is that a charge at time τj can interact with two
charges at the points τ̄i and τi = τ̄i + τ0. Since the interaction of the 1D Coulomb gas is logarithmic,
the following expression will appear in the sum over interaction terms:

(3.5.9) ln |τj − τi + τ0

τ0
| − ln |τj − τi

τ0
| ≈ τ0

τj − τi

where |τi− τj | >> τ0. Thus the charge at point τj interacts with the opposite charges forming a dipole
at τi. Therefore, in the m = n case, dipoles must be introduced which lead to charge-dipole interactions.

For a complete discussion of all these complexities, we refer the reader to the original papers Vladár ,
Zawadowski , and Zimányi [1988a,b] where the complete expression for the partition function is given.

The derivation of the scaling equations follows a delicate and cumbersome procedure. The idea
is to eliminate the short time behavior in small steps or in other words to replace τ0 by τ0 + dτ0 where
dτ0 is the increment in the short time cutoff. In that case if a pair of flips are eliminated they must be

replaced by a single flip or an interaction without a flip. This leads to the essential renormalization of
the fugacities and the phase shifts.

Restricting to the case when only two angular momentum states are important but the channel
number (real spin here) is allowed to be arbitrary (M), the scaling equations are expressed in terms

of the phase shift δ, the fugacity for spontaneous tunneling y and the fugacity for assisted tunneling
ya where the m,n dependence of Eq. (3.5.1) is now removed by decomposing the fugacities in Pauli

matrices times the amplitude. The scaling equations are given by

(3.5.10.a)
d(δ/π)

d ln τ0
= 4y2

a(1− 2Mδ/π)− 2y2δ/π

(3.5.10.b)
dya
d ln τ0

= 4ya(δ/π)(1−Mδ/π)

(3.5.10.c)
dy

d lnτ0
= y(1− 4M(δ/π)2) .

These are similar to the scaling equations derived previously assuming noting that vx = vy and the

correspondence ∆0τ0 ≈ ∆0/D = y, and that to linear order δ = −πvz + O([vz]2). To within leading
logarithmic order and the expansion of the phase shift, they agree with the results from the multiplica-
tive renormalization group treatment (see Sec. 3.3.1). Considering the next leading order, some terms
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are missing in the scaling equations presented above. This means that this derivation is not completely

systematic, which can be traced back to the use of the long time approximation for the Green’s func-
tion. The other main difference from the scaling equations derived previously is that the spontaneous

tunneling occurs in (3.5.10.a) which describes the renormalization of the screening interaction. In the
multiplicative renormalization group treatment, the electronic phase space is reduced and the sponta-

neous tunneling only occurs as an infrared cutoff in the logarithmic integrals. That is the origin of the
difference in the scaling equations which has already occurred in the commutative model (see Black and
Györffy) [1978], and Black, Vladár , and Zawadowski [1987]).

We now want to discuss the most interesting features of the scaling equations (3.5.10.a-c). First,
ignoring the spontaneous tunneling in Eq. (3.5.10.a), we see that the phase shift renormalizes to the

value

(3.5.11) δ∗ =
π

2M

which seems to have some connection to the fixed point given by Eq. (3.4.16) if we expand the phase

shift to linear order in vz. However, we must remind the reader that at the non-trivial fixed point the
phase shift loses physical meaning since the projection to outgoing one particle processes is zero (see

Fig. 4 in Sec. 1, and Sec. 6.1.3). Clearly, however, the flow to a non-trivial phase shift (δ 6= 0, π/2) is
indicated by this procedure. The same result emerges from a Friedel sum rule estimate of the number of
electrons tied on average to the tunneling center, Z = 1 = 2Mδ/π. Indeed, for an infinitesimal applied

spin field in the two channel problem, the phase shift experienced by up and down spin electrons is
±π/4 (see Secs. 4.2,6.1.2). Next, if we consider the scaling of the fugacities, the primary results are

that: (i)ya increases if δ(0) < π/M , which is always satisfied for M = 2 since δ(0) < π/2 is assumed.
(ii) y increases if δ(0) < π/(2

√
M), but decreases otherwise hence giving localization to one well (y = 0)

if the condition is reversed (see Yu and Anderson [1984]). For more channels (M > 2), ya → 0 may be
the case so that localization in one of the potential wells occurs.

In a recent paper, Moustakas and D. Fisher [1995,1996] used the path integral approach to study
the commutative model of TLS (V z 6= 0, V x = V y = 0) with an additional potential scattering term at

the TLS site (see V 0
~k,~k′

in Eq. (2.17)). This problem has already been studied by Kagan and Prokof’ev

[1983]. Suppressing the spin indices, the interaction part of the Hamiltonian is written as

(3.5.12) H1 = V1(c†ece + c†oco) + V1(c†ece − c†oco) + V3σ
z(c†eco + c†oce)

where e, o refer to even and odd parity combinations of conduction states about the TLS center (see

Appendix II for a discussion of how to generate these states). Moustakas and D. Fisher [1995,1996]
pointed out that the presence of both V1 and V2 can be relevant in determining physical quantities

through a modification of the local conduction density of states and in the modification of states near
the band edges in the renormalization process. Indeed, one can sum up the diagrams involving the

one particle Green’s functions diagonal in the e, o indices (Zawadowski et al. [1997]). The associated
two spectral functions are smooth, but the density of states is depressed by the increase in bandwidth.

The remaining coupling V3 can be treated in a rotated representation of the TLS where −σx replaces
σz. Application of the multiplicative renormalization group shows that the resulting model belongs
to the commutative class, so that the coupling V3 remains marginal after making it dimensionless by

multiplying by the density of states that has been renormalized by V1, V2. In this formulation, no new
coupling is generated. The formulation of Moustakas and D. Fisher [1995,1996] using the path integral

approach derives a generalization of the scaling equations (3.5.a-c) by introducing an infinite number of
new couplings. Among them the assisted tunneling coupling V x is also generated by eliminating a close

pairing of a V2 potential scattering with a spontaneous hopping ∆0 as shown in Fig. 38 . This generates
an assited hopping term of the order of V2∆0 in lowest order. The serious consequence of this result

is that the induction of this interaction V x which fails to commute with V z changes the universality
class to the fully noncommutative model, away from the marginal line of fixed points associated with

V x = V y = 0.
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Figure 38: Diagram resulting in the generation of artificial interaction terms in the elimination scheme
(i). The heavy line represents the motion of the heavy particle. The artificial interaction is genrated by
the elimination of a spontaneous tunneling event ∆0 and a potential scattering close to it (V1,2). The

lines with arrows represent the conduction electrons.

Considering that essential differences arise between the results obtained by the leading loga-

rithms diagrammatic approach and the program of Moustakas and Fisher [1995,1996], the following
questions are raised:

(i) The introduction of the coupling V2 which breaks electron hole symmetry renders the V z = const.,
V x = V y = 0 line of fixed points unstable as mentioned above; assuming we start with bare V x = 0,

can we get close to the TLS two-channel Kondo fixed point?
(ii) There are two essentially different path integral approaches which may be adopted. In the space-

time scaling, one integrates out short regions of time between interaction lines. In the first approach,
only those times eliminated in the space-time scaling in which both ends are connected to electron
lines (Vladár ,Zawadowski , and Zimányi [1988a,b,c]. In the second approach of Moustakas and Fisher

[1995,1996], as discussed above, a spontaneous tunneling process combined with potential scattering
at short times generates an effective V x, even though there is an absence of interaction between the

dynamical degrees of freedom of the TLS and the conduction electrons. The question is which approach
generates the physical scaling equations, where the generated couplings can be directly used to calculate

the quantities of physical interest (e.g., the resistivity), since at most one approach can be correct unless
a mathematical equivalence is established.

We may answer the first question with assistance from symmetry considerations (Zawadowski et
al. [1997]). Consider a commutative model with V x = V y = 0, V z 6= 0, ∆z = ∆0 6= 0, and ∆z = ∆ = 0.

The Hamiltonian is invariant under the following combined symmetry operation:
→ Interchange the L,R indices of the tunneling TLS.

→ Apply electron-hole symmetry in both the e, o channels, viz., ce,o → c†e,o (where we have suppressed

spin indices). Note that without explicit spin dependence, we needn’t introduce the customary (−1)1/2−σ

factors because they cancel in pairs. (The electron-hole transformation is defined in this way where the

electrons and holes are at the same sector of the Fermi surface, and the density of states and couplings
are replaced by their values taken at the Fermi surface. That transformation is equivalent to one of the

transformations used by Affleck, Ludwig, and Jones [1995] (see Sec. 9.3.1). An additional symmetry is
that of time reversal, which gives cTe(o) = ce(o) and dTi = di, i = 1, 2, assuming that all the atomic wave
functions are real. Furthermore, all c-numbers are replaced by their complex conjugates under time
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reversal. The Hamiltonian of Eq. (3.5.12) is also invariant under that transformation. Finally, going

over to the left and right states defined by Eqs. (A.2.7a-b) of App. II, the symmetries discussed above
lead to the conservation of total number of electonrs separately for left and right states, as is pointed

out by Mostakas and Fisher [1995].)
It is clear that the spontaneous hopping interaction and the V z coupling are unchanged under this

transformation, as is the conduction band provided it begins particle hole symmetric. However, the
assisted hopping terms proportional to

σx(c†ece + c†oco)

and
iσy(c†oce − c†eco)

change sign under the transformation, as does any potential scattering (specifically the V 1, V 2 terms).

A dependence of fixed point stability on particle-hole symmetry is also found in the two-impurity one-
and two-channel Kondo models; see Sec. 9.3.1 and Affleck, Ludwig, and Jones [1995] for some details.

Now, clearly the marginal line of fixed points associated with this high symmetry Hamiltonian
is unstable if small V x and/or V y couplings are introduced that generate a flow towards the TLS

two-channel Kondo fixed point. We now demonstrate that any potential scattering leads to the same
instability by breaking the same symmetry. This also hinges on the non-zero spontaneous tunneling
term. A simple diagrammatic summation of multiple scattering processes results in the renormalization

of the local electronic density of states in both the even and odd channels giving

(3.5.13) ρe,o = ρ0[1 + αe,o
ε

E0
]

where αe,o ∼ V1 and V2 to leading order measures the asymmetry and E0 is of the order of the bandwidth.

We note that the e, o “bands” may have initial asymmetry as discussed in Appendix II (see also Sec.
9.3.2 on the two-impurity model).

In a diagrammatic renormalization group analysis the generation of the assisted hopping takes
place as suggested by Moustakas and Fisher [1995,1996], but at a lower order than in their approach,

namely, in the leading logarithmic order. Refer to the diagrammatic scaling analysis depicted in Fig. 39.
which displays second order vertex corrections which include one spontaneous hopping renormalization

of the internal TLS pseudofermion line. The contributions of the diagrams shown to the dimensionless
coupling vx = ρ0V

x are

(vz)2∆x{
∫ D

T

dε

ε2
ρ0(1 + α

ε

E0
)−

∫ −T

−D

dε

ε2
ρ0(1 + α

ε

E0
)}

which leads to

(3.5.14) δvx ' (ρeαe − ρoαo)(vz)2α(
∆x

E0
) ln(

D

T
)

where ρe(o), αe(o) may be calculated straightforwardly as an extension of App. II. The initial strength
of this generated interaction is very weak, as typically ∆x/E0 ' 10−5, vz(0) ' 0.2, and α << 1. Hence,
at T ∼ 1K, the generated dimensionless coupling strength would be of order vx ' 5 × 10−6, which is

very small. Below this temperature the generation of the non-commutative couplings will be stopped
due to the splitting ∆x ' 1K which serves as an infrared cutoff (see Fig. 40).

Thus the breaking of the artificial combined particle-hole symmetry by introducing V2 does
indeed render the marginal line of fixed points of the commutative model unstable as suggested by

Moustakas and Fisher [1995,1996]. However, we do not expect this symmetry breaking instability to
lead in parameter space to the vicinity of the TLS two-channel Kondo fixed point. Thus even with the

symmetry breaking present, it appears to be difficult to observe experimentally relevant consequences.
We now briefly return to question (ii) from above which concerns which path integral scaling

approach is appropriate (for more details see Zawadowski et al. [1997]). The free energy which is the
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Figure 39: Time ordered diagrams generating the assisted tunneling process in the presence of appro-

priate electron-hole symmetry breaking. The cross indicates a spontaneous tunneling between the two
positions of the heavy particle. The labels on the electron lines refer to the even and odd parity electron

channels with repsect to reflection through the center of the system.
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Figure 40: Sketch of the scaling trajectories of the TLS. The appropriate electron-hole symmetries
drives the TLS away from the marginally stable fixed line Vx = 0(∆1 = 0) towards the two-channel

Kondo fixed point. The scaling is stopped by the renormalized splitting, and the final ground state is
a Fermi liquid. The freezing out of the TLS is indicated by a light continuous line.

logarithm of the path integral can be computed by either approach, and demanding invariance of the
partition function (free energy) then leads to different scaling equations between the two methods. In

principle this is not a problem as it may correspond to a simple reorganization of variables. However,
when computing any physical quantity with the obtained renormalized couplings we must of course get

equivalent physical results if each method is correct. A check is whether the scaling equations can be
made to correspond to the diagrammatic method associated with the multiplicative renormalization

group (leading logarithms approximation) at the appropriate level of approximation. In this way it
has been shown that the approach in which only those time intervals are eliminated with endpoints
connected to electron lines gives the same scaling as the multiplicative renormalization group; phys-

ically inequivalent scaling equations are generated by the second approach of Moustakas and Fisher
[1995,1996]. The first space-time scaling method also has the feature in common with the multiplicative

RG that in a noninteracting TLS-electron system no new couplings are generated.
A more general discussion of the scaling trajectories in the model of Moustakas and Fisher

[1995,1996] was presented by Ye [1996e], applying bosonization methods to the problem. This will be
briefly discussed in Sec. 6.3. His key finding is that all scaling goes finally to a Fermi liquid fixed point.

Finally, we close this section noting that as will be discussed in Sec. 6.2, the two-channel Kondo
problem can, for a particular value of the coupling V z (phase shift here) be mapped to a resonant

level model as pointed out by Emery and Kivelson [1992]. That model has a strong similarity with
the model suggested by Toulouse [1970]. In these works the mapping is established by bosonization.
Recently, Fabrizio, Gogolin, and Nozières [1995] have established the mapping to the resonant level

model by starting with the path integral formulation. They studied the partition function by studying
its expansion in terms of the perpendicular coupling of the two-channel Kondo problem and compared

with a similar expansion of the resonant level model of Emery and Kivelson [1992]. They have shown
that the the two expansions agree term-by-term for the special value of the longitudinal coupling V z

(which corresponds to Jz in Sec. 6.2). The virtue of the path integral approach in this context is the
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ability to study the cross-over regime from high to low temperatures as opposed to the asymptotic fixed

point regime accessible with the bosonization approach.
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4 Numerical Renormalization Group Approach

Our goal in this section will be to provide an overview of the NRG method pioneered by Wilson
[1973,1975] for the ordinary Kondo model. We will stress the results obtained from this approach

which provide insight on the two-channel Kondo model and the influence of symmetry breaking fields
on that model. Specifically, we will consider the effects of exchange anisotropy, (J(1) 6= J(2) = J(3)),

the influence of local and bulk fields which couple to the spin, and the influence of a channel field
which splits the exchange integrals for the electrons in the two different channels. We will also discuss
a simple “shell model” approach which works remarkably well for characterizing the lowest few states

of the non-trivial fixed point and appears to generalize to more complex models not treatable by the
NRG.

The original NRG work on the two-channel model was performed by Cragg, Lloyd and Nozières
[1980], who provided the first non-perturbative confirmation of the Nozières and Blandin arguments for

a non-trivial fixed point in multichannel models with M > 2SI . These calculations were performed for
strong bare coupling values and for one case where the exchange in one channel differed from that in

the other. Subsequent calculations have been performed by Pang and Cox [1991], and Affleck et al.
[1992] to explore the weak coupling approach to the transition and the influence of exchange anisotropy,

applied local and bulk spin fields, and channel fields (through the exchange splitting between channels)
in greater detail.

4.1 Logarithmic Discretization, Hamiltonian, and Renormalization Group Trans-
formation

(a) Logarithmic Discretization of the Hamiltonian

We begin with the two-channel Kondo model given by Eq. (1.1). As in the introduction, we label
spin with µ =↑, ↓ and channel index with α = ±. Following the pioneering work of Wilson [1973,1975],

we transform the Hamiltonian in the following ways:
(1) We logarithmically discretize the conduction band as shown in Fig. 41. This means we split the
band up into a sequence of intervals between Λ−nD > |ε~k | > Λ−(n+1)D, with Λ > 1 the logarithmic

discretization parameter.
(2) Within each logarithmic interval, we Fourier analyze the conduction states, but retain only the

average components. There are two justifications for this seemingly gross neglect: (i) only the average
states couple to the impurity spin given the assumed contact form of the Kondo exchange interaction,

and (ii) in the full continuum limit (Λ→ 1) only these average states survive.
(3) For numerical convenience, we employ the Lanczos algorithm to convert the Hamiltonian to a

tridiagonal basis which has a meaning in position space. The Lanczos states correspond to electron
creation operators f †n,α,µ which have approximate radial extent of Λn/2/kF measured from the impurity.

In order to get these wave functions the hoping amplitudes εn must also depend upon N . As the
electronic energy grows, so does the energy spacing. Concommitantly, the amplitudes at the impurity
site are increased due to localization of the electron into smaller volumes. The corresponding wave

functions have higher numbers of nodes for higher n so that orthogonality holds. The state created by
f †0,α,µ is just the on-site or Wannier orbital at the impurity position.

Following these steps, the two-channel Kondo Hamiltonian takes the form

(4.1.1)
HNRG

D
=

∞∑

n=0,α,µ

εn[f †n,α,µfn+1,α,µ + h.c.]− J

D
~SI ·

∑

µ,α,α′

~Sα,α′f
†
0,α,µf0,α,ν ,

where

(4.1.2) εn =
Λ−n/2(1 + Λ−1)(1− Λ−(n+1))

2[(1− Λ−(2n+1))(1− Λ−(2n+3))]1/2
.
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Figure 41: Logarithmic discretization of the conduction band for Numerical Renormalization Group
(NRG) calculations. The conduction band is divided up into logarithmic bins [Λ−(n+1),Λ−n] for electrons

and −[Λ−n,Λ−(n+1)] for holes, with 0 < n <∞. The states are Fourier analyzed on each bin, and only
the average Fourier components are retained (as only these couple to the impurity operators). After

Krishna-murthy, Wilkins, and Wilson [1980].

104



The εn’s correspond to the radial hopping matrix elements which transfer electrons from a state in

“shell” n to “shell” n + 1. Thus in a way rather different from the conformal field theory approach
and Bethe-Ansatz approaches, we arrive at an effective one dimensional problem, with only the radial

dimension being important.

(b) Renormalization Group Transformation

We can define a sequence of finite size dimensionless effective Hamiltonians which will reproduce

HNRG in the thermodynamic limit, and which define a renormalization group transformation. The
discretized Hamiltonians are

(4.1.3) HN = ΛN/2{
N∑

n=0,α,µ

εn[f †n,α,µfn+1,α,µ + h.c.]− J

D
~SI ·

∑

µ,α,α′

~Sα,α′f
†
0,α,µf0,α,ν}

and the limit which reproduces HNRG is

(4.1.4) HNRG = D lim
N→∞

[Λ−N/2HN ] .

The renormalization group transformation is

(4.1.5) HN+2 = ΛHN + ΛN/2+1
N+2∑

n=N+1,α,µ

εn[f †n,α,µfn+1,α,µ + h.c.] .

Notice:

(i) The multiplication by ΛN/2 in Eq. (4.1.3) has the effect of making the smallest hopping matrix
element of order 1, which means the smallest resulting dimensionless excitation energy will be of order

1 in the corresponding spectrum.
(ii) The diagonalization of HN corresponds to finding the effective Hamiltonian to describe the physics

at length scale

(4.1.6) LN ≈ ΛN/2k−1
F

and temperature scale

(4.1.7) TN ≈ Λ−N/2D .

.
(iii) The need for a step size of 2 in the transformation (4.1.5) is because there are, generically, different

fixed points for even and odd number of shells. Physically, we rescale the system size by an amount
Λk−1

F and inquire about the properties on that scale compared to the previous length scale.

The practical implementation of the RG transformation (4.1.5) is carried out by numerically
diagonalizing the truncated Hamiltonians HN for each N and using the states at level N to construct
the basis for states at level N + 1. The diagonalization process is repeated iteratively. A well defined

procedure exists for the construction of these basis states using Clebsch-Gordan technology, and we
refer the interested reader to Krishna-murthy, Wilkins, and Wilson [1980a)] and Jones [1988] for further

details. A fixed point of the transformation (4.1.5) is obtained if the lowest lying spectrum of eigenvalues
for the successive HN is unchanged.

The approximation of logarithmic discretization thins out the number of states to keep for a par-
ticular system size quite substantially with respect to the customary exact diagonalization approaches.

Taken together with block diagonalization using the symmetries we will discuss in the next subsection,
the problem becomes considerably more manageable. Even still, the large degeneracy of states makes

full diagonalization of HN usually impossible for N ≥ 2. Explicitly, the degeneracy is ' 16N at the
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N -th shell, the factor of 16 deriving from the product of four conduction states for channel one times

four conduction states for channel two including all occupancies. A practical way of implementing the
transformation while keeping manageable numerics is to retain only the lowest few hundred states at

each iteration. While there is no direct proof that this approximation is reliable, convergence tests
in the original works [Wilson, 1973,1975; Krishna-murthy, Wilkins, and Wilson, 1980a),1980b)] and a

posteriori comparison with other exact methods has confirmed the general validity of the method. In
calculations for the two-channel model performed on a Sun workstation, typically the lowest 250 states
were retained at each N value, while larger runs performed on a CRAY-YMP48 showed no significant

difference from the runs with fewer states.
While the original efforts on the single channel Kondo model and s-wave spin 1/2 Anderson

Hamiltonian had sufficiently many states within this space to reliably compute thermodynamic quan-
tities, the higher degeneracy in the present problem means that practically we may only compute

eigenvalues. Nevertheless, a considerable amount of information may be obtained from examining the
spectrum of eigenvalues, as we shall discuss further below.

(c) Use of symmetry to reduce the basis size

For the isotropic model, one may obviously exploit the SU(2) symmetry under spin rotations
and use the total spin S2

tot and z-component

(4.1.8) S
(3)
tot =

∞∑

n=1,α,µ

µf †n,µ,αfn,µ,α + S3
I

as conserved quantities. S
(3)
tot remains useful even in the presence of an applied spin field along the

z-direction or an axial breaking of exchange isotropy J3 6= J1 = J2. In these cases the SU(2) symmetry
is broken down to a U(1) symmetry for which S3

tot is the conserved charge.

There are two ways to handle the charge and channel degrees of freedom of the conduction
electrons. First, we have an obvious SU(2) symmetry from rotations in channel space, and we could

employ the total channel spin operators S2
ch and S

(3)
ch

(4.1.9) S
(3)
ch =

∑

n,α,µ

αf †n,µ,αfn,µ,α

as good quantum numbers. In addition, we can use the conduction charge operator

(4.1.10) Q̂ =
∑

µ

Qµ =
∑

n,α,µ

[f †n,α,µfn,α,µ −
1

2
]

which is constructed to be zero in the ground state.
Alternatively, we may employ the “axial charge symmetry” or “isospin” symmetry first found by

Jones [1988; Jones and Varma, 1988; Jones, Varma, and Wilkins, 1988]. Jones observed that the single
channel particle-hole symmetric Kondo model enjoys an additional global SU(2) symmetry specified by

the “axial charge” generators

(4.1.11.a) j+
µ =

∑

n

(−1)nf †n↑µf
†
n,↓,µ

(4.1.11.b) j−µ =
∑

n

(−1)nfn↓µfn↑µ

and

(4.1.11.c) j(3)
µ =

Qµ
2

,
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where Qµ is the charge in each channel. The total axial charge j2
µ and j

(3)
µ in each channel µ may be

used as good quantum numbers. This has a clear numerical advantage over the use of the SU(2)×U(1)
symmetry of channel spin times charge discussed in the previous paragraph because it leads to a greater

reduction of basis size. Moreover, in the presence of channel symmetry breaking fields, this axial charge
symmetry may still be used.

The axial charge operators, with the (−1)n generalized to (−1)nx+ny in two-dimensions are
precisely the SU(2) generators found later by Yang for the two-dimensional Hubbard Model [Yang,

1988] and employed by Zhang [1989], Yang and Zhang [1989], and Singh, Scalettar, and Zhang [1991]
to speculate on the excitation spectra and “eta” pairing (< j+ >6= 0) in the Hubbard model away from

half filling.
It is clear that the different symmetry choices of SU(2)spin × SU(2)channel × U(1)charge should

we employ channel spin and charge or SU(2)spin × SU(2)axial,1× SU(2)axial,2 if we use axial charge in

each channel can only be compatible if these are subgroups of some larger group. Affleck et al. [1992]
have noted that even in the logarithmically discretized form, the M -Kondo spin-1/2 model will have

a full symmetry group of SU(2)spin × Sp(M), where Sp(n) is the so called symplectic group. This
Sp(M) symmetry is a hidden symmetry of the problem. (In the paper of Affleck et al. [1992], this is

denoted Sp(2n).) This is the group which results from the symmetry breaking of the SU(2M) group
of the free conduction electrons by the spin coupling to the impurity. It was noted that in the single

channel Kondo model, Sp(1) is isomorphic to SU(2), which corresponds to the axial charge of the lone
conduction channel. In the two-channel case, the only invariant subgroups of Sp(2) (which is isomorphic

to SO(5)) are SU(2)× U(1) which corresponds to the choice of channel spin and charge symmetries,
and SU(2) × SU(2) which corresponds to the separate axial charge symmetries. In general, for M
arbitrary, one always has SU(M)× U(1) and [SU(2)]M as invariant subgroups of Sp(M) so that the

channel spin/charge and axial charge symmetries may always be used. It was noted by Affleck et al.
[1992] that the Sp(M) symmetry holds for the generalization of the M model to a bipartite lattice form,

which may be important for future work.

4.2 Overview of results from NRG studies

(a) Concepts and Reference Points

To orient the reader, in Fig. 42, we show the odd eigenvalues calculated by Krishna-murthy,

Wilkins, and Wilson [1980a] for the single channel symmetric Anderson model in the Kondo limit
beginning with an initial weak coupling |J |/D << 1. The lines connect the eigenvalues of the sequence

of dimensionless Hamiltonians HN for odd N . The labels reflect the spin and charge values of the many
body states.

The reader should note the following features of these curves:

(i) Even-odd alternation. The spectra for an even number of shells differ from those for an odd

number of shells. The reason is shown in Fig. 43 in the limit J = 0. When we have an even number
of shells, we have an odd number of electrons at half-filling in the non-interacting limit and thus the

Fermi level in the non-interacting limit cuts right through a level which is two-fold degenerate because
of spin. For an odd number of shells, we have an even number of electrons, and the Fermi level passes

through a gap above a non-degenerate Fermi sea.
(ii) Cross-over . There is a crossover evident in the spectra of Fig. 42 in that the spectra for

even N crossover at large N to resemble the spectra for small odd N , while the spectra for odd N cross
over at large N to resemble the spectra for small even N . The scale of this crossover is a measure of the

Kondo temperature TK . The reason is that in view of Eq. (4.1.6), we see that we may convert iteration
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Figure 42: Odd spectra from the NRG calculations of the single channel spin 1/2 symmetric Anderson

model for the charge 1 spin zero sector as a function of iteration number N . The levels begin near the
free orbital fixed point, reach a plateau near the local moment fixed point, and finally approach the
strong coupling Kondo fixed point for a ratio U/πΓ = 5.63 where U is the local Coulomb repulsion

in the Anderson model and Γ is the hybridization width. The dimensionless exchange coupling is
N(0)J = 8Γ/πU . Taken from Krishna-murthy, Wilkins, and Wilson [1980a].
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Even Odd

Fermi
Level

Figure 43: Even and odd energy levels for the noninteracting (J = 0) fixed point of the single channel
Kondo model in the NRG logarithmically discretized scheme.

number N to temperature through

(4.2.1) N(T ) = 2
log(D/T )

log(Λ)

so that the scale of the crossover NK must correspond to a temperature TK .

(iii) Equal level spacing: local Fermi liquid behavior. Provided we accept the reversal of spectra
for even and odd N after the crossover, we see that there is a uniformity to the level spacing and a

precise 1 : 1 connection of large N even spectra to small N odd spectra and vice versa. This implies our
low temperature spectrum is that of a Fermi liquid, since the electrons are essentially decoupled from

the impurity at high T , and thus the high T spectrum is that of a free Fermi gas.
(iii) Meaning of the Large N/Low T spectra. The shifting of the low T spectra has a simple

interpretation: due to the strong coupling to the impurity, each spin channel experiences a magnitude

π/2 phase shift.
To elaborate, in the presence of a phase shift δ measuring scattering from a spherically symmetric

target, radial quantization of the scattered waves on a sphere of size L implies a shift of wave numbers

(4.2.2) k → k − δ

πL
.

For the linearized spectrum of conduction electrons near the Fermi energy, this implies a corresponding

shift of energy levels by an amount

(4.2.3) δE = −vF δ
πL

with the convention that an attractive potential gives a positive phase shift and thus shifts the levels

down in energy.
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Turning back to the Kondo problem, the sequence of Hamiltonians HN is dimensionless, so

the factor of vF /L in δE is removed. The shift by 1/2 unit of the fundamental spacing corresponds to
exactly a π/2 phase shift of electrons with each spin value. This means the effective coupling is infinitely

strong.
Note that this agrees with the Friedel sum rule also. The Friedel sum rule, valid for a Fermi

liquid, relates the screening moments of the conduction electrons about an impurity to the scattering
phase shifts. Since the impurity has only spin but no charge difference from the background, the sum
rule insures that the screening charge around the impurity ∆Q = δ↑/π + δ↓/π = 0. This implies

δ↑ = −δ↓. Imagine applying now an infinitesimal field in the positive z direction. For the ground state
singlet case (N even) the total induced magnetization must be zero, but that results from a screening

of the SzI = 1/2 contribution by the conduction electrons. Hence

Sztot = 0 =
1

2
+
δ↑ − δ↓

2π
.

Solving for δσ , we find
δσ = −σπ .

where σ = ±1/2.

(b) Isotropic Non-trivial Fixed Point

With the background of Wilson’s calculations to guide us, we now turn to the more complicated

spectra of the two-channel Kondo model. Fig. 44 shows the results of Pang and Cox [1991] for the
approach to the non-trivial fixed point. What is plotted are the eigenvalues of HN for sequential N

connected by a line. In the case of the two-channel model, there is no even-odd alternation of energy
levels in the region of the fixed point, and the curves in Fig. 44(a) displays the results for even N , the

curves for odd N being in Fig. 44(b). The eigenvalues, are labeled by the quantum numbers (j1, j2, S)
(see Eqs. 4.1.8,4.1.11). (Note that a very large Λ value was chosen to allow the weak-coupling crossover

to occur in a manageable amount of computer time. The level spacings are Λ dependent for these
spectra, though less dependent than in the Fermi liquid case.) The dashed curves are for an initial large
value of J/D, while the solid curves are for an initial small value of J/D. In each case, the eigenvalues

for large N tend to a fixed structure independent of the original coupling value. This confirms in a non-
perturbative way that the two-channel spin 1/2 model has a non-trivial fixed point which is stable in

the absence of fields which break the full SU(2) invariance of the exchange coupling. The rise of the low
lying levels for the weak coupling starting case takes place on a crossover scale which corresponds to the

Kondo temperature TK . By studying a variety of couplings, we estimate, for Λ = 3, that Jc ' −0.7D.
It is interesting that the eigenvalues for the initial strong coupling J/D value settle almost immediately

to the fixed point value.
The other crucial point to notice in comparison to Wilson’s spectra for the single channel model

is that the spectra of the two-channel model have a non-uniform spacing. While it does not obviously
follow from this that one has a non-Fermi liquid excitation spectrum, this is in fact the case. One may
verify this by noting that the quantum numbers of the free states cannot be that of a Fermi liquid.

Further discussion of this point is given in Sec. 6.1.2. (One could imagine a complicated combination
of spectra from several independent Fermi gases producing the spectra for Fig. 44; this does not in fact

work.) In fact, the concept of the phase shift used in the previous subsection is completely irrelevant
here. The utility of the phase shift rests on the assumption that one has outgoing single particle states

when incoming electrons scatter off the impurity which certainly holds in the ordinary Kondo model.
However, as Ludwig and Affleck [1991] have emphasized, the projection of the full S-matrix on outgoing

single particle states is identically zero for the two-channel Kondo model. Once a symmetry breaking
field is applied to drive the system to a Fermi liquid fixed point, the phase shift analysis again becomes

relevant.
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Figure 44: Lowest NRG energy levels for the weak-coupling isotropic two-channel spin 1/2 Kondo
model, taken from Pang and Cox [1991]. The coupling strengths for the two-channels were taken equal

to −0.2 and the logarithmic discretization parameter Λ was taken to be 9.0 for rapid convergence.
There are discernible even-odd alternations for the first few NRG iterations, due to the proximity to
the non-interacting fixed point, but the spectrum eventually goes to a single vixed point with increasing

iteration number N . For comparison, the dashed line represents the energy levels for the case where the
exchange coupling is set to −1.0 in each channel (also for Λ = 9.0). States are labeles by axial charge

or isospin (one for each channel) and spin.

111



Figure 45: Irrelevance of exchange anisotropy for the two-channel spin 1/2 Kondo model. For both
Jz > J⊥ and Jz < J⊥, the energy levels flow to the isotropic fixed point. The states here are labeled by

axial charge or isospin for each channel (first two numbers) and total z-projected spin Sz (last number).
Taken from Pang and Cox [1991]

The results for the non-trivial fixed point spectra are in quantitative agreement with conformal

field theory finite size spectra. We postpone a discussion of that until the conformal field theory section
(Sec. 6.1.2).

(c) Stability of non-trivial fixed point against exchange anisotropy.

Fig. 45 shows the NRG spectrum for the weak coupling side of the fixed point with an initial easy axis

anisotropy in the exchange, such that J3 = 2J1 = 2J2. The last label is now simply S
(3)
tot . The arrows

mark the positions of the non-trivial fixed point eigenvalues. We see that the initial anisotropy does
indeed relax away as anticipated from our scaling arguments in the previous section.

This irrelevance of exchange anisotropy has also been shown to work in strong coupling and for
easy plane anisotropy (|J3| < |J2 = J1|).

The NRG approach provides a way to understand this irrelevance of exchange anisotropy for
the M = 2 case which generalizes to M > 2 as well, and we shall explore that picture in the last part

of this subsection.

(d) Instability of non-trivial fixed point against application of a Channel Field.
We apply a channel field to the model through the perturbation

(4.2.4) Hch = ΛN/2 − ∆J

D
~SI ·

∑

α,α′,µ

~Sα,α′µf
†
0,α,µf0,α′,µ ,

where the channel index µ = ±1. As discussed in previous subsections, the origin of this symmetry
breaking may be a magnetic field along a principal axis or a pure rhombohedral stress for the quadrupolar
Kondo effect, and a uniaxial stress along a principal axis for the two-channel magnetic Kondo effect in

cubic symmetry.
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Figure 46: Lowest NRG energy levels for the case of channel anisotropy. Taken from Pang and Cox

[1991]. States are labeled by axial charge for each channel (also known as isospin) and by total spin.

We have anticipated in our discussion of the next leading order multiplicative renormalization
group equations that the application of channel symmetry breaking will produce a flow away from the
non-trivial fixed point. We could not completely trust the scaling analysis in the two-channel case,

however, since the fixed point coupling is of order unity. Hence the NRG provides a reliable non-
perturbative approach for checking the scaling theory. The expectation of the scaling analysis was that

the more strongly coupled channel (e.g., µ = + if δJ, 0) will provide the ordinary Kondo effect, while
the weakly coupled channel will produce a free Fermi gas (no phase shift).

Examination of the spectra in Fig. 46 shows that this expectation is precisely met. We see
uniform level spacing characteristic of the Fermi liquid. There is no even-odd alternation, but that is

because the fixed point spectra are formed from the vector space for both channels. For definiteness,
assume ∆J > 0. Then we expect a π/2 phase shift at the fixed point for µ = +, so that even N

correspond to zero coupling odd N , and vice versa. On the other hand, the µ=- spectra are zero
coupling spectra. Hence the combined excitations for both even or odd N are the sum of even N and
odd N spectra derived for a single fermi gas.

The NRG allows a determination of the crossover scale. We can define Tch as that temperature
where the first excited state shrinks to 1/10 of the splitting at the non-trivial fixed point value under

application of the channel field splitting (Eq. (4.2.4)). (Recall that temperature and iteration number
are related through Eq. (4.2.1).) By plotting ∆J/D vs. T xch on a log-log plot and measuring the slope

we get the crossover exponent. Pang and Cox [1991] found that ∆J ∼ (T xch)1/2. The third order scaling
analysis of the previous section predicted δJ ∼ (T xch)1, but the exponent is expected to be correct only

to leading order in 1/M which is 1/2 here. The exponent of 1/2 agrees exactly with conformal field
theory and NCA arguments to be presented in subsequent sections.

Recently, some controversy has arisen over whether the fixed point in the presence of chan-
nel symmetry breaking is in fact a Fermi liquid based upon Bethe-Ansatz calculations (Jerez and
Andrei, [1995]) and Majorana fermion techniques (Coleman and Schofield, [1995]); a bosonization

method yields different results altogether, providing a Fermi liquid fixed point (Fabrizio, Gogolin, and
Nozières [1995a,b]). We defer discussion of these issues to Secs. 6 and 7, and 9.2.
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(e) Application of a local spin field.

If we apply a local spin field, we will also flow away from the non-trivial fixed point. The perturbation
to be added to HN is

(4.2.5) Hsp = −ΛN/2Hsp

D
S

(3)
I .

This perturbation corresponds to the level splitting ∆z in the TLS model, to an applied local magnetic

field in the two-channel magnetic Kondo model, and to an applied local uniaxial stress in the cubic
quadrupolar Kondo model, or an applied magnetic field along the c-axis for the tetragonal and hexagonal

quadrupolar Kondo models.
For a particular choice of Hsp in the strong coupling limit, Fig. 47 shows the NRG flows obtained

in the presence of the perturbation in (4.2.5) as obtained by Pang and Cox [1991]. The resulting spectra
are rather mysterious and clearly spaced unevenly. However, a consistent analysis of the spectra may

be performed by assuming that electrons have only an effective Ising coupling to the impurity so that
the phase shifts for scattering are equal and opposite for the different spin values (for a complete test
of this hypothesis, see Table VI of Affleck et al., [1992]). The spectra are then the sum of excitations

from up and down spin free Fermi gases scattering off a polarized impurity.
The phase shift, which determines the fixed point, may be computed in this manner as a function

of magnetic field. This produced the curves in Fig. 19(a), taken from Affleck et al. [1992]. It should be
noted that:

(i) For small field, the phase shift behaves as

(4.2.6) |δ(Hsp)| =
π

4
− sgn(J − J∗)AHsp

TK
log(

TK
Hsp

)

where J∗ is the fixed point coupling strength and A is a pure number. The leading order term vanishes
for J = J∗.
(ii) The value for Hsp = 0+ of |δ(0+)| = π/4 may be understood from Friedel sum rule arguments [Pang,
1992]. The generalization from the single channel Kondo case is straightforward; taking δQ = 0 again

demands δ↑,µ = −δ↓,µ, while in the absence of channel symmetry breaking the phase shifts for fixed spin
and opposite channel must be equal. Hence the induced spin polarization in an infinitesimal positive

field is given by

(4.2.7) S
(3)
tot = 0 =

1

2
+

2

2π
(δ↑,+ − δ↓,+)

where the 1/2 again reflects the induced S
(3)
I value and the phase shift dependent term is due to the

conduction electron polarization. This gives the π/4 phase shift on solution. The special value of π/4
was also singled out in the path integral approach to the scaling equations [Vladár , Zawadowski , and

Zimányi , 1988a,b].
(iii) The phase shift dependence implies a HsplnHsp behavior to the low field magnetization, in agree-

ment with exact Bethe-Ansatz and conformal field theory results, and a leading order HsplnHsp satu-
ration to the magnetoresistance proportional to sgn(J∗ − J), which is quite different from the ordinary
Kondo model which always produces an H2

sp saturation that is negative, i.e., saturates from below. Note

that the phase shift is meaningful when used in the one-channel model and in the two-channel model
with symmetry breaking fields, but not at the isotropic two-channel fixed point.

In analogy to the crossover study of the ∆J perturbation, we may study the crossover exponents
for the applied local spin field. Namely, we apply the local field and ask for the temperature Tsp (related

to iteration number through Eq. (4.2.1)) when a certain set splitting has reached 10% of the splitting

at the isotropic fixed point. Affleck et al. obtained the crossover behavior Hsp ∼ T
1/2
sp , which agrees

with conformal field theory and NCA results.
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Figure 47: Lowest NRG energy levels in the presence of an applied spin field. From Pang and Cox
[1991]. States are labeled by axial charge or isospin for each channel and by total z projected spin.
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Figure 48: Cartoon visualization of the NRG process for the two-channel Kondo model. At high
temperatures and short length scales L, the local moment (I) is weakly aligned antiparallel to the two
conduction electron channels (C±) of spin. However, the binding process of Fig. 3 leads to another

doublet which is antiferromagnetically coupled to the two channels of conduction spin outside that
length scale. Eventually, this process continues till a fixed point finite coupling strength is attained.

Taken from Cox and Jarrell [1996]

We may also apply a bulk magnetic field to the RG Hamiltonians, and provided the field is
small compared with the bandwidth similar results are obtained [Pang 1992]. There are some technical

issues involved for the NRG method in dealing with the bulk field, for which we direct the reader to the
references.

The conformal field theory results for the analysis of these spectra are in excellent agreement
with the NRG results, as we shall discuss in Sec. (6.1.2.c).

(f) Shell Model.

One can understand some of the physics shown in the NRG level spectra through a simple shell
model. This picture is motivated by Fig. 48. Namely, suppose that we take seriously the idea that the
physics at length scale is that of an effective spin-1/2 core object coupled to conduction electron states

in the surrounding adjacent shell. We can readily find the energy by writing

S2
tot = S2

I + (~Sc1 + ~Sc2)2 + 2~SI · (~Sc1 + ~Sc2)

where SI = 1/2 is the effective spin of the impurity, and Sc1,2 is the spin of each channel. By solving

for the dot product in terms of the total spin and the total spin in the conduction sector we can find
the energy through

(4.2.8) E = −Jeff
2D

[S2
tot − S2

I − S2
cond]

where Scond is the total conduction spin. Clearly, we minimize the shell model energy of Eq. (4.2.8) by
making the largest conduction spin Scond for the smallest total spin Stot.

The Shell Model exchange Hamiltonian gives the following results for the lowest few states listed
in Table 9. Beyond this, we find detailed discrepancies with the NRG levels and with the conformal

field theory finite size spectra, which is not surprising since the excited levels correspond to particle hole
excitations which must take us outside the core shell. If we take |J |/D ≈ 0.8, we get excellent agreement

of these results with our first three splittings in Fig. 44 As we shall show, if we take |J |/D=0.5, we
get perfect agreement with the lowest four states of the conformal field theory finite size spectra. The

discrepancy here in the choice of normalization factors is likely a Λ dependent renormalization.
It also turns out that this gives good agreement with the lowest levels of the finite size spectra

for conformal theory for three channels and spin 1/2 which is shown in Table 10.

The shell model is useful for understanding the irrelevance of exchange anisotropy which turns
out to generalize to the SU(2)×SU(M) model with SI = 1/2, (M−1)/2, and the relevance of exchange

anisotropy for SI > 1/2. To see this, start out with SI = 1/2, M arbitrary. Then after one RG iteration
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Q Stot Sc SI E/|g∗| ∆E/|g∗| CFT

0 1/2 1 1/2 -1 0 0

±1 0 1/2 1/2 -3/4 1/4 1/8

0 1/2 0 1/2 0 1 1/2
±2 1/2 0 1/2 0 1 1/2

±1 1 1/2 1/2 5/4 5/8 5/8

Table 9: Comparison of Shell Model Energies with Conformal Theory for SI = 1/2, M = 2. The
shell model exchange formula (Eq. (4.2.8)) reproduces the lowest three splittings of the conformal field

theory finite size spectrum provided one takes the fixed point coupling |g∗| = 1/2, which agrees with the
fixed point coupling λK = 2/(M + 2) = 1/2 in the notation of Affleck and Ludwig [1991b)]. Energies

above these in the table are not reproduced by the shell model.

Q Stot Scond E/|g∗| ∆E/|g∗| CFT

0 1/2 3/2 -5/2 0 0

±1 0 1 -1 1/2 1/5

0 1/2 1/2 -1 3/2 3/5
±1 1 1 -1 3/2 3/5

±2 1/2 0 -1 3/2 3/5

Table 10: Comparison of Shell Model Energies with Conformal field theory finite size spectrum for

SI = 1, M = 3. The shell model exchange formula for the energy (Eq. (4.2.8)) agrees with the the lowest
few splittings in the conformal field theory spectrum provided we take the fixed point coupling |g∗| = 2/5

which agrees with the non trivial fixed point coupling of the conformal theory λK = 2/(M + 2) = 2/5.
For higher energy states the shell model disagrees with the exact spectrum.
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to the extent the shell model is correct, we will have a ground state with Stot = M/2 − 1/2. At the

next iteration, application of the shell model to the effective impurity spin equal to (M − 1)/2 coupled
to M electrons gives back an effective spin of 1/2. Thus we alternate between these two spin values.

Now, everytime we are on an iteration where the effective impurity spin is 1/2, the lowest few states
are either total spin zero or total spin 1/2. Exchange anisotropy cannot lift the degeneracy of these

levels. Hence, since these states are used to construct the spectrum for the next iteration, we expect
the anisotropy to decay away with increasing iteration number.

On the other hand, consider for example SI = 1, and four channels. In this case, the effective

impurity spin will always be S = 1 = 4/2− 1. Exchange anisotropy can generate a “crystal field” like
splitting of the S = 1 state that will be propagated through the RG iterations. This is seen because the

self-energy diagram corresponding to Figs. 26,31 will now have an induced splitting of the S = 1 levels
through the quadrupolar field of the conduction electrons.

These simple ideas developed from the shell model turn out to be completely supported by
conformal field theory, as we shall discuss in Sec. (6.1.2.c).

The shell model also provides the basis for a strong coupling expansion in the inverse exchange
coupling, first discussed by Nozières [1974] and Nozières and Blandin [1980]. The idea is that the

shell model gives the exact eigenvalues in the limit of infinite exchange coupling. One can then derive a
perturbative expansion in powers of t/J where t is the hopping to the next Wilson onion-skin shell. In
this way, one can determine that the J =∞ limit is stable for the ordinary Kondo model, and unstable

for the multichannel model, which together with the perturbative analysis from weak coupling assures
the existence of a non-trivial, intermediate coupling fixed point.
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5 Non-Crossing Approximation (NCA)

In this section, we survey some of the most important applications of the Non-Crossing Approximation,
or NCA, to the multi-channel Kondo model. We shall first discuss application of the NCA to the

SU(M) × SU(NI = Nc = N) Anderson model for which the results are rigorous as N → ∞ with
γ = M/N fixed. Despite the large N character to the theory, the physical properties computed for

finite N,M are found to be in good agreement with exact results for most properties. Next, we shall
discuss an application to a simple three configuration model for a Ce3+ ion which illustrates 1,2, and 3
channel Kondo physics in appropriate regimes. An important physical result which emerges from this

analysis is that the sign of the low temperature thermopower is a diagnostic for the emergence of the
two-channel ground state as required by the dynamic selection rule 5 of Sec. 2.2.4. Finally, we shall

apply the NCA to a model for the U4+ ion which includes both ground state and excited state crystal
field levels. These results show how the two-channel physics can emerge at low temperatures even with

significant overlap between crystal field states due to conduction electron damping.
Since exact results, such as exist for the SU(N)⊗SU(M) model, are preferrable to approximate

ones, the need for the NCA must be clarified. It has two principle virtues: First, it is quite simple to
develop and use, and as a result the physical motivation is quite clear. Second, while the Bethe-Ansatz,

conformal field theory, NRG, bosonization, and for the most part, Quantum Monte Carlo methods are
currently limited to pristine models that lack much of the realistic physics such as crystal field excitations
and interconfiguration fluctuations. The NCA is not limited in this way and still appears to give quite

reasonable results and in some cases some useful new physics. Moreover, the NCA is able to calculate
dynamics (such as the inelastic neutron scattering cross section) and transport properties over a much

wider range of paramters and temperature regimes than any of the exact methds, and offers a ready
extension to non-equilibrium properties which is still rarely possible for the exact methods. Hence,

the first sub-section largely serves to calibrate the value of the method by comparing repeatedly to
conformal field theory and Bethe-Ansatz results. This section also lays out the formalism and essential

concepts of the NCA. The next two subsections are devoted to realistic applications to model Ce3+ and
U4+ impurities. As we shall see, considerable new physics emerges from these applications.

5.1 SU(M)⊗ SU(N) Model: The NCA as a Large N Limit

In this subsection, we shall follow the work of Cox and Ruckenstein [1993]. Following the discussion of
Secs. 2.3 and 3.3, we write down an Anderson Model in the pseudo-particle representation as

(5.1.1) H =
∑

kµα

c†kµαckµα + εf
∑

µ

f †µfµ

− Ṽ√
NNs

∑

kαµ

sgn(α)[f †µb−αckµα + h.c.]− λps[
∑

µ

f †µfµ + µαb
†
αbα − 1]

where we have anticipated the large N limit and normalized the hybridization such that Ṽ =
√
NV

is well defined in the N → ∞ limit, and λps is to be taken to −∞ to project to the physical Hilbert
space (c.f. Sec. 3.3.1, Eq. 3.3.3). The indices σ run from −(N − 1)/2,−(N − 3)/2, ..., (N − 1)/2, and

the indices α from −(M − 1)/2,−(M − 3)/2, ..., (M− 1)/2. We have inserted the phase factor −sgn(α)
relative to the hybridization term defined in Cox and Ruckenstein [1993], which will not alter the physics

of the model. A Schrieffer-Wolff transformation on this model produces the SU(M)⊗ SU(N) Coqblin-
Schrieffer model discussed in Sec. 2.3, with exchange coupling J = Ṽ 2/Nεf assuming εf < 0 and large.

We shall pass to N →∞ by holding the ratio γ = M/N fixed.
We remark that a curious feature of the NCA is that it only appears to be useful for models

which have the full SU(N) symmetry so that a single boson is required to decouple each channel.
The leading order (order 1) diagrams for the self-energy of the pseudo-fermion and pseudo-

boson propagators may be obtained now from the diagrams of Fig. 49. Each diagram is quadratic in
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Figure 49: Order (1/N)0 self-energy diagrams of the SU(N)× SU(M) multichannel Anderson model.

The lowest ionic configuration is represented by a pseudo-fermion (dashed) line which carries spin index
µ which runs over N values, and the excited ionic configuration by a pseudo-boson (wavy) line carrying

channel index α which runs over M values. Conduction electrons carry both spin and channel (solid
lines). Vertices represent the hybridization, which is scaled by a factor of 1/N .5 in this approach. Note

that the N → ∞ limit is taken by holding N/M fixed. As a result, the closed spin and channel loops
in these diagrams give compensating factors of N,M to the 1/N from the vertices, rendering them

order 1/N0. These self-energies (and the corresponding propagators) are not in themselves physically
observable quantities. After Cox and Ruckenstein [1993]

the hybridization. The pseudo-boson self-energy Σb contains a sum over internal spin labels, and hence

acquires a factor of N which cancels the 1/N in the denominator. The pseudo-fermion self energy Σf

contains a sum over internal channel labels and hence acquires a factor of M which yields a net factor

of γ out front when divided by N . Because each self-energy is O(1), a self-consistent solution of the
resultant coupled equations is required, since we can insert an infinite series of self-energy corrected
propators into each of the diagrams. The leading order vertex corrections are shown in Fig. 5.1.b.

These are down by order 1/N2 relative to the O(1) diagrams, which is seen by counting vertices (6)
giving a net count of N × (1/N)3 where the N comes from the sum over internal degrees of freedom.

Assuming we have particle-hole symmetry of the conduction band, the resulting O(1) integral
equations corresponding to the self-energy diagrams of Fig. 49 are given by

(5.1.2.a) Σf (ω) =
γΓ̃

π

∫
dεf(ε)

1

ω + ε −Πb(ω + ε)
=
γΓ̃

π

∫
dεf(ε)Gb(ω + ε)

(5.1.2.b) Σb(ω) =
Γ̃

π

∫
dεf(ε)

1

ω + ε − εf − Σf(ω + ε)
=

Γ̃

π

∫
dεf(ε)Gf (ω + ε)

where Γ̃ = πN(0)Ṽ 2 and f(ε) is the Fermi-Dirac function. These equations also define the pseudo-boson

and pseudo-fermion propagators Gb,Gf . We note that the conduction electron self-energy is of order
1/Ns for this single impurity problem.

These equations are called the “non-crossing approximation” (NCA) because the corresponding
diagrams in a particular representation (diagrams on a cylinder) have no crossed conduction lines.
See Bickers [1987] for an extended discussion of this diagrammatic approach. We observe that if the

pseudo-boson propagator is viewed as a dynamically dressed exchange coupling, as is appropriate for
the Coqblin-Schrieffer model, then these equations are none other than a fully self-consistent form of the

third order scaling theory as discussed in Sec. (3.4.4). The scaling theory retains only leading logarithms
(and thus neglects the imaginary parts of propagators), but the NCA retains the full analyticity of the

various propagators. Note that: (i) the projection to λps = −∞ has taken place and so the superscripts
of Eqs. (3.3.4) and (3.3.10) have been dropped; (ii) we are interested for the moment in the physical

situation of zero spin and channel fields and so have dropped the spin and channel subscripts on Gb,Gf .
Alternatively, instead of a diagrammatic approach, one may derive Eqns. (5.1.2.a,b) from a path

integral formulation as a saddle point condition. We sketch this derivation here. First, from the action
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corresponding to the Hamiltonian of Eq. (5.1.1), the conduction electron fields are integrated out. This

produces an effective interaction between the pseudo-boson and pseudo-fermion given by the term

(5.1.3) Sint = − Ṽ
2

N

∑

σα

∫
dτ

∫
dτ ′f †µ(τ)fµ(τ ′)G0(τ − τ ′)b†−α(τ ′)b−α(τ)

where

(5.1.4) G0(τ) = − 1

Ns

∑

k

1

∂/∂τ + εk

is the conduction green’s function at the impurity site. This interaction term may be decoupled with col-

lective Hubbard-Stratonovich fieldsΦb(τ, τ
′),Φf(τ, τ

′) which obey Φf,b(τ
′, τ) = Φ∗f,b(τ, τ

′). The resulting
effective action term which is quadratic in the Φ fields is

(5.1.5)

S̃φ = −Ṽ 2
∫
dτ

∫
dτ ′G0(τ−τ ′)[NΦf(τ

′, τ)Φb(τ, τ
′)−
∑

µ

f †)µ(τ)Φb(τ, τ
′)fµ(τ ′)−

∑

α

b†α(τ ′)Φf(τ ′, τ)bα(τ)] .

This may now be followed by an integration over the f, b fields to produce an effective action solely
in terms of the Φ fields. Variation of Φf,b to determine the saddle point yields Eqs. (5.1.2.a,b) as the
extremum conditions, provided we note that: (i) the Φ fields are time translation invariant at the saddle

point, and (ii) Φf,b(ω) are the projected λps pseudo-fermion and pseudo-boson propagators in this limit.
The physical properties of the system can be expressed in terms of the spectral functions of the

pseudo-particles. Keeping our notation here consistent with that of Cox and Ruckenstein [1993], we
define

(5.1.6) Af,b(ω) =
ImΦf,b(ω − i0+)

π
=
ImGf,b(ω − i0+)

π
.

At T = 0, these spectral functions vanish below the ground state energy E0. We thus define occupied
state spectral functions

(5.1.7) A(−)
f,b (ω) = eβ(E0−ω)Af,b(ω) .

Upon multiplication of the exponential factor through Eqns. (5.1.2.a,b), it is seen that these occupied

state spectral functions satisfy the self-consistency equations

(5.1.8.a)
A(−)
f (ω)

|G(ω)|2 =
γΓ̃

π

∫
dεf(−ε)A(−)

b (ω + ε)

(5.1.8.b)
A(−)
b (ω)

|D(ω)|2 =
Γ̃

π

∫
dεf(−ε)A(−)

f (ω + ε) .

It is important also to keep track of the partition function which enters a calculation of all
physical quantities. The total partition function factorizes into a product of the bare conduction band

partition function times the pseudo-particle partition function Zf given by

(5.1.9) Zf =

∫
dω[NA(−)

f (ω) +MA(−)
b (ω)]

where we have assumed spin and channel isotropy for the moment.

The reason the partition function enters is due to the projection procedure: one assumes a
Grand ensemble in the charge Qf of Eq. (3.3.6), and then projects to the physical Qf = 1 subspace.

Practically, this means we must divide any observable quantity by the Qf = 1 canonical partition
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Figure 50: Order 1/N2 vertex corrections to self energy diagrams of the SU(N) × SU(M) Anderson
model. Because there is only one closed loop for either spin or channel in each diagram, the presence

of six vertices each scaled by 1/N1/2 leads to an overall suppression of these diagrams by order 1/N2

relative to the diagrams of Fig. 49.

function. We shall be interested in three quantities in this subsection, the physical one-particle spectral

function ρσα(ω, T ) which determines the conduction electron t-matrix, the spin susceptibility χsp(ω, T ),
and the channel susceptibility, χch(ω, T ). The leading order diagrams for these quantities within the
NCA are shown in Fig. 50 (vertex corrections are down by O(1/N2). The diagram for ρσα is the physical

propagator Gσα with ρσα(ω, T ) = ImGσα(ω− i0+, T )/π which measures the density of states for adding
and removing electrons of spin σ and channel index α at the impurity site. When these diagrams are

evaluated (ρ(ω, T ) is the imaginary part of Fig. 51. divided by π) we obtain the expressions

(5.1.10) ρσα(ω, T ) =
1

Zf

∫
dω′[A(−)

f (ω′)Ab(ω + ω′) +A(−)
b (ω′)Af(ω′ − ω)]

(5.1.11) χ̃′′sp(ω) = Imχ̃sp(ω − i0+) =
πN

Zf

∫
dω′[A(−)

f (ω′)Af (ω + ω′)− A(−)
f (ω′)Af (ω′ − ω)]

(5.1.13) χ̃′′ch(ω) = Imχch(ω − i0+) =
πM

Zf

∫
dω′[A(−)

b (ω′)Ab(ω + ω′)− A(−)
b (ω′)Ab(ω′ − ω)] .

The tilde over the spin and channel susceptibilities signifies a definition wherein we assume a linear
coupling of the form −µspσHsp to a spin field and −µchαHch for the channel field with µ2

sp(N
2−1)/12 =

µ2
ch(M2 − 1)/12 set to unity. We shall employ these expressions in the following analysis. Note that

the denominators of N and M in the corresponding definitions of Cox and Ruckenstein [1993] should
be removed to obtain approximate equality in the RHS of Eq. (6) therein.

5.1.1 Differential Form of the NCA Equations at T = 0

As discussed by Kuramoto and Kojima [1984] and Müller-Hartmann [1984], the NCA equations may
be converted to differential equations at zero temperature. The procedure is thoroughly discussed there

and in the review article of Bickers [1987], and we shall simply outline it here. We note that these
analyses were applied to the single channel Kondo model for which the NCA provides a pathological

low temperature behavior that is non-Fermi liquid like in contrast to the known Fermi liquid excitation
spectrum of the single channel Kondo model. It is amusing that the “pathology” obtained in applying

the NCA to the single channel case is exactly what provides excellent results for the multi-channel
model!

We assume the conduction electrons occupy a broad flat density of states from −D to D and

that this is half-filled. At zero temperature, Eqs. (5.1.2.a,b) may thus be rewritten as

(5.1.14.a) Σf(ω) =
γΓ̃

π

∫ ω

−D+ω
dω′Gb(ω′)
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Figure 51: Leading order diagrams for physically measurable quantities in the N →∞ limit. Physically
observable quantities are represented as convolutions of the pseudo-particle propagators. The local

spin susceptibility to leading order is a self-convolution of the pseudo-fermion propagator. Likewise,
the channel susceptibility is a self-convolution of the pseudo-boson propagator to leading order. The

physical f -electron addition/removal propagator is a convolution of the pseudo-fermion and pseudo-
boson propagators. Each physical quantity must be properly projected onto the constrained subspace

as detailed in the text.

(5.1.14.b) Σb(ω) =
Γ̃

π

∫ ω

−D+ω
dω′Gf (ω′) .

Provided the bandwidth D >> Γ̃ which sets the scale of Σf ,Σb over most of the frequency range, we

may neglect the frequency dependence of the lower integration limit. The integral equations may then
be differentiated with respect to ω to produce differential equations. It is most convenient to express

these in terms of the inverse green’s function variables

(5.1.15) gf (ω) = −Gf (ω)−1 , gb(ω) = −Gb(ω)−1

in terms of which the differential equations are

(5.1.16.a)
dgf
dω

= −1− γΓ̃

πgb

(5.1.16.b)
dgb
dω

= −1− Γ̃

πgf

subject to the boundary conditions

(5.1.17) gf(−D) = εf +D, gb(−D) = D

which are compatible with the neglect of ω in the lower limit of Eqs. (5.1.14.a,b). We must also employ
differential equations for the negative frequency spectral functions; by a similar analysis we obtain

(5.1.18.a)
d

dω
[A(−)

f (ω)g2
f(ω)] = −γΓ̃

π
A(−)
b (ω)

123



(5.1.18.b)
d

dω
[A(−)

b (ω)g2
b(ω)] = − Γ̃

π
A(−)
f (ω)

subject to the boundary conditions

(5.1.19) [A(−)
f (E0)g2

f(E0)] = [A(−)
f (E0)g2

b(E0)] = 0 .

To solve Eqs. (5.1.16.a,b), it is first important to note that they possess a constant of integration

C that allows a connection to the Kondo scale. Namely, it is easy to verify by dividing the two equations
and integrating that

(5.1.20) gf +
Γ̃

π
ln((

gf
D

)− gb −
γΓ̃

π
ln(

gb
D

) = C = εf

provided we assume εf << D. The equality on the far RHS of the above equation follows from the
boundary conditions of Eq. (5.1.15). This equation may be rewritten in a form more convenient near

E0 as

(5.1.21)
gf/T0

(πgb/Γ̃)γ
= exp[π(gb− gf)/Γ̃]

with the Kondo scale T0 defined by

(5.1.22) T0 = D(
γΓ̃

πD
)γ exp(πεf/Γ̃) .

This agrees with the corresponding scale identified from third order scaling theory to within a factor of

order unity (c.f., Eqs. 3.4.27, 3.4.48).
The NCA differential equations may now be solved in a power series expansion in the variable

(5.1.23) Θ = {[1 + γ

γ
]
(E0 − ω)

T0
}

1
1+γ .

The results are, for ω < E0,

(5.1.24.a) gf (ω) ≈ T0Θγ + ...

(5.1.24.b) db(ω) ≈ Γ̃

π
Θ + ... .

These expressions may be analytically continued above E0 to give the positive frequency spectral func-

tions, and may also be used to obtain the negative frequency spectral functions below E0. The results
for the positive frequency spectra are

(5.1.25.a) Af (ω) = θ(ω − E0)
1

πT0
sin(

πγ

1 + γ
)|Θ|−γ + ...

(5.1.25.b) Ab(ω) = θ(ω −E0)
1

Γ̃
sin(

π

1 + γ
)|Θ|+ ...

We need a couple of tricks to obtain the negative frequency spectra. First, an Ansatz is made

that near threshold A(−)
f ∼ α/gf , A(−)

b ∼ α/gb. Because of the identity

(5.1.26)
d

dω
[MA(−)

b (ω)gb(ω) + NA(−)
f (ω)gf(ω)] = MA(−)

b (ω) + NA(−)
f (ω)
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which follows from Eqns. (5.1.16.a,b), (5.1.18.a,b) with a little algebra, we have

(5.1.27) Zf = [MA(−)
b (E0)db(E0) +NA(−)

f (E0)gf(E0)] .

From this it follows that α = Zf/(N +M); noting that Zf at T = 0 is none other than the expectation
value of Qf = 1, we see that α = 1/(N + M). In consequence,

(5.1.28.a) A(−)
f (ω) = θ(E0 − ω)

1

(N + M)T0
Θ−γ + ...

(5.1.28.b) A(−)
b (ω) = θ(E0 − ω)

π

(N + M)Γ̃
Θ + ... .

(Note that Zf may be normalized to unity by introducing a simultaneous chemical potential for the
pseudo-particles prior to projection onto the physical subspace. This fixes the threshold energy of

the auxiliary particle spectral functions to E0=0 and greatly facilitates numerical evaluations [for a
detailed discussion, see Appendix D of T.A. Costi et al., 1996]. Note also that the exponents for the

spectral functions may be evaluated numerically by application of the NRG, as shown T.A. Costi et al.
[1994,1996].)

5.1.2 Scaling Dimensions

The scaling dimension of an operator O, denoted ∆0, for a zero temperature impurity critical point as
we have in the multi-channel Kondo model, indicates how the correlation function of the operator decays

in the long time limit. Namely, GO(τ) = − < TτO(τ)O†(0) >∼ τ−2∆O , τ → ∞. This implies that the
corresponding Green’s function in the frequency domain will behave as GO(ω) ∼ |ω−E0|2∆O−1 as may

be readily verified through Fourier transformation. Alternatively, the scaling dimension tells us what
scale factor to multiply the operator by under an arbitrary rescaling of time. The scaling dimension
concept is particularly useful for connection to the Conformal Field theory work (Sec. 6.1), where the

singular properties of various quantities are expressed in terms of the scaling dimensions of operators
furnished by the theory.

We may read off the NCA expressions for the scaling dimensions of various operators straight-
forwardly from a knowledge of the above solutions to the zero temperature differential equations. If we

express the frequency dependence of the pseudo-particle spectral functions as Af,b(ω) ∼ |E0−ω|2∆f,b−1

we read off the scaling dimensions of the operators fσ , bα as

(5.1.29) ∆b = γ∆f =
γ

2(1 + γ)
.

The spin field, channel spin field, and physical fermion field are all quadratic in the f, b operators and
so the corresponding scaling dimensions may be readily obtained as

(5.1.30.a) (Spin) : ∆sp = 2∆f =
1

1 + γ

(5.1.30.b) (Channel) : ∆ch = 2∆b =
γ

1 + γ

(5.1.30.c) (Fermion) : ∆F = ∆f + ∆b =
1

2
.

The latter result is consistent with unitarity, i.e., the conduction electron scattering rate which is

proportional to the spectral function of the physical fermion operator (ρσα) must be bounded by unitarity
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limit scattering at the Fermi energy. This implies that the low frequency leading behavior must be a

constant, independent of N,M . Clearly, ∆F = 1/2 yields this result.
The crucial point we may take from the above paragraph is that the scaling dimensions ∆sp,ch,F

are correctly determined by the NCA for all N ≥ 1 and M ≥ 2 as may be determined from comparison
with the conformal field theory, an exact approach that we discuss in detail in the next section. This

is a remarkable result. It is diminished somewhat by the observation that if we take unitarity of the
scattering matrix as a given constraint on the scaling dimensions, then the NCA determines really only
one independent scaling dimension. As a result, certain operator scaling dimensions will not be correctly

obtained by the NCA, a particular case of interest being the local pair field operators. These have an
explicit N dependence unlike ∆sp,ch,F . Nevertheless, we shall see that the agreement of the NCA with

exact results is remarkably good even in the unlikely region where N = 2!

5.1.3 Physical Properties at T = 0

We now summarize the results for calculation of physical properties.
One Electron Spectral Function. Substitution into the convolution formula of Eq. (5.1.9) gives

(5.1.31) ρσα(ω) ≈ π

(1 + γ)2N Γ̃
[1 + θ(ω)f+(ω̃) + θ(−ω)f−(ω̃) + ....]

with ω̃ = (1 + γ)ω/γT0, and

(5.1.28.a) f±(ω̃) = a±|ω̃|∆sp + b±|ω̃|∆ch

(5.1.28.b) a− = − 4γ

(2 + γ)π
B(2∆sp,∆ch)

(5.1.28.c) a+ = −cos(π∆ch)a−

(5.1.28.d) b− = − 4Wch

(1 + 2γ)π
sin(π∆ch)B(2∆ch,∆sp)

(5.1.28.e) b+ = cos(π∆ch)b+ .

Here Wch = πT0/Γ̃ measures the fluctuation weight of the channel configuration in the ground state,
and B(x, y) is the Beta function. In the case M ≥ N , both the leading and next leading frequency

dependence of Eq. (5.1.25.a,b) agree with the results obtained from conformal field theory. This spectral
function explicitly breaks particle hole symmetry due to the non-particle hole-symmetric Hamiltonian.

Since the one-particle T -matrix describing scattering of conduction electrons off the impurity in
an Anderson Hamiltonian is given by t(ω, T ) = V 2Gσα(Langreth, 1966), using the optical theorem we
see that the conduction electron scattering rate is given by

(5.1.33)
1

τ(ω, T )
=

2Γ̃ρσα(ω, T )

N(0)N
.

The electrical resistivity ρ(T ) may be obtained from the scattering rate assuming dominant

scattering in the angular momentum channels corresponding to the pseudo-particles and using the
standard transport theory formula (see, e.g., Bickers, Cox, Wilkins, 1987)

(5.1.34) ρ(T ) ∼ [

∫
dε(−∂f

∂ε
)τ(ε, T )]−1 .
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Figure 52: Ratio of NCA to Conformal Field Theory Resistivity vs. M for N=2 multi-channel Model
in the Kondo limit. Potential scattering from the NCA has been subtracted. Although the NCA is

strictly a large N limit, it clearly does well for N = 2 and arbitrary M , with agreement improving as
M →∞.

On dimensional grounds, we can see that the NCA will give

(5.1.35)
ρ(T )

ρ(0)
∼ 1− c( T

T0
)min(∆sp ,∆ch) + ....

where c is a pure number determined from the full temperature dependence of τ which is beyond the

scope of the zero temperature NCA. This agrees with the conformal theory, in particular yielding a
√
T

correction for the special case N = M in which ∆sp = ∆ch = 1/2. The two-channel spin 1/2 model is

a special case of this limit (N = M = 2). Moreover, for N = 2, the zero temperature scattering rate
(when corrected for potential scattering present in this model) gives

(5.1.36)
πN(0)

2τ(0, 0)
=

3π2

4(2 +M)2
.

As may be seen from Fig. 52, this formula agrees with the exact result from conformal theory to within
8% for all M ≥ 2. Clearly, it also agrees with Eq. (3.4.44) from the 1/M expansion when expanded to

the leading order in 1/M .
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We note that because of the built in particle-hole asymmetry of our model Hamiltonian, the

thermopower will also display a
√
T behavior at low temperatures as has been found in the conformal

theory.

Local Spin and Channel Susceptibilities The term local here means that the diagrams we keep
from Fig. 51 correspond to applied fields coupling linearly only to the impurity spin and channel oper-

ators and not the conduction electron spin and channel operators. Using the results of the differential
equation solutions together with Eqs. (5.1.10,11), we obtain

(5.1.37) χ̃′′sp,ch(ω) ≈ Csp,ch
T0

sgn(ω)|ω̃|(∆sp,ch−∆ch,sp)

with

(5.1.38.a) Csp = γ∆2
sp sin(π∆sp)B(∆sp,∆sp)

(5.1.38.b) Cch = W 2
ch∆2

ch sin(π∆ch)B(∆ch,∆ch) .

Note that ∆sp,ch − ∆ch,sp = 2∆sp,ch − 1 in view of Eq. (5.1.26.c). The leading behavior of χ̃′′sp,ch is
in full agreement with conformal theory for all N,M . Next leading corrections to Eq. (5.1.36) go as

|ω̃|(2∆sp,ch−∆ch). In the special case N = M which includes the two-channel model, both susceptibilities

reduce to the form χ̃′′(ω) ∼ sgn(ω)[1− B
√
|ω|
T0

+ ...] which corresponds to a static susceptibility which

is logarithmically divergent in temperature. This follows simply with the application of the Hilbert
transform to χ′′. This leading behavior in χ′′, first noted by Cox [1988(a),1990,1994] may provide a link

to the marginal Fermi liquid phenomenology [Varma et al., 1989, Kotliar it et al., 1990] developed to
understand the unusual normal states of the copper oxide superconductors.

The precise temperature dependence of χsp,ch must be determined numerically, but we can
roughly estimate this along with relevant zero temperature values through Kramers-Kronig analysis,

which implies (λ = sp or ch below)

(5.1.39) χ̃λ(T ) =
1

π

∫ ∞

−∞

χ̃′′λ(ω, T )

ω
.

We would like to put in the power law form of χ̃′′ from Eq. (5.1.32); this holds to an upper cutoff of

order T0 since the power law behavior only sets in below the Kondo temperature. The lower cutoff
must be of order T since finite temperature will round the Fermi functions in the integral equations and

hence round all power laws determined from these. With these limits of integration we see that

(5.1.40.a) χ̃λ(T ) ≈ 2Cλ
π(2∆λ− 1)T0

[1− (
T

T0
)2∆λ−1] for ∆λ 6=

1

2

(5.1.40.b) χ̃λ(T ) ≈ 2Cλ
πT0

ln(
T0

T
) for ∆λ =

1

2
.

The above results for the spin and channel susceptibilities allow us to produce a phase diagram
in the N,M plane, shown in Fig. 53. For M > N , which is the customary over-compensated situation

shown by Nozières and Blandin [1980] to lead to a non-trivial fixed point, the spin susceptibility
is divergent at T = 0, diverging with a power law that follows from Eq. (5.1.40.a). On the other

hand, the leading singular behavior of χch(T ) vanishes as T (γ−1)/(γ+1) which implies a finite value to
χch(0) ∼ W 2

ch/T0 as the leading term. In this region, all non-Fermi liquid response is driven dominantly

by the spin fluctuations. For N = M , of which the two-channel spin 1/2 model N = M = 2 is a special
case, we see that ∆sp = ∆ch = 1/2 so that each susceptibility diverges logarithmically. Both spin and

channel fluctuations contribute to the non-Fermi liquid behavior at low temperatures, although the
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Figure 53: Phase diagram for SU(N)×SU(M) multichannel Kondo/Anderson Model. For M > N , spin

fluctuations dominate, and the low temperature spin susceptibility is divergent. The only low energy
scale is the Kondo scale. For 1 < M < N , channel fluctuations dominate, and the low temperature

physics has two scales, the Kondo scale and a final energy scale where channel fluctuations dominate.
The low temperature channel susceptibility diverges in this case. For M = N , both channel and spin

susceptibilities diverge logarithmically, and there is only one low energy scale (the Kondo scale). For
M = 1, a Fermi liquid line results and there is only one low energy scale ( the Kondo scale).

dominant effects are due to spin fluctuations due to the much smaller energy scale T0 to be compared

with Γ̃. This is reflected in the suppression of χch by the factor W 2
ch ≈ T 2

0 /Γ
2. For N > M , which is

still overscreened, we are in a new physical situation, not discussed by Nozières and Blandin. In this

case, Eq. (5.1.40.a) implies that χ̃ch(T ) diverges as T (γ−1)/(γ+1), while the spin susceptibility is finite
at T = 0, χ̃sp(0) ∼ 1/T0. In this regime, the low temperature deviations from Fermi liquid behavior are
ultimately driven by the channel spin fluctuations. However, this can only occur to the extent that their

strength exceeds that of the spin fluctuations. This implies that a new temperature scale is present in
the problem, which we shall call Tch. This may be estimated by seeing where the leading channel driven

term in ρσα equals the leading spin driven term, yielding the energy scale

(5.1.41) Tch ≈ T0W
1

∆sp−∆ch
ch ≈ T0(

πT0

Γ̃
)

1+γ
1−γ .

We note that Tch evolves into the “pathology” temperature Tp discussed by Müller-Hartmann [1984]
and Bickers [1987; c.f. Eq. (5.53)] when M = 1. This corresponds to the SU(N) Anderson and

Coqblin-Schrieffer model, designated by the horizontal M = 1 axis in Fig. 53. The low temperature
physics here is of course Fermi-liquid like and beyond the scope of the NCA. However, as discussed
extensively in Bickers, Cox, and Wilkins [1987] and Bickers [1987], the NCA does an excellent job on

finite temperature properties provided Tp << T << T0. Clearly the difficulty with applying the NCA in
this context is in attempting to extrapolate to the line of zero slope; it does very well in describing the

physics on all lines of non-zero slope in the N,M plane. Note that the scale Tch is a real one provided
M > 1. However, we know of no physical model for which N > M > 2 can be realized in practice.

5.1.4 Crossover Effects in Applied Spin and Channel Fields

The application of a spin or channel field will induce a crossover to new physics at low temperatures as
discussed in previous sections. Specifically, we anticipate Fermi liquid behavior of two different sorts.

For the applied spin field, at zero temperature, the physics becomes that of a Fermi gas interacting
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with a polarized scattering center, so that Fermi liquid physics must set in below the crossover scale

denoted as T xsp. For the applied channel field, the couplings to all but the lowest energy pseudo-boson are
expected to become irrelevant, and this will lead to the SU(N) Coqblin-Scrieffer model for that coupling

with all other channels having zero scattering. The SU(N) model will give a Fermi liquid excitation
spectrum with a scale set by the crossover temperature denoted T xch. The NCA cannot describe the low

temperature physics well below the crossover scale well, since it cannot describe Fermi liquid physics.
However, the crossover region will be well described and the NCA produces a correct estimate for the
crossover scales T xsp,ch.

To estimate these crossover scales, consider first the case of an applied channel field. With the
normalization µch ∼ 1/M to obtain a sensible large N,M limit, we see that the overall splitting of

channel energies is of order Hch, assumed to be small compared to the channel fluctuation scale Γ̃.
Each of the pseudo-boson propagators now acquires a channel label α. The NCA differential equations

(5.1.16.a,b) are modified to

(5.1.42.a)
dgf
dω

= −1 − γΓ̃

Mπ

∑

α

1

dα

(5.1.42.b)
dgbα
dω

= −1− Γ̃

πgf

with the new boundary conditions for the dα

(5.1.43) gbα(−D) = D − αLµchHch .

Denote the α index corresponding to the lowest energy b state as αL. It is easy to see that dgbα/ddαL = 1,
so that gbα = gbαL + |α− αL|µchHch. Hence, the spread of gbα values is no more than order Hch, given

the above remarks. Now, at sufficiently high energies above the crossover scale, the lifting of the channel
degeneracy should be irrelevant, meaning that all gbα still go as ∼ Γ̃|(ω−E0)/T0|1/(1+γ)/π in this energy

region. The crossover scale is determined by the equation

(5.1.44) g>bαL(|ω −E0| = T xch) = Hch

where the superscript > means we utilize the high energy form for the inverse propagator gbα. This
gives

(5.1.45) T xch =
γT0

(1 + γ)
(
πHch

Γ̃
)1+γ

with the crossover exponent 1 + γ in agreement with conformal field theory analysis, as we shall see
in the next section. In particular, for the special case N = M = 2, we get T xch ∼ H2

ch, which was

also found in the NRG and Bethe-Ansatz treatments. We observe that we could also determine the
crossover exponent from below, using the NCA forms for the one-channel SU(N) Anderson model and

an effective single channel Kondo scale given by the expression

(5.1.46) T0(Hch) = D(
Γ̃

πD
)

1
N

∏

α6=αL
(

D

|α− αL|µchHch
)

1
N exp(

πεf

Γ̃
) .

In this case, gbαL ' Γ̃|(ω−E0)/T0(Hch)|N/(N+1), and we would equate this expression to Hch to obtain
T xch. Now, however, Hch appears on each side of the equation through the functional dependence in

T0(Hch). It may readily be verified that as a result we obtain the same estimate for T xch.
We may follow a similar procedure for estimating T xsp. Here we assume Hsp to be smaller than

the spin fluctuation scale T0. We equate the high energy form for gf to the spin field Hsp which gives

(5.1.46) T xsp =
γT0

(1 + γ)
(
Hsp

T0
)1+1/γ .
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This estimate agrees with NRG, Bethe-Ansatz, and conformal theory for N = M = 2, and in any case

gives the right dependence on Hsp for all N,M .
From a knowledge of the crossover behavior, one can compute the spin magnetization Mch and

channel spin magnetizationMch. For γ > 1, Msp ∼ (Hsp/T0)1/γ as expected from conformal field theory
and the Bethe-Ansatz. For γ < 1, Mch ∼ (πHch/Γ̃)γ as can be inferred from conformal field theory. For

γ = 1, Msp ∼ (Hsp/T0) ln(T0/Hsp) and Mch ∼ (πHch/Γ̃) ln(Γ̃/πHch), both in agreement with conformal
theory (sec 6.1.3.c). The method for computing the magnetization is based on a form for the ground
state energy in terms of the inverse green’s functions. We refer the reader to Appendix III for details.

5.1.5 Vertex Corrections

The success of the NCA in producing the critical exponents for ρσα, χ̃sp,ch and the crossover exponents

correct for all N,M , suggests that the vertex corrections are somehow unimportant in modifying the
physics of the problem from these simple diagrams. The lowest order vertex corrections are illustrated

in Fig. 50 for the pseudo-particle self-energies, and these are of order 1/N2 as argued previously. A little
thought indicates the following scenario for the vertex corrections: since the exponents are obtained

correctly for all orders in 1/N for the quantities considered, the most singular contribution from the
vertex corrections cannot modify these exponents. The vertex corrections can, however, correct the
amplitudes of the leading singular contributions by terms of order 1/N2 and higher.

Let us apply this reasoning to the self-energy equations, which, as we have seen, determine all
the physics of the above quantitities. This scenario may be checked self-consistently by assuming the

pseudo-particle propagators retain the same critical behavior at threshold E0 as in the order 1 solutions.
Explicit evaluation of the pseudo-fermion self-energy of Fig. 49 then shows that the dominant low energy

contribution vanishes again as |ω − E0|γ/(1+γ). A detailed analysis is deferred to Appendix III.
With power counting arguments, we can see that this result is more general. Consider a generic

contribution to Σf which has L loops and independent energy integrations, and hence contains L pseudo-
boson propagators and L − 1 pseudo-fermion propagators. By converting each energy integration to

dimensionless form, we can read off the power law dependence on ω−E0. Each boson propagator diverges
as |ω−E0|2∆b−1, each fermion propagator as |ω−E0|2∆f−1. From de-dimensionalizing the integrations we
obtain L factors of ω−E0 from the differentials, L powers of ω−E0 from the boson propagators, and L−1

powers of ω−E0 from the fermion propagators. The net power is then L+L(2∆b−1)+(L−1)(2∆f−1) =
2L(∆b + ∆f ) − 2∆f − L + 1 which, since ∆f + ∆b = 1/2, is just 1 − 2∆f . But this is precisely the

leading order power of the self-energy, so we have self-consistently demonstrated the scenario.
This is analogous to result for the quasiparticle lifetime in a Fermi liquid– the correct ω2 +π2T 2

behavior can be found in a diagram second order in the interaction strength. Higher order diagrams
may readjust the strength of the effective interaction– the amplitude of the leading order power–but will

not modify the form of the lifetime, that is, the leading order power itself. As in Fermi liquid theory,
where the renormalized interaction is of the order of the bandwidth and so no strict perturbation theory

is applicable, we find ourselves in a situation here where the regime of strict validity of the theory (large
N only) appears far smaller than its regime of applicability.

The observations of the last two paragraphs led Cox and Ruckenstein [1993] to speculate that in
systems with non-Fermi liquid ground states which typically show some form of spin-charge separation,
extended to spin-channel spin separation here, some form of self-consistent perturbation theory can

capture the essential physics even when no obvious small parameters are available, barring some kind
of phase transition which binds spin and charge (or spin and channel spin here).

In fact, there is evidence that just such a phase transition occurs in the Kondo problem between
the overcompensated regime for which the NCA is obviously well suited to the single channel Fermi

liquid line of Fig. 53. The work of Kroha et al. [1992,1996], together with that of Anders and Grewe
[1994] and Anders [1995a,1995b] moves beyond the NCA to work on the single channel model. The work

of Anders and Grewe [1994] and Anders [1995a,1995b] demonstrates that a tendency to restore Fermi
liquid properties is indeed produced by a self-consistent inclusion of vertex corrections through order
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1/N2. Kroha et al. [1992,1996] demonstrate that the vertex corrections display a tendency towards

bound state formation between the conduction electron and the pseudo-fermion state, closely related
to the spin-screened Fermi liquid state. In particular, in a saddle point evaluation of the conduction

electron-pseudo-fermion two-particle T -matrix, a pole is obtained on resumming an infinite number
of repeated particle-particle interactions between the electrons and pseudo-fermions. However, due to

fluctuations beyond this saddle point approximation, a true bound state is not in fact realized. Instead,
the pole contribution serves to renormalize the threshold exponents of the pseudo-particle propagators
from the NCA values of αf = 1/(N + 1) = 1− αb to exact values which have been deduced both from

a combined Bethe-Ansatz/Conformal Field Theory approach [Fujimoto et al., 1996] and an analytic
argument [Menge and Müller-Hartmann, 1988]. These exponents are dependent upon the occupancy

of the pseudo-fermion level, in contrast to the NCA values, and are indeed characteristic of a Fermi-
liquid ground state. Thus, the Fermi liquid ground state appears to be reinstated by an appropriate

recombination of spin and charge degrees of freedom induced by complicated interactions between
fermionic and bosonic degrees of freedom.

5.1.6 Properties at Finite Temperature

The NCA is not limited, of course, to zero temperature where the differential equation approach is
applicable. The integral equations may be self-consistently solved at finite temperature and the prop-

erties calculated. In this subsection, we wish to point out that the comparison is astonishingly good of
magnetic susceptibility, specfic heat, and entropy curves with exact calculations from the Bethe-Ansatz.

In particular, the discrepancy for the susceptibility is barely visible, while a discrepancy with the T = 0
entropy at the several percent level is seen, but expected given the largeN character of the analysis. The

calculations are based on the Ce3+ model to be discussed in the next subsection, which has parameter
regimes described by the two and three-channel spin 1/2 model.

In Fig. 54, we show results taken from Kim and Cox [1995,1997] for various parameter sets in
the two-channel Kondo regime of the simplified model. What is apparent is that all the computed NCA

χ(T ) curves agree almost perfectly with the exact Bethe-Ansatz results of Sacramento and Schlottmann
[1991]. Also shown in Fig. 54 is shown the corresponding calculation for the 3-channel regime. The
agreement is clearly excellent. It needs to be mentioned that this is actually a two-parameter comparison;

T0 is adjusted to TK from Sacramento and Schlottmann by sliding along the logarithmic temperature
axis. A mild scale factor adjustment is also required to bring the vertical axis into alignment. Kim and

Cox [1995,1997] argue that this scale factor is related to the crossover effects in the Ce3+ model they
study.

Attempts to compute the specific heat have also proven successful. The only method developed
to compute the specific heat from the NCA consists of numerical differentiation of Zf (Bickers, Cox, and

Wilkins [1987]). This works well for sufficiently large specific heat signal, but in the multichannel models,
the residual entropy robs the finite temperature specific heat of considerable integrated intensity. As a

result, it is essential to have high numerical precision to obtain the specific heat and entropy results.
A recent numerical advance in the NCA codes by Kim [1995] allowed reliable computation of entropy

and specific heat. The entropy curves for N = 2 and M = 1, 2, 3 are displayed in Fig. 55 [Kim and
Cox, 1995,1997]. The M = 1 curve shows the expected extrappolation to S = 0 as T → 0, although
the NCA curve is not to be trusted in the low temperature region for this Fermi liquid case. The

M = 2, 3 curves show temperature dependences in excellent agreement with Bethe-Ansatz. The residual
entropies are within 10-15% of the expected values for M = 2, 3. We don’t expect exact agreement of

the residual entropy given the explicit N dependence found in Bethe-Ansatz [Tsevlik, 1985; Sacramento
and Schlottman, 1991] and conformal theory treatments [Affleck and Ludwig, 1991c]. However, the

overall agreement is clearly exceptional for this simple theory.
The specific heat curves for N = 2 and M = 1, 2, 3 are shown in Fig. 56 [Kim and Cox,

1995,1997]. Clearly, the M = 1 curve is in excellent agreement with the exact results. The slight
underestimate of the magnitude for M = 2, 3 is understandable from the slight overestimate of the
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Figure 54: Spin susceptibility for SU(2)× SU(M) multichannel Anderson models in the Kondo regime
obtained from the NCA. Of particular note here is the excellent agreement between the exact Bethe-
Ansatz results for M = 2, 3 and the NCA results. From Kim and Cox [1997].
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Figure 55: Numerically calculated entropy curves from the NCA for the SU(2) × SU(M) Anderson
models in the Kondo regime. The M = 1 curve shows the clear (and expected) tendency towards

S(0) = 0 as expected for the single channel model. The M = 2, 3 curves agree well with exact Bethe-
Ansatz results (solid lines) and clearly display a tendency towards a finite residual entropy. Agreement

for S(0) is evidently at the 10-15% level. From Kim and Cox [1997].
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residual entropy evident in Fig. 55, since the net high temperature entropy must be R ln 2.

5.1.7 Alternative Large N formulation

Recently Parcollet and Georges [1997] have developed an alternative large N approach to the multi-

channel model which represents the spins in terms of constrained Schwinger boson fields. This theory is
able to treat overcompensated, undercompensated, and compensated cases exactly, and is expressed in
terms of saddle point equations which are strongly reminiscent of the non-crossing approximation. The

physical properties computed within this approach agree well with other methods, and in contrast to
the NCA, an analytic formula for the zero temperature entropy is obtained for the over- and undercom-

pensated models. The method would appear to hold considerable promise for a lattice generalization.

5.2 Application of the NCA to a model Ce3+ impurity

This subsection reviews the work of Cox [1993], Kim [1995], and Kim and Cox [1995,1997] in studying

a model Ce3+ impurity which encompasses the possibilities of one, two, and three-channel spin 1/2
Kondo effects. The model is intended to be a simplified version of a more complete model for Ce in

LaCu2.2Si2.

5.2.1 Pseudo-Particle Hamiltonian and NCA equations

The assumed level spectrum of the Ce3+ ion is shown in Fig. 57. The Hamiltonian is then given
by Eqs. (2.2.25,26). We wish to rewrite this Hamiltonian in pseudo-particle form. We represent the

f1 doublet by a pair of pseudo-fermion operators f7µ, and the f0, f2 states by pseudo-bosons b1, b3α

respectively. To enlarge the Hilbert space from the two-configuration model, the f -charge Qf of Eq.
(3.3.6) is modified to

(5.2.1) Qf =
∑

α

b†3αb3α +
∑

µ

f †7µf7µ + b†1b1

The resulting pseudo-particle Hamiltonian is

(5.2.2) H =
∑

kΓcαc

εkc
†
kΓcαc

ckΓcαc + ε1
∑

µ

f †7µf7µ

+ ε2
∑

α

b†3αb3α +
V17√
Ns

∑

µ

[f †7µb1c7µ + h.c.]

− V37√
Ns

∑

αµ

sgn(µ)[b†3αf7,−µck8αµ + h.c.]− λps(Qf − 1) .

We denote the hybridization width corresponding to V17(V37) by Γ17 = πN(0)V 2
17(Γ37 = πN(0)V 2

37).

Here ε1 = εf and ε2 = ε̃f + εf = 2εf + Uff where Uff is the Coulomb repulsion.
As discussed in Sec. 2.2.2, for Γ37/π|ε̃f | < Γ17/π|εf |, we anticipate a one channel Kondo effect.

The NCA will correctly describe the approach to a Fermi liquid fixed point here, though not the actual

fixed point. However, the scaling dimensions in this instance will be uniquely specified by the NCA and
serve as a measure of the universality class within the method. For Γ37/π|ε̃f | > Γ17/π|εf |, we anticipate

a two-channel Kondo effect to describe the low temperature physics. This will be obtained essentially
correctly through the NCA. For Γ37/π|ε̃f | = Γ17/π|εf |, we anticipate the three-channel Kondo effect to

regulate the low temperature physics, which again is obtained essentially correctly through the NCA.
The above conditions on the dimensionless Schrieffer- Wolff coupling constants will be slightly modified

in the full NCA analysis, but the essential physics is unchanged.
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Figure 56: Specific heat for SU(2)× SU(M) Anderson models in the Kondo limit with M = 1, 2, 3 as
calculated from the NCA. Points are from the NCA, lines are from exact Bethe-Ansatz results. The

high temperature enhancements are due to the presence of the excited configurations in the model,
which are not present in the Bethe-Ansatz model. From Kim and Cox [1997].
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Figure 57: Energy levels of the f0, f1, f2 states for the simplest Ce3+ ion Anderson model. Only a

magnetic doublet is kept in the f1 configuration, and only a non-Kramers’ doublet is kept in the f2

configuration. Taken from Kim and Cox [1997].
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Figure 58: Pseudo-particle self energy diagrams for the simple Ce3+ ion Anderson model. Dashed lines
are for the f1 pseudo-fermion propagator which carries spin (magnetic) index µ. Wavy lines are for the

f0 pseudo-boson propagator. Curly lines are for the f2 pseudo-boson propagator which carries channel
(orbital) index α. Solid lines are for conduction electrons which may carry only spin (Γ7, denoted by

7), or both spin and channel (Γ8, denoted by 8). See Kim and Cox [1995,1997].
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Fig. 58 illustrates the self-energy diagrams retained in the NCA. The resulting self energies are

denoted Σ7 for the f1 doublet, Π1 for the f0 singlet, and Π3 for the f2 doublet. The corresponding
propagators are

(5.2.3) G7(ω) =
1

ω − εf − Σ7(ω)

(5.2.4) G1(ω) =
1

ω − Σ1(ω)

and

(5.2.5) G3(ω) =
1

ω − ε2 − Σ3(ω)
.

Assuming, for convenience, particle-hole symmetry to the conduction band, the integral equations of

the NCA are

(5.2.6.a) Σ7(ω) =
Γ17

π

∫
dεf(ε)G1(ω + ε)

2Γ37

π

∫
dεf(ε)G3(ω + ε)

(5.2.6.b) Σ1(ω) =
2Γ17

π

∫
dεf(ε)G7(ω + ε)

(5.2.6.c) Σ3(ω) =
2Γ37

π

∫
dεf(ε)G7(ω + ε) .

Notice that Σ3 = (Γ37/Γ17)Σ1.
This model has a special feature relative to other three configuration models studied previously

with the NCA, such as the s-wave spin 1/2 Anderson Hamiltonian [Pruschke 1990,1992]. In the latter
case, there is a vertex correction which in effect mixes the s0, s2 configurations. The origin of the

simplification for this model is not mysterious when viewed from the standpoint of the Schrieffer-Wolff
transformation: the s0, s2 states in the s-wave model each transform as fully symmetric representations

and so contribute terms of the same form in the effective exchange Hamiltonian. Hence, there can be only
one Kondo scale associated with the two excited configurations. The vertex corrections used by Pruschke

have a direct corresondence to the scaling theory diagrams which couple the s0-driven exchange to the
s2-driven exchange. In this model for a Ce3+ ion, however, the Schrieffer-Wolff exchange interactions

induced by virtual f0 and f2 fluctuations have entirely different form and couple to different symmetry
conduction partial wave states. Hence, there can be no such cross-couplings of effective exchange
interactions in low order scaling theory, and no vertex corrections within the NCA analysis.

5.2.2 NCA Differential Equations

Following the same procedure of Sec. 5.1.1, and defining the inverse propagators g7 = −G−1
7 , g1 = −G−1

1 ,

and g3 = −G−1
3 we obtain the following differential equations for the T = 0 NCA:

(5.2.7.a)
dg7

dω
= −1− Γ17

πg1
− 2Γ37

πg3

(5.2.7.b)
dg1

dω
= −1− 2Γ17

πg7
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(5.2.7.c)
dg3

dω
= −1− 2Γ37

πg7

subject to the boundary conditions

(5.2.8) g7(−D) = D + εf , g1(−D) = D, g3(−D) = D + ε2 .

These equations are clearly more complex than for the SU(N)⊗ SU(M) model of the previous
subsection. Indeed, if Γ17 6= Γ37, a complete low frequency analytic solution cannot be obtained, as we
shall discuss below. The reason is that there is no integration constant corresponding to C̃ of Eq. (5.1.7)

which connects low and high energy regimes. This does not prevent the derivation of some analytic
results, nor does it prohibit a full numerical solution of the NCA equations.

5.2.3 Solution in the Special Case Γ17 = Γ37

The special case Γ17 = Γ37 = Γ is fully soluble in the spirit of the previous subsection, and provides

considerable insight to the physics of the model (Kim [1994]). Accordingly, we shall devote most of our
attention to this case. We can see immediately that the equality of Σ3 and Σ1 implies that dg3/dg1 = 1,

so that g3 = g1 + const.. From Eq. (5.2.8), the integration constant is seen to be ε2. We consider three
separate cases, for ε2 = 0, ε2 > 0, and ε2 < 0.

(i) ε2=0. In this case we anticipate the physics to be that of the three channel model. Clearly,
the NCA differential equations imply g1 = g3. Substituting into Eqs. (5.2.7.a,b) we find the integration
constant

(5.2.9) C̃ = exp(
π

2Γ
[g7 − g1])(

g7

D
)2(

D

g1
)3 .

Following the previous analysis for the SU(N)⊗ SU(M) model, we evaluate this expression at −D to
obtain C̃ = exp(πεf/2Γ). This implies that at low energies approaching the threshold E0,

(5.2.10) 1 ≈ [g7/T
(3)
0 ]2

[πg1/Γ]3

with T
(3)
0 being the NCA estimate for the three-channel Kondo temperature

(5.2.11) T
(3)
0 = D(

Γ

πD
)3/2 exp(

πεf
2Γ

) .

Comparison with the previous section or direct substitution into Eqs. (5.2.7.a,b) confirms that the low
temperature behavior is precisely that of the N = 2,M = 3 model. This means that g7 ∼ T0|ω−E0|3/5
and g1, g3 ∼ Γ|ω − E0|2/5 for ω → E0.

(ii) ε2 > 0. We expect the low temperature physics here to be the same as in the three channel

case. Now we eliminate g3 in favor of g1. Substituting into Eqs. (5.2.7.a,b) we find the integration
constant C̃ given by

(5.2.12) C̃ = exp(
π

2Γ
[g7 − g1])(

g7

D
)2 D3

g1(g1 + ε2)2
.

Following the previous analysis for the SU(N) ⊗ SU(M) model, we evaluate this at −D to obtain
C̃ = exp(πεf/2Γ). This implies that at sufficiently low energies when g1 << ε2 as ω−E0 → 0, we have

the relation

(5.2.13) 1 ≈ [g7/T
(1)
0 ]2

πg1/Γ
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where the Kondo scale T
(1)
0 is given by

(5.2.14) T
(1)
0 = D(

ε2
D

)(
Γ

πD
)1/2 exp(

πεf
2Γ

) .

The low frequency relation of Eq. (5.2.10) implies asymptotically that g7 ∼ |ω − E0|1/3 and d1 ∼
|ω − E0|2/3. These are precisely the asymptotic forms expected for the single channel spin 1/2 model

(see Müller-Hartmann [1984] and Bickers [1987]). The superscript (1) in the Kondo scale refers to the
single channel character. T his implies further that G7 diverges as |ω − E0|−1/3, and G1 diverges as

|ω − E0|−2/3. In contrast, G3 is finite at threshold, which implies that A3(ω) ∼ |ω − E0|2/3 close to
threshold. Since G3 corresponds to the dynamically screened exchange between the Γ7 Ce3+ doublet
and the Γ8 conduction quartet, this vanishing corresponds to the irrelevance of that coupling when the

bare Γ7 − Γ8 exchange is smaller than the bare Γ7 − Γ7 exchange.
We next identify the crossover energy scales at which the low temperature single channel behavior

begins to dominate. This proceeds in much the same spirit as in the identification of crossover scales for
applied spin and channel fields in the SU(N)⊗ SU(M) model of the previous subsection. The relevant

comparison here is between the magnitude of g1 and ε̃f . The maximal scale of g1 is set by Γ in the low
energy region. Hence, if Γ << ε2, we will always pass to the single channel Kondo physics on lowering

from high energy/temperature scales without seeing the three channel Kondo physics corresponding to
essentially degenerate f0, f2 states. However, if ε2 < Γ << |εf |, we have a more interesting situation.

For E0 > ω, we have, following Müller-Hartmann [1984],

(5.2.15) g1(ω) ' Γ

π
[
3(E0 − ω)

T0
]2/3

which should be equated to ε̃f to determine the crossover scale T x(1). We thus find

(5.2.16) T x(1) '
1

3
T

(1)
0 (

πε2
Γ

)3/2 .

This clearly tends to zero as ε2 → 0. For frequencies above this scale, g1 exceeds ε2 and the physics

becomes that of the three channel model. An alternative approach is to compare the three channel form
for g1 above T x(1) with ε2. This yields

(5.2.17) T x(1) '
3

5
T

(3)
0 (

πε2
Γ

)5/2 .

Using the expression for T
(3)
0 , we see that this result differs from that of Eq. (5.2.16) only by order

unity.
The most interesting feature of the discussion in the preceding paragraph is that even for van-

ishingly small ε2, the physics will ultimately be that of the single channel model at temperatures below

T x(1), with a Kondo scale fixed by T
(1)
0 . Indeed, to cleanly see the single channel physics numerically, we

infer that ε2 must be at least of order Γ since T x(1) ∼ (ε2/Γ)5/2. Clearly more energy scales are present

for a model Ce3+ ion than are evident from the bulk of theoretical approaches taking Uff →∞!
(iii) ε2 < 0 In this case, we expect the low temperature physics to be governed by the two-channel

spin 1/2 fixed point. Now we eliminate g1 in favor of g3 and obtain the integration constant

(5.2.18) C̃ = exp(
π

2Γ
[g7 − g3])(

g7

D
)2 D3

g2
3(g3 + |ε2|)

which now gives C̃ = exp(−π[εf + Uff ]2Γ) and implies near threshold

(5.2.19) 1 ≈ [g7/T
(2)
0 ]2

[πg3/Γ]2
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with

(5.2.20) T
(2)
0 = D(

|ε2|
D

)1/2(
Γ

πD
) exp(−πε̃f

2Γ
) .

Notice the new exponential factor in this Kondo scale. Use of Eq. (5.2.19) in solving the NCA differential
equations confirms that this is the N = M = 2 limit of the SU(N)⊗SU(M) model. Hence, each of g7, g3

vanish as |ω −E0|1/2 near threshold, while A1(ω) vanishes as |ω −E0|1/2 near threshold corresponding
to the irrelevance of the single channel coupling in this instance.

We may discuss the crossover physics in exactly the same manner as for the single channel case.
For |ε2| >> Γ, the three-channel fixed point is never approached from high energies and we simply flow

directly to the physics of the two-channel fixed point. For |ε2| < Γ, we can determine the energy scale
at which we crossover from three channel to two-channel physics by equating

(5.2.21) g3(ω) ' Γ

π
[
2|ω − E0|

T0
]1/2

to |ε2| which yields

(5.2.22) T x(2) '
1

2
T

(2)
0 (

π|ε2|
Γ

)2

or by equating the three channel form for d3 with |ε̃f | that gives

(5.2.23) T x(2) '
3

5
T0(

π|ε2|
Γ

)5/2

which agrees with Eq. (5.2.21) to within factors of order unity. Once again, even for vanishingly small

ε2, the low temperature physics below T x(2) will be governed by the two-channel fixed point.

5.2.4 Remarks on the General Case Γ17 6= Γ37

As we mentioned in Sec. 5.2.2, when Γ17 6= Γ37, no integration constant can be found corresponding to
C̃ and a full solution must be numerical. However, we can make some statements about universality

classes with confidence since there are approximate integration constants there obtained by neglecting
the -1 terms in Eqs. (5.2.6a,b). This is valid near threshold assuming g7 diverges which in turn implies
that at least one of d1, d3 diverge near threshold. Specifically, we see that dg3/dg1 ≈ Γ37/Γ17. Thus

(5.2.24) g3 ≈ (
Γ37

Γ17
)g1 + C

and C can be identified from the values at threshold to be

(5.2.25) C = ε∗2 = ε2 + (
Γ37

Γ17
− 1)E0 .

The meaning of ε∗2 is that this integration constant essentially plays the role of a hybridization renor-

malized value of ε2 near the threshold. Clearly, the conditions of the previous section regarding the sign
of ε2 can now be replaced by the corresponding conditions on the sign of ε∗2. Unfortunately, E0 is not

known a priori, so that this condition is not as useful in determining the low temperature physics.
The approximate integration constant relation of Eq. (5.2.24) will hold up to some energy cutoff

D∗. Consider the case ε∗2=0. Then in the same energy region we can identify a new approximate

integration constant C̃∗ given by

(5.2.26) C̃∗ ≈ (
g7

D∗
)2(
D∗

g1
)3
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Figure 59: Diagrams for full 4f propagators for the simplest Ce3+ Anderson model. The diagram

at left is for the Γ7 symmetry full f propagator (which hybridizes with the corresponding conduction
propagator), and the diagram at right for the Γ8 symmetry full f propagator (which hybridizes with
the conduction quartet propagator.

which implies

(5.2.27) 1 ≈ [g7/T
(3)∗
0 ]2

[πg1/Γ17]3

with

(5.2.28) T
(3)∗
0 ≈ D∗C̃∗( Γ17

πD∗
)3/2 .

Note that Eq. (5.2.23) ensures that Γ37 cancels from dg7/dg1. Thus the form of the low temperature

physics must be the same as in the simpler case with equal hybridizations, but the Kondo scale must be
determined numerically for a given cutoff D∗ through evaluation of C̃∗ at the cutoff. Similar analyses

apply for the one and two channel limits. The crossover analysis can be done in terms of ε∗2 and T (3)∗

in the same way as discussed in Sec. 5.2.2.

Finally, we note that we can easily rewrite the condition ε∗2 >,<,= 0 in terms of renormalized
coupling constants g̃7, g̃8 given by

(5.2.29) g̃7 =
Γ17

π|E0|
, g̃8 =

Γ37

π|E0− ε2|
.

Let δ = g̃−1
7 − g̃−1

8 . Then for δ > 0, we will obtain two-channel physics, for δ = 0 three channel physics,
and for δ < 0 we will obtain one channel physics at low temperatures. The estimates of the crossover

temperatures are precisely those of Eqs. (2.2.40,41) discussed in Sec. 2.2.4. Clearly, if Γ17 = Γ37, we
revert to the sign of ε2 determining the physics as in Sec. 5.2.2, and to the crossover scale formulae Eqs.

(5.2.16,20).

5.2.5 Physical Properties at Finite Temperature

Kim and Cox [1995,1997] have evaluated the physical properties of this model at finite temperatures,
and we shall survey their results here.

We shall focus on the magnetic susceptibility and the 4f spectral function here. The susceptibility
diagram is precisely that of Fig. 51, with the Γ7 propagators put in. The spectral function diagram

includes two contributions show in Fig. 59. One term arises from Γ7 symmetry interconfiguration
transitions arising from f0 − f1 processes, and the other from Γ8 symmetry transitions arising from

f1 − f2 processes. Notice the reversed order of the Γ7 propagator in the two diagrams.
The susceptibilities in the two- and three-channel regimes are shown in Fig. 54 . As dis-

cussed previously, these agree very well with the corresponding Bethe-Ansatz curves of Sacramento
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and Schlottmann [1991]. There is however a necessary vertical scale adjustment which depends upon

parameters. The origin of this scale factor, which is of order unity, is likely a residue of the crossover
physics. Namely, the full one-parameter universality of the two-channel model, for example, may not

show up until g̃8 >> g̃7. The dynamical spin susceptility in the three different regimes is shown in
Fig. 60. In each case the inset shows the peak position as a function of temperature. This peak position

is a rough measure of the spin relaxation rate, which is then illustrated in Fig. 61. For the one -channel
case, this saturates to a constant value of order T0 at low T , compatible with the Fermi liquid ground
state (although χ′′ is of course singular at lower frequency). For the two- and three-channel regimes, the

effective relaxation rate vanishes as T → 0, doing so linearly in the two-channel case. This is of course
compatible with the marginal Fermi liquid hypothesis which postulates that T sets the low temperature

energy scale (Varma et al., [1989]).
The specific heat and entropy curves have already been discussed in Figs. 55,56 and section

5.1.6. Of importance in understanding the curves is the presence of the interconfiguration peak which
gives a large background to the specific heat and entropy.

The most interesting new physics to emerge from this treatment concerns the transport coeffi-
cients, specifically the thermoelectric power. The temperature dependent spectral functions in the 1,2,

and 3-channel regimes are shown in Figs. 62,63,64. For the 1 and 2-channel cases, the inset shows the
separate contributions of the f0 − f1 and f1 − f2 diagrams at low temperatures. We notice that the
contribution from either f1 − f2 transitions in the single channel case or f0 − f1 transitions in the

two-channel case vanishes at zero frequency. This corresponds to the irrelevance of the smaller coupling
constant in the renormalization group sense; the width of the region over which each spectral function

vanishes is a measure of the corresponding crossover scale defined in the previous subsection.
What is quite clear from these figures is that in the one-channel regime is that the Kondo

resonance weight is shifted predominantly to positive frequencies. For the two-channel regime, the
Kondo resonance weight is shifted predominantly to negative frequencies. The physical origin is clear–

in the one channel case, virtual charge fluctuations to the f0 configuration dominate and so the f -
occupancy is less than 1, meaning we should shift spectral weight above the Fermi energy relative to

the nf = 1 case. For the two-channel regime, virtual charge fluctuations to f2 dominate, and hence we
expect the f -occupancy to exceed one. Corresponding to this, we should shift spectral weight below
the Fermi energy.

Since the scattering rate 1/τ is proportional to to the full spectral function (modulo correc-
tions from anisotropic hybridization matrix elements –see Kim and Cox [1995,1997] for a discussion),

the discussion of the preceding paragraph has a direct bearing on the thermoelectric power which is
proportional to the transport integral I1 =

∫
dε(−∂f/∂ε)τ(ε). The one-channel regime scattering rate

will lead to a stronger scattering of unoccupied (particle) states meaning that occupied(hole) states
will dominate the heat transport in I1 and hence we expect a positive sign to the thermopower in

this regime. For the two-channel case, holes are scattered more strongly overall than particles, so we
anticipate more effective heat transport by particles and a negative sign to the thermopower. In the

three channel case, the scattering rate is approximately symmetric but slightly dominated by hole scat-
tering since the excited f2 state is a doublet. As a result we expect the thermopower to be slightly
negative at low temperatures. The full numerical calculations bear out the physical discussion of the

previous paragraph, as shown in Fig. 65. This implies that the thermopower is a sensitive probe of the
possible universality class for Ce3+ impurities! As we have noted previously, CeCu2.2Si2 has a negative

thermopower below 70K, well above any possible lattice coherence effects. This is strong support for
a model in which the f2 fluctuation weight in the ground state exceeds the f0 weight. However, as

discussed in Sec. 8.2, for dilute Ce in LaCu2Si2, the thermopower regains a positive sign, which is
problematic for an interpretation in terms of the two-channel Kondo model.
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Figure 60: Dynamic susceptibility of the simplest Ce3+ Anderson model in the M = 1, 2, 3 channel
regimes. The insets show scaling behavior in which the curves are divided by their maximum value and

centered at their maximum position. The maximum position defines the linewidth Γ of Fig. 61. From
Kim and Cox [1997].
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Figure 61: Magnetic relaxation rate of the simplest Ce3+ Anderson model in the M = 1, 2, 3 channel
regimes. These rates are determined from the maximum position of the dynamic susceptibility curves
in Fig. 60. Reflecting the residual ground state degeneracy (“degenerate spin screening cloud”), the

linewidth vanishes linearly in temperature for M = 2, 3, whereas it is finite for M = 1, compatible with
Fermi liquid behavior in that limit. From Kim and Cox [1997].
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Figure 62: Atomic spectral functions in the one-channel regime of the simplest Ce3+ Anderson model.
ρ01 is the interconfiguration spectral function which is obtained from the convolution between f0 and

f1Γ7 states. ρ12 is the interconfiguration spectral function which is obtained from the convolution
between f1Γ7 and f2Γ3 states. The one-channel Kondo effect leads to the Kondo resonance development

in ρ01 just above the Fermi level and the spectral depletion in ρ12 right at ω = 0. Spectral functions
are displayed for model set 8. The temperature variations are T/D = 3.678 × 10−2, 1.077 × 10−2,

3.155× 10−3, 9.239× 10−4, 2.706× 10−4, 7.924× 10−5, 2.321× 10−5. From Kim and Cox [1997].
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Figure 63: Atomic spectral functions in the two-channel regime for the simplest Ce3+ ion Anderson

model. The two-channel Kondo effect leads to the Kondo resonance development in ρ12 at the Fermi
level (T = 0) and the spectral depletion in ρ01 right at ω = 0. Spectral functions are displayed for

model set 1. The temperature variations are the same as in Fig. 62. From Kim and Cox [1997].
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Figure 64: Atomic spectral functions in the three-channel regime of the simplest Ce3+ ion Anderson

model. For this parameter regime (model set 4), the two spectral functions ρ01 and ρ12 are equivalent
in the asymptotic limit after a particle-hole transformation. The temperature variations are the same

as in Fig. 62. From Kim and Cox [1997].

148



Figure 65: Thermopower S(T ) for the simplest Ce3+ ion Anderson model. The thermopower is positive

at low T for the M = 1 parameter regime, strongly negative for the M = 2 parameter regime, and
weakly negative for the M = 3 parameter regime. Dominant f0−f1(f1−f2) virtual charge fluctuations

give positive(negative) S(T ). From Kim and Cox [1995].
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5.2.6 Critique and Directions

The simple model analyzed in this subsection may be criticized in its treatment of the f2 configuration.

Specifically, it is known for Ce3+ ions that ε2 ≈ +1 − 2eV. On the other hand, Γ17 is known to be
' 0.1− 0.3eV , and due to fractional parentage effects, we anticipate that for the lowest multiplet in f2

that Γ37 < Γ17. Thus, naively, unless it would seem that the two- and three-channel possibilities can

never be realized in practice. Also, excited state f2Γ4,Γ5 levels give rise to the additional J̃ coupling
discussed in Sec. 2.2.2.

The NCA analysis can in principle be extended to include the lowest crystal field excitations of
the excited configuration, but this will require inclusion of vertex corrections of the sort discussed by

Pruschke [Pruschke, 1989] to reliably describe the low temperature physics. The effect here is not yet
known, but given the scaling analysis of Sec. 3.4, we anticipate that the low energy scale physics will

still be determined by the Γ3 virtual charge fluctuations provided the coupling is sufficiently weak to
the Γ4,Γ5 levels.

The first critique is more serious, but a possible answer is as follows: all the excited state Γ3

levels will produce a contribution to the two-channel coupling. While the hybridization to any given
Γ3 is too weak to give an effective coupling exceeding the one-channel coupling driven by the f0 charge

fluctuations, we anticipate that the sum over the manifold of Γ3 states may well produce a significantly
larger coupling. Since this appears already at second order in the hybridization, we expect the NCA

extended to the entire configuration to produce an answer to the question. The additional couplings
will likely be brought in through admixture of all the d3 propagators, which occurs at second order in

the hybridization.
This argument can be made precise by considering a model with two excited state Γ3 doublets

and examining the first iteration of the NCA, which is sufficient to determine the Kondo temperature.

Denote the corresponding hybridization matrix elements by V
(i)

37 and energies as ε̃
(i)
f . Define the quantity

π̃(ω) = ln |(ω−εf )/D|/π. Because the excited Γ3 doublets can mix as shown in Fig. 5.12, the Γ3 green’s
function is now a 2 × 2 matrix. The secular equation determining T0 is found by requiring that the

denominator of the inverse Green’s function vanishes, which gives

(5.2.29) [ω − ε̃(1)
f − Γ

(1)
37 π̃(ω)][ω − ε̃(2)

f − Γ
(2)
37 π̃(ω)]− Γ

(1)
37 Γ

(2)
37 π̃

2(ω) .

This function π̃ becomes large and negative near ω = εf , and to leading exponential accuracy we may

thus rewrite this equation as (putting ω − εf = −T0)

(5.2.30) 1 = [
Γ

(1)
37

π(εf − ε̃(1)
f )

+
Γ

(2)
37

π(εf − ε̃(2)
f )

] ln(
T0

D
)

so that the effective couplings driven by the different Γ3 levels are clearly summed. This analysis may

be readily extended to an arbitrary number of excited Γ3 levels. Hence, the model with just one Γ3

level captures the essential physics; the lone Γ3 should just be taken as an effective representative of all

the excited Γ3 levels.

5.3 Application of the NCA to a Model U4+ Impurity

In this section we discuss results obtained from applying the NCA to a model U4+ impurity that have

been reported in Cox[1987b], Cox [1988(a)], Cox and Makivik [1994], and Kim et al. [1997]. The
most important physical conclusions are: (i) that even for arbitrarily small crystal field splitting in the

ground J = 4 multiplet, when the Γ3 level lies lowest the low temperature physics will be that of the
two-channel Kondo model below a suitable crossover temperature. Hence, even when the crystal field

levels overlap substantially, as appears to be the case for UBe13 to the extent that this model applies
for this material, one may be confident of two-channel Kondo physics arising at low temperatures. (ii)

the singular character of the ground non-magnetic doublet may reflect in the magnetic susceptibility
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Figure 66: Level scheme for the simplest U4+ ion Anderson model studied within the NCA.

producing a
√
T law. This result appears to be highly parameter dependent and most likely occurs in

the regime where the crystal field levels overlap substantially.

5.3.1 Pseudo-particle model and NCA equations

We shall consider only a simple model in which we retain the lowest J = 4Γ3 doublet of the ground

configuration together with the first excited crystal field level (assumed to be a Γ4 triplet) and the lowest
J = 5/2Γ7 doublet of the excited f1 configuration. We will assume only J = 5/2Γ8 conduction partial

wave states. Additional crystal field states and conduction partial waves may easily be included with
altering the essential conclusions. At the end of the section we shall briefly remark about the effects of

including an excited
In this case, we simply introduce a pseudo-fermions for the Γ3,Γ4 states of the f2 configuration,

and a pseudo-boson doublet for the Γ7 of the excited f1 configuration. (Alternatively, we could assume
a Γ6 doublet in an excited f3 configuration since Γ6 ⊗ Γ3 = Γ7 ⊗ Γ3 = Γ8.) The level scheme is shown

in Fig. 66. These are then put into the Hamiltonian in equations (2.2.30) and (2.2.32) in precisely
the same manner we did for the Ce case. The reader should not be disturbed by the use of a pseudo-

fermion operator for an even numbered configuration and a pseudo -boson operator for an odd numbered
configuration since the statistics are lost once the full projection is made. The f charge is written as

(5.3.1) Qf =
∑

Γ(f2)η(f2)

f †
Γ(f2)η(f2)

fΓ(f2)η(f2) +
∑

µ

b†Γ7µ
bΓ7µ

and the full pseudparticle Hamiltonian is

(5.3.2) H =
∑

kη8

εkc
†
k8η8

ck8η8 +
∑

Γ(f2)η(f2)

(ε̃f + ∆Γ(f2))f
†
Γ(f2)η(f2)

fγ(f2)η(f2)

+Hhyb − λps(Qf − 1)

with

(5.3.3) Hhyb =
V

Ns

∑

k,η8 ,µ

∑

Γ(f2)η(f2)

Λ(Γ7µ; Γ(f2)η(f2); Γ8η8)[f †Γ(f2)η(f2)bΓ7µck8η8 + h.c.] .

Note that η8 is shorthand for the spin/channel notation of Eqs. (2.2.18.a,b). We have taken E(f2) = ε̃f ,

and shall denote henceforth ∆Γ3 = 0,∆Γ4 = ∆.
The NCA self-energy diagrams for this model are shown in Fig. 67. Prior to writing down the

integral equations, it is useful to define the group theoretic coupling strengths

(5.3.4.a) c(Γ(f2),Γ(f1)) =
1

ν(Γ(f1))

∑

Γcηcη(f1))

Λ2(Γ(f1)η(f1); Γ(f2)η(f1); Γcηc)
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Figure 67: NCA pseudo-particle self energy diagrams for the simplest U4+ ion Anderson model.

and

(5.3.4.b) c(Γ(f1),Γ(f2)) = c(Γ(f2),Γ(f1)) =
1

ν(Γ(f2))

∑

Γcηcη(f2))

Λ2(Γ(f1)η(f1); Γ(f2)η(f1); Γcηc)

where ν(Γ) is the degeneracy of irrep Γ. For a given coupling model (LS, jj, or intermediate) and crystal
field Hamiltonian, the c coefficients may be determined once and for all. Depending on the crystal field,

the coefficients may also have to be recomputed in an applied magnetic field. This definition allows
for a ready generalization of the NCA to arbitrary crystal field schemes. The definition is unmodified

by the inclusion of all conduction partial waves. The hybridization factors appearing in the integral
equations for the state indexed by irrep Γe and arising from a diagram with internal impurity irrep Γi
will always just be of the form ν(Γi)c(Γe,Γi)Γ. The coupling coefficients have an implicit dependence

on the f2 multiplet. They obey a simple sum sule

∑

Γ(f1)

c(Γ(f2),Γ(f1)) = 2

independent of Γ(f2), where the sum includes the crystal field states of the j = 7/2 multiplet as well.
This measures the total number of ways to make a transition from f2 → f1, which is just two, since we

may remove one or the other of the electrons. If we are instead considering a model with the f3 excited
configuration, the RHS of the above sum rule is changed to 12 provided we sum over all states of the

excited f3 configuration.
The integral equations of the NCA for this model are then

(5.3.5.a) σ3(ω) =
2c(Γ3,Γ7)Γ

π

∫
dεf(ε)D7(ω + ε)

(5.3.5.b) σ4(ω) =
2c(Γ4,Γ7)Γ

π

∫
dεf(ε)D7(ω + ε)

and

(5.3.5.c) π7(ω) =
2c(Γ3,Γ7)Γ

π

∫
dεf(ε)G3(ω + ε) +

3Γc(Γ4,Γ7)

π

∫
dεf(ε)G4(ω + ε) .

We have again assumed particle-hole symmetry to the conduction density of states.
Following the procedures of the previous two sections, we may convert these integral equations

to differential form at T = 0 with the usual definition of inverse propagators, which gives

(5.3.6.a)
dg3

dω
= −1− 2c(Γ3,Γ7)Γ

πd7
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(5.3.6.b)
dg4

dω
= −1− 2c(Γ4,Γ7)Γ

πd7

and

(5.3.6.c)
dd7

dω
= −1− 2c(Γ3,Γ7)Γ

πg3
− 3c(Γ4,Γ7)Γ

πg4

subject to the boundary conditions

(5.3.7) g3(−D) = D + ε̃f , g4(−D) = D + ε̃f + ∆, d7(−D) = D .

5.3.2 Solution of the NCA equations for the Model U4+ Impurity

Clearly Eqs. (5.3.6a-c) have a very similar structure to Eqs. (5.2.7a-c). As in the case of those equations
for the model Ce3+ impurity, we cannot solve Eqs. (5.3.6a-c) analytically without a further simplifying

assumption. For convenience (and not reality) we shall take c(Γ3,Γ7) = c(Γ4,Γ7). We shall then denote
the product of the coupling coefficient and Γ by Γ̃ = Γc(Γ3,Γ7). No qualitative differences arise in

this modified model relative to the original one. Typically the coupling coefficients are of order unity;
for the LS coupling scheme and all conduction partial waves included, c(Γ3,Γ7) = 0.64. This reflects

fractional parentage coefficients. Notice that the effective reduction of the hybridization is important
for understanding why we can get reasonably small Kondo scales in U materials when compared with
Ce based materials despite the expectation of smaller interconfiguration energy differences and larger

hybridization due to the greater spatial extent of the 5f wave-function.
With this simplifying assumption, we see that g4 = g3 + C, with the constant C = ∆. This

allows us to find the second integration constant C̃ given by

(5.3.8) C̃ = exp[
π

Γ̃
(g3 − d7)](

g3

D
)2(

g3 + ∆

D
)3/2(

D

d7
)2 .

By evaluation at −D, as usual, we find C̃ = exp(πε̃f/2Γ̃). In the low frequency limit for g3 << ∆, we
can rewrite this as

(5.3.9) 1 ≈ [g3/T0]2

[πd7/Γ̃]2

with

(5.3.10) T0 = D(
Γ̃

πD
)(
D

∆
)3/2 exp(

πε̃f

2Γ̃
) .

Notice the crystal field enhancement factor appears just as discussed in Sec. 3.3.3.c. Also, the hy-
bridization multiplied by the coupling coefficient, Γ̃, appears, allowing in principle for a smaller Kondo

scale despite increased Γ values as discussed previously.
In this low temperature region, it is clear that the physics is that of the N = M = 2 Kondo

model. As a result, we expect the quadrupolar susceptibility and specific heat coefficient to diverge
logarithmically, and the electrical resistivity to saturate with a

√
T law as the temperature is lowered.

As the temperature or frequency is raised, a crossover can occur to the Kondo model corre-
sponding to degenerate Γ3,Γ4 multiplets. The relevant comparison here is of g3 ∼ T0(2|ω −E0|/T0)

1/2

to ∆. If ∆ >> T0, the crossover to the ground two-channel Kondo effect simply occurs at T0. If on the
other hand ∆ ≤ T0, then the crossover occurs when g3 ≈ ∆. This occurs at an energy scale T xCEF given

by

(5.3.11) T xCEF ≈
1

2
T0(

∆

T0
)2 .
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What is important to notice here is that even for arbitrarily small crystal field splitting, the low tem-

perature physics will still be that of the two-channel quadrupolar Kondo effect. This is important,
since in UBe13, for example, for which the quadrupolar Kondo effect was first proposed as a possible

explanation for the heavy fermion behavior, the excited crystal field levels appear to be very broad and
overlap strongly with the ground state. Nonetheless, a quadrupolar Kondo effect can still occur below

a crossover temperature as defined above.
We briefly comment on two other issues before discussing physical properties:

(1) Inclusion of Excited Crystal Field States in the f1 configuration. Here another kind of crossover can

occur. Let us assume that the Γ4 level is taken to ∞, for simplicity, and that a Γ8 quartet is included
at energy ∆′ in the excited configuration. Maintaining the equal coupling coefficient limit, the relation

between d7 and g3 at low energies is still given by Eq. (5.3.9), but with T0 now modified to

(5.3.12) T0 = D(
Γ̃

πD
)(∆′/D)2 exp(

πε̃f

2Γ̃
) .

Notice that excited state crystal field splittings reduce T0. Arriving at the above equation required

assuming d7 ≈ (Γ̃/π)(2|ω−E0|/T0)1/2 << ∆′. If ∆′ >> Γ̃, this is always satisfied and the crossover to
the low temperature two-channel fixed point occurs at T0. If ∆′ ≤ Γ̃, then the crossover scale T xCEF ′
below which the two-channel physics sets in is given by

(5.3.13) T xCEF ′ ≈
T0

2
(
π∆′

Γ̃
)2 .

Clearly, the crossover physics of crystal field states in ground and excited configurations (together with

the similar physics arising from all the higher lying angular momentum multiplets in ground and excited
configurations) must be included in a complete treatment of the U4+ impurity and will produce a single

crossover scale determined by the lowest energy scale determined from all the various crossover criteria.
The Kondo scale will also require modification to respect all the excited levels in both the ground and
excited configurations. Such a complete treatment has not yet been performed. Once any more excited

crystal field levels are included in either configuration we must resort to full numerical solutions of the
NCA equations.

(2) Effect of Non-equal Coupling Coefficients. As in the corresponding example for the Ce3+ impurity,
we can no longer solve the model analytically if we relax the assumption of equal coupling co-

efficients. We can once more find approximate constants of integration at low frequencies since
dg4/dg3 ≈ c(Γ4,Γ7)/c(Γ3,Γ7) so that

(5.3.14) g4 ≈
c(Γ4,Γ7)

c(Γ3,Γ7)
g3 + ∆̃, ∆̃ = ∆ + (ε̃f − E0)(

c(Γ4,Γ7)

c(Γ3,Γ7)
− 1)

which follows from requiring g3(E0) = 0. Depending on the ratio of coupling coefficients, the crystal
field level may be renormalized upwards or downwards. When all states are included, we generically

find a downward renormalization as expected on the basis of the orthogonality catastrophe (c.f. the
discussion in Sec. 3.4.1.d). Then a the Kondo scale may be written in terms of a cutoff D∗ over which
the approximate integration constant relation holds (to be determined numerically) in a manner similar

to that discussed in deriving Eq. (5.2.28). The crystal field crossover scale is changed to

(5.3.15) T x∗CEF =
T0

2
(
c(Γ3,Γ7)∆̃

c(Γ4,Γ7)T0
)2 .

No qualitative modifications of the physics will emerge in the subsequent analysis.
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Figure 68: Static quadrupolar susceptibility vs. temperature for a U4+ ion model calculated by the

NCA. Also shown (right hand axis) is the resistivity scaled by the appropriate zero temperature value
obtained from an extrapolation. The temperature Th is measured from the resistivity midpoint and is
of order the Kondo temperature. From Cox [1987(b)].
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Figure 69: Quadrupolar dynamic structure factor of a model U4+ ion calculated within the NCA. For
low T , this is the same as the positive frequency evaluation of the dynamic quadrupolar susceptibility.

A Lorentzian fit to the structure factor works reasonably well, anticipating the Marginal Fermi Liquid
theory of Varma et al. [1989], and the outcome of conformal field theory (Tsvelik [1990]; Ludwig and

Affleck [1991,1994]) and bosonization results (Emery and Kivelson [1992]). From Cox [1988(a)].
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Figure 70: Van Vleck susceptibility diagrams within the NCA for the simplest U4+ Anderson model.

5.3.3 Physical Properties

In this subsection we will discuss those physical properties which are novel to the quadrupolar Kondo

effect and for which the NCA gives useful information. An extensive review of calculations on model
U4+ impurities appears in Kim et al. [1995].

Quadrupolar Susceptibility. Since the ground doublet is quadrupolar here, the strongly divergent
susceptibility relevant for the Wilson ratio is the quadrupolar susceptibility χQ. This is obtained from

the dashed bubble diagram of Fig. 51 with the Γ3 propagators put in as pseudo-fermions. The calculated
χQ curves from the NCA show a universality over a wide range of parameter sets as shown in Fig. 68
taken from Cox[1987b]. It is important that the Γ3 occupancy must be divided out to produce the

universality when excited crystal field levels are included. The data also agree well with the universal
Bethe-Ansatz results of Sacramento and Schlottmann [1992]. The dynamic quadrupolar susceptibility

shows the anticipated Marginal Fermi liquid form with a step function at the origin, and may be roughly
fit to the form sgn(ω)T0/(ω

2 + T 2
0 ) as shown by Cox [1988(a)] and in Fig. 69.

Magnetic Susceptibility: van Vleck contribution. Given a quadrupolar doublet ground state, the
dominant source of magnetic response must be of the type considered by van Vleck, namely, due to

virtual transitions to excited crystal field levels. Considering only the excited Γ4 state for the moment,
in the ionic (zero hybridization) limit, this goes as χvV (0) ' g2

Jµ
2
B| < Γ3|Jz|Γ4 > |2/2∆. As we shall

discuss in Sec. 8.2, it was noted by Cox[1987b] that because of large magnetic moments the van Vleck
susceptibility is sufficiently large to explain the measured χ(T ) values in UBe13. An open theoretical
question is whether the form of χvV (T ) is modified in an interesting (singular) way due to the singular

character of the ground Γ3 doublet. The temperature dependence in the ionic limit is exponential in
that the saturation with diminishing T goes as exp(−∆/T ). This is too weak a temperature dependence

to fit any experiments on the relevant materials.
A qualified “yes” may be given as an answer to the question of whether χvV is modified in a

singular way by the behavior of the Γ3 ground doublet. To see why, we must delve in detail into the
NCA diagrams for χvV which appear in Fig. 70. Using a χ̃vV for the susceptibility with the magnetic

matrix elements divided out, we have that

(5.3.16) χ̃′′vV (ω, T ) = χ̃′′vV,3→4(ω, T ) + χ̃′′vV,4→3(ω, T )

with

(5.3.17.a) χ̃′′vV,3→4(ω, T ) =
π

πZf

∫
dεA(−)

3 (ε, T )[A4(ω + ε, T )− A4(ε− ω)]

and

(5.3.17.b) χ̃′′vV,4→3(ω, T ) =
π

πZf

∫
dεA(−)

4 (ε, T )[A3(ω + ε, T )−A3(ε− ω)] .
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Figure 71: Schematic dynamic van Vleck susceptibility in the ionic and finite hybridization limits of the

simplest U4+ Anderson model.

The first term corresponds to transitions from occupied Γ3 states to Γ4 states, while the second corre-

sponds to transitions from occupied Γ4 states to Γ3 states. In the ionic limit, the former would give
delta function absorption lines at ω = ±∆, while the latter would give no intensity at all since the Γ3

state sits precisely at zero frequency. Moreover, the weight of Γ4 in the ground state is zero since it
may only be thermally occupied. This ionic limit result is sketched in Fig. 71..

The quantum broadening due to the Kondo effect allows for more interesting physics. As shown
in Fig. 71, the delta-function lines of the ionic limit will be broadened out. These will still contain the

bulk of the spectral response. However, since now the Γ4 states acquire finite width, some quasielastic
response due to the occupied Γ4 → Γ3 transitions may now arise. The net weight in this quasielastic

response will be proportional to the weight of Γ4 in the ground state, as may be seen by integrating
(NB(ω) + 1)χ̃vV,4→3(ω, T ) where NB(ω) = (exp(ω/T )− 1) is the Bose-Einstein factor. This gives the
net spectral intensity in the dynamic structure factor for the Γ4 → Γ3 transitions.

The question of the singularity in χvV now hinges on the behavior of the various spectral
functions near to threshold. For simplicity, let us assume the limit of equal coupling coefficients.

Applying the results of the N = M = 2 case from Sec. 5.1 together with g4 = g3 + ∆, we see that the
positive frequency spectral functions are

(5.3.18.a) A3(ω, 0)≈ θ(ω −E0)
1

T0
(

T0

2|ω − E0|
)1/2

and

(5.3.18.b) A4(ω, 0) ≈ θ(ω − E0)
T0

∆

2

(
2|ω −E0|

T0
)1/2 .

Below E0, the green’s functions are purely real and given by

(5.3.19.a) G3(ω) ≈ 1

T0
(

T0

2|ω −E0|
)1/2

and

(5.3.19.b) G4(ω) ≈ 1

∆
.

What of the occupied state spectral functions? If we make Müller-Hartmann’s Ansatz (Müller-Hartmann

[1984]), then we have A(−)
i = αGi with α = Zf (0)/(2 + 3 + 2) = 1/7 here, the denominator being the

sum of all the level degeneracies. (see the discussion above Eq. (5.1.22)). With this Ansatz,

(5.3.20.a) A(−)
3 (ω) ≈ 1

7
θ(E0 − ω)

1

T0
(

T0

2|ω −E0|
)1/2
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and

(5.3.20.b) A(−)
4 (ω) ≈ 1

7∆
θ(E0 − ω) .

The applicability of the Ansatz is a crucial question. Clearly, it is nonsense for the Ansatz to apply

to all excited levels because this would increase the denominator of α beyond any reasonable bound.
Hence, it must fail for states which are too high in energy. Clearly it must work for the two propagators

which are most divergent, since the model in that case is entirely equivalent to a multichannel model.
It seems reasonable at least that it may apply to excited states which have sufficient overlap with the

ground state in the sense of their quantum fluctuation induced occupancy.
If we accept the validity of the Ansatz, we obtain the following results for χ̃′′vV :

(5.3.21) χ̃′′vV,3→4(ω, 0) ≈ π2ω

14∆2

(5.3.22) χ̃′′vV,4→3(ω, 0) ≈ sgn(ω)

√
2π

7∆

√
|ω|
T0

.

The 3 → 4 response is regular in ω, and if we calculate the corresponding χ(0) value, we obtain
approximately χ̃vV,3→4(0) ≈

√
2π/7∆ which is very close to the ionic limit. The deviations at finite

T are expected to go as T 2 since the dynamic response is analytic for ω → 0. If we roughly estimate
the contribution from the 4→ 3 response, we obtain χ̃vV,4→3(T ) ≈ (

√
2π/7∆)[1−

√
(T/T0)]. Hence, a√

T singularity seems to be observed which is a novel signature of the quadrupolar Kondo effect in the
magnetic susceptibility.

The numerical evidence for the
√
T behavior is mixed. For a set of calculations based on the

present model with a single excited triplet level, the square root appears to be present in χvV (T )
and limω→0(χ′′vV (ω, T )/ω ∼ 1/

√
T . The latter quantity is important for an understanding of nuclear

relaxation rates as we shall discuss further in Sec. 8.2. This is shown in Fig. 72 taken from Cox and
Makivik [1994]. The model parameters for this run were chosen to give significant overlap between

ground and crystal field levels in an effort to mock UBe13, which we shall discuss further in Sec. 8.2.
However, in runs with well separated crystal field levels, the static susceptibility appears to saturate as

T 2 as shown in Fig. 5.23 from Kim et al. [1996]. The systematics of the
√
T behavior remain unclear

at the present time. Experimentally, the
√
T form appears to describe the low temperature response

in a number of materials as we shall discuss further in Sec. 8.2. It is quite clear that the quadrupolar
Kondo effect does not substantially modify the zero temperature van Vleck susceptibility from the ionic

limit.
Magnetic susceptibility: Contribution from the excited configuration. Because the excited config-

uration carries magnetic character, it will contribute a singular log-divergent term to the susceptibility.

Of course, as we know from Sec. 6.1.4, this has a small pre-factor so that

(5.3.23) χ̃7(T ) ' W 2
ch

T0
ln(T0/T ) .

This must eventually overtake the leading constant behavior of the van Vleck susceptibility at sufficiently

low temperatures. We can determine the temperature T xM at which this occurs by demanding χ̃7(T ) ≈
χ̃vV (0) ≈ 1/∆. The result is

(5.3.24) T xM = T0 exp(
T0

W 2
ch∆

) ≈ T0 exp(− Γ2

π2T0∆
) .

It would appear that unless ∆ is quite large, this scale is too small to observe the expected logarithmic
divergence. The only possible way out is if somehow Wch is replaced by Γ/π|ε̃f |, the perturbative

estimate which checks with the discussion of channel field splitting in the NRG analysis (c.f. Sec.
4.2.c.). Then the logarithmic divergence might be observable.
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Figure 72: NCA calculations of χvv for the simplest U4+ ion model. Squares are the zero frequency

limit of the imaginary part of the van Vleck susceptibility divided by frequency and multiplied by
(T/T0)

1/2, triangles are the static van Vleck susceptibility. Here the bare crystal field splitting is

∆(Γ4) = 0.01D and T0 ≈ 0.002D. The matrix element coupling the Γ3,Γ4 states has been divided out.
The dashed line is given by (0.056/∆(Γ4)kBT0)[1 + 1.95(T/T0)

1/2] and the dash-dot line by χvv(0)[1−
0.14(T/T0)

1/2] = (0.66/∆)[1−0.14(T/T0)]. The ground state occupancies of the doublet and triplet are

n3 = 0.56, n4 = 0.23. From Cox and Makivic [1994].
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6 Conformal Field Theory and Abelian Bosonization Methods

In this section we shall discuss two powerful analytic methods for describing the low temperature physics
of the multi-channel Kondo model. Both rely upon the ability to convert between bosons and fermions

in 1(space)+1(time) dimensions. The spatial dimension here is the radial direction away from the
impurity. The conformal field theory approach pioneered by Affleck and Ludwig in this context (Affleck

[1990a]; Affleck and Ludwig [1991a,b,c;1992;1993]; Ludwig and Affleck [1991,1994]; Affleck et al. [1992];
Ludwig [1994a,b]; see also Tsvelik [1990]) is applicable to all versions of the Kondo model, Fermi liquid
fixed point or not. This rests upon a description of low temperature states in terms of spin, channel, and

charge degrees of freedom, and the ability to write conduction electron spin and channel operators in
terms of “bosonic currents” which obey non-Abelian commutation relations (the Kac-Moody algebra).

The charge operators are written in terms of conventional bosonic operators. The method may access
both thermodynamic and dynamical quantities, but is restricted to low temperatures (asymptotically

close to the critical point). We shall discuss this method in Sec. 6.1. A good review of the application
of conformal field theory to a number of condensed matter problems is given in Affleck [1990b], and

a recent review of the application to the Kondo problem may be found in Affleck [1995]. A recent
reformulation of the problem by Maldacena and Ludwig [1996] in terms of Majorana fermions recovers

the results of the previous work and makes explicit connection to the Abelian bosonization approach of
Emery and Kivelson [1992] discussed in Sec. 6.2. We shall briefly discuss the Maldacena and Ludwig
approach in Sec. 6.3.

For a particular highly anisotropic limit of the two-channel model, Emery and Kivelson [1992]
(see also Sengupta and Georges [1994]) have shown that a purely Abelian bosonization scheme is possible

to describe the physics. This approach leads to many results which overlap with the conformal theory, in
particular providing a nice interpretation of the residual entropy and a simple expression for the dynamic

susceptility of the impurity which agrees well with previous numerical NCA results [Cox, 1988(a)]. We
shall discuss the abelian bosonization approach in Sec. 6.2. The application to transport coefficients

is not transparent, but with the Majorana fermion formulation of the conformal theory produced by
Maldacena and Ludwig [1996] the difficulties are resolved. We shall discuss this approach briefly in Sec.

6.3.

6.1 Conformal Field Theory Approach to the Kondo Model

Conformal field theory (CFT) has arisen in a number of contexts for describing two-dimensional critical

phenomena, superstrings and other 1+1 dimensional relativistic quantum field theories. Essentially, the
theory exploits the absence of a length scale which occurs at critical points or in relativistic field theories
together with the two dimensionality which assures invariance at the critical point under arbitrary

conformal transformations which have spatially dependent scale factors. Hence, the conformal symmetry
is much larger than the simpler dilatation invariance employed in the renormalization group. As a

result, it can be used to fully specify critical exponents, correlation functions, and finite size spectra
for a number of interesting models in field theory and two-dimensional critical phenomena. As shown

by Cardy [1984,1986a,b], the CFT approach is not only useful for bulk problems, but also for problems
with a boundary present. This is precisely the case for the Kondo model, which may be mapped to a

1 + 1 dimensional relativistic field theory on the space+time half plane (r > 0, r the radial direction
about the impurity site) where the ‘speed of light’ is the Fermi velocity vF set by the linear dispersion

of conduction electrons. The conformal invariance of the boundary condition (it is invariant under
arbitrary conformal transformations with position and time dependent scale factors) assures the utility
of the CFT technology. In a number of papers, Affleck and Ludwig (Affleck [1990a]; Affleck and

Ludwig, [1991a,b,c]; Ludwig and Affleck [1991]; Affleck et al. [1992]; Affleck and Ludwig [1993]; Ludwig
[1994a,b]) employed CFT in the presence of a boundary to work out the low temperature properties of

the multi-channel Kondo model.
We shall divide our discussion of the conformal theory into three parts. First, in Sec. 6.1.1,
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we lay out the ideas of bosonization and non-Abelian bosonization in particular and show how this

leads to a complete if complicated description of free fermions. Next, in Sec. 6.1.2, we show how
the complicated formulation for free fermions is quite natural for the Kondo problem, revealing in a

remarkably simple way the “absorption” of the impurity spin into the many body spin density. Also,
we show how finite size spectra and non-trivial operators at the impurity are readily generated within

this approach through suitably chosen boundary conditions and “fusion” rules governing the absorption
of the impurity spin into the many body spin density. Third, in Sec. 6.1.3, we outline how various
thermodynamic quantities are obtained within the conformal theory approach. Finally, in Sec. 6.1.4,

we focus on dynamical quantities such as the one-particle electron Green’s function. Our intention in
this section is to motivate the key ideas of the theory without reproducing in detail all the calculations

presented in the papers of Affleck and Ludwig.

6.1.1 Non-Abelian Bosonization and Free Fermion Spectra

At the core of the conformal theory approach is the rewriting of the original Kondo Hamiltonian in terms

of charge, spin, and channel-spin densities or “currents.” This exploits the effective one-dimensional
character of the problem. To review how this works, we follow Affleck [1990a] and Affleck and Ludwig

[1991a] in the following order:
(a) First we review the mapping of three dimensions to one-dimension described in terms of left and

right moving fermions on the half-axis (radial direction);
(b) We remind the reader of free fermion spectra in one-dimension for spinless and spin 1/2 one-channel
fermions expressed in terms of the charge and spin of the excitations;

(c) Following Haldane [1981] we review how the spectrum of spinless one-dimensional fermions may be
expressed in an Abelian bosonization approach;

(d) We then show how the spectrum of one dimensional spin 1/2 fermions may be recovered in a rather
complicated way as a sum over commuting spin and charge Hamiltonians. The Kac-Moody algebra

emerges naturally in this approach. In this free fermion case, spin and charge excitations are bound
together in a way to reproduce free fermion excitations.

(e) We then outline how the multi-channel free fermion Hamiltonian may be written in terms of mutually
commuting spin, charge, and channel Hamiltonians, where the spin and channel densities or currents

both obey appropriate Kac-Moody commutation relations.
(f) Finally, we briefly comment on the generalization to arbitrary spin and channel degeneracy.

(a) Mapping of three-dimensions to one-dimension

This discussion follows closely Ludwig [1994a]. A similar discussion occurs in Krishna-Murthy,
Wilkins, and Wilson [1980a], but here strict attention is paid to the boundary conditions and the

appropriately defined one-dimensional fermion states. In the Kondo problem, only a particular set of
conduction electron partial waves couples to the impurity spin or pseudo-spin. Although for real rare

earth and actinide impurities these are likely to be dominantly of f symmetry about the ion, and for
TLS sites they are considerably more complicated as indicated in Secs. 2 and 3, we shall make the

simplifying assumption here that the impurity has an s-wave symmetry.
The s-wave projected part of a free electron annihilation operator with momentum ~k and spin

and channel indices µ and α is given by

(6.1.1) ckµα =
k√
4π

∫
dk̂c~kµα .

The operators so defined obey continuum commutation relations. Corresponding to the momentum

space operator is a real space operator

(6.1.2) cµα(~r) =
1

i2
√

2πr
cµα(r) .
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The energy spectrum of the free electrons may be linearized about the Fermi momentum as is

usual within some cutoff ±Λ about kF so that εk = vF (|k| − kF ). The physically relevant size of the
cutoff scale is set by the Kondo temperature, viz., Λ ≈ kBTK/h̄vF . This reminds us that a continuum

theory approach such as the CFT is useful only asymptotically below the low temperature energy scale.
We want to define left moving and right moving fields Ψpµα(r) (with “chirality index” p = ±

for right or left) in the radial spatial dimension which have the rapid oscillations of order exp(±ikF r)
removed. Physically, a left-mover corresponds to an incoming spherical wave front, while a right mover
corresponds to an outgoing spherical wave front. These operators are defined in terms of the ckµα by

(6.1.3) Ψpµα(r) =

∫ Λ

−Λ
dke−ipkrckF+k,µα .

In terms of these fields,

(6.1.4) cµα(r) = eikF rΨ−,µα(r)− e−ikF rΨ+,µα(r) .

With this definition the free electron Hamiltonian near the Fermi energy can be written as

(6.1.5) H0 =
ivF
2π

∫
dr(Ψ†−,µα(r)

d

dr
Ψ−,µα(r)−Ψ†+,µα(r)

d

dr
Ψ+,µα(r))

in position space and

(6.1.6) H0 = vF
∑

p,µα

∫ Λ

−Λ
dkpkΨ†kpµα(r)Ψkpµα

in momentum space.

Given the linear spectrum corresponding to massless fermions, the effective ‘speed of light’ of
the problem is vF . Moreover, the absence of a mass scale implies the absence of a length scale, which

assures the equivalence of space and time axes and conformal invariance, the invariance of the system
under arbitrary conformal transformations in the 1 + 1 dimensional plane. We shall think of the time

axis in terms of imaginary time, so that it becomes infinite only at T = 0. At first site it might appear
that conformal invariance is violated by the boundary, (only positive r is allowed). However, the half-

plane is indeed conformally invariant and may be mapped back to the full plane. Also, any finite strip
may be mapped reversibly to the half plane, a fact which is useful for determining finite size spectra,
allowed operators in the problem, and finite temperature correlation functions as we shall discuss in

Secs. (6.1.2,3,4).
To specify the theory further it is necessary to introduce boundary conditions. First, the left

and right moving fermions are not independent. At the origin, Ψ+,µα(0) = Ψ−,µα(0). Thus one may
eliminate the right moving fermions completely and express the physics in terms of the left movers by

artificially extending to negative r and setting Ψ+,µα(r) = Ψ−,µα(−r). Assuming the system to have a
size l in the radial direction, Affleck and Ludwig [1991a,b] then typically assume

(6.1.7) Ψ−,µα(l) = −Ψ−,µα(−l) .

This boundary condition is typically denoted F− by Affleck and Ludwig, and with the opposing sign

on the right hand side the boundary condition is referred to as F (see Ludwig [1994a]). This specifies
completely the effective one-dimensional theory. We may take as a convention that only the left moving

branch couples to the impurity. We will typically write the momentum integral in discrete form to
follow closely the conventions of Affleck and Ludwig. We depart from their convention on notating left

and right movers slightly (they use simply L to denote left and R to denote right). This choice is of
some convenience in the discussion of bosonization algebras that follows below. When we discuss the

Kondo problem in more detail in Sec. 6.1.2, we will return to their convention.
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Figure 73: Low lying excitations of a single branch for a one-dimensional spinless Fermion gas. The

shown levels are only for left (or right) moving electrons. The boundary conditions of Eq. (6.1.7) are
chosen so that the ground state (filled Fermi sea) shown in (a) is non-degenerate. The excitations may

be charge neutral, such as the particle-hole pair excitation of (b). The two lowest charge 1 excitations
are shown in (c), where an electron is added, and (d) where a hole is added (electron removed).

Note that the linearization approximation is common in one-dimension. We shall usually not

explicitly write the cutoff in which makes this treatment equivalent to the Luttinger model for the
effective 1D system (Haldane [1981]).

(b) Spectrum of non-interacting spinless and spin 1/2 fermions in one dimension

The energy levels and states of one-dimensional free fermions may be specified completely in

terms of the charge and spin relative to the ground state together with the number of excited electron
hole pairs relative to the ground state. In the following discussion, we follow Affleck [1990a] and Affleck
and Ludwig [1991a].

To remind the reader, we first focus on the case of spinless fermions. With the boundary
condition of Eq.(6.1.7), the allowed k vectors for left moving fermions are given by kn = −πvF /l(n+1/2)

with n = 0,±1,±2, ..... The corresponding single particle energies are εn = −vF kn. The ground state
is obtained by filling all one particle levels below zero energy at which the Fermi level resides. This

situation is shown in Fig. 73(a). We may excite relative to the ground state in two ways. First, we can
create a particle hole excitation. This is shown in Fig. 73(b), where an electron below the Fermi energy

is promoted above the Fermi energy. These excitations always raise the energy by integral multiples of
πvF /l. The second kind of excitation is effected by adding or removing charge from the Fermi sea. The

simplest processes are shown in Figs. 73(c,d). The lowest energy to add or remove charge Q is obtained
when states are sequentially filled, leading to an elementary sum for evaluation of the energy which gives
E(Q, 0) = πvFQ

2/2l. Putting these two kinds of excitations together, we see that the energy spectrum

for free left moving spinless fermions subject to the boundary condition Eq. (6.1.7) on a system size 2l
are given by

(6.1.8) E(Q, nQ) =
πvF
l

[
Q2

2
+ nQ]

where Q counts the added charge (which may be positive or negative) and nQ the number of particle-hole
pairs. The states corresponding to these excitations are of course simple Slater determinants.

This kind of argumentation may now be straightforwardly extended to spin 1/2 fermions.
Clearly, we can view the spectrum for spin 1/2 as a direct product of up- and down-spin electron

spectra so that the energies add for the two independent branches. Hence we can define a charge
Qµ for each branch together with particle-hole excitation quantum numbers. Now, define the total
charge of an excitation as Q = Q↑ + Q↓ and the z component of the spin as Sz = (Q↑ − Q↓)/2. Since∑
µQ

2
µ/2 = Q2/4 + S2

z , and S2
z = S(S + 1)/3 for an excitation of spin S, we see that the total energy
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Figure 74: Ground state for spin 1/2 fermions in one-dimension for the boundary condition Ψµ(l) =
Ψµ(−l). In this case, the highest most occupied level is a zero mode, and we choose the charge reference

to correspond to single occupancy of this level, whence charge and spin quantization conditions are
reversed relative to the boundary conditions of Fig. 73.

can be written as

(6.1.9) E(Q, S, nQ, ns) =
πvF
l

[
Q2

4
+
S(S + 1)

3
+ nQ + nS ]

where nQ+ns is a combination of particle hole excitations in the different spin branches. Note that not
all values of Q, S are allowed. Strictly speaking, the S values must be restricted to 0,1/2. For integer
spin, all other S2

z values can be reached from S = 0 by adding integers to zero spin, and all other S2
z

values for half integer spin can be reached from S = 1/2 by adding integers. Hence, these are equivalent
to particle hole excitations from the fundamental values. Also, there is a “gluing” condition on the

excitations: if Q is even, then 2Sz must be an even integer, while if Q is odd, then 2Sz must be an odd
integer.

For a different choice of boundary condition, Ψµ(l) = Ψµ(−l), the k values are shifted to −πn/l
and now the upper most occupied energy is at zero. This corresponds to a π/2 phase shift of the levels

considered in the previous paragraph. The corresponding level spectrum for the left moving branch is
shown in Fig. 74. Note that there is a four fold degeneracy (S = 1/2, Q = 0 or S = 0, Q = ±1) to the

ground state because of the presence of a zero energy state. The charge may be shifted by one unit
to accomodate this phase shift, and the charge spin gluing conditions are reversed as a result. Even
charge requires odd values of 2Sz , and odd charge requires even values of 2Sz . We note that the NRG

free fermion Hamiltonians for odd N correspond to the boundary condition of Eq. (6.1.7) and for even
N they correspond to the reversed boundary condition.

(c) Abelian Bosonization approach to the spinless fermion spectrum

The goal in this subsection is to show how the spectrum of Eq. (6.1.8) can be reproduced with

an appropriate choice of bosonic operators which simply coincide with the momentum space charge
density operators.

Here we closely follow Haldane [1981], who uses a system length L, to be compared with our 2l.
We now include both left and right moving fermions indexed by p = ∓, respectively. With k measured
relative to the Fermi energy, the free Hamiltonian is given by

(6.1.10) H0 =
∑

k,p

vF pkΨ
†
kpΨkp .

We now introduce the density operators Jqp of momentum q and chirality index p which are
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given by

(6.1.11) Jqp =
∑

k

[Ψ†k+q,pΨk,p− < Ψ†k+q,pΨk,p >0]

where the second term “normal orders” the density operator, and refers to the ground state expectation
value of the operator with respect to H0. This term regularizes the density operator in such a way as to

remove any divergences due to the occupied “positron sea” in our Luttinger model spectrum (the right
and left movers are allowed to have positive and negative momenta). This particular regularization

choice can be maintained at finite temperature and for an interacting model. Our notational choice of
J to designate the density follows the convention of Affleck and Ludwig. The density operators in real
space at l,−l must have the same value and thus q runs over integer multiples of π/l. For q=0, Jqp is

simply Qp, the charge in each branch.
The density operators obey a simple commutation relation which is exact in this Luttinger

formulation (though it will have band edge corrections in general–see Mahan [1990] pp. 324-343) which
is

(6.1.12) [Jqp, Jq′p′ ] = δp,p′δq+q′ ,0
pql

π
.

This relation is easily verified by considering simply the operator parts of (6.1.11) which give a sum
that must be regularized due to the occupied sea, viz.

(6.1.13) [Jqp, Jq′p′ ] = δp,p′(Jq+q′,p − Jq+q′ ,p) + δp,p′δq+q′,0
∑

k

[< nk+q′ ,p >0 − < nk,p >0]

The first term follows from the operator output of the commutator, and the second term from the

regularization procedure. The expectation values simply give zero temperature Fermi functions, and
the difference is non-vanishing only for a width q in momentum space, meaning that the sum gives

pql/π, since the spacing between q points is π/l. Although the first term in Eq. (6.1.13) is clearly
zero, we write it suggestively to indicate what will happen when the density operators involve internal

degrees of freedom. In that case the second term will still arise but the first term will no longer cancel,
and this is the source of the Kac-Moody algebra for the spin and channel degrees of freedom. The

vanishing of this first term leads to the ‘Abelian’ nomenclature, while the non-vanishing of this first
term when internal degrees of freedom are present is what leads to a ‘Non-Abelian’ label, corresponding

to a Non-Abelian group symmetry for the Hamiltonian. The nomenclature is in precise accordance with
that used in gauge field theories.

We note that Eq. (6.1.12) is reminiscent of the commutation relations for free bosons. To

continue this observation it is straightforward to verify by use of (6.1.10), (6.1.11) that

(6.1.14) [H0, Jqp] = vF pqJqp .

This is reminiscent of the commutation relation of a boson raising operator. In particular, if the product

qp is positive, this is exactly the case. However, some normalization is required to define a suitable
boson creation operator. Following Haldane, this is given for |q| > 0 as

(6.1.15) a†q =

√
π

|q|l [θ(−q)Jq,− + θ(q)Jq,+] .

This operator satisfies [H0, a
†
q] = vF |q|a†q, and together with its Hermitian conjugate obeys the canonical

boson commutation relation. Physically, these operators create particle-hole pairs of momentum q. This

does not specify the energy due to addition or removal of charge with respect to the ground state. This
can be written in terms of J0,±. As a result, the now “bosonized” Hamiltonian can be written as

(6.1.16) H0 =
∑

|q|>0

vF |q|a†qaq +
∑

p

vFπ

2l
J2

0,p
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which can be rewritten as an unrestricted q sum

H0 =
πvF
2l

∑

q

[θ(−q)J−q,−Jq,− + θ(q)Jq,+J−q,+]

(6.1.17) =
πvF
2l

∑

q,p

: JqpJ−qp :

which defines the “normal ordering” of the density operators. Clearly, the structure of this Hamiltonian
reproduces faithfully the finite size energy spectrum of Eq. (6.1.8) for spinless fermions.

Strictly speaking, to prove that this is a faithful representation of the Hamiltonian, we need to
prove that the states specified by the Jqp quantum numbers (occupancies of q 6= 0 states and charges

Qp) are complete. To do this, Haldane [1981] further introduces a ladder operator U †p which adds a unit
of charge to Qp each time it is applied. The states specified by Eqs. (6.1.12), (6.1.14), and (6.1.15) are

then

(6.1.18) |{Qp}, {nq,p} >∼
∏

qp>0

[Jqp]
nq,p

∏

p

[U †p ]Qp |0 > .

Haldane gives a simple and elegant proof of completeness by comparing the partition function for the
free fermion case with that found from Eq. (6.1.17). They are in exact agreement indicating that no

states are omitted from Eq. (6.1.18).

(d) Non-Abelian Bosonization of the Spin 1/2 Free Fermion spectrum

Now we follow the various papers of Affleck and Ludwig (particularly Affleck [1990a], Affleck
and Ludwig [1991a,b], Ludwig [1994a]). Some key technical details of the decomposition are arrived at
in the work of Altschüler, Bauer, and Itzykson [1990]. As in the previous section, we introduce left and

right moving densities, now for both charge and spin:

(6.1.20) Jqp =
∑

kµ

Ψ†k+q,pµΨkpµ

(6.1.21) ~Jqp =
∑

kµν

~σµν
2

Ψ†k+q,pµΨkpν .

Note that [Jqp, ~Jq′p′ ] = 0, so the charge and spin degrees of freedom are decoupled in these densities.

As in the spinless case, the operator J0,p simply counts the total charge in branch p, and the operator
Jc0,p measures the total z component of spin in branch p.

Because of the spin degrees of freedom, the commutation relation (6.1.12) is modified to

(6.1.22) [Jqp, Jq′p′ ] = δq+q′,0δpp′
2pql

π

where the factor of 2 arises from the spin sum in the ground state expectation value term of Eq.
(6.1.13). On the other hand, the commutator with the Hamiltonian is unchanged, as may be verified
by direct calculation with the free fermion form of Eq. (6.1.10) (augmented by a sum over spin degrees

of freedom). Hence there is a charge term in the Hamiltonian still, but with a different normalization
than Eq. (6.1.17) because of the factor of 2 in the commutation relation (6.1.22). We may write this as

(6.1.23) HQ0 =
πvF
4l

∑

qp

: JqpJ−qp : .
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We note that the q=0 terms in this sum reproduce the Q2
p term in Eq. (6.1.9) for the energy of spin

1/2 free fermion excitations, and the q 6= 0 terms generate the particle-hole excitations corresponding
to the nQ term in (6.1.9).

Turning to the spin density, we may evaluate its commutation relation in a way precisely anal-
ogous to that of Eq. (6.1.13). However, in this case the operator dependent term does not cancel out

because of the presence of the non-commuting Pauli matrix factors in Eq. (6.1.21). The result is (with
Einstein summation convention on the spin components)

(6.1.24) [Jaqp, J
b
q′p′ ] = iεabcδpp′J

c
q+q′ ,p + δabδpp′δq+q′ ,0

pql

2π
.

This is the so called ‘level 1’ SU(2) Kac-Moody algebra. The ‘level’ is read off from the second term
(which arises from the ground state subtraction) and is simply the overall numerical coefficient of the

factor pql
2π . When we add channel degrees of freedom this will be modified to M due to the free sum

over channel degrees of freedom in the ground state subtraction. The SU(2) of course refers to the spin

algebra of the density operators reflected in the first term of (6.1.24). ( Note that the factor of 2 in
Eq. (6.1.22) from the correponding ground state subtraction term is cancelled here by the factor of 1/4

from the product of spin matrices.)
Just as for the ordinary angular momentum algebra one can specify irreducible representations by

the construction of raising and lowering operators, one can do the same with the Kac-Moody algebra.

The irreducible representations of the SU(2) level M Kac-Moody algebra specified by Eq. (6.1.24)
consist of ‘primary’ states for each branch p with allowed spin sp restricted by 0 ≤ sp ≤M/2 along with

‘descendants’ which contain particle-hole pair excitations generated by acting on the primary states with
operators Jaqp where qp is positive. In the present case with M = 1, the allowed sp values are 0, 1/2,

consistent with our discussion in Sec. (6.1.1.b). The set of a given primary state together with its
descendants is known as a ‘conformal tower.’ High spin states can only be contained in the descendant

sectors.
As with the charge density, one can compute the commutator of the current density with the free

Hamiltonian to find if a bosonized structure is possible. By direct computation with the free fermion
form of (6.1.10) (augmented by spin) one finds

(6.1.25) [H0, J
a
qp] = vF qpJ

a
qp

which suggests that the spin part of the free Hamiltonian can be written as a quadratic form Hsp,0 =

A
∑
qp : ~Jqp · ~J−qp :. As in the case of the charge, the q = 0 terms generate the added spin energy

∼ s(s + 1)/3 in Eq. (6.1.9), and the q 6= 0 terms generate the particle-hole pairs that carry net spin.

The normalization A can be fixed by commuting this form with the spin density and matching to Eq.
(6.1.25). This gives

[Hsp,0, J
a
qp] = A{pql

π
Jaqp + iεbac

∑

q′
Jb−q′pJ

c
q+q′ ,p[θ(pq

′)− θ(p[q′ + q])}

(6.1.26) = A
(1 + 2)pql

π
Jaqp =

3Apql

π
Jaqp

where the ‘1’ in the numerator follows from the ground state subtraction part of the Kac-Moody
commutator in (6.1.24) and the ‘2’ follows from the operator part. Note that 2δcd = εabcεabd generates

the ‘2’. This is important for Sec. (6.1.1.f) where we remark on the generalization to arbitrary spin and
channel.

By comparing Eq. (6.1.26) with (6.1.25) we specify A and hence can write the free Hamiltonian
as the sum of spin and charge parts with

(6.1.27) H0 =
πvF
l

[
1

4

∑

qp

: JqpJ−qp : +
1

3

∑

qp

: ~Jqp · ~J−qp :] .
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This representation of H0 in terms of quadratic forms in the density operators is known as the ‘Sug-

awara form’ of the Hamiltonian. Clearly, these quadratic forms reproduce the energies of Eq. (6.1.9)
obtained by elementary considerations, where the q = 0 terms generate the Q2 and S(S + 1) terms

in that equation, and the q 6= 0 terms generate the particle-hole pair excitations. Obviously the non-
Abelian bosonization is not the easiest way to obtain these energies in the free case; its merit lies in the

interacting case we discuss in Sec. (6.1.2). The corresponding states can be constructed in complete
analogy with Eq. (6.1.18) for the spinless case, where we now have a direct product of boson Fock spaces
spanned by the charge and spin excitations. The complete specification of allowed states must satisfy

the fermion gluing rules discussed in Sec. (6.1.1.b), so that odd(even) Q is matched with odd(even)
2Sz. This corresponds to the boundary condition of Eq. (6.1.7), and as remarked in Sec. (6.1.1.b) these

are reversed if we change the sign in that boundary condition corresponding to a π/2 phase shift.

(e) Generalization to Include Channel Degrees of Freedom

If we now include channel degrees of freedom, we need to introduce additional density operators
for these channel excitations. We now use a subscript s to denote spin density operators, and a subscript

c for channel density operators. The definitions of the charge, spin, and channel densities become

(6.1.28) Jqp =
∑

qµα

Ψ†k+q,pµαΨkpµα ,

(6.1.29) ~Jsqp =
∑

qµνα

~σµν
2

Ψ†k+q,pµαΨkpνα ,

and

(6.1.30) ~Jcqp =
∑

qµαβ

~σαβ
2

Ψ†k+q,pµαΨkpµβ .

The commutation relations for the operators amongst themselves are

(6.1.31) [Jqp, Jq′p′ ] = δq+q′ ,0δpp′
4pql

π
,

(6.1.32) [Jasqp, J
b
sq′p′ ] = iεabcδpp′J

c
s,q+q′ ,p + δabδpp′δq+q′,0

pql

π
,

and

(6.1.33) [Jacqp, J
b
cq′p′ ] = iεabcδpp′J

c
c,q+q′ ,p + δabδpp′δq+q′ ,0

pql

π
.

Hence both the spin and channel densities satisfy level 2 SU(2) Kac-Moody algebras. As such, the

primary states of spin are restricted to values Sp = 0, 1/2, 1 = M/2 and those of channel spin (also an
SU(2) field) to Scp = 0, 1/2, 1 = N/2 where N = 2 is the conduction spin degeneracy. The commutation
relations of Jqp, J

a
sqp with the free particle Hamiltonian (6.1.7) (augmented to include spin and channel

degrees of freedom) are unchanged from Eqs. (6.1.14) and (6.1.25). To this we add the commutation
relation of Jacqp with the free Hamiltonian which has the same form

(6.1.34) [H0, J
a
cqp] = vF qpJ

a
cqp .

Hence, proceeding along the lines of Secs. (6.1.1.c,d), we write the free particle Hamiltonian in

terms of mutually commuting charge, spin, and channel quadratic forms (the ‘Sugawara’ representation)
as

(6.1.35) H0 =
πvF
l

∑

qp

[
1

8
: JqpJ−qp : +

1

4
: ~Jsqp · ~Js,−q,p : +

1

4
: ~Jcqp · ~Jc,−q,p :] .
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This creates free-fermion excitations which are tensor products of states in the charge, spin, and channel

spin boson Fock spaces in each of the left and right moving branches, created from the primary states
and descendants generated by application of density operators with positive qp values. The states are

classified in terms of their primary charge (Qp), spin Sp, and channel spin Scp for each branch, along
with integers characterizing the number of bosonic excitations, with energies give by

(6.1.36) E =
πvF
l

∑

p

[
Q2
p

8
+
Sp(Sp + 1)

4
+
Scp(Sc + 1)

4
+ nQp + nSp + nCp]

which is an obvious generalization of Eq. (6.1.9). The spectrum is again subject to a fermion gluing
condition and boundary conditions which can shift the spin/charge/channel gluing conditions.

Note that this representation of the free Hamiltonian is not unique. It is quite convenient for
treating the Kondo problem, however. We could, for example, write down a Sugawara form for the

larger U(1)× SU(4) symmetry deriving from overall rotations in spin and channel-spin space (Affleck
and Ludwig, [1991b]). However, the coupling to the impurity will break this symmetry down into the
U(1) × SU(2) × SU(2) considered in Eq. (6.1.35). Obviously we could also write down an Abelian

bosonization scheme for each branch, spin, and channel-spin index in terms of the charge densities
restricted to each independent fermion branch. A different representation for the energies could then

be generated by rewriting the charge for each value of spin and channel-spin indices in each branch p
in terms of Q, Sz, Szc and the ‘double-tensor’ spin-channel operator SzSzc . This scheme does not appear

manifestly rotationally invariant in either the spin or channel spin sectors, however. The interesting
thing is that this representation is closely related to the Abelian bosonization scheme developed by

Emery and Kivelson. That approach has extra complications associated with ‘re-fermionization’ as we
discuss in Sec. 6.2.

(f) Generalization to Arbitrary Spin and Channel Degeneracy

If we now assume the fermion spins are N -fold degenerate and the channel spins are M fold
degenerate, we must generalize our definitions of the spin and channel densities to SU(N), SU(M)

form. These are best specified in terms of the N2 − 1 generators of SU(N) T aN , a = 1, 2, ...N2 − 1

with normalization condition Tr(T aNT bN = δab/2 and commutation relations [T aN , T bN ] = if
(N)
abc T cN where

f
(N)
abc is the structure factor of the SU(N) Lie algebra (see, for example, Hammermesh [1961]). Similar

generators T aM should be introduced for the SU(M) channel spin symmetry. Note that the structure

constants satisfy f
(N)
abc f

(N)
abd = Nδcd. In the SU(2) case, f

(2)
abc = εabc.

The new density operators are thus defined as

(6.1.37) Jqp =
∑

qµα

Ψ†k+q,pµαΨkpµα ,

(6.1.38) Jasqp =
∑

qµνα

T aNΨ†k+q,pµαΨkpνα ,

and

(6.1.39) Jacqp =
∑

qµαβ

T aMΨ
†
k+q,pµαΨkpµβ .

The commutation relations for the operators amongst themselves are

(6.1.40) [Jqp, Jq′p′ ] = δq+q′ ,0δpp′
2MNpql

π
,
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(6.1.41) [Jasqp, J
b
sq′p′ ] = if

(N)
abc δpp′J

c
s,q+q′ ,p + δabδpp′δq+q′ ,0

Mpql

2π
,

and

(6.1.42) [Jacqp, J
b
cq′p′ ] = if

(M)
abc δpp′J

c
c,q+q′ ,p + δabδpp′δq+q′ ,0

Npql

2π
.

The spin(channel-spin) densities thus obey SU(N)(SU(M)) Kac-Moody algebras of level M(N). There

are restrictions on allowed primary states which are not however as readily written down as in the SU(2)
case described in Sec. (6.1.1.e).

The commutation relations of the charge, spin, and channel-spin densities with the suitably

generalized free particle Hamiltonian are unchanged from the discussion in the preceding sections. The
appropriately defined Sugawara Hamiltonian may be determined precisely as before, and the result is

(6.1.43) H0 =
πvF
l

∑

qp

[
1

2MN
: JqpJ−qp : +

1

M + N
: Ĵsqp · Ĵs,−q,p : +

1

M +N
: Ĵcqp · Ĵc,−qp :]

where Ĵsqp(Ĵcqp) are vectors in the N(M) dimensional tensor space transforming under SU(N)(SU(M))

rotations. The states are again tensor products of vectors from the charge, spin, and channel-spin boson
Fock spaces for each branch p. These are subject to suitably generalized fermion gluing conditions. The

single particle energies corresponding to Eq. (6.1.36) are exactly analogous except that the Sp(Sp+1) and
Scp(Scp + 1) terms are generalized to the quadratic Casimirs for each of the primary states. These may
be worked out with suitable Lie group technology as has been done, for example, for the M = 3, N = 2

model (Affleck and Ludwig [1991b]).

6.1.2 Non-Abelian Bosonization Formulation of the Kondo Hamiltonian

In this subsection we shall review how Affleck and Ludwig developed a Non-Abelian bosonization formu-

lation of the Kondo Hamiltonian. The outline of the subsection is as follows: in (6.1.2.a) we show how
at special values of the exchange coupling, the impurity spin is ‘absorbed’ by the conduction electrons
yielding a Hamiltonian which is still of the Sugawara form discussed in the previous subsection with new

current operators which still obey the Kac-Moody algebra. The working hypothesis is that the special
coupling values correspond to the low temperature fixed points of the Kondo model. The states how-

ever are subjected to new non-fermionic ‘fusion’ rules developed by Affleck and Ludwig [1991b; Ludwig,
1994] which precisely state how the spin, charge, and channel-spin degrees of freedom are restricted.

While these quantum numbers are restricted to fermionic gluing conditions for exactly compensated
SI = M/2 models, they are ‘freed up’ in the overcompensated case, yielding a finite size spectrum

which is no longer that of a Fermi liquid. Hence, as in the case of interacting one-dimensional met-
als which display non-Fermi liquid behavior, spin-charge-channel separation occurs in the multichannel

overcompensated Kondo model. In Sec. (6.1.2.b) we discuss how the operator spectrum of the model
may be determined by a finite size calculation with modified boundary conditions. This allows one
to generate the allowed non-trivial operators which can effect the critical behavior on approach to the

fixed point as well as cross-over phenomena in the presence of applied fields that break the spin and
channel-spin symmetry. In Sec. (6.1.2.c), we discuss the effects of various perturbations on the finite

size spectra following the work of Affleck et al. [1992].

(a) Sugawara form of the Kondo Hamiltonian: Absorption of the Impurity Spin

As discussed in (6.1.1.a), the lack of independence of left and right moving fermions in the one-
dimensional radial half-space of the Kondo model means that we can eliminate the right movers from

the problem with the suitable mirroring into the r < 0 half-plane. This means the Kondo exchange
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interaction can be written solely in terms of the impurity spin together with the left-moving spin current.

Restricting to spin 1/2 conduction electrons, the result is

(6.1.44) HK =
πvF
l
λ
∑

q

~JsqL · ~SI

where λ = N(0)|J | is the dimensionless coupling constant. Note that we have now favored the L,R

notation of Affleck and Ludwig over the p notation used in the previous subsection. Right movers
will henceforth be dropped from the discussion. The free Hamiltonian for left movers is written in the
Sugawara form discussed in the previous subsection.

Perhaps the most central component of Affleck and Ludwig’s [Affleck, 1990a; Affleck and Ludwig,
1991a,b,c; Ludwig, 1994] work is the observation that for certain special values of λ, it is possible to

‘complete the square’ of the spin term in the free Hamiltonian to absorb the impurity term. leaving
behind a trivial constant in the energy. Specifically, when λ = 2/(2 + M), we can write

(6.1.45) Hsp = H0sp +HK =
πvF
l

1

2 + M

∑

q

: ~JsqL · ~Js,−q,L :

where the shifted spin density operator is simply

(6.1.46) ~JsqL = ~JsqL + ~SI .

These new spin densities still obey the Kac-Moody algebra specified by Eq. (6.1.41) (with N=2). Be-
cause only the spin degrees of freedom are modified, the charge and channel parts of the free Hamiltonian

in Eq. (6.1.43) are left unchanged.
Because the Hamiltonian with the absorbed impurity spin remains a quadratic form in the

charge, spin, and channel-spin densities, the form of the energies is unchanged from Eq. (6.1.36) in

the two-channel case (M = 2), and indeed in general from Eq. (6.1.43). However, what differs are
the constraints on allowed states. Affleck and Ludwig [1991(b); Ludwig, 1994] made a “fusion rule”

hypothesis to determine which states would be allowed in the new Hamiltonian with the absorbed spin.
First, they apply a generalization of the SU(2) triangle rule appropriate for adding spins in the Kac-

Moody algebra. Restricting attention to N = 2, define S as the total spin of a primary state in a
conformal tower in the shifted Hamiltonian specified by Eqs. (6.1.45,46), and S ′ as the conduction part

of that spin. The generalized triangle rule is

(6.1.47) |S ′ − SI | ≤ S ≤ min{S ′ + SI ,M − S ′ − SI} .

Note that since the maximal primary spin in a conformal tower is M/2 that the right hand side of
(6.1.47) assures that the primary spin in the new conformal towers of ~JsqL will not exceed M/2. Next,

define the free fermion fusion factor nQS
′Sc

0 to be 1 if a free fermion primary state of charge Q, spin

S ′, and channel-spin Sc is allowed in the free spectrum of Eq. (6.1.43), and zero otherwise. Define
the corresponding quantity for the system with absorbed spin as nQSSc∗ . The fusion rule of Affleck and

Ludwig [1991b; Ludwig, 1994] states that

(6.1.48) nQSSc∗ =
∑

S′
NS
SI ,S′n

QS′Sc
0

where NS
SI ,S′

is one if (6.1.47) is satisfied for S, SI , S
′, and zero otherwise. Taking this fusion rule

together with the general rules for constructing states within the Kac-Moody algebra allows a complete
generation of the spectrum at the fixed point. Corrections to scaling arise as one moves away from the

fixed point (by going to higher energies for example).
To understand how this fusion process works, the reader is directed to Tables 11 (free fermions

for M = N = 2, SI = 1/2) and 12 (spectrum of N = M = 2, SI = 1/2 Kondo model). These are
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Q S Sc SO(5) (El/πvF)

0 0 0 1 0

±1 1/2 1/2 4 1/2

0 1 0 1 1

±2 1 0 5 1
0 1 1 1

±2 0 1

0 0 0 10’ 1
0 0 1

±1 1/2 1/2’ 4’ 3/2

±1 1/2’ 1/2 4 3/2

±1 3/2’ 1/2 4 3/2

±3 1/2 1/2 3/2
±1 1/2 3/2’ 16’ 3/2
±1’ 1/2 1/2 3/2

Table 11: Free fermion energy levels for the M = 2 channel model (c.f. sec. 6.1.d). The states are
labeled by charge Q, spin S, channel spin Sc, and the combined Q, Sc indices are also designated by

their Sp(2) ∼ SO(5) labels (which indicates the combined charge/channel degeneracy); different SO(5)
blocks are delineated by horizontal lines. Energies are measured in dimensionless units of l/πvFE and
the F− boundary condition ΨL(l) = −ΨL(−l) is assumed so that the fermion wave functions are forced

to zero at the boundary. (This is a combination of Tables I and III of Affleck et al. [1992].) Primes
indicate descendant states generated by exciting particle hole pairs.

Q S Sc SO(5) lE/πvF ENRG
0 1/2 0 1 0 0

±1 0 1/2 4 1/8 0.125

±2 1/2 0 5 1/2 0.505
0 1/2 1 1/2 0.505

±1 1 1/2 4 5/8 0.637

0 3/2’ 0 1 1 1.013

±2 1/2 1 1 1.035
0 1/2 1 10’ 1 1.035

0 1/2 0 1 1.035

±1 0 3/2’ 9/8 1.147
±1 0 1/2 16’ 9/8 1.147

±3 0 1/2 9/8 1.147

±1 1’ 1/2 4 9/8 1.179

±1 0 1/2 4’ 9/8 1.232

Table 12: Spectrum of the M = 2, SI = 1/2 Kondo model. The notation is the same as for Table 11.
The fifth column shows the energies generated by conformal field theory (CFT); the last column is the

numerical renormalization group (NRG) energy (see Sec. 4.2) with appropriate normalization. This
table is based on Table V of Affleck et al. [1992] and Table 1b of Ludwig [1994a]. As discussed in Secs.

4.2, 6.1.2.a, the NRG respects the SO(5) symmetry but not the full conformal invariance. Hence, SO(5)
blocks all have the same energy as shown below. Spectra can be generated from Table 11 by using the

single fusion rule (Eq. (6.1.48)) in conjunction with the Kac-Moody triangle rule (Eq. (6.1.47)).
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constructed from corresponding tables in Affleck et al.[1992] and Ludwig [1994a]. Taking S ′ = 0 from

the ground state Q = S ′ = Sc = 0 of the free fermion problem, it is easy to see from Eq. (6.1.47)

that S is uniquely constrained to be 1/2 and hence n
0,1/2,0
∗ = 1 by Eq. (6.1.48). Now at first one

might think this corresponds to the spin charge reversal of the M = 1 model at the strong coupling
fixed point as discussed in Sec. 4. However, the lone fermion with S = 1/2 would also have to have
Sc = 1/2, which is clearly not the case. Next consider the first excited state of the free fermion spectrum

with Q = ±1(mod4), S ′ = 1/2, Sc = 1/2. The triangle rule (6.1.47) constrains S uniquely to zero, and
yields an energy of πvF /8l. This differs from a Fermi liquid theory in two key aspects. First, the

level spacing relative to the ground state is a fraction of the minimum free fermion value of πvF /l.
Second, the quantum numbers cannot be that of free fermions with simple reversed spin and charge

quantum numbers because the creation of a free Sc = 1/2 excitation would necessitate a spin S = 1/2
to accompany it.

Table 12 also contains a comparison with the lowest 76 NRG energy levels (Affleck et al. [1992]).
It can be seen that the agreement is quite good, with discrepancies arising as one moves to higher

energies. This disagreement can arise from three sources: (1) The logarithmic discretization of the NRG
treatment breaks the conformal symmetry; (2) The numerical truncation procedure in the NRG can
introduce systematic numerical error; (3) As one moves away from the low energy spectrum, corrections

to scaling arise from the effects of the irrelevant operators. In practice, it is believed that (1,2) contribute
more to the differences observed based upon an extrappolation of the NRG numerics to the continuum

limit Λ = 1, where Λ is the logarithmic discretization parameter of the NRG. Notice that the NRG levels
respect the Sp(2) ∼ SO(5) symmetry discussed in Sec. 4. The higher conformal symmetry renders a

number of the Sp(2) energy levels degenerate.
We end this subsection by noting that the fusion rule can be applied to exactly compensated

and undercompensated models as well, as was discussed particularly clearly in Affleck [1990a]. As a
couple of examples, consider first the M = 1, SI = 1/2 model. The fusion rule then simply generates

the reversed spin/charge relations corresponding to a π/2 phase shift as discussed in Secs. (4.1) and
(6.1.1). For example, for the free fermion ground state with S ′ = 0, Q = 0, the fusion rule generates
the state S = 1/2, Q = 0 (with energy zero, after effecting a shift of πvF /4l to the spectrum), and for

the first excited free fermion state with energy πvF/2l and S ′ = 1/2, Q = ±1, the fusion rule generates
the state S = 0, Q = ±1 with energy zero. The second excited state with Q = ±2, S ′ = 0, and energy

πvF /l is mapped to the state Q = ±2, S = 1/2 with energy πvF /l. These lowest two states correspond
precisely to the spectrum of free fermions with the boundary condition ΨLµ(L) = ΨLµ(−L) and reversed

spin/charge relations, or equivalently to a π/2 phase shift. Affleck [1990a] also demonstrates that this
simple absorption of the impurity spin holds for the M/2 = SI compensated Kondo model and the

SU(N),M = 1 Coqblin-Schrieffer model which also has a compensated (singlet) ground state. For the
undercompensated model with SI > M/2, Affleck demonstrates that the absorption holds for M/2 of

the impurity spin, leaving behind a local moment with net value SI −M/2 and residual ferromagnetic
coupling to the impurity spin. Hence, the fixed point spectrum is a direct product of a decoupled local
moment with a Fermi liquid, as was suggested by Nozières and Blandin [1980]. Corrections to scaling

from the marginally irrelevant ferromagnetic coupling can generate “non-Fermi liquid” thermodynamics
which are related to those in the charge-only model discussed by Giamarchi et al. [1993].

(b) Relation of Boundary Operator Spectrum to Finite Size Spectra

One of the key features of boundary CFT as developed by Cardy [1984,1986a,1986b] is the

existence of boundary operators with non-trivial scaling dimensions. The existence of these boundary
terms gives rise to singular contributions to the free energy of the quantum impurity problem which are

independent of l. These boundary operators live only at r = 0 and thus are dependent only upon the
time variable.

Each boundary operator φ will have a distinct behavior under rescaling of space and time
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coordinates, which is described in terms of the scaling index ∆φ specified by its long time green’s

function, viz.

(6.1.49) < φ(τ)φ(τ ′) >∼ |τ − τ ′|−2∆φ

for |τ − τ ′| → ∞. The scaling index also gives the renormalization group eigenvalue of the field hφ
conjugate to the boundary operator φ. This follows from adding to the Lagrangian L associated with

the Sugawara Hamiltonian specified by Eqs. (6.1.43,45) a term of the form

(6.1.50) δL(hφ) = hφ

∫
dτφ(τ) .

Consider a uniform rescaling of space and time by a factor b. Then from the integral we see that the
field hφ scales like b1−∆φ to leave the term scale invariant. Hence operators with scaling dimensions

less than one have relevant conjugate fields. As we shall see below, this includes the primary spin and
channel spin fields at the fixed point of the two-channel model.

Any operator with a scaling index ≤ 1/2 may have a diverging susceptibility defined by the
equation

(6.1.51) χφ(T ) =

∫ β

0
dτ < φ(τ)φ(0) >∼ T 2∆φ−1 .

An exponent of 1/2 is a special case, clearly, and in this case one will either have logarithmic or
constant behavior at long times and low energies. If the operator is bosonic in character, it will have a

log divergence at low temperature because the spectral function of the φ green’s function must change
sign at zero frequency. If the operator is fermionic in character, it will be a constant at low temperature

consistent with unitary bounds on the scattering amplitude for fermions. For a related discussion, see
Sec. 5.1.2.

A key point made by Cardy [1986b] and utilized by Affleck and Ludwig [1991b], Affleck et al.
[1992], and Ludwig [1994a] is that for a particular choice of boundary conditions on a finite strip, there

is a one-to-one correspondence of the boundary operators to the low lying states and the corresponding
energies (in units of πvF /l) are precisely the scaling dimensions of the boundary operators. Let us
briefly review the boundary conditions, referring to Figs. 75,76. In this section, we have described free

left moving fermions which obey the F boundary condition at r = 0 and the F− boundary condition
at r = l (c.f. Eq. (6.1.7). We refer to this as FF− boundary conditions, following Ludwig [1994a], and

represent this as the finite width strip in Fig. 75(a). Alternatively, given the mirroring of ΨL in the
r < 0 plane, we may view this as a cylinder of circumference 2l with a ‘seam’ along which ΨL is forced

to zero. In the presence of the impurity spin, the boundary conditions are shifted to KF−, where the
K denotes absorption of the impurity spin at the r = 0 boundary. This is represented in Fig. 75(b) .

According to the work of Cardy [1986], to obtain the scaling dimensions of the boundary op-
erators we should look at the spectrum corresponding to the boundary conditions KK−, namely, the

non-trivial boundary is placed at each edge with a wall at the r = l edge. It is important to note that
this finite strip can be related back to the original half-plane with the conformal transformation shown
in Fig. 76.

To implement this KK− boundary condition, Affleck and Ludwig [1991b] (Ludwig [1994a])
hypothesized that the appropriate description was the ‘double fusion rule’. Namely, first the impurity

spin is absorbed at the K boundary, corresponding to the KF− boundary conditions discussed in Sec.
6.1.2.a. Then the impurity spin must be absorbed at the far boundary r = l again! In practice,

this means that the conduction spin density for left movers is shifted (in real space) by ~JsL(x) →
~J opsL(x) + δ(x)~SI1 + δ(x− l)~SI2 and in k space to ~J opsqL + ~SI1 + (−1)lq/π ~SI2. Here we have included the

superscript op to remind the reader this is for calculating the spectra of allowed boundary operators.
It may be readily verified that this doubly shifted density operator still obeys the Kac-Moody algebra.

Hence, the double fusion may be viewed first as conduction spin S ′′ absorbing impurity spin SI1 at r = 0
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Figure 75: Boundary conditions for free fermions (a) and system with a Kondo impurity at the origin

(b) for use in the conformal theory. After Affleck and Ludwig [1991a,b,c].

Figure 76: Boundary conditions for operator spectrum of Kondo impurity model. In this case a

Kondo impurity is fused in at each boundary (KK− boundary conditions). After Affleck and Lud-
wig [1991a,b,c].
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Q S Sc SO(5) ∆ = El/vFπ

0 0 0 1 0

0 1 0 1 1/2

0 0 1 5 1/2
±2 0 0 1/2

±1 1/2 1/2 4 1/2

±1 1/2 1/2 4 1/2

0 1 1 5 1
±2 1 0 1

0 0 1 1

±2 0 1 10 1
0 0 0 1

0 0’ 0 1 3/2

0 2’ 0 1 3/2

Table 13: Operator spectrum of the M = 1/2, SI = 1/2 Kondo model from the conformal theory double
fusion rule (c.f. Sec. 6.1.2.b). Notation is the same as for Table 11. Here ∆ is the scaling index of

the operators. Table is adopted from Table 1.c of Ludwig [1994a]. Spectra can be generated from the
free-fermion spectrum of Table 6.1 with the double fusion rule (Eq. (6.1.50)) or from Table 12 with the
single fusion rule (Eq. (6.1.48)) in conjunction with the Kac-Moody triangle rule (Eq. (6.1.47)). The

table is not complete for all operators with scaling index 3/2. The operators shown with scaling index
3/2 are the leading irrelevant operator about the fixed point (spin 0) and the quadrupolar spin operator

(spin 2–see Sec. 6.1.2.c for discussion).

yielding composite spin S ′, with S ′ then absorbing SI2 at the boundary r = l yielding spin S. Allowed
states in the finite size spectra are characterized by integers nQSSc

KK− = 0(unallowed) or 1(allowed) which

are calculated from the rule

(6.1.52) nQSScKK− =
∑

S′S′′
NS
SI ,S′N

S′
SI ,S′′n

QS′′Sc
0

where nQSSc0 and NS
SI ,S′ were defined in Sec. 6.1.2.a. Each generated state which is then a primary

state of the Kac-Moody algebra correponds to a so-called primary field boundary operator. One may

also generate descendants by operating with the charge, spin, and current densities for positive qp (i.e.,
negative q for left movers).

The lowest several states for the KK− boundary conditions generated by the double fusion rule
are displayed in Table 13. Again, the energies divided by πvF /l give the scaling dimensions, which
may then be read off from Eq. (6.1.36) for non-zero values of nQSSc

KK− . Note that the constraints of

the Kac-Moody algebra imply that no primary fields can exist with S or Sc greater than one. From
Table 13 we see that apart from the trivial constant operator there are four kinds of operators with

scaling dimension 1/2. The physical meaning of each is as follows:
Q = ±1, S = 1/2, Sc = 1/2 Operators: These are the quantum numbers associated with a free fermion

excitation, so the scaling dimension must be ∆F = 1/2 as discussed above and in Sec. 5.1.2. It is of
interest that there are two such fields; the physical interpretation of this is unclear.

Q = 0, S = 1, Sc = 0 Operator: This is ~φs, a primary operator transforming as a vector triad of local
spin tensors. This object describes the effective core spin at the fixed point. The scaling dimension of

∆s=1/2 implies that this operator has a logarithmically divergent susceptibility which will be explicitly
calculated in Sec. 6.1.3. The scaling dimension value of 1/2 also implies that the spin field (magnetic
field for magnetic impurities, strain field for quadrupolar Kondo ions or TLS sites) is a relevant field
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with renormalization group eigenvalue of 1/2.

Q = 0, S = 0, Sc = 1 Operator: This is ~φsc, a primary operator transforming as a vector triad of local
channel spin tensors. The scaling dimension of ∆c=1/2 implies that the corresponding channel spin

susceptibility is logarithmically divergent at low temperatures, and the application of an external chan-
nel field (strain field for magnetic impurities, magnetic field for quadrupolar Kondo or TLS impurities)

is a relevant perturbation.
Q = ±2, S = 0, Sc = 0 Operator: This is a primary operator describing an electron pair around the im-
purity site (Ludwig and Affleck [1991], Ludwig [1993]). The corresponding local pair field susceptibility

is logarithmically divergent, and in principle a local source of such pairs is a relevant perturbation. This
pair field is unusual, in that the antisymmetry of spin and channel spin labels implied by S = Sc = 0

means that something else must be done to the pair operator to render it antisymmetric under the Pauli
principle. As discussed by Ludwig and Affleck [1991c], antisymmetrizing in the L,R indices between

the electron fields will assure satisfaction of the Pauli principle. This is equivalent to odd-parity in
the one-dimensional spatial index in view of the mirroring condition ΨL(r) = ΨR(−r). After Emery

and Kivelson [1992] noted the log divergence associated with an odd-in-time pair field in their Abelian
bosonization approach, it was realized that antisymmetrizing in temporal arguments for x = 0 will do

just as well (Ludwig [1993]) as a spatial gradient, given the equivalence of space and time axes in the
conformal space. Alternatively, one may construct a dot product of the spin field ~Φs with a local triplet
pair field possessing quantum numbers Q = ±2, S = 1, Sc = 0. Although the triplet field by itself has

scaling exponent 1 and thus has a non-diverging susceptibility, in combination with the local spin tensor
a spin singlet is formed which has the same quantum numbers as those with inserted gradients. The

equivalence is readily seen by explicitly carrying out the time and space derivatives. We postpone a
more elaborate discussion of the pair fields until Sec. 9.4.

Some other interesting operators are: (1) the double tensor operator, with quantum numbers
Q = 0, S = 1, Sc = 1, which is relevant to the generalized model considered by Pang [1992,1994]

and Zaránd [1995], and which has scaling dimension 1; (2) the spin quadrupole operator (not shown in
Table 13) which has Q = 0, S = 2, Sc = 0 and scaling dimension 3/2 (Afflecket al. [1992]). This operator

is relevant to our discussion of perturbations about the fixed point, specifically exchange anisotropy,
which we shall discuss in the next subsection 6.1.2.c.

Notice that no operators with Q = 0, S = 1/2, Sc = 0 or Q = 0, S = 0, Sc = 1/2 appear in the

KK− spectrum even though these are in principle allowed primary operators coming from the Kac-
Moody algebras which permit, e.g., S = 0, 1/2, ...M/2 primary field spins for a level M spin algebra.

The double fusion rule legislates against these possibilities.
Appliction of the Kac-Moody densities to the primary field operators generates the so called

descendant operators with higher scaling dimensions. As an explicit example, put q = nπ/l > 0 and
consider the operator ~Js,−q,L · ~φs. This operator has S = 0 (since it is a scalar product of two spin

operators) and scaling dimension n + ∆φs = n + 1/2 for the two-channel case.
By way of slight generalization, we note that the primary spin and channel-spin operators

transform as the fundamental representations of SU(N) and SU(M) for the generalization to the
SU(N) × SU(M) model. The resulting scaling dimensions are ∆s = N/(N + M) for the spin field,
and ∆c = M/(M +N) for the channel field, in precise agreement with Eqs. (5.1.30.a,b) (recalling that

γ = M/N is held fixed in the large N limit of Sec. 5.1).

(c) Perturbations about the Fixed Point

In this section we give an overview of the effects of various perturbations about the two-channel
fixed point following the discussion in Affleck and Ludwig [1991c] and Affleck et al. [1992]. The point

is that the conformal theory gives a natural basis for identifying relevant, irrelevant, and marginal
operators about the fixed point. In order, we shall discuss perturbations due to: (1) The leading

irrelevant operator; (2) an external spin field; (3) an external channel field; (4) exchange anisotropy.
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(1) Leading Irrelevant Operator

As discussed by Affleck and Ludwig [1991b] and Affleck et al., a central role is played by the leading
irrelevant operator about the fixed point Hamiltonian. The restrictions on this operator are that it

must be a singlet in spin and channel indices, so as to preserve the SU(2)×SU(2) symmetry, and must
be chargeless to preserve the U(1) symmetry. Finally, on physical grounds we expect this operator to

involve only the primary spin field ~φs since the non-trivial coupling induced by the Kondo impurity
occurs only in the spin sector. By the remarks of the previous section, a reasonable candidate operator
is ~Js,−q,L · ~φs for q = π/l which has scaling dimension 1 + ∆s = 1 +N/(N+M)=3/2 when N = M = 2.

In the case of N = M , the operator ~Jc,−q,L · ~φc also has the same scaling dimension, but since there is
no impurity channel field is not a physically plausible candidate for the leading irrelevant operator.

The way this operator is added to the Hamiltonian is in the form δλ = λ − λ∗ where λ∗ =

2/(2 + M) for N = 2 is the fixed point coupling. In the next section we shall see how this term enters
into the calculation of the specific heat. (Note that in Affleck and Ludwig [1991b], the coupling λ used

in the discussion of thermodynamics corresponds to δλ here.)
(2) Application of a Spin Field

If we introduce a field ~hs which couples linearly to the primary boundary spin operator ~φs(τ). Physically,
this corresponds to a magnetic field for the magnetic impurity, and a stress field for the quadrupolar

impurity or TLS impurity. Also, electric field gradients and magnetostriction induced stress fields (order
H2, H the magnetic field) will split the quadrupolar Kondo impurity, and the TLS impurity is subject to

spontaneous tunneling matrix elements and well asymmetry which have the same effect. The presence of
a spin field produces a term in Lagrangian of the form in Eq. (6.1.49) with ~hs · ~φs(τ) inside the integral.
Hence the spin field ~hs is relevant with a renormalization group eigenvalue of 1/2. This implies that in

the presence of a spin-field, there will be a crossover to a new fixed point with crossover exponent 1/2,
i.e., low temperature properties will be universal functions of h2

s/T . This implies the existence of a new

energy scale in the problem given by h2
s/TK , as is verified in NRG and Bethe-Ansatz treatments. The

conformal field theory cannot specify the nature of the new fixed point, but it is reasonable to guess

that it is a free fermion fixed point in the presence of a polarized scatterer (the Zeeman split primary
field). This is born out by the NRG calculations discussed in Sec. 4.2.e (see Fig. 19(a)). We note that

the crossover physics is in precise agreement with the discussion of Sec. 5.1 where the large N NCA
approach was used.

(3) Application of a Channel Field
A channel field ~hc couples linearly to the primary channel spin operator ~φc(τ). This field corresponds to
a stress field or electric field gradient for the magnetic impurity, and a magnetic field for the quadrupolar

or TLS impurity. In practice, the channel field probably arises from a splitting of the exchange integrals
in the presence of applied stress (magnetic impurity) or applied magnetic field (quadrupolar Kondo

impurity). It remains something of a mystery how to effectively obtain a channel field splitting for the
TLS since there is no obvious magnetic coupling to the impurity. By considering a perturbation to the

Lagrangian of the form (6.1.49), with ~hc · ~φc(τ) in the integrand, we see that the renormalization group
eigenvalue of the field ~hc is 1/2. This implies that the perturbation is relevant with a crossover exponent

of 1/2, i.e., low temperature properties are universal functions of h2
c/TTK, and h2

c/TK is a new energy
scale which sets the crossover temperature on passing first through the Kondo scale and then at lower

temperatures to this new energy scale. The crossover behavior is in good agreement with that discussed
in Sec. 5.1. The conformal theory again does not provide an answer as to what the crossover goes to,
but the obvious guess in view of the analysis of Secs. 3.1.2, 4.2, and 5.1 is that the crossover is to the

ordinary Kondo fixed point for whichever channel couples more strongly to the impurity and the weak
coupling fixed point for the other channel. This is indeed seen in the NRG spectra, which suggest a

direct product of phase shifted fermions with unshifted fermions at the fixed point. Jerez and Andrei
[1995] and Coleman and Schofield [1995] have questioned the Fermi liquid character of the fixed point

recently. Using a combination of Abelian bosonization and path integral methods, Fabrizio, Gogolin,
and Nozières [1995a,b] have reasserted that the new fixed point is indeed a Fermi liquid.
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(4) Exchange Anisotropy.

Exchange anisotropy breaks the SU(2) spin rotational invariance to a U(1) subgroup which is however
even under spin reversal (time reversal for the magnetic impurity) unlike the magnetic field. If it is

a relevant perturbation, there should be an appropriate primary field operator in the KK− spectrum.
The logical candidate is a spin quadrupole operator with quantum numbers Q = 0, S = 2, Sc = 0. This

makes physical sense as argued by Pang [1992] and discussed in Sec. 3.3.1,3.4.1, since the exchange
anisotropy will induce a local quadrupolar splitting of the impurity spin through the two-loop order
contribution to the pseudo-fermion self energy. Thus, although the anisotropy term J 3

s,−1,Lφ
3
s has an

irrelevant scaling dimension, it generates a relevant term in next order.
As noted by Affleck et al. [1992], the only primary operator with Q = 0, Sc = 0 for free fermions

has S = 0. So it is logical to apply the double fusion rule to this state, which implies that the only
primary field operator with S = 2 must satisfy the constraint implied by the Kac-Moody triangle rule,

so that

(6.1.53) 2 ≤ 2SI , 2 ≤M − 2SI .

This implies that 1/2 < SI < M/2 − 1/2. The scaling dimension is ∆quad = 6/(M + 2), and so it
is relevant for M ≥ 5, and marginal for M = 4, provided 1/2 < SI < M/2 − 1/2. For SI = 1/2 or

SI = k/2− 1/2, the exchange anisotropy enters only through the perturbation Jzs,−1,Lφ
z
s which is part

of the leading irrelevant operator about the fixed point and so cannot be relevant. In physical terms, as

discussed in Secs. 3.3.1,3.4.1, and 4.2, one can understand this because for SI = 1/2 or k/2− 1/2 and
M > 2, the ground state spin alternates between k/2 − 1/2 and 1/2 for even or odd number of sites

in the NRG, or alternatively one can always arrange to have a S = 1/2 ground state with appropriate
boundary conditions in the CFT analysis. S = 1/2 states can never have a quadrupole moment; gener-

ically, the next few states in such a case have often S = 1/2 or S = 0 which also of course experiences
no anisotropy to leading order.

6.1.3 Calculation of Thermodynamic Properties in the CFT Approach

In this subsection we show how Affleck and Ludwig [1991b,c] were able to compute various thermo-

dynamic properties within the conformal theory approach. There are three parts. First, we identify
the conformal transformation and mathematics which allows finite temperature calculations to be per-

formed straightforwardly given a knowledge of the physics at the fixed point (Sec. 6.1.3.a). Next, we
outline explicitly how the calculation of the specific heat and magnetic susceptibility with this finite

temperature technology is carried out in Sec. 6.1.3.b, yielding an estimate of the Wilson ratio together
with explicit confirmation of the singular behavior of the low temperature quantities. Finally, we switch

to a discussion of how the ground state residual entropy is calculated which involves sophisticated use
of the conformal invariance to relate spatial boundaries to temporal boundaries (Sec. 6.1.3.c).

(a) Conformal Mapping for Finite Temperature Physics

As noted by Affleck and Ludwig[1991b], the low temperature free energy of the continuum
Kondo model can be written in two different ways, first as a trace over the exponential of the inverse

temperature times the Hamiltonian living on the half plane −∞ < τ < ∞, 0 < r, and second in a
Lagrangian formulation where the temperature explicitly enters the imaginary time integrals. Including

a spin field hs along the z axis, the Hamiltonian description gives

(6.1.54) F (T, δλ, hs) =
−1

β
ln[Tr exp{−β(Ĥ(δλ)− hsĴ 3

s0L)}]
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Figure 77: Conformal mapping of zero temperature half-plane to finite temperature cylinder. By
applying this mapping of z → w, one may straightforwardly evaluate finite temperature correlation
functions in terms of zero temperature ones.

and in the Lagrangian formulation

(6.1.55) F (T, λ, hs) = F (T, 0, 0)− 1

β
ln < exp{

∫ β

0
dτ [δλ(J̃ as,−1,Lφ̃

a
s)(τ) + hsJ̃ 3

s0L(τ)]} >

where the hat refers to the half plane geometry G0 with the Kondo impurity living at r = 0, and the
tilde refers to the semi-infinite cylinder geometry GT specified by 0 < τ < β, 0 < r < ∞ where bosonic
operators are periodic in β. Note that the spin field has been coupled to the total (conserved) spin

operator J 3
s0L. As in the discussion of Secs. 6.2.b,c, we put q = nπ/l and index the spin density

operators by n rather than q. The above expectation value is with reference to the critical Hamiltonian

(δλ = hs = 0). These expressions have employed the identity J 3
s0L = (1/2π)

∫ J 3
L(x) which is just the

Fourier transform rule. Hence this treatment differs slightly from Affleck and Ludwig [1991b] where the

spin density in real space is written down.
Affleck and Ludwig [1991b] point out that the free energy given by Eqs. (6.1.54,55) must obey

standard finite size scaling relationships. Specifically, if we restrict the spatial dimension such that
0 < r < l and l/vF >> β, then F separates into a bulk piece that scales with l, and an impurity piece

independent of l, viz.

(6.1.56) F (T, hs, δλ) =
l

a
fbulk(T, hs) + fimp(T, hs, δλ)

where a is a minimum length scale (of order h̄vF /kBTK here). The finite size scaling hypothesis (Barber,

[1983]) says that the bulk and impurity parts may be written for β →∞ as

(6.1.57) fbulk(β, hs) ≈ E(0)
bulk +

1

β2
Qbulk(βhs)

and

(6.1.58) fimp(T, hs, δλ) ≈ E(0)
imp +

1

β
Qimp(βhs;Aβ

−∆δλ)

where ∆ = 1 + ∆s is the scaling dimension of the leading irrelevant operator. In principle, all bulk

and impurity irrelevant couplings may be included in Eqs. (6.1.57,58), but these produce subleading
corrections compared to the leading irrelevant operator. Our interest is in computing Qimp which may

be evaluated about the fixed point by expanding Eq. (6.1.55) in powers of hs and δλ. This involves
calculation of correlation functions between various combinations of J 3

s0L and J as,−1,Lφ
a
s on the geometry

GT .
To evaluate the finite temperature correlation functions one may exploit the conformal trans-

formation shown in Fig. 77 which maps G0 into GT . Defining z = τ + ix in the half-plane and
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w = τ + ix in the semi-infinite cylinder (x = r/vF ), the transformation is w = (β/π) tan−1(z/τ0)

where τ0 = a/vF ≈ h̄/kBTK sets the short time or high frequency cutoff of the model. (Note that
Affleck and Ludwig [1991b] include the τ0 factor in this transformation only implicitly.) As a result,

at long times any boundary operator Ô in geometry G0 is related to the corresponding operator Õ in
geometry GT by the identity

(6.1.59) Õ(w) = (
dw

dz
)−∆O Ô(z) = (

β

πτ0

1

1 + (z/τ0)2
)−∆O Ô(z)

where ∆O is the scaling dimension of Ô. This means that correlation functions in the long time regime

which are simple power laws in geometry G0 may be related straightforwardly to correlation functions
at finite temperature. For example,

< Õ(w1)Õ(w2) >= (
β

πτ0
)−2∆O(1 + (z1/τ0)2)∆O (1 + (z2/τ0)2)∆O < Ô(z1)Ô(z2) >

(6.1.60) ≈ (
β

πτ0
)−2∆O(1 + (z1/τ0)2)∆O (1 + (z2/τ0)2)∆O

AOτ
2∆O
0

(z1 − z2)2∆O

where AO is a normalization factor for the O − O green’s function. Through the conformal mapping

the z variables on the right hand side can be related to the w variables on the left hand side in a
straightforward manner. Specifically, repeated use is made of the relation

(6.1.61)
(1 + (z1/τ0)2)(1 + (z2/τ0)2)τ2

0

(z1 − z2)2
=

1

sin[πβ (w1 − w2)]

which follows from elementary trigonometric identities.

(b) Evaluation of the Specific Heat and Magnetic Susceptibility

The specific heat is calculated by evaluating the first non-vanishing term in the impurity free

energy for hs = 0 and δλ finite. This term is of order δλ2 because the expectation value of Eq. (6.1.55)
is with respect to the fixed point Hamiltonian at which the average of the leading irrelevant operator is
zero. Hence, the leading contribution to the free energy at zero field is

δf
(2)
imp(T ) = −δλ

2

2β

∫ β

0
dτ1

∫ β

0
dτ2 < (J̃ as,−1,Lφ̃

a
s)(τ1)(J̃ bs,−1,Lφ̃

b
s)(τ2) >

= −3(
M

2
+ 2)δλ2(

πτ0

β
)2(1+∆s)

∫ β/2

τ0

dτ

[sin πτ
β ]2(1+∆s)

(6.1.62) = −3(
M

2
+ 2)δλ2(

πτ0

β
)2(1+∆s)I(2(1 + ∆s), β)

where Eqs. (6.1.60,61) were used, τ0 ≈ h̄/kBTK is a short time cutoff, and the factor 3[(M/2) + 2]

corresponds to AO in Eq. (6.1.60). This factor corresponds to the usual green’s function numerator for
equal times and may be evaluated straightforwardly from the Kac-Moody algebra as noted by Affleck
and Ludwig [1991a]. For the special case of M = 2 where , the integral in (6.1.62) is straightforwardly

evaluated with the substitution z = arsh[cot(πτ/β)] to give

I(3, β) =
β

π

∫ arsh[β/πτ0]

0
dzcosh2z
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(6.1.63) =
β

2π
[
β

πτ0/

√
1 + (

β

πτ0
)2 + ln(

β

πτ0
) +

√
1 + (

β

πτ0
)2)] .

As a result, for β →∞, we see that the impurity contribution to the specific heat goes as

Cimp = −T ∂
2fimp
∂T 2

(6.1.64) ≈ kB[9(πδλτ0)
2 T

TK
ln(

2TK
π
√
eT

)] (M = 2) .

This displays the expected T lnT singular behavior. For M > 2, the specific heat behaves as T 4/(2+M)

as was earlier calculated by the Bethe-Ansatz ( Andrei and Destri [1985], Wiegman and Tsvelik [1985]).

Turning now to the susceptibility, we wish to extract the leading impurity contribution to the
free energy which is also order h2

s . This must be quadratic in both δλ and hs because terms linear

in hs and δλ have vanishing expectation values from the free Hamiltonian by construction. Hence the
relevant term in the impurity free energy is found by the expansion of Eq. (6.1.55) to quadratic order

in hs and δλ yielding

(6.1.65) δf
(2,2)
imp =

−1

4β
δλ2h2

s [
4∏

i=1

∫ β

0
] < J̃ 3

s0L(τ1)J̃ 3
s0L(τ2)(J̃ as,−1,Lφ̃

a
s)(τ3)(J̃ bs,−1,Lφ̃

b
s)(τ4) >conn

which gives χimp = −(∂2fimp/∂h
2
s)(hs = 0) as

(6.1.66) χimp =
1

2β
δλ2[

4∏

i=1

∫ β

0
] < J̃ 3

s0L(τ1)J̃ 3
s0L(τ2)(J̃ as,−1,Lφ

a
s)(τ3)(J̃ bs,−1,Lφ

b
s)(τ4) >conn .

The green’s function in the above equation may be evaluated with the use of the operator product
expansion (OPE) which pulls out the singular behavior in a product of operators. Heuristically, this
amounts to a kind of generalized Wick’s theorem in the following sense: the bare Hamiltonian in

Eq. (6.1.55) is quadratic in the densities which obey (generalized) canonical commutation relations
(the Kac-Moody algebra); hence, apart from possible non-trivial normalization factors for the Green’s

functions, we might expect Wick’s theorem rules to hold. Thus we expect for the corresponding G0

Green’s function to that of Eq. (6.1.66) that

< Ĵ 3
s0L(τ1)Ĵ 3

s0L(τ2)(Ĵ as,−1,Lφ̂
a
s)(τ3)(Ĵ bs,−1,Lφ̂

b
s)(τ4) >conn=

(6.1.67) A[
1

(τ1 − τ3)2(τ2 − τ4)2
+

1

(τ1 − τ1)2(τ2 − τ3)2
]

1

(τ3 − τ4)2∆s

which follows by contracting the density operators together (they always give scaling dimension 1)

and the two φ̂as operators together. This identity does indeed hold, and the normalization constant
A = (2 + M/2)2 may be fixed by a rigorous OPE calculation.

Employing Eq. (6.1.59) to convert the G0 correlation functions to GT correlation functions, and
shifting limits of integration, Eq. (6.1.65) may be manipulated into the form

(6.1.68) χimp = 8(2 +
M

2
)2δλ2(

πτ0

β
)2(2+∆s)[I(2, β)]2I(2∆s, β)

where

(6.1.69) I(x, β) =

∫ β/2

τ0

dτ

[sin(πτ/β)]x
.
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Let us specialize to M = 2. The relevant integrals here are, for large β,

(6.1.70) I(2, β)≈ τ0(
β

πτ0
)2

and

(6.1.71) I(1, β) ≈ β

π
ln(

2β

πτ0
) .

As a result, the estimate for the impurity susceptibility is, for M = 2 and large β,

(6.1.72) χimp ≈ 72δλ2τ3
0 ln(

2β

πτ0
) (M = 2) .

For M > 2, it is apparent that the integral I(2∆s, β) goes as β for large β, so that overall χimp ∼
β1−2∆s ∼ T 4/(2+M)−1 in agreement with the Bethe-Ansatz.

Next we turn to a calculation of the Landau-Wilson ratio. Although the overcompensated model
does not have a Fermi liquid fixed point, the fact that the specific heat coefficient and susceptibility

have the same singular low temperature properties suggests that there should be a well defined Landau-
Wilson ratio. Calculation of this ratio requires a knowledge of the normalization of the bulk Hamiltonian

specific heat and susceptibility with no impurity present. Since there are M channels, the bulk specific
heat follows from the usual Sommerfeld calculation for β →∞ as

(6.1.73) Cbulk ≈
2π2MkB

3

kBT

D

where D ' vFkF is the bandwidth of the conduction electrons. Note that the normalization of Eq.

(6.1.73) follows the usual solid state physics conventions and not the conformal theory conventions
(compare to eq. (3.6) in Affleck and Ludwig [1991b]; note also in their equation D is set to 1). The

corresponding calculation for the Pauli susceptibility with the effective moment µ absorbed in hs gives

(6.1.74) χbulk =
2M

D
;

again, this normalization differs slightly from Affleck and Ludwig [1991b] (compare with Eq. (3.7) of
this reference). We can now specialize to the case M = 2 and find the Landau-Wilson Ratio as

(6.1.75) R = lim
β→∞

(χimp/χbulk)

(Cimp/Cbulk)
=

8

3
(M = 2).

This agrees with numerical results from the Bethe-Ansatz. Affleck and Ludwig [1991b] go further to
note that for arbitrary M that

(6.1.76) RW =
(2 + M/2)2(2 +M)

18

which follows with explicit evaluation of the integrals in Eqs. (6.1.62) and (6.1.68).
To close this discussion of Cimp and χimp, we note that a diagrammatic view of Eqs. (6.1.62) and

(6.1.65) for the free energy is possible. The conceptual point behind this is that it will illustrate a very
close link to the discussion of these quantities within the Abelian bosonization approach discussed in

Sec. 6.2.2.c. The appropriate diagrams are shown in Fig. 78, where solid lines represent density-density
green’s functions, and the dashed lines represent the φs green’s function; dots represent the δλ vertex,

and crosses represent an hs vertex. Fig 78(a) for the specific heat shows that the relevant free energy
diagram is a bosonic ‘bubble’ with one line representing the φs propagator (which is the dynamic suscep-

tibility for a localized magnetic field) and one line representing the conduction spin density propagator,
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Figure 78: Diagrammatic visualization of free energy contributions yielding specific heat Cimp and

susceptibility χimp. Solid lines are conduction electron propagators, dashed lines are local spin tensor
Φs propagators. Dots are leading irrelevant operator vertices δλ, crosses are applied spin-field vertices

hs. Fig. (a) is in zero applied field and differentiated twice yields the specific heat. Fig. (b) is in finite
applied field and differentiated twice yields the susceptibility. These diagrams have a close connection

to the corresponding ones in the Abelian bosonization approach discussed in Sec. (6.2).

which in turn must be a continuum electron bubble for appropriately renormalized continuum fields.
Fig. 78(b) for the susceptibility shows that the φs propagator gets two spin density bubbles attached
at the end. Formally, these bubbles would have to correspond to double bubbles of suitably redefined

continuum fermion fields.

(c) Residual Entropy

The calculation of the residual entropy requires different concepts from the conformal theory,
drawing in particular on some mathematical properties of the so-called “modular S-matrix” worked

out in the literature. We shall briefly outline the calculation here, as it appears in Affleck and Ludwig
[1991c] and Ludwig [1994a].

The entropy of the multi-channel model in any finite size calculation will be the logarithm of an
integer, where the integer represents the ground state degeneracy. Here finite size means effectively that

we have lowered the temperature to be comparable to the level spacing so that βvF /l ≥ 1. For example,
in the NRG spectra for the two-channel model displayed in Fig. 44, the degeneracy is always two, which
would give an entropy or R ln 2. In the continuum or “high temperature limit” where βvF /l << 1

relevant to a macroscopic system, this is not the case any longer. In this case, by high temperature we
only mean with respect to the quantum spacing of the levels, not to the Kondo scale itself (indeed we

are interested in temperatures T satisfying (πvF /l) << kBT << kBTK).
The conformal theory provides an elegant approach for switching from the low temperature limit

to the “high temperature limit” which was introduced first by Cardy [1989]. The idea is illustrated in
Fig. 79. It goes as follows. We normally calculate the partition function by tracing over exp(−βHAB)

where A,B are the boundary conditions on the system at r = 0, l in this one dimensional example.
As is usual, this may be viewed as a path integral summing over imaginary time in a periodic way,

namely we ‘propagate’ with exp(−βHAB) around the cylinder of Fig. 79 in the time direction, always
winding up back at the state at which we started. However, the conformal invariance implies that we
can interchange space and time directions and that we must get equivalent physical results. Namely,

we can interchange space and time axes, to get a new system ‘length’ equal to vF β, and a new system
‘time’ of 2l/vF . The states are specified by a Hamiltonian HP which has periodic boundary conditions

in the new ‘space’ direction.
The partition function in the original case can be written in terms of ‘characters’ of the conformal
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Figure 79: Conformal transformation exploiting the modular invariance of the partition function. To

cross from the low temperature limit in which the temperature is less than the level spacing vFπ/` to
the “high temperature limit” in which vF π/` << kBT << kBTK , it is convenient to interchange space

and Euclidean time coordinates. Because of the equivalence of space and Euclidean time coordinates,
the transformation must preserve the partition function. This trick enables a calculation of the residual
entropy for the thermodynamic limit.

towers in the following form

(6.1.76) Z = Tr[e−βHAB ] =
∑

QSSc

nQSScAB χQSSc(q)

where the sum is only over primary values of the spin, channel-spin, and charge, where q =
exp(−βπvF /l), and the character χQSSc is given by

(6.1.77) χQSSc(q) = qc/24
∞∑

m=0

dm(QSSc)q
∆(QSSc)+m .

In Eq. (6.1.77), c is the ‘central charge’ of the theory which for this model simply counts the degeneracy
of the conduction electrons, i.e., c = 2M , and dm(QSSc) is the degeneracy of the mth descendant of

the primary state labeled by QSSc. The character χ factorizes into a product of characters for the
U(1),SU(2), and SU(M) algebras of the charge, spin, and channel-spin sectors. The integers nQSScAB

have the same meaning as in Secs. 6.1.2.a,b.
In the basis where space and time are interchanged, the partition function propagates along the

new ‘time’ axis from a state characterized by boundary conditionA denoted |A > to a state characterized
by boundary condition B denoted |B >. This replaces the periodicity familiar from the standard trace

formula of Eq. (6.1.75). The discrete spacing between states of HP is now set by the scale 2π/β and as
a result the partition function is given by

(6.1.78) Z =< A| exp(−2lHP/vF )|B >=
∑

Q̃S̃S̃c

< A|Q̃S̃S̃c > χQ̃S̃S̃c(q̃
2) < Q̃S̃S̃c|B >

where q̃ = exp(−2πl/βvF ). Clearly, as l/β → ∞, then only the lowest term of the above sum will
remain, and if we set the ground state energy of HP to zero, then we see that

(6.1.79) S(0) = lnZ(T = 0) = ln < A|0 > + ln < 0|B >

and the calculation of the ground state entropy reduces to the calculation of the matrix elements in Eq.
(6.1.79). Note that the mathematical transformation between Eq. (6.1.76) and (6.1.78) is reminiscent

of a kind of generalized Poisson summation formula.

186



The characters for the different realizations HAB and HP are related by a linear transformation

specified by the ‘modular S-matrix’; here we restrict attention to just the spin sector which is all that
is modified by the absorption of the impurity spin, and define the modular S-matrix by

(6.1.80) χS̃(q̃2) =
∑

S

SS̃s χs(q) .

In general, the modular S-matrix factorizes into products of S-matrices for the spin, charge, and channel-

spin sectors. For an SU(2) level M Kac-Moody algebra, the modular S-matrix is given by (Kac and
Peterson [1984])

(6.1.81) Sjj′ =

√
2

2 +M
sin[

π(2j + 1)(2j ′+ 1)

2 +M
] .

A useful identity involving the modular S-matrix is

(6.1.82)
∑

a

S ãan
a
AB =< A|ã >< ã|B >

which follows straightforwardly from substitution of Eq. (6.1.74) on the left hand side of (6.1.78) and
Eq. (6.1.80) for χa(q̃) on the right hand side. Another important result is the Verlinde formula (Verlinde
[1988])

(6.1.83)
∑

j

S j̃jN
j
s,j′ =

S j̃sS
j̃
j′

S
j̃
0

.

Armed with these mathematical results, it is now possible to obtain the ground state entropy.

The strategy is to pick A = K, the Kondo boundary condition, B = F , the free fermion
boundary condition, and Q̃ = Q = 0, S̃c = Sc = 0, and S̃ = 0. Then using the fusion rule of Eq.

(6.1.48) together with Eqs. (6.1.82) and (6.1.83) allows one to show that

(6.1.84) < K|000 >< 000|F >=< F |000 >< 000|F > (
S0
SI

S0
0

) .

The free fermion matrix element < F |000 > is one, so in view of Eqs. (6.1.79), (6.1.81), and (6.1.84)
we see that the residual entropy is given by

(6.1.85) S(0) = ln < K|000 >= ln[
sin[π(2SI + 1)/(M + 2)]

sin[π/(M + 2)]
]

which is exactly the same result obtained from the Bethe-Ansatz (see Sec. 7).

6.1.4 Dynamical Properties

(a) One Electron Green’s Function and T -matrix

We follow Ludwig and Affleck [1991c], Affleck and Ludwig [1993], and Ludwig [1994a] here.
The T -matrix is useful in calculating the electrical resistivity since the scattering rate is related by

τ−1(k̂, ω, T ) = −2ciImT (k̂k̂, ω + i0+, T ), where ci is the concentration of impurities and k̂ is the prop-
agation direction of an electron with momentum ~k. This expression holds to leading order in the

impurity concentration. For s-wave scattering as we have assumed here, the k̂ dependence drops out.
The T -matrix for an impurity at position ~Ri is defined by

(6.1.86) G(~r1, ~r2, ω) = G0(~r1 − ~r2, ω) +G0(~r1 − ~Ri, )T (ω)G0(~r2 − ~Ri)
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where G0 is the unperturbed one-electron green’s function and G is the perturbed one.

In terms of the effective one-dimensional problem, the T matrix arises from scattering of left
moving electrons (incoming spherical waves) to right moving electrons (outgoing spherical waves) and

thus shows up in the mixed LR electron green’s function. The LL, RR electron green’s functions are
unperturbed by the impurity. Non-trivial physics shows up in the LR green’s function due to the presence

of the boundary at which the conduction operators mix with the local fermion operators discussed in
Sec. 6.1.2.b.

At zero temperature and energy, where the effects of the leading irrelevant operator discussed

in Sec. 6.1.2.c are unimportant, the LR green’s function is also related to the S-matrix projected
onto outgoing single particle states, denoted S(1). At the Fermi energy, T (0, 0) = (1 − S(1))/2iπN(0)

according to standard scattering theory, so that a calculation of S(1) gives the Fermi surface value of
T (0, 0). In the case of trivial potential scattering, S(1) = exp(2iδ), where δ is the phase shift. This

also goes through for the M/2 = SI compensated Kondo model, and the unit modulus of this says
that any incoming single particle state has probability one of being scattered into an outgoing single

particle state. In contrast, for the multi-channel model, |S(1)| is generally less than one, reflecting the
unbinding of spin, charge, and channel degrees of freedom so that an incoming electron can generate

outgoing many body states.
A formal definition of the one-particle projected S-matrix follows from the LR green’s function.

Put z = vF τ + ir,z̄ = vF τ − ir. Then

GLRµα (z1, z̄2) =< ΨLµα(z1)Ψ
†
Rµα(z̄2) >

(6.1.87) =
S(1)

z1 − z̄2

where we have used the fact that left movers can only depend on z and right movers on z̄. This follows

from the fact that the electron fields are primary fields with scaling dimension ∆F = 1/2 together with
the conformal invariance.

Eq. (6.1.85) is a special case of a more general boundary relation for primary fields. Consider a
primary field operator Oa with quantum numbers specified by a. The green’s function for a combination

of left moving operators is

(6.1.88) < OaL(z1)OaL(z2) >=
1

(z1 − z2)2∆a

where ∆a is the scaling dimension. On the other hand, the boundary A characterized by boundary

state |A > (c.f, Sec. 6.1.3.c) can mix left and right movers giving the green’s function

(6.1.89) < OaL(z1)OaR(z̄2) >=
< a|A >

< 0|A >

1

(z1 − z̄2)2∆a

where < 0|A > is a normalization factor measuring the effect of the identity operator on the boundary

state. Since a fermion operator has the quantum numbers Q = 1, S = 1/2 and transforms as the
fundamental representation of SU(M) which we denote simply M , then we see that for A = K, the

Kondo boundary condition

(6.1.90) S(1) =
< 1, 1/2.M |K >

< 0, 0, 0|K >
.

This ratio of matrix elements can be evaluated with the same kinds of methods employed to
calculate the residual entropy of Sec. 6.1.3.c, and again Ludwig and Affleck [1991], Affleck and Ludwig

[1993], and Ludwig [1994a] have employed the methods of Cardy [1986a,b;1989] for boundary critical
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phenomena. Using the factorization of the modular S-matrix (not to be confused here with S(1)),

together with Eq.(6.1.80), we see that for A = F , B = K

(6.1.91)
∑

QSSc

SQQ′S
S
S′S

Sc
S′c
n
Q′S′S′c
FK =< F |QSSc >< QSSc|K > .

If we now substitute in the fusion rule of Eq. (6.1.48), and re-employ Eq.(6.1.82) together with the
Verlinde formula Eq. (6.1.83) (Verlinde [1988]), we can obtain the relation

(6.1.92)
< QSSc|K >

< QSSc|F >
=
SSSI
SS0

which generalizes Eq.(6.1.84) used for the entropy. We now note that for a free fermion boundary

S(1) = 1, so that the ratio < 1, 1/2,M |F > / < 0, 0, 0|F >= 1. In view of Eq. (6.1.91) this implies

(6.1.93)
< 1, 1/2,M |K >

< 1, 1/2,M |F >
< 0, 0, 0|F >

< 0, 0, 0|K >
=
< 1, 1/2,M |K >

< 0, 0, 0|K >
=

S
1/2
SI
S0

0

S
1/2
0 S0

SI

.

Employing the formula for the modular S-matrix of an SU(2) level M Kac-Moody algebra given in Eq.
(6.1.81) together with some minor trigonometric manipulations, we obtain

(6.1.94) S(1) =
cos[π(2SI + 1)/(2 + M)]

cos[π/(2 + M)]
.

As a result, the T -matrix at the Fermi level is purely imaginary and the zero temperature scattering
rate is given by

(6.1.95)
1

τ(0, 0)
= −2ImT (ω = 0+, T = 0) =

ci(1− S(1))

πN(0)

We now consider this formula in some special cases:
(1) Compensated Kondo Problem (SI = M/2). In this case it is easy to see that S(1) = −1, corresponding
to a phase shift of π/2 as expected from Sec. 4, Sec. 6.1.1,Sec. 6.1.2. Hence, 1/τ(0, 0) obtains the

unitarity limit of 1/πN(0).
(2) M >> 1. In this case, the perturbative treatment of Gan et al [1993] discusssed in Sec. 3.4.5

should hold. We expect that the T -matrix should just represent spin-disorder scattering off an effective
impurity with spin SI with dimensionless exchange coupling strength N(0)J = 2/M . If we expand Eq.

(6.1.95) for large M , we obtain

(6.1.96)
1

τ(0, 0)
≈ π

4N(0)
(

2

M
)2SI(SI + 1) + O(

1

M3
)

which fulfills our expectations. As noted in Sec. 5.1, the large N NCA restricted in an uncontrolled
approximation to N = 2 and M arbitrary gives excellent agreement with Eq (6.1.95) for all values of

M .
(3) M=2. In this case, S(1) vanishes, so 1/τ(0, 0) reaches half the unitarity limit. What is remarkable,

as stressed by Ludwig and Affleck [1991], is that this implies the strongest possible violation of Fermi
liquid theory: an incoming single particle state is scattered completely into many body states!

In fact, the result is much stronger: scattering of an incoming particle(hole) into any state with
2n+1 uncorrelated particles(holes) and 2n uncorrelated holes(particles) has zero amplitude (Maldacena

and Ludwig [1996]). Thus, on the surface, unitarity of the scattering amplitude is completely violated.
This “unitarity paradox” is resolved when a different basis for the conformal theory is chosen in terms

of majorana fermions (Maldacena and Ludwig [1996]). The essence of the idea is that the Hilbert space
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containing just physical particle/hole occupation is incomplete, and when extended, a new fermion

arises into which a physical fermion my scatter with unit projection. This new fermion has fractional
occupancy in terms of the physical states, and is thus not detectable with any external probes. We shall

give a brief discussion of this approach in Sec. 6.3.
Affleck and Ludwig (Ludwig and Affleck [1991], Affleck and Ludwig [1993]) have also computed

the leading corrections to the scattering rate in temperature and frequency. This calculation involves
perturbing the one-electron green’s function linearly in the leading irrelevant operators ~Js,−1,L · ~φs (and,

for M = 2, SI = 1/2, ~Jc,−1,L · ~φs ). The full calculation is quite complex and exploits the operator

product expansion (OPE) method extensively; since it is too long and involved to outline here, we refer
the reader to Affleck and Ludwig [1991] for details. The main result is that the resistivity will experience
a correction proportional to δλT∆s (which power law is in agreement with the NCA treatment of Sec.

5.1), so that the sign of the deviation is determined by whether one approaches the fixed point coupling
strength from above or below. In the special case of M = 2, SI = 1/2 they find that the resistivity is

given by

6.1.97
ρ(T )

ρ(0)
≈ [1 + 4δλτ0

√
πTτ0 + O(T )] .

There is thus a universal amplitude relation between the square of T 1/2 term and the coefficient of the

lnT divergence in Cimp/T .
Affleck and Ludwig [1993] also consider the effects of potential scattering, and show that while

for the M = 2, SI = 1/2 case it does not affect the zero temperature resistivity, it does affect the

magnitude of the
√
T term and can also induce a thermopower which goes as

√
T .

(b) Local Field Dynamical Susceptibility

Here we employ the conformal theory technique to calculate the local spin and channel spin
susceptibilities for the SI = 1/2,M = 2 case to confirm the suspicions that they have marginal fermi

liquid form (Cox [1988]; Varma et al. [1989]; Tsvelik [1990]; Emery and Kivelson [1992]: Cox and
Ruckenstein [1993]; Gan, Coleman, and Andrei [1993]). We simply show the calculations for the φs
case; they are completely analogous for the channel field. This calculation has been carried out in
Ludwig and Affleck [1994].

The idea is to consider a dynamical local field hs(ω) which is coupled only to φ3
s. At finite

temperature, the response to this field will simply be the φs green’s function given by

(6.1.98) < φ3
s(τ)φ3

s(0) >=
πτ0

β

1

sin[πτ/β]
.

It is trivial to analytically continue this to real times, and if we Fourier transform to obtain the absorptive
response function χ′′s(ω, T ) we obtain

(6.1.99) χ′′s (ω, T ) =
2πτ0

β

∫ ∞

0
dt

sin(ωt)

sinh[πt/β]
.

This integral is easy to evaluate, and the result is

χ′′s(ω, T ) = 2τ0Imψ(
1

2
− iβω

2π
)

(6.1.100) = πτ0tanh(
βω

2
)

where ψ(x) is the digamma function. This is precisely the marginal fermi liquid form of the local dy-

namic susceptibility (Varma et al. [1989]). When analytically continued to the real axis and set to zero
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frequency it reproduces the log divergence of the static susceptibility.

(c) Other Dynamic Response Functions

In addition to the single electron green’s function, Affleck and Ludwig (Ludwig and Affleck [1991],

Affleck and Ludwig [1994a,b]) have computed a number of two-particle electron response functions. The
functions have complicated and non-intuitive forms reflecting the non-trivial boundary condition and
non-Fermi liquid fixed point. We simply survey the results here obtained for the M = 2, SI = 1/2 case:

(1) Spatial-temporal dependent spin polarization response This function contains non-Fermi liquid re-
sponse that could in principle be sampled by Knight shift measurements for a magnetic impurity and

nuclear electric-field gradient measurements for a quadrupolar kondo impurity.
(2) Spatial-temporal dependent pair field response function. This function displays the expected singu-

larities for the Q = 2, S = 0, Sc = 0 field obtained by antisymmetrizing in the spatial index r, which
corresponds to antisymmetrizing in L,R indices near the impurity site in view of the mirroring condition

ΨL(r) = ΨR(−r). Equivalently we may go right to the impurity site and antisymmetrize in imaginary
time in view of the conformal invariance. Specifically, in terms of the three dimensional field operators

Ψµα(~r), the full three dimensional pairing field is an orbital p-wave which is a singlet in spin and channel
indices with

(6.1.101) P a = σ(2)
µν σ

(2)
αβΨµα(~r)

∂

∂ra
Ψνβ(~r) =

ikF r
a

8π2r3
[ψLµα(r)ψRνβ(r)− ψRµα(r)ψLνβ(r)]

We shall provide a more complete discussion of pairing correlations in Sec. 9.4.

6.2 Abelian Bosonization Approach to the Two-Channel Kondo Model

In this subsection, we describe the Abelian bosonization approach to the two-channel Kondo model de-

veloped by Emery and Kivelson. The central idea which makes this work is that when using a spinless
Fermion representation for the impurity spin, the x and y components corresponding to Majorana or

“real fermions”. The Kondo Hamiltonian becomes, for a special value of the longitudinal exchange cou-
pling, a one particle resonant level model in the space of conduction electrons plus one of the Majorana

variables. This model is exactly soluble. The other Majorana variable decouples. All singularities and
anomalies in this approach are seen to be due to the presence of the uncoupled field. In a counting

sense which can be made mathematically precise, each Majorana fermion is half a full fermion. This
leads to a nice interpretation of the R/2 ln 2 entropy (this corresponds to the decoupled variable) and
(possibly) of the scattering rate value at the Fermi energy to one half the unitarity limit (deriving from

unitarity scattering from half a fermion!). However, as we shall discuss, a full interpretation of transport
properties remains problematic in this approach. (Recently Fabrizio and Gogolin [1994] have applied

similar ideas to the four channel spin 1/2 model to illustrate its equivalence to a model where two spin
1 conduction channels couple to the impurity and to calculate the low temperature properties.)

6.2.1 Model, Mapping to a Resonant Level Hamiltonian

Emery and Kivelson begin with the two-channel Kondo model in the anisotropic (xxz) limit, taking
only left moving fermions living on −∞ < x < +∞ (the incoming s partial wave states reflected about

the origin) coupled to the impurity, following Affleck and Ludwig [1991(b)]. Thus, x < 0 is for incoming
waves and x > 0 is for outgoing waves. Following their notation, the Hamiltonian is

(6.2.1) H = ivF
∑

µα

∫ ∞

−∞
dxψ†µα(x)

∂ψµα(x)

∂x
+

1

2

∑

µναλ

Jλτ
λσλµνψ

†
µα(0)ψνα(0)

where µ, ν are conduction spin indices, α is the channel index, σλ are Pauli matrices, and the τλ are

the spin 1/2 impurity operators. We assume Jx = Jy , Jz > 0 to ensure the Kondo effect (c.f. Sec. 3.3).
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In the presence of a bulk magnetic field h, we add to this the term (Eq. 2.10 of Emery and Kivelson

[1992] and Eq. (13) of Sengupta and Georges [1994])

(6.2.2) HZeeman = −h{τ z +
1

2

∑

µα

∫ ∞

−∞
dxσzµµψ

†
µα(x)ψµα(x)} .

We will also consider the possibility of an impurity field in which the second term of Eq. (6.2.2) is

absent.
Now a sequence of transformations are applied to Eq. (6.2.1) to map this into a resonant level

Hamiltonian, which go as follows:
(1) Bosonization. Following the conventions of Bander [1976], the “massless” (linear dispersion relation)

fermion fields are replaced by bosons, through the relation

(6.2.3) ψµα(x) =
1√
2πa

exp(−iΦµα(x))

where

(6.2.4) Φµα(x) =
√
π

∫ x

−∞
dx′{Πµα(x)− φµα(x)}

and the Bose fields φ,Π obey canonical commutation relations

(6.2.5) [φµα(x),Πνβ(x′)] = iδµνδαβδ(x− x′) .

The length a appearing in Eq. (6.2.3) is essentially the lattice constant, which we take to zero in the
full continuum limit. We shall look for physical quantities independent of a. The prescription of (6.2.3)

should be familiar to any reader used to the Jordan-Wigner transformation. Using it, for example, it is
easy to see that by applying the Baker-Hausdorff lemma (c.f., sec. 4.3 of Fradkin [1991]).

(6.2.6) ψµα(x)ψµα(x′) = ψµα(x′)ψµα(x)e(−π[Φµα(x),Φµα(x′)]) = ψµα(x′)ψµα(x)e(iπ[θ(x′−x)−θ(x−x′)])

so that the Fermion anticommutation relation is satisfied so long as x 6= x′; clearly from idempotence
of the ψ fields, the ambiguity in the exponent for x = x′ is irrelevant in this case. However, for proper

derivation of all the commutation relations we must take care at equal spatial separations as singular
contributions will arise (Bander [1976]). Using the boson operators, the free Fermion hamiltonian

becomes a free boson Hamiltonian (sum of harmonic oscillators),

(6.2.7) Hfree =
vF
2

∑

µα

∫
dx[Π2

µα(x) + (
∂φµα(x)

∂x
)2]

and the exchange term becomes

(6.2.8) HKondo =
Jz

2π
τ z
∑

µα

σzµµ[
∂Φµα

∂x
]x=0 +

Jx
4πa

∑

λ=x,y

∑

µνα

τλσλµν exp[i(Φµα − Φνβ)] .

The reason that the Φ gradient comes in the z-axis exchange coupling is because of the singularities in
products of the exponential operators at zero separation (Bander [1976]). Specifically,

(6.2.9) lim
x→x′

ψ†µα(x)ψµα(x′) ∼ {exp(i
√
π[Φµα(x)− Φµα(x′)])− 1}

from which the origin of the derivative term is clear. All fermion number and current operators, in fact,

can be expressed as linear forms of bosonic operators.
(2) Canonical Transformation to Collective Coordinates. Under a canonical transformation of boson

coordinates that preserves the commutation relation structure of Eq. (6.2.5), the free boson Hamiltonian
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will be unchanged. However, with a suitable transformation we may greatly simplify the interaction

term HKondo. The choice made by Emery and Kivelson [1992] is to write the original bose fields in
terms of “collective” coordinates describing charge (Φc), spin (Φs), channel or flavor (Φsf), and mixed

spin/flavor degrees of freedom (Φsf ). The definitions are

(6.2.10.a) Φc =
1

2

∑

µα

Φµα

(6.2.10.b) Φs =
1

2

∑

µα

σzµµΦµα

(6.2.10.c) Φf =
1

2

∑

µα

σzααΦµα

(6.2.10.d) Φsf =
1

2

∑

µα

σzµµσααΦµα

which may readily be inverted to give

(6.2.11.a) Φ↑+ =
1

2
[Φc + Φs + Φf + Φsf ]

(6.2.11.b) Φ↑− =
1

2
[Φc + Φs − Φf − Φsf ]

(6.2.11.c) Φ↓+ =
1

2
[Φc − Φs + Φf − Φsf ]

(6.2.11.d) Φ↓− =
1

2
[Φc − Φs − Φf + Φsf ] .

In terms of these operators, the conduction spin densities sλ(0) are given by

(6.2.12.a) sz(0) =
1

2

∑

µα

σzµµψ
†
µα(0)ψµα(0) = [

∂Φs

∂x
]x=0

(6.2.12.b) sx(0) = 2 cos(Φs(0)) cos(Φsf (0))

(6.12.c) sy(0) = 2 sin(Φs(0)) cos(Φsf (0))

so that

(6.2.13) HKondo =
Jz
π
τ z [

∂Φs

∂x
]x=0 +

Jx
πa

[τx cos(Φs(0)) + τy sin(Φs(0))] cos(Φsf(0)) .

Notice that the sines and cosines in the above equation are already suggestive of “real” fermions, in
that we know pure complex exponentials obey fermionic commuation relations, so the idea is to write,

schematically, ψ ∼ ψR + iψI , which would correspond to the sine and cosine factors. Notice also that
the transverse coupling in the above equation is in a position for simplification by a rotation about the

z-axis, which in fact is the next step.
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(3) Unitary Transformation. Φs can be eliminated from the transverse Kondo coupling by rotating

the impurity pseudospin about the z-axis through the angle −Φs(0). This corresponds to applying the
unitary transformation UHU−1 to the Hamiltonian with U = exp(iτ zΦs(0)/2). When applied to the

free particle term we obtain

(6.2.14) UHfreeU
−1 = Hfree − vF τ z [

∂Φs

∂x
]x=0

(6.2.15) UHKondoU
−1 = −Jz

π
τ z [

∂φs
∂x

]x=0 +
Jx
πa
τx cosφsf (0)

and when applied to the Zeeman energy we obtain (Sengupta and Georges [1994])

(6.2.16) UHZeemanU
−1 = −h

2

∑

µα

∫
dx∞−∞σ

z
µµψ

†
µα(x)ψµα(x) = − h

2π

∫ ∞

−∞
dx
∂φs(x)

∂x

so that the impurity coupling to the field (−τz) drops out! This result shall be used below in discussing
thermodynamics.

(4) Fermionization. Now the Hamiltonian can be “re-fermionized” in terms of the fermion operators
corresponding to the collective coordinates, given by e.g., ψc = exp(−iΦc)/

√
2πa. The Hamiltonian

may be written as a sum of terms from each of the c, s, f, sf sectors. The c and f sectors decouple
from the impurity and are simply free fermion Hamiltonians. In addition to the re-fermionization

of the conduction fields, the impurity spin field operators may be expressed in terms of a spinless
fermion representation with creation and annihilation operators d†, d such that the occupied fermion

state corresponds to up spin and the empty state to down spin. In terms of these operators,

(6.2.17.a) τ z = d†d− 1/2

(6.2.17.b) τ+ = d†

(6.2.17.c) τ− = d .

It is clear that the commuation relations [τ i, τ j ] = iεijkτ
k are faithfully reproduced by this choice. The

operators τx, τy are then proportional to the real or Majorana fermion variables â, b̂ given by

(6.2.18.a) â =
1√
2

[d+ d†] =
√

2τx

and

(6.2.18.b) b̂ =
1

i
√

2
[d† − d] =

√
2τy .

The normalization conditions on â, b̂ are â2 = b̂2 = 1/2. In terms of these operators τ z = −iâb̂.
In terms of these new fermion operators, the sf, s sector Hamiltonians may be written as

(6.2.19) Hsf =

∫
dxψ†sf(x)

∂ψsf(x)

∂x
+

iJx√
πa

[ψsf(0) + ψ†sf(0)]̂b

and

(6.2.20) Hs =

∫
dxψ†s(x)

∂ψs(x)

∂x
− 2i(Jz − πvF )âb̂ψ†s(0)ψs(0) .
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We make three notes about Eqs. (6.2.19,20):

(i) If we work at the special point Jz = πvF , the coupling of the impurity to [∂φs/∂x]0] drops out (see
eqns. (6.2.15,6.2.16)). As a result, only Hsf includes any coupling to the impurity, and at that only to

the b̂ Majorana fermion. Since this hamiltonian is a quadratic form (it is a particular realization of the
resonant level model), the properties may be exactly solved for at this special point in coupling space.

Nearby points in coupling space can be reached by performing perturbation theory in λ = Jz − πvF .
(ii) A technical point about (6.2.19) which is glossed over by Emery and Kivelson [1992] is that to

arrive at this properly Hermitian form, another unitary transformation U = exp(−iπτ z/4) must be
performed, since b̂ ∼ τy , not τx. This unitary transformation doesn’t affect any of the conduction fields.
The need for this transformation is related to the desire for ψsf , b̂ to anticommute. If instead we keep

the cos Φsf (0) term in Eq. (6.2.15), we would not need the additional unitary transformation. Eq. (19)
of Sengupta and Georges [1994] must be amended in this regard.

(iii) The coupling to Majorana fermions is quite novel; one Majorana unit of Ψsf fermion is hybridized

with the b̂ fermion. In contrast, the single channel spin 1/2 model through similar tricks may be mapped

to a spinless resonant level model with an ordinary hybridization term ∼ Ψ†(0)d + d†Ψ(0) (Toulouse
[1970], Schlottmann [1979], Wiegman and Finkelshtein [1979]). All impurity degrees of freedom couple

into the conduction electrons in this latter case, while the â field is left over in the two-channel case.

6.2.2 Thermodynamics

We now review the derivation of the thermodynamic properties within this approach.
(a) Green’s Functions

The thermodynamics of the model to the extent that we perturb in powers of λ may be specified
completely in terms of the Green’s functions of Hsf . These may be obtained by equations of motion

quite straightforwardly, which we present in App. IV. An important feature is that anomalous Green’s
functions appear for the ψsf fields because b̂ couples to both ψsf , ψ

†
sf . Also, the b fermion acquires a

width Γ = J2
x/(πvFa)

(b) Entropy

A crucial point in dealing with the Majorana variables is that whenever we count their spectral
weight we must include a factor of 1/2 relative to ordinary fermionic degrees of freedom. To understand

this, we shall evaluate the the impurity free energy in the Jx = Jz = 0 limit by the complicated
procedure of using the spinless fermion representation Green’s functions. The imaginary time d fermion

propagator is given by

(6.2.21) Gd(τ) = − < Tτd(τ)d†(0) >=
1

β

∑

ωn

eiτωn

iωn

where ωn = (2n + 1)π/β is a Fermionic Matsubara frequency, and from which we infer the spectral

density Ad(ε) = πδ(ε) and the free energy

(6.2.22) Fd = −kBT
∫
dε

π
Ad(ε) ln(1 + e−βε)

= −kBT ln 2 .

Now, on the other hand, Gd may be expressed in terms of the Majorana Green’s functions Ga(τ) =
− < Tτ â(τ)â >, Gb(τ) = − < Tτ b̂(τ)b̂ > we have Gd = (Ga + Gb)/2, so that each Majorana fermion

contributes (kB/2) ln2 of entropy to the free energy of Eq. (6.2.22).

195



Turning now to the case λ = 0, Jx 6= 0, we denote the spectral functions of the â, b̂ fields as

Aa(ω) = πδ(ω), and Ab(ω) = Γ/(ω2 + Γ2). Using fermion statistics and the weights identified above,
we can write the impurity entropy as

(6.2.23) S(T ) = Sa(T ) + Sb(T ) = −kBT
∑

i=a,b

∫
dε

2π
Ai(ε)[f(ε) ln f(ε) + (1− f(ε)) ln(1− f(ε))]

=
kB
2

ln 2− kB
∫
dε

2π

Γ

ε2 + Γ2
[f(ε) ln f(ε) + (1− f(ε)) ln(1− f(ε))] .

The first term above is due to the â field, the second term from the b̂ field. It is easy to see that for
T >> Γ, the second term tends to (kB/2) ln 2, so the full kB ln 2 entropy of the impurity is recovered.

On the other hand, for T << Γ, we rewrite the second term in a form amenable to the Sommerfeld
expansion

(6.2.24) Sb(T ) = kB

∫
dε

2π
(
−∂f
∂ε

)(βε)tan−1(
ε

Γ
)

≈ π3kB
6

(
kBT

Γ
), T → 0 .

The above expression for the entropy may be obtained by differentiation of Eq. (3.5) in Emery and
Kivelson [1992] with the field H set to zero.

Hence, for λ = Jz − πvF = 0 we see that the unusual residual entropy of the two-channel model
is understood as arising from the decoupled Majorana degree of freedom (Sa). However, the specific
heat is analytic in the temperature, which will be remedied in Sec. 6.2.2.c by performing perturbation

theory in λ.
An interesting question is the extent to which this idea can be pushed with other multichannel

models to understand the residual entropy. It is clear that a Majorana representation alone will not
be sufficient. For example, as mentioned previously, for the three channel spin 1/2 model the resid-

ual entropy is −(R/2) ln([
√

5 + 3]/8]) which is not simply related to the entropy of a single Majorana
field R ln

√
2. However, it is conceivable that a different kind of composite field might be developed

to describe the three channel case, which may give a description with a similar flavor to the above
decomposition.

(c) Thermodynamics at λ 6= 0

The thermodynamics at λ 6= 0 has been considered by Emery and Kivelson [1993, see footnote
[6]; 1994], by D. Clarke et al. [1993], and by Sengupta and Georges [1994]. We follow the more extensive

discussion of the latter paper here. Now we include the bulk field term HZeeman and recall that after
the unitary transformation only the coupling to the conduction degrees of freedom remains.

Using standard perturbation theory methods, two terms arise in the free energy to second order
in λ. These are shown in Fig. 80, and are given by

(6.2.25) ∆Fimp = −λ
2

2
[G2

s(0, h)

∫ β

0
dτGa(τ)Gb(τ) +

∫ β

0
dτG2

s(τ, h)Ga(τ)Gb(τ)] .

It is easy to see that

(6.2.26) Gs(0, h) =
1

β

∑

ω

∫
dk

2πa

eiω0+

iω − vF k − h
≈ h

2πvF

∫
dε(
−∂f(ε)

∂ε
) =

h

2πvF
.

Note that 1/2πvF is simply the Fermi level density of states N(0). The first term in Eq. (6.2.25) will
contribute the leading h dependence, while the second term will contribute the leading T dependence

at h = 0; henceforth we set h=0 in the second term.
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Figure 80: Leading order in λ contributions to the impurity free energy in the Abelian bosonization

scheme of Emery and Kivelson [1992,1993]. Solid lines are conduction “spin fermion” propagators,
evaluated in the free (λ = 0) limit. Dashed lines are local Majorana fermion propagators. The first

term is second order in the applied field and gives rise to the susceptibility (which is zero at the Emery
and Kivelson point), while the second term gives the leading logarithmic contribution to the specific heat

away from the Emery and Kivelson point. Since the convolution of the a, b Majorana propagators gives
the local z-axis spin susceptibility, it is clear that these free energy diagrams have a close correspondence

to those of the conformal theory (Fig. 78) modulo the assumed anisotropy here.

The first term in Eq. (6.2.25) is easy to evaluate in frequency space. Decomposing in Fourier

modes, the integral can be written

(6.2.27)

∫ β

0
dτGa(τ)Gb(τ) = − 1

β

∑

ω

1

iω(iω + iΓsgnω)

=
1

2πΓ
[Ψ(

1

2
+
βΓ

2π
)− Ψ(

1

2
)] ≈ 1

2πΓ
ln(1.13βΓ) .

The second integral is easier to evaluate in the time domain (Sengupta and Georges [1994]), using

(6.2.28) Ga(τ) = −1

2
sgn(τ), Gb(τ) ≈ 1

βΓ sin(πτ/β)
, Gs(τ) ≈ 1

2βvF sin(πτ/β)

where the expressions for Gb, Gs are valid for T << Γ and π/Γ << τ << β. Clearly the expressions for

Gb, Gs are symmetric about τ = β/2, and so we cutoff at π/Γ below and β− π/Γ above in the integral.
This arbitrariness will not affect the amplitude of the most singular piece in the second term, but will

affect the argument of the logarithm. The result is

(6.2.29) I2 =

∫ β

0
Ga(τ)Gb(τ)G2

s(τ, 0)≈ (kBT )2

4πv2
FΓ

∫ π/2

π/βΓ
dx

1

sin3(x)
.

The latter integral may be evaluated using

(6.2.30)

∫ π/2

y

dx

sin3(x)
=

1

2
arsh[cot(y)] +

1

2
cot(y)csc(y)

to give

(6.2.31) I2 ≈
1

4π3v2
FΓ

[
π2(kBT )2

2
ln(

Γ

kBT
) +

Γ2

2
] .

Putting these results together, we see that the most singular terms in the impurity contribution

to the free energy from the s sector to order λ2 are given by

(6.2.32) ∆Fimp = − [N(0)λ]2

2πΓ
[h2 ln(1.12βΓ) +

π2(kBT )2

2
ln(πβΓ)]
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from which we may immediately read off the impurity susceptibility χimp and specific heat Cimp as

(6.2.33) χimp(T ) = −∂
2∆Fimp
∂h2

≈ [N(0)λ]2

πΓ
ln(1.13βΓ)

and

(6.2.34) Cimp(T ) = −∂
2∆Fimp
∂T 2

≈ kB
[N(0)λ]2

2πΓ
kBT ln(πβΓ) .

This allows us to compute the Wilson ratio; we see that

(6.2.35) lim
T→0

Tχimp
Cimp

=
2

π2k2
B

.

The corresponding bulk value which sets the free fermion scale is 3/4π2k2
B (Affleck and Ludwig

[1991(b)]). Hence, the Wilson ratio of the diverging susceptibility and specific heat coefficients is

(6.2.36) R = lim
T→0

χimp
χbulk

Cbulk
Cimp

=
8

3

in perfect agreement with the general results obtained by the Bethe-Ansatz and conformal field theory.

Note that the present derivation is valid only for λ/vF << 1 (see also Emery and Kivelson [1993]).

(d) Impurity Susceptibility

It is useful also to consider the case of a magnetic field which couples only to the impurity site,

so the coupling is of the form −Hτ z = −iHâb̂. We denote the corresponding susceptibility χI . Within
linear response, we see that

(6.2.37) χI (T ) =

∫ β

0
dτGa(τ)Gb(τ) =

1

πΓ
ln(1.13βΓ)

where we used the results of the previous subsection. Hence, the response to a purely local field is
divergent as well for T → 0.

6.2.3 Dynamical Properties

(a) Impurity Dynamic Susceptibility

A quantity which shall play a recurring role in discussion which follows is the dynamic sus-

ceptibility for an applied longitudinal magnetic field which couples only to the impurity. Following
the discussion of Sec. 6.2.2.d, we may write down the dynamic susceptibility in Matsubara space as

(ν = 2πn/β a bose Matsubara frequency, ω is a fermi Matsubara frequency)

(6.2.38) χI (ν) =
1

β

∑

ω

Ga(iω)Gb(ω + ν)

=

∫
dζ

π

Γ

ζ2 + Γ2

1

β

∑

ω

1

i(ω − ν)(iω − ζ)

=

∫
dζ

π

Γ

ζ2 + Γ2

tanh(βζ/2)

iν − ζ .
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Analytic continuation of this result implies that the absorptive part of the dynamical susceptibility has

the extremely simple form

(6.2.39) χ′′I (ω) =
Γ

ω2 + Γ2
tanh(βω/2) .

Given an identification of Γ with the cutoff ωC this is precisely the form anticipated from Marginal Fermi
liquid theory (Varma et al. [1989]), and identifying Γ with TK , this also agrees with the form found
numerically from NCA calculations by Cox [1988(a)], and with the form postulated from conformal field

theory arguments by Tsvelik [1990]. Note that in Cox [1988(a)] a Lorentzian fit was made for positive
frequencies to the dynamic spin structure factor SI(ω) = (NB(ω) + 1)χ′′I (ω) at low temperatures with

the understanding that this suffices to give χ′′I ∼ sgn(ω)Γ/(Γ2 + ω2) at zero temperature.
What is clear in χ′′I is that the singular structure arises from the convolution of a regular Ma-

jorana field propagator Gb with the singular propagator of the decoupled field Ga. Hence again, as
stressed in the previous subsection, it is the physics of coupling one of the two Majorana variables from

the spinless fermion representation of the spin variable which gives rise to the interesting critical physics
in this picture.

(b) Self-Energies

As remarked previously, after averaging over a random array of impurities, the self-energy of
itinerant electrons to leading order in the impurity concentration c is given by the concentration times

the one particle t matrix for scattering off a single impurity.
When the fermionic degrees of freedom are written in collective coordinates, only ψsf and ψs

couple to the impurity, and so we can develop self energies only for these fields. We can obtain the
retarded t-matrix for ψsf from Eqns. (A.4.4.a-c) as a Nambu matrix t̂ with

(6.2.40) t̂(ω) =
1

4πN(0)

Γ

ω + iΓ
[1 + σ(1)]

where σ(1) = δi,−j is a Pauli matrix in Nambu indices. From this we can see that the Fermi level

scattering rate for the ψsf electrons is given by

(6.2.41)
1

2τ(0)
= c[−2Im(t̂(+iη))11] =

c

πN(0)

which is precisely half the unitarity limit. The reduction from unitarity may be traced to the spectral
weight factor of 1/2 associated with the Majorana character of the b-field. It is very tempting to compare
this with the result from the conformal field theory, which says that the total Fermi level scattering

rate for an incoming electron scattering off a two-channel site is half the unitarity limit. However, the
comparison is problematic, for reasons we shall discuss further below.

The coupling to the ψs field is perturbative in λ. Following the conformal theory, where the
leading order imaginary part of the self-energy is, surprisingly linear in the deviation from the fixed

point coupling, we can look for a term linear in λ. Because this has dangling â, b̂ legs, no such term
exists (see Fig. 81(a)). The first non-vanishing diagram is shown in Fig. 82(b). This corresponds to

the exchange of a local spin fluctuation boson with spectral weight χ′′I . This is precisely the kind of
self-energy diagram considered in the Marginal Fermi liquid phenomenology (Varma et al. [1989]) and

which was used by Cox to produce a heuristic estimate for linear in T scattering in interpreting the
resistivity data for Y1−xUxPd3 (Seaman et al. [1991]). It is straightforward to evaluate this diagram
giving the imaginary part of the retarded s self-energy as

(6.2.42) ImΣs(ω, T ) = −cπN(0)λ2
∫
dζ

π
χ′′I (ζ, T )[NB(ζ) + 1− f(ω − ζ)]
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Figure 81: Leading order in λ self-energy diagrams for the conduction spin fermion of Emery and
Kivelson [1992]. There is no self-energy correction which is linear in λ, since as shown in (a) this would

yield unclosed Majorana fermion legs. There is a contribution at order λ2 shown in (b), which has
the marginal Fermi liquid leg. Suitable re-fermionization from the transformed fields may resolve this

apparent discrepancy between the Abelian and non-Abelian bosonization approaches.

≈ −c π

N(0)
[N(0)λ]2

1

πΓ
[|ω|+ 2kBT ], (|ω|, kBT << Γ) .

Corresponding to this self-energy, the real part behaves as ReΣs(ω, T ) ∼ ω ln(max{|ω|, kBT}/Γ) which

gives a logarithmically diverging effective mass for the s-fermions.
The difficulty in connecting these self energies to the self energies computed by, e.g., the NCA

and conformal field theory, is that in the latter approaches the self energies are computed directly
for the propagators of the original fermion fields. Loosely speaking, one of the original fermion fields
is a square root of four collective fermion fields, as we can see by writing out ψ†↑+ ∼ exp(−iΦ↑+) =

exp(−i[Φc + Φs + Φf + Φsf ]/2), for example. Each of the exponentiated collective boson factors gives
a “square root” of the corresponding collective fermion field operator because of the factor of 1/2 in

the exponent. Thus, it is difficult to interpret the self energies of collective coordinate fermion fields in
terms of physical self energies of electrons which scatter off of the impurity. This situation is reminiscent

of the Bethe-Ansatz approach in which the wavefunctions of the real incoming and outgoing electrons
cannot be easily constructed in terms of the exactly determined eigenstates.

(c) Conductivity

The Abelian bosonization scheme also produces a problematic interpretation of transport coef-
ficients. First, as discussed in the previous subsection, there is no obvious way to go from a calculation

of Σsf ,Σs to a calculation of Σµα where µα are the original spin and channel labels. Thus we cannot
immediately transcribe the self-energy results of the previous subsection to resistivity results through

the transport integral formulae discussed in the NCA and conformal field theory reviews.
A second difficulty arises in the connection of the physical three dimensional current operator

to the current operators of the effective one dimensional model. As discussed by Emery and Kivelson
[1992], following Bander [1976], the collective fermion fields have currents which may be expressed by

gradients of the corresponding collective bose fields. Thus, for example, the one dimensional charge
current of left moving states is proportional to ∂Φc/∂x, the spin current to ∂Φs/∂x, the flavor current

to ∂Φf/∂x, and the spin-flavor current to ∂Φsf/∂x. Of these, only ∂Φs,sf/∂x couple to the impurity.
This would suggest that the impurity cannot affect the electrical conductivity, because of the following

argument: while the three dimensional current operator is not identical to ∂Φc/∂x, this is the only
effective one dimensional current operator which is a singlet in spin and channel indices like the three
dimensional current, and hence the only candidate effective one-dimensional current operator to match

to the three dimensional one.
An exception to this identification is in the case when the local z-component of the impurity

“spin” has the same transformation properties as the current operator under parity and time reversal,
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which is the case for example in the electric dipole Kondo effect discussed by Emery and Kivelson

[1993(a),1993(b)]. In that case, the contribution to the conductivity from the impurity is proportional
to the spin conductivity, given by Reσs ≈ χ′′I (ω, T )/ω. This quantity behaves precisely as the marginal

Fermi liquid phenomenology conductivity (Varma et al. [1989]). Emery and Kivelson [1993(a)] have
shown that for a one dimensional array of such electric dipole Kondo scatterers, that there is no Drude

contribution (following the discussion of the preceding paragraph) and that the above term gives a
contribution to the electrical conductivity due to the bound dipole charge of the array.

As discussed in the next subsection, the difficulties can be reconciled conceptually, at least, by

considering the Majorana fermion reformulation of conformal field theory introduced by Maldacena and
Ludwig [1996]. This theory contains three eight dimensional fields which may be explicitly expressed in

terms of the Abelian boson fields of Emery and Kivelson. The conductivity may be computed in terms
of these fields, and there are no discrepancies between the results obtained in this method and those of

the non-Abelian bosonization scheme discussed in Sec. 6.1.

6.2.4 Finite size spectra and scattering states

Recently von Delft and Zaránd [1997] have shown that the spectrum of states for the Emery-Kivelson
of the two-channel model can be solved analytically for arbitary spin-flip coupling and magnetic field
strength. Using this, they produced a complete spectrum of eigenvalues, states, and scattering states,

and a new interpretation of the unitarity paradox (discussed more extensively in section 6.3.1 below). In
particular, for zero magnetic field and infinite spin flip coupling, the fixed point spectrum of Affleck and

Ludwig [1991c] is obtained, and this is taken to be an analytic confirmation of the fusion hypothesis,
to be contrasted with the less direct confirmation obtained by comparison with NRG or Bethe-Ansatz

spectra. It should be noted that the scattering states for the Emery-Kivelson line and its generalization
to channel anisotropy were first constructed in a slightly different context by Schiller and Hershfield

[1995,1997], who used the Emery-Kivelson approach to solve a nonequilibrium Kondo problem.

6.3 Additional Developments

6.3.1 Reformulation of the Conformal Theory with Majorana Fermions

In this subsection we will briefly review the results of Maldacena and Ludwig [1996] who reformulated
the conformal theory in terms of Majorana fermions. As the work depends upon some rather technical

aspects of Lie group theory, we will focus on summarising the philosophy and key results of the work.
Motivated in part by the success of the Abelian bosonization scheme of Emery and Kivelson

discussed in the previous subsection and by the unitarity puzzle described in the introduction to Sec.
6 and in Sec. 6.1.4, Maldacena and Ludwig [1996] undertook to write the free Fermion hamiltonian in

terms of eight Majorana fermion fields. The form is

(6.3.1) Hfree = − i

2π

∫
dxχa(x)

d

dx
χa(x)

where a runs over the spin, channel, and complex (imaginary or real) indices of the Majorana fields.

This Hamiltonian has a manifest SO(8) symmetry under rotations in the space indexed by a. Rotations
in the space are generated by currents

(6.3.2) jA(x) = χa(x)(TA)abχb(x)

where TA are appropriately defined 8x8 matrices associated with the generators of SO(8). The currents
obey a Kac-Moody algebra with four irreducible representations, a singlet, an eight dimensional vector

representation, and two eight dimensional spinor representations. The Hilbert spaces of the representa-
tions are distinguished by the boundary conditions which must apply to the representations, namely, the

singlet and vector representations are antisymmetric under x→ x+ l, while the spinors are symmetric.
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Similarly, under translation in imaginary time τ by β, the singlet and vector irreps are antisymmetric,

while the spinors are symmetric. The free Hamiltonian is transparent to the two spinor irreps, but in
principle they are present awaiting only some coupling to the free fermion space to make their presence

felt.
To foreshadow the key results, we note that the SO(8) set of eight dimensional representations

obey a unique symmetry called ‘triality’ in which we can really flip around which of the three we choose
as a fermionic vector and which two we choose as spinors. The bosonization scheme of Emery and
Kivelson [1992] corresponds to one particular choice of fermionic vector. When we make this choice,

the free fermion field becomes a spinor representation, and may in principle mix with the other spinor.
The effect of the impurity at the boundary is to convert the free physical fermions with this other field.

The scattering takes one free fermion incoming wave into precisely one outgoing spinor wave, which
resolves the unitarity puzzle (the original Hilbert space was not the full Hilbert space of the problem).

When the two point green’s function is computed with this approach, the electron self energy acquires
a
√
T term. The problem with considering the self energies of the fermions in the Abelian bosonization

scheme is that they have no simple relation to the original free fermions, as discussed in the previous
subsection. A beautiful aspect of this approach is that no SU(2) spin symmetry breaking is required,

unlike the Emery and Kivelson [1992] expansion around the Toulouse limit.
The free fermion fields can be bosonized by writing the normal ordered products

(6.3.3) ψ†µα(x)ψµα := i∂xφµα(x)

so that

(6.3.4) ψ†µα(x) = exp[−iφµα(x)]

which is unchanged by a 2π rotation in phase, i.e., addition of 2π to the boson field. In contrast,

the spinor fields written as exponentiated boson operators contain linear combinations of the φ fields
multiplied by ∓i/2 (− for a “creation” operator, + for an “annihilation” operator) and hence change

sign under the corresponding rotation.
Now, if we follow the Emery and Kivelson prescription to linearly transform to the φc, φs, φf , φsf

bose fields, what happens is that the original fermion field becomes a spinor while one of the original
spinor fields (type II) becomes a fermion or vector irrep of SO(8) in that it becomes expressed as sim-

ple exponentials of the transformed φ fields while the original fermion field and other spinor (type I)
exponentials of linear combinations multiplied by ±i/2. The impurity interaction basically becomes

a boundary condition which expresses the interconversion of free fermion and type I spinor field in-
terconvert. The type I spinor field has the same spin, channel, and charge quantum numbers as the
original fermion fields, but fractional occupancy in terms of the original fields. In contrast, the type

II spinor field has fractionalized spin, charge, and flavor quantum numbers and actually can be viewed
as carrying the non-trivial primary fields discussed in Sec. 6.1.2 (spin, channel spin, and pair fields, a

total of eight) when appropriately multiplied by grassman numbers.
Maldacena and Ludwig [1996] also show with this formalism that the two impurity one channel

Kondo model and the Callan-Rubakov problem of four fermion species scattering off an SU(5) magnetic
monopole have equivalent non-trivial fixed points, and that the fixed point correlation functions of the

three different models (two channel, two impurity one-channel, and Callan-Rubakov) may be mapped
into one another. This latter trick employs the triality symmetry of the SO(8) group explicitly.

Using a somewhat different approach with a Majorana fermion scheme similar to that of Cole-
man, Ioffe, and Tsvelik [1995], Zhang, Hewson, and Bulla [1997] have reached similar conclusions and
presented an explicit realization of the finite size spectra and leading irrelevant operator in the Majorana

fermion basis.
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6.3.2 Conformal Theory of the Large Conduction Spin Single Channel Model

Fabrizio and Zaránd [1996], Sengupta and Kim [1996] and Kim, Cox, and Oliveira [1996] have studied

the large conduction spin single channel model with conformal field theory techniques (Fabrizio and
Zaránd [1996] have also employed 1/M and 1/Sc expansions, where Sc is the conduction spin, through
the framework of the multiplicative renormalization group). In this model, the conduction electrons are

allowed to have arbitrary spin j. The effective channel number which is read off as the rank of the spin
Kac-Moody algebra is calculated to be M(j) = 2j(j + 1)(2j + 1)/3. (Fabrizio and Zaránd [1996] have

established a more general correspondence allowing the channel number of the large spin electrons to
vary; see the discussion in Sec. 7.1 for further details.) For example, when j = 3/2, M(3/2) = 10. This

suggests that any spin satisfying SI < M(j)/2 will be overcompensated in this problem. This model
can arise as an unstable fixed point of the TLS Kondo effect and for Ce3+ ions in cubic symmetry as

discussed in Secs. (3.3.3) and (3.4.3).
The simple physical reason for this overcompensation is as follows. (See also Secs. (3.3.3,3.4.3).)

For definiteness, consider the j = 3/2 case. Proceed to the strong coupling limit, i.e., shut off the
hopping. As shown in Fig. 82(a), it is energetically favorable about a single site to draw in two electrons
with jz = +3/2,+1/2, assuming the local moment to have down spin. From this simple picture, we

would anticipate that for impurity spin up to SI = 3/2 that an overcompensated ground state would
result. For SI = 2, exact compensation should occur, and for SI > 2 undercompensation would occur.

As in the arguments for the multichannel models, this strong coupling limit is unstable for SI ≤ 3/2,
because a residual antiferromagnetic coupling will remain with electrons in the next spatial RG shell

(Fig. 82(b)). For SI > 2, the residual coupling is ferromagnetic, as illustrated in Fig. 82(c).
For general j, adding up only positive jz values, we would expect the total screening spin to be

jmax = (j+ 1/2)2/2 for half integer j, And jmax = j(j+ 1)/2 for integer j. The condition in general for
over-compensation is then SI < jmax. This disagrees with the results of the conformal theory (Fabrizio

and Zaránd [1996], Sengupta and Kim [1996], Kim, Oliveira, and Cox [1997]) as discussed below.
For the large j single channel model, the Hamiltonian written in terms of left moving fields is,

in the position space domain,

(6.3.5) H =
∑

α

∫
dxψ†α(x)

∂

∂x
ψα(x) + J ~SI · ~J(x = 0)

where ψ†α(0) creates an electron with z-component spin α = −j,−j + 1, ...., j, and

(6.3.6) ~J(0) =
∑

αβ

ψ†α(0)~Sαβψβ(0)

with ~S spin matrices of the spin j representation of SU(2).

Restricting attention now to just the j = 3/2 case, the Hamiltonian of Eq. (6.3.5) was cast by
Sengupta and Kim [1996] and Kim, Oliveira, and Cox [1997] in Sugawara form for the generation of

finite size spectra from conformal theory. As in the multichannel model analysis of Affleck and Ludwig
[1991b], the single fusion hypothesis was assumed to generate finite size spectra relevant for comparison

to the NRG, and the double fusion hypothesis was assumed for generating the operator spectrum and
scaling indices.

The first observation is that the Kac-Moody algebra corresponding to the conduction spin current
~J(x) has a large rank. When written in momentum space, the commutation relation is

(6.3.7) [Jaq , J
b
q′ ] = iεabcJ

c
q+q′ − δabδq+q′,0

k(j)ql

2π
.

which follows from the fact that

(6.3.8)
∑

αβ

SaαβS
b
βα = δab

j∑

α=−j
α2 = δab

k(j)

2
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Figure 82: Strong coupling pictures for the single band Sc = 3/2 Kondo model. (a) displays an example

of the overcompensated model when the impurity spin takes the value SI = 1/2. In this case, the
Sz = −3/2,−1/2 conduction channels overscreen the impurity, leading to an non-Fermi liquid fixed

point. For SI = 2, there is just enough conduction spin to compensate the impurity, as shown in (b),
and this is expected to lead to a Fermi liquid fixed point. For SI = 5/2, as shown in (c), there is
too much impurity spin to be compensated by the conduction electrons, and we anticipate that an

undercompensated fixed point will ensue.
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as is familiar from SU(2) spin algebra. Hence the rank of the spin current Kac-Moody algebra is given

by k(j) in contrast to the j = 1/2 case where it is the channel number M . For j = 3/2, k(j = 3/2) = 10.
One has a choice of which quantum numbers to use here; we follow Kim, Oliveira, and Cox [1996], who

used a generalized axial charge (Jones [1988]; Jones and Varma [1988]; Jones, Varma, and Wilkins
[1988]), or isospin defined by (in their reference, Q is used in favor of I)

(6.3.9) Izq =
∑

k,α

[
c†k,αck+q,α − ck7µ1/2δn,0

]

and

(6.3.10) I+
q =

(
I−q
)†

=
∑

k

(
c†k,3/2c

†
−k−q,−3/2 − c

†
k,1/2c

†
−k−q,−1/2

)
.

~I satisfies the Kac-Moody algebra (Ix = (I+ + I−)/2, Iy = (I+ − I−)/2i)

(6.3.11)
[
Iaq , I

b
q′

]
= iεabcIcq+q′ + δabδq+q′,0

ql

π

from which we infer a rank kI = 2. By following the same techniques to construct a Sugawara Hamil-
tonian as in Sec. 6.1, we obtain for the free Sc = 3/2 conduction electrons

(6.3.12) H0 =
vFπ

`



∞∑

q=−∞

1

12
: ~J−q · ~Jq : +

∞∑

n=−∞

1

4
: ~I−q · ~Iq :




and the impurity may be absorbed into new conduction spin currents

(6.3.12) ~Jq = ~Jq + ~SI

which obey the same Kac-Moody algebra as Eq. (6.3.8) provided the coupling strength λ = N(0)J =
1/6 which we identify as the fixed point coupling within the conformal theory. In this case, the Sugawara

Hamiltonian becomes

(6.3.13) H =
vFπ

`



∞∑

q=−∞

1

12
: ~J−q · ~Jq : +

∞∑

n=−∞

1

4
: ~I−q · ~Iq :




(Sengupta and Kim [1996] choose a different basis with quantum numbers of spin, charge, and an Ising
variable.)

In this basis, one can readily construct the spectrum of the system. For the free electrons, the

primary (highest weight) states must have i ≤ kI/2 = 1, and j ≤ k(j)/10 = 5 here. The spectrum of
eigenvalues is then

(6.3.14) E0(i, j,m) =
vfπ

`
[
i(i+ 1)

4
+
j(j + 1)

12
+m]

where m is an integer measuring the number of excitations induced by operating with Ia−q , J
b
−q, q > 0 on

the primary states. These states are constrained by the conditions that they correspond to excitations

from the free fermi sea of Sc = 3/2 electrons. Note that one must construct different spectra for a
system with a degenerate ground state (periodic boundary conditions in the continuum or even inter-

ation number in the numerical renormalization group) or a non-degenerate ground state (antiperiodic
boundary conditions in the continuum or an odd NRG iteration number).

For the interacting system, we must apply the fusion rule of Affleck and Ludwig [1991b], which
reads here, for those states satisfying fermion “gluing conditions” in the free spectrum, that

(6.3.15) i→ i , j → j ′ with |j − 1/2| ≤ j ′ ≤ min{j + 1/2, k(j)− j − 1/2} .
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One may similarly generalize the double fusion rule for operator spectra. Kim, Oliveira, and Cox

[1996] find excellent agreement between the conformal field theory spectrum generated in this way
and the NRG energy levels, provided the CFT antiperiodic boundary conditions are identified with

odd numbered NRG iterations, and periodic boundary conditions with even numbered NRG iterations.
The inferred operator spectrum possesses a primary spin operator ~Φ with a scaling dimension of 1/6,

which will induce a T−2/3 divergence in the spin susceptibility and the specific heat coefficient. (The
leading irrelevant operator has a scaling dimension of 7/6.) This scaling dimension to ~Φ produces a
scaling exponent for the magnetic field of ∆h = 5/6, implying a crossover to Fermi liquid behavior in

a polarized scattering potential in the variable h6/5/T . Exchange anisotropy is relevant in this model.
Sengupta and Kim [1996] reached the same conclusions about the lowest few energy levels and the

leading irrelevant operator about the fixed point.

6.3.3 Conformal Field Theory Treatment of the Anisotropic Two-Channel Model, Spin-
Flavor Two-Channel Model, and TLS Kondo model.

Recently, Ye has extended the applications of conformal field theory and abelian bosonization in a

series of papers (Ye [1996a,b,c,d,e]). Among his accomplishments are: generalizing from the isotropic
fixed point of Affleck and Ludwig to study the anisotropic “Emery Kivelson” line first identified in the
work of Emery and Kivelson using Abelian bosonization (Ye [1996a]); a solution of the spin-channel

Kondo model within conformal theory in which the impurity possesses both spin and channel degrees
of freedom which couple to the electrons–in this work, the spectrum of Fermi liquid and non-Fermi

liquid fixed points was worked out fully (Ye [1996b]); a general paper on the Abelian bosonization
approach for quantum impurity problems (Ye [1996c]); a comparison of the two-channel Kondo and

compactified one channel Kondo model (mentioned above and in Sec. 9.2 (Ye [1996d]) which leads to
the conclusion that for channel anisotropy the resultant fixed point is a Fermi liquid one (in contrast to

the claims of Andrei and Jerez [1995] and Coleman and Schofield [1995] but in agreement with Fabrizio,
Gogolin, and Nozières [1995a,b]); and a paper (Ye [1996e]) which applies a combination of scaling theory,

abelian bosonization, and conformal theory to study the two-level system Kondo model beginning from
the framework of Moustakas and Fisher [1995,1996]. The latter paper concludes that the two-channel
Kondo non-Fermi liquid fixed point is connected by a continuous line of unstable non-Fermi liquid

fixed points to the new one of Moustakas and Fisher [1995,1996], and the latter is equivalent to the
two-impurity single channel Kondo fixed point (discussed in Sec. 9.3.1). Any amount of spontaneous

tunneling or TLS asymmetry will send the system to a Fermi liquid fixed point through the spin-field
crossover described extensively in secs. 3,4,5,7 and above in this section. We refer the reader to these

works for further details.
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7 Bethe-Ansatz Method

The importance of the Bethe-Ansatz is not just for providing exact wave functions, spectra and thermo-
dynamics for models to which it is applicable. As the energy spectrum is obtained for the entire energy

range, the thermodynamic results are therefore valid for the entire range of temperature and magnetic
field. The application of conformal field theory relies upon the hypotheses of conformal invariance (that

the conformally invariant model corresponding to the special value of λ corresponds with the non-trivial
fixed point of the multichannel Kondo model) and fusion rules, as discussed in Sec. 6.1, which are valid
only at low temperatures and energies in contrast to the Bethe-Ansatz. Strictly speaking these cannot

be proved a priori, but by making these assumptions and deriving results one can then compare to the
exact Bethe-Ansatz results to verify the hypotheses. The conformal theory can then be extended to

calculate dynamical properties for which the Bethe-Ansatz fails. Similar remarks apply to the NCA: as
discussed in Secs. 5.1 and 5.3, the thermodynamic properties of the NCA are in good agreement with

exact Bethe-Ansatz results for the overcompensated Kondo models, giving confidence in the dynam-
ics results which are inaccessible to the Bethe-Ansatz. (The problem with dynamics is that while the

Bethe-Ansatz provides exact many body wave functions, it is an unsolved problem to properly express
the operators which couple to external probes, such as the electrical current, in terms of this diagonal

basis. In particular, it is not known how to construct scattering state solutions for the Hamiltonian.)
In this section we present a brief overview of the Bethe-Ansatz approach to the multichannel

Kondo model. Because there are extensive reviews available of the Bethe-Ansatz (Andrei, Furuya, and

Lowenstein [1983], Wiegman and Tsvelik [1983b], Schlottman and Sacramento [1993], Hewson [1993])
we shall focus primarily on summarizing some of the key aspects of the method as applied to this

problem together with some of the main results.

7.1 Methodology for the M-channel Kondo problem.

The Bethe-Ansatz method was originally used by Bethe to study the one-dimensional nearest neighbor

antiferromagnetic spin 1/2 chain. It has also proven to be a powerful method for treating the electron
gas in one-dimension and quantum impurities embedded in three dimensional hosts (where the mapping

back to one dimension discussed in Secs. 4, Sec. 6.1.1.a is used). The essence of the Ansatz is to make a
‘guess’ for the many body wave function which is kind of determinant of generalized plane wave states.

Clearly this can work only for interactions which are very short ranged so that the particles propagate
rather freely between interactions. The Ansatz will not work for all models; an assessment of whether

it will work rests upon testing it for 1,2, and 3 particles which is sufficient to prove that it will work for
all particles.

The first applications were to spinless fermions and bosons (through the Jordan-Wigner transfor-

mation, clearly the spin 1/2 chain can be mapped to a spinless boson or fermion problem). Later came
breakthroughs by Yang [1967] and Gaudin [1967] which allowed spin-ful particles to be treated: the

‘plane wave’ product terms acquire spin-matrix pre-factors which have certain consistency requirements.
Yang and Gaudin showed that the consistency requirements map onto a separate Bethe-Ansatz solution

for the spin 1/2 case. In general, spin S particles can be solved by N = 2S + 1 nested Bethe-Ansatz
The original SI = 1/2,M = 1 Kondo model was solved with the Bethe-Ansatz independently

by Andrei [1980] and Wiegman [1980]. Later, the multi-channel model was solved by Andrei and Destri
[1984] and Wiegman and Tsvelik ([1983a], Tsvelik and Wiegmann [1984,1985], Tsvelik [1985]). In order

for the Ansatz to work for the impurity models, one typically needs contact interactions together with
a linear dispersion for conduction electrons.

Generalization of the original method for the M = 1 model to the arbitrary M case was not

straightforward. Namely, as we discussed in the introduction (Sec. 1), the ground-state of the M
channel spin SI Kondo model consists of M electrons with parallel spin glued together to form a

net spin M/2 which couples anti-parallel to the impurity spin SI . Straightforward extension of the
contact interaction picture with linear dispersion in this case leads to a bare S-matrix which is diagonal
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in the channel indices. Clearly this cannot be true if the physical picture is to hold. Consider the

M = 2, SI = 1/2 example: in this case the ‘big’ spin one of the conduction electrons requires a channel
spin antisymmetrization. Moreover, for large M this clearly contradicts the rigorous results computed

perturbatively in the two-loop expansion of the beta function (see Sec. 3.4.5). This defect in the simple
extension is due to the linear dispersion assumption, which implies the lack of a cutoff or short distance

scale in the model.
In order to get physical results from the Ansatz for the multi-channel model, the different

groups applied modifications to the original Kondo model. Andrei and Destri [1984] introduced a non-

linear dispersion, εk = vF [(k − kF ) + Λ−1(k − kF )2] where Λ is a cutoff parameter. At the end of
the calculation Λ is taken to ∞, and results are independent of Λ. To keep the model integrable, local

counter-term potentials must be introduced into the Hamiltonian which follow the work of Rudin [1983].
The counterterm introduces coupling between the channels, but the strength of the counterterm drops

out in the Λ → ∞ limit and is therefore irrelevant. The presence of the cutoff allows the dynamic
formation of the spin complex with spin sc = M/2 (“dynamic fusion”). This dynamic fusion is observed

both in the structure of the wave function and in the corresponding fused Bethe-Ansatz equations. In
the former the momenta develop imaginary parts leading to the binding of M electrons to form a spin

sc = M/2 and flavor singlet, while the Bethe-Ansatz equations describbe the coupling of this composite
spin to the impurity.

Tsvelik and Wiegmann [1984],[1985] use a different approach to resolve this difficulty. They

first introduce a generalized M -channel Anderson Model with parameters for which a local moment of
spin SI is formed and for which the ground state is exactly compensated (M = 2SI). The integrable

M -channel Anderson model has the form

H =
∑

kσm

vF (k − kF )c†kmσckmσ +
∑

mσ

εdd
†
mσdmσ

(7.1.1) +
U

2

∑

mm′σσ′
ndmσndm′σ′ + V

∑

kmσ

(c†kmσdmσ + h.c.)

where m is the orbital index ranging from one to M , σ =↑, ↓ is the spin index, and d†mσ creates a local
electron of spin σ in orbital m. This model does not represent a realistic extension of the Anderson

Hamiltonian since the Coulomb interaction is diagonal in the density operators (see Nozières and
Blandin [1980] and Mihaly and Zawadowski [1978] for further discussion). This model, studied

with diagrammatic methods by Yoshimori [1976] does give the correct universal behavior of the spin-
compensated M -channel Kondo model at low temperatures and for large U , as can be expected from a

Schrieffer-Wolff [1966] transformation to eliminate the hybridization at order V generating an effective
exchange coupling.

Tsvelik and Wiegman [1984],[1985] then separately consider a generalized exchange model with
arbitrary local spin SI with electrons that have spin M/2. The Hamiltonian has the form

H =
∑

ka

vF (k − kF )c†kacka+

(7.1.2) J
∑

kk′ ,aa′
c†kaP (~SI · Sc, J)aa′ck′a′

where a indexes the conduction spin states and P (x, y) is a polynomial of order min(2SI ,M). This
model is integrable (i.e., the Bethe-Ansatz works) if the polynomial has the explicit form

(7.1.3) P (x, J) =

M/2+SI∑

l=|M/2−SI |

l∏

k=0

1− ikJ
1 + ikJ

min(M,2SI)∏

p=0,p6=l

x− xp
xl − xp
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where

(7.1.4) xp =
p(p+ 1)

2
− SI(SI + 1)

2
− M(M/2 + 1)

4
.

In the special case SI = 1/2, the polynomial reduces to the form

(7.1.5) P (~SI · ~Sc, J) = a + b(~SI · ~Sc)

where a, b are constants which may be determined from (7.1.4).

The claim of Tsvelik and Wiegman [1984,1985] is that the Hamiltonian of Eq. (7.1.2) is equiv-
alent to that of Eq. (7.1.1) when charge fluctuations are projected out and M = 2SI as they have

identical energy spectra. They further conjecture that the solution of the Bethe-Ansatz of Eq. (7.1.2)
holds for the multichannel Kondo model for arbitrary SI ,M . The appealing feature of this picture is

that it says one must simply form a large conduction spin as suggested by the Nozières and Blandin
[1980] picture and the NRG results (Sec. 4) and solve the Bethe-Ansatz for one channel of electrons

with that large spin. In contrast, Andrei and Destri [1984] do not assume the formation of the electron
complex with total spin M/2, but it follows from their treatment. Tsvelik and Wiegman establish the

equivalence of the different models by explicit Bethe-Ansatz solution (and exact comparison of the exci-
tation spectra) which confirm that the results are identical for M = 2SI . Also, for the overcompensated
case M > 2SI , they obtain indentical Bethe-Ansatz spectra as Andrei and Destri [1984]. As Tsvelik and

Wiegman start with the electron complex with sc = M/2, they do not therefore need the sophisticated
cutoff scheme with counter term employed by Andrei and Destri [1984] which leads to the formation

of the electron complex. For a full discussion of the different cutoff schemes, see Andrei, Furuya, and
Lowenstein [1983].

For SI=1/2, the conjectured mapping of Tsvelik and Wiegman [1984,1985] of the M channel
model to the single channel, conduction spin M/2 model has been called into question by Fabrizio and

Gogolin [1994], Fabrizio and Zaránd [1996], Kim and Cox [1996], and Kim, Oliveira, and Cox [1997].
Concretely, the conjectured mapping may be summarized in the form MSc = S∗c , where Sc is the

conduction spin of the original multichannel model, and S∗c is the conduction spin of the single channel
large spin model. (This may be generalized to MSc = M∗S∗c for effective models with arbitrary numbers
of channels, as per Fabrizio and Zaránd [1996].) Explicitly, Fabrizio and Gogolin [1994], have shown

that the M = 4, Sc = 1/2 model maps to the M∗ = 1, S∗c = 1 model, and Kim, Oliveira, and Cox
have found that the critical properties of the single channel Sc=3/2 model are in complete disagreement

with the M = 3,Sc = 1/2 model and rather agreed with the M = 10, Sc = 1/ model. Both of these
results are in contradiction with the Tsvelik and Wiegman [1984,1985] conjecture. This latter result for

S∗c = 3/2 was also obtained within conformal theory by Sengupta and Kim [1996].
The most thorough treatment of this issue was given by Fabrizio and Zaránd [1996]. Utilizing

1/M and 1/Sc expansions as well as conformal field theory arguments, they have suggested that the
correct equivalence mapping is summarized by

(7.1.6) MSc(Sc + 1)(2Sc + 1) = M∗S∗c (S∗c + 1)(2S∗c + 1) .

For the case M∗ = 1, S∗c = 1, the RHS of the above equation gives 6, while for M = 4, Sc = 1/2, the LHS

gives 6 as well, in agreement with the findings of Fabrizio and Gogolin [1994]. For M∗ = 1, S∗c = 3/2, the
RHS of Eq. (7.1.6) gives 15, while the LHS gives 15 also for the M = 10, Sc = 1/2 model, in agreement

with Kim, Cox, and Oliveira [1997], and Sengupta and Kim [1996]. The origin of the discrepancy
between the Bethe-Ansatz results and these other approaches will require further investigation.

Once the solubility of a model by the Bethe-Ansatz is established, physical properties can be
computed. This is practically restricted to thermodynamic quantities (dynamical properties such as the

electrical conductivity require a writing of, e.g, current operators in the diagonalized many particle basis
which is a non-trivial and largely unsolved problem). The thermodynamic quantities are expressed in

terms of excitation densities for spin(spinon), channel(channelon), and charge(holon) degrees of freedom
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which are solutions to coupled non-linear integral equations. Note that the ‘unbinding’ of charge, spin,

and channel degrees of freedom which arises naturally in the NCA (Sec. 5), Conformal Theory (Sec. 6.1)
and Abelian Bosonization (Sec. 6.2) approaches arises quite naturally in the Bethe-Ansatz approach.

7.2 Results from the Bethe-Ansatz Method

7.2.1 Coupled Integral Equations and Numerical Procedure

In addition to the analytical expressions for various quantities at low and zero temperature, it is im-
portant for the computation of thermodynamics to understand the numerical results. Here we refer
only to the final equations to be solved, and direct the reader to the original references for details. Our

discussion here follows Sacramento and Schlottmann [1991]. One solves the Ansatz for arbitrary spin by
flipping over electron spins from a fully polarized state. The ground state is given by a “sea of 2-strings”

in the center of mass rapidity Λ. The resulting excitations are spin 1/2 ‘spinons’ formed by creating
holes in the ground state distribution and characterized by a one-particle rapidity λ which describes

their momentum and energy. These spinons may form bound states with center-of-mass rapidity Λ (not
to be confused with the above cutoff parameter in Eq. (7.1.1)) with population factors

(7.2.1) ηl(Λ) = exp(εl(Λ)/T ) l = 1, 2, .....

where εl is the energy of a bound-state of l spin waves with rapidity Λ. These thermal occupancy factors

obey an infinite recursion sequence

(7.2.2) ln(ηk(Λ)) =

∫ ∞

−∞
dΛ′G(Λ−Λ′) ln[(1 + ηk−1(Λ′))(1 + ηk+1(Λ′))]− δkn exp(πΛ/2) k = 1, 2, .......

with

(7.2.3) G(Λ) =
1

4 cosh[πΛ/2]
.

These recursion relations are completed by the boundary condition η0 = 1 and the asymptotic require-
ment

(7.2.4) lim
k→∞

[(
1

k
) ln(ηk(Λ))] =

H

T
= 2x0

where H is the magnetic field (or the asymmetric level splitting in the TLS Kondo case). Physical
properties can now be expressed by these quantities ηl. For example, the impurity contribution to the

free energy is given by

(7.2.5) Fimp = −T
∫ ∞

−∞
dΛG[Λ− (

2

π
) ln(TK/T )] ln[1 + η2SI (Λ)]

where TK is the Kondo temperature.
In the limit Λ→ ±∞, the asymptotic solutions as given by Andrei and Destri [1984], Desgranges

[1985] and Sacramento and Schlottmann [1991] are

ln[1 + ηk(∞)] = 2 ln{sin[π(k+ 1)/(M + 2)]/sin[π/(M + 2)]}, k < M

(7.2.6.a) = 2 ln{sinh[(k+ 1−M)x0]/sinh[x0]}, k ≥M

and

(7.2.6.b) ln[1 + ηk(−∞)] = 2 ln{sinh[(k + 1)x0]/sinh[x0]}
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which holds for all values of k. The ηk(Λ) functions are monotonic decreasing, interpolating smoothly

between the limits at ±∞. For the special case k = M , ηM(∞)=0, which implies εM (∞) = −∞,
signalling the formation of a bound state of M spinons. For all other k values ηk is finite everywhere.

For finite Λ, the following numerical procedure can be used to solve Eq. (7.2.2). First, truncate
the k values to some large discrete value kc; typically, kc of order 50 suffices. Above kc, only the

asymptotic solution given by Eq. (7.2.4) is employed. Further, truncate Λ (typically |Λ| < 56 is
sufficient) and use the asymptotic forms specified by Eqs. (7.2.6.a,b) to characterize the large Λ behavior.
The integral equations are then solved numerically on a discretized mesh, and thermodynamic quantities

are obtained by taking numerical derivatives of the free energy. These numerical solutions are well
controlled unless H/T >> 1, for which special care must be taken since the limits T → 0, H → 0 do

not commute.

7.2.2 Thermodynamic Properties

We now summarize the various results. The low temperature thermodynamic properties may be ex-
tracted from the asymptotic behavior of the coupled integral equations.

(a) Residual Entropy
The residual entropy (with the limits H → 0 then T → 0 taken) is, for SI = 1/2, (Andrei and Destri

[1984], Tsvelik [1985])

(7.2.7) S(0) = ln{2 cos[π/(M + 2)]} .

This result can be obtained from the free energy of Eq. (7.2.5) where η2SI = η1 when SI = 1/2.

In the T → 0 limit, the large Λ values dominate the integral (see Eqs. (7.2.3) and (7.2.5)), so that
ln(1 + η1(Λ)) ≈ 2 ln{sin[2π/(M + 2)]/sin[π/(M + 2)]} can be taken out of the integral. The remaining

integral yields 1/2, so Eq. (7.2.7) results. This result agrees with the conformal theory result quoted
in Eq. (6.1.83) and is non-zero when M > 1. With the limits taken in the order T → 0, H → 0, the
entropy is zero, indicating that the external field generates a non-degenerate singlet ground state and

hints at the return to Fermi liquid behavior discussed in Secs. 4,5, and 6. In general, the new scale
Ts = TK(H/TK)1+2/M is introduced in the presence of field for H << TK which sets the scale of the

crossover from non-Fermi liquid behavior to Fermi liquid behavior as the temperature is lowered through
Ts. For the special case of M = 2, this scale is Ts = H2/TK. Clearly this scale definition agrees with

the discussion of Sec. 4 (for M = 2), Sec. 5.1, and Sec. 6.1.2.c. In contrast, for the fully compensated
model, the only scale is H itself. The crossover from non-Fermi liquid to Fermi liquid behavior is well

illustrated in Fig. 83 which shows the entropy calculated by Sacramento and Schlottmann [1991] for a
number of different M values. It can be seen that as M is raised so that Ts → H the range over which

the non-Fermi liquid behavior is apparent shrinks relative to M = 2.
For M = 2, when one considers the TLS Kondo model, the level splitting ∆ plays the role of

H so that the crossover occurs at ∆2/TK . For splitting much smaller than TK, the region over which

non-Fermi liquid occurs is much smaller than the splitting itself, which may have considerable relevance
to the experimental situation in small point contacts (Ralph and Buhrman [1988,1991], Ralph et al.

[1994]).
An alternative approach to recovering the T = 0 entropy (and in principle the entire quasi-

particle spectrum and thermodynamics) has been presented by Fendley [1993]. He solves directly for
the S-matrix for scattering off of the impurity and interprets the entropy fractionalization in terms of

“kinks” or solitons interpolating between k+ 1 degenerate minima of the ground state. A complete dis-
cussion is beyond the scope of this paper and we refer the reader to the original reference for more detail.

(b) Zero Temperature Magnetization

211



Figure 83: Entropy for two-channel Kondo models computed with the Bethe-Ansatz method, in zero

and applied magnetic field. Note that n here corresponds to our M for channel number, and that
H corresponds to the spin field Hsp. The magnetic field reduces the residual entropy to zero. From

Sacramento and Schlottmann [1991].

The zero temperature forms of the magnetization and susceptibility for the SI = 1/2 case are
given by (Wiegman and Tsvelik [1983a], Andrei and Destri [1984], Tsvelik and Wiegman [1984])

(7.2.9) Mimp(T = 0, H) ∼ (
H

TK
)2/M , χimp(T = 0, H) ∼ (

H

TK
)2/M−1

for M > 2, and for M = 2 (Sacramento and Schlottmann [1989])

(7.2.10) Mimp(T = 0, H)∼ (
H

TK
) ln(

H

TK
), χimp(T = 0, H) ∼ ln(

H

TK
) .

These results agree with the NRG results of Sec. 4.2 (for M = 2), the NCA results of Sec. 5.1.4, the

CFT results of Sec. 6.1.3, and for large M with the 1/M expansion of Sec. 3.4.5.

(c) Low Temperature Specific Heat and Susceptibility

For SI = 1/2, the heat capacity and susceptibility for H = 0 and low T are found to be (Andrei
and Destri [1984], Tsvelik and Wiegman [1984])

(7.2.11)
Cimp
T
∼ χimp(T ) ∼ T 4/(2+M)−1

and for M = 2 (Sacramento and Schlottmann [1989])

(7.2.12)
Cimp
T
∼ χimp(T ) ∼ ln(

TK
T

) .

These results are in agreement with the discussion of Secs. 5.1.3 (NCA), 6.1.3 (CFT), and 6.2.3 (Abelian

bosonization, M = 2, 4 cases). For large M , the results also check with the large M expansion of Sec.
3.4.5. Note that the different power laws in χ at T = 0, H 6= 0 and T 6= 0, H = 0 are associated with the

non-trivial scaling of H with T in the overcompensated model (for M > 2, χ(T,H = 0) ∼ T 4/(2+M)−1,
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Figure 84: Magnetic susceptibility for the two-channel multichannel Kondo models in applied spin field
computed with the Bethe-Ansatz method. Note that n here corresponds to our M for channel number,
and that H corresponds to the spin field Hsp. The magnetic field removes the logarithmic singularity

in the susceptibility. From Sacramento and Schlottmann [1991]

while (χ(0, H)∼ H2/M−1; for M = 2, the behavior is logarithmic in both T,H).

(d) Full Numerical Solutions for Cimp, χimp

Desgranges [1985] and Sacramento and Schlottmann [1991] have solved for the thermodynamic
properties over the full temperature range (above and below TK). We display the χimp results from

Sacramento and Schlottmann [1991] in Fig 84. The essential instability of the multi-channel fixed point is
readily understood from the diverging χimp curves in this figure (forH = 0). Namely, an arbitrarily small

asymmetry in the TLS, electric field gradient or strain field in the quadrupolar Kondo model, or magnetic
field in the magnetic impurity model will roll the divergence over below T xsp(≈ H2/TK for M=2). to

a Fermi liquid behavior. Heuristically, the presence of other impurities which produce a self-consistent
molecular field due to the Ruderman-Kittel coupling mediated by the conduction electrons will also
produce this kind of effect. This reasoning can be useful in interpreting features in the susceptibility data

of Th1−xUxRu2Si2 (Amitsuka et al. [1993a,b]). See the discussion of Cox[1987b,1988a], Sacramento and
Schlottmann [1989], and Gogolin [1995] for related remarks on the Jahn-Teller effect in the quadrupolar

Kondo model. Note that the compensated Kondo model requires a ‘critical’ field strength to depolarize
the impurity, of the order of TK (Doniach [1976], Jayaprakash, Krishna-Murthy, and Wilkins [1981],

Cox [1987a]).
The specific heat curves of Sacramento and Schlottmann [1991] are shown in Fig. 85 . Note the

presence of the second peak below T xsp for the H 6= 0 case, which again indicates the crossover to the
Fermi liquid. A heuristic interpretation of this peak is that it is a ‘Schottky’ like anomaly corresponding

to the removal of the ground state residual entropy in the applied field. This appears to be useful in
interpreting features in the specific heat data of Y1−xUxPd3 (Seaman et al. [1991,1992]; Cox, Kim, and
Ludwig [1995]).

The overall dependence of the specific heat and the susceptibility on the channel number in zero
magnetic field is shown in Fig. 86.
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Figure 85: Specific heat for the two-channel multichannel Kondo models in applied spin field computed
with the Bethe-Ansatz method. Note that n here corresponds to our M for channel number, and that

H corresponds to the spin field Hsp. The applied field pushes out a Schottky anomaly seen very clearly
as the peak in C/T here. From Sacramento and Schlottmann [1991]

(e) Electrical Resistivity: Magnetoresistance

The electrical resistivity cannot be calculated within the Bethe-Ansatz approach for arbitrary

temperature. This requires a knowledge of cross sections for states with arbitrary numbers of excited
particles and holes, and construction of the exact wave functions for outgoing many body states. This

problem has not yet been solved.
At zero temperature, however, the Bethe-Ansatz can be used at least in the presence of finite

magnetic field. For example, in the one-channel problem at zero temperature, the magnetic field excites a
single spinon and holon which corresponds physically to a one fermion excitation. At zero temperature

and arbitrary spin field, the scattering may be parameterized for both the compensated and over-
compensated models in terms of phase shifts for each spin channel (Andrei [1982]). For example, for

one channel δ↑(H) = −δ↓(H) = π/2− πM(H/TK) where M = (n↑ − n↓)/2 is the magnetization. The
magnetoresistance is proportional to

∑
σ sin2 δσ(H). The situation for the two-channel model is different

in that at least two spinons are generated (Andrei [1995]); nevertheless, a phase shift parameterization

still holds allowing calculation of the magnetoresistance and magnetization (Jerez [1995]).
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Figure 86: Dependence of zero field magnetic susceptibility and specific heat on channel number for
overcompensated multichannel Kondo models computed with the Bethe-Ansatz method. Note that n
here corresponds to our M for channel number. From Sacramento and Schlottmann [1991]
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8 Experimental Results

In this section, we review the status of experimental understanding of possible TLS Kondo systems and
two-channel spin and quadrupolar Kondo candidates among heavy fermion alloys and compounds.

A general comment is that the theory described in this paper is rigorous only for a single TLS
site or U4+ or Ce3+ ion. Due to the divergent length scale about the multi-channel Kondo site, it

is clear that there must always be some crossover away from the non-trivial fixed point for even two
impurities (see sec. 9.3.1 for a discussion of the two impurity model). Hence the attitude here is that one
may flow close to the non-trivial fixed point over some regime of temperature and other parameters at

the finite concentrations which are always present in experiment, and then eventually will flow away. If
the crossover regime occurs over an extended temperature range below the Kondo scale (which identifies

the weak coupling to strong coupling crossover as the temperature is lowered) we may be confident that
the physics is well described by the non-trivial fixed point.

8.1 Experiments on Possible TLS Kondo Systems

For this class of candidate systems, an excellent review of earlier experimental and theoretical work
appears in J.L. Black [1981]. A more recent review of experimental work appears in von Delft et al.

[1997a] for the specific results on copper nanoconstrictions.
The contributions of the TLS to the low temperature and low energy dynamics of amorphous

materials and materials with defects are due to transitions between the ground state and the first excited
state. Thus, according to the discussion of Sec. 2.1.1, the TLS must be slow or fast to have the energy

splitting ∆ of these TLS below or comparable to the characteristic energy of these experiments. The
ultrafast TLS with large splittings are frozen out and those behave as rigid defect centers. The typical
concentration of the TLS in amorphous materials is about 1018− 1019 per cm3, thus about 10-100 ppm.

Kondo type behavior only occurs in those cases where the Kondo temperature exceeds the TLS
splitting (TK > ∆); the Kondo state does not form in the opposite case because the splitting “saturates”

the pseudo-spin of the TLS. In the limit ∆ = 0 non-Fermi liquid behavior dominates the low temperature
physics. For finite splitting, however, there is a crossover to Fermi liquid behavior as the characteristic

energy of the experiment is reduced below ∼ ∆2/TK (c.f., secs. 4.2,5.1.4,6.1.3.c,7.2), where ∆ is the
unrenormalized asymmetry splitting and ∆ < TK is assumed. In most of the samples, the parameters

of the TLS, i.e., the splitting and the Kondo scale, are characterized by broad distributions. Thus the
Fermi liquid and non-Fermi liquid behaviors are mixed in macroscopic samples where there are many

TLS impurities. In principle, that can be avoided in two cases:
(i) materials with very well defined, uniform TLS’s in a crystalline environment, and
(ii) small mesoscopic samples where there are only a few centers and by sample selection the two be-

haviors (Fermi liquid and non-Fermi liquid) can be separately studied.

In most instances, the TLS are formed in amorphous material or amorphous regions of the
samples. The latter may also be represented by the vicinity of dislocations or by surfaces and inter-

faces between two different kinds of materials. The surfaces and interfaces are especially important in
mesoscopic devices where they represent a large fraction of the samples.

There are however very few cases where the TLS are very well defined. The very well defined
crystalline material Pb1−xGexTe will be discussed below. This material shows Kondo like resistivity

anomalies associated with the Ge atoms, which may hop between several quasi-equilibrium positions.
A closely related and well defined problem is the diffusion of a light atom (e.g., hydrogen or a muon)
through a metal. In this case, the interstitial sites between which the light atom moves are regularly

distributed in the crystals. The hopping between two of those sites can be approximated by a TLS.
A very extensive review of these phenomena has been given by Kagan and Prokofév [1992]. The most

important process is the reconstruction of the electronic screening after the hopping which shows infrared
divergent character. However, the non-commutative terms characterizing the Kondo effect do not play
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Figure 87: Telegraph noise displayed in time dependent resistivities of copper nanobridges for temper-
atures smaller than 150K (but still thermally activated) from Ralls and Buhrman [1988]. (a) shows the

modulation of the resistance from a single TLS; (b) shows two independent TLS; (c) shows modulation
of the amplitude by one TLS acting on another; (d) shows the modulation of the frequency by one TLS

acting on another.

Figure 88: Time dependent electrical resistivity of a submicron bismuth sample near 1K where only
tunneling is possible from Zimmerman, Golding, and Haemmerle [1991].

an important role, and so this fascinating area of research will not be discussed further in the present

review.
The rest of the discussion in this section will focus on the electrical resistivity of bulk materials

and the I-V characteristics of small mesoscopic devices, where the scattering rates of the electrons due to

TLS’s can be measured. The thermodynamic properties will be discussed only briefly, because in thsoe
cases both the slow and fast TLS from the distribution of TLS sites play a role and as a consequence it

is difficult to extract any reliable information about those sites which display a Kondo effect.
Slow Centers. For slow centers Vx ≈ Vy ≈ 0 and Vz 6= 0 characterizing the screening by

conduction electrons. The slow centers show up in the fluctuations of the electrical resistivity (see
Fig. 87,88). If there are several centers then they can modify each other’s parameters, so that the average

frequency of the transition and the amplitude depend on the states of the other centers, as measured
on nanobridges at high temperatures by Ralls and Buhrman [1988,1991], where the transitions are

thermally activated, and in the measurements of Zimmerman, Golding, and Haemmerle [1991], which
were carried out at very low temperatures where only tunneling is possible. Such modulation of the
conductance/resistance is called “telegraph noise”. (For a review, see N. Giordano [1991]. ) The average
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transition rate in metals is reduced by the screening of the electrons according to

(8.1.1) ∆0(T ) = ∆0(
max{T,∆0(T )}

D
)−K

for a symmetric TLS, with splitting ∆0 in the absence of TLS-electron interactions. This formula
applies for thermally activated and tunneling induced transitions. The exponent K is, for weak coupling,

quadratic in Vz and may be found through application of the renormalization group equation (3.4.15)
to the commutative model which gives

(8.1.2) K = 4vz(0)2 .

More generally, K may be related to the phase shifts of the different angular momentum scattering

channels off of the atom (Anderson [1967], Kagan and Prokofèv [1992]), viz.

(8.1.3) K =
∑

l

(2l+ 1)(
δl
π

)2 .

In most of the papers from the metallic theory side, the notation K is used for the exponent, while from

the macroscopic quantum tunneling theory initiated by Caldeira and Leggett [1981,1983] K is denoted
α. At low temperatures, the tunneling rate always exceeds T , and thus provided K < 1 the solution to

Eq. (8.1.1) is

(8.1.4) ∆∗0 = ∆0(
∆0

D
)

K
1−K .

This corresponds to a temperature independent hopping rate at low temperatures. In the case K > 1,
the ∆0(T )→ 0 as T → 0 and the particle localizes. Such a large value of K is not likely in a realistic

system as the couplings are replaced by the phase shifts and K has an upper bound dependent on how
many angular momentum channels participate in the screening (see, e.g., Kagan and Prokofèv [1992],

Vladár [1993]).
Measuring the distribution of the time between two tunneling events K can be determined. A

typical value is about K = 0.2− 0.3, showing that the measured TLS are far from being localized (B.

Golding et al. [1992], S.N. Coppersmith [1992], N.M. Zimmerman et al. [1991], K. Chun and N.O.
Birge [1993]). These experiments can give information also about the asymmetric energy splitting of

a particular TLS because the ratio of the time spent in the different states is determined by thermal
equilibrium conditions.

Fast Centers. Eq. (3.4.26) gives the Kondo temperature for the two channel Kondo problem as

(8.1.5) T
(II)
K = D0(vx(0)vz(0))1/2(

vx(0)

4vz(0)
)

1
4vz(0) .

In order to estimate T
(II)
K , we take D0 ≈ 10eV ≈ 105K. A reliable estimate of vz(0) requires experi-

mental input–it can be sampled through ultrasonic absorption or internal friction measurements (sound
velocity shifts can provide further useful information). A TLS absorbs ultrasound and may be saturated

for sufficiently high power (Golding et al. [1978], Black [1981]). The saturation power is much higher
in metals than in insulators because the relaxation time characterizing the transition from the excited

state of the TLS back to the ground state is much shorter due to the Korringa-type process relaxing the
pseudo-spin by the creation of particle-hole pairs. This process for the TLS pseudo-spin is completely

analogous to the Korringa relaxation of nuclear and electronic spins in metals. The Korringa process
dominates over the channels existing in the insulator phase (e.g., phonon relaxation of the TLS). We

discuss this in detail in the following paragraph. Most of the relevant experiments were performed over
a decade ago and the results are summarized in Vladár and Zawadowski [1983(c)]. For more recent

data, see Esquinazi et al. [1986], [1992] and references therein.
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Figure 89: The temperature dependence of the electrical resistivity is shown in a schematic way for
different cases TK < ∆ (left), ∆ ≤ TK (center), and ∆ << TK (right).

Above TK , the Korringa relaxation rate is proportional to the temperature times the renormal-
ized coupling strength v2 = (vz)2+(vx)2+(vy)2, which has a temperature dependence v2 ∼ 1/ ln2(T/TK)

in the vicinity of the Kondo temperature. If we go to sufficiently high temperatures, however, vz domi-
nates the coupling strength and is only mildly renormalized except in the most extreme cases. Hence, a

rough estimate of vz(0) may be found by taking v2 ≈ (vz(0))2. The estimates found in this way give the
range vz(0) ≈ 0.02−0.25, depending on the material (see Table I of Vladár and Zawadowski [1983(c)]).
That estimate is in accordance with the value of K = α = 0.2− 0.3 measured for the slow center, since

by Eq. (8.1.2) we see that vz(0) = (α/4)1/2, which yields vz(0) ≈ 0.2− 0.3.
If we consider the original TLS model with only the lowest two states of the TLS retained, Eq.

(2.1.26) gives

(8.1.6)
vx(0)

vz(0)
∼ 10−3 − 10−4 .

Taking the largest value of this ratio (10−3) and for vz(0) of 0.3, we come up with the most optimistic

upper bound on T
(II)
K of about 0.3K. Clearly, we can make this go down by orders of magnitude with the

smaller estimates (and a smaller value for D0). Experimental observability would require a larger TK
value. Recently, the work of Zaránd and Zawadowski [1994(a,b)] has solved this problem by taking into
account the further excited states of the TLS, as discussed in Sec. 3.4.2. The essential point is that the
higher levels induce a significant enhancement of the Kondo scale quite analogous to the enhancement

of TK for magnetic impurities by the presence of higher lying crystal field states and angular momentum
multiplets. With realistic parameter choices, it was found that Kondo scales of the order of a few Kelvin

were well within reach.
Electrical Resistivity. The electrical resistivity measures the electronic scattering rate off of the

TLS. That subject has been first discussed by Cochrane et al. [1975] who introduced an ill-defined
model with two sets of conduction electrons heuristically provided. The first calculation was performed

by Kondo [1976(b)] up to fourth order introducing the assisted tunneling. Because vy(0) = 0, and vy

is thus generated with a logarithmic factor at second order in perturbation theory (see Eq. (3.3.26)),

the first non-vanishing logarithmic correction to the scattering rate is of order (vxvz)2 ln2(D/T ). This
contrasts, for the original Kondo problem where the leading log correction in the scattering rate shows up
at third order (Kondo [1964]). The smallness of vx(0) led Kondo to conclude that no Kondo resistivity

anomaly could be seen due to the TLS. Only the large renormalization discussed in Sec. 3 makes the
effect observable. The resistivity behavior expected at different temperatures depends on the ratio of

∆0/TK, and this is illustrated in Fig. 89. In the left most curve of Fig. 89, TK < ∆0 so that the Kondo
correlated state is not developed and we pass to the Fermi liquid state. In the center and right hand

curves of Fig. 89 we see the Fermi liquid behavior developing eventually below TK , but with a non-Fermi
liquid region possible provided ∆0 << TK (see the right hand curve of Fig. 89.

At high temperatures, summation of the logarithmically divergent terms gives the correct log-
arithmic rise in ρ(T ). A crude estimate for the incremental scattering strength per impurity ∆τ−1 is

provided by evaluation of the scattering rate at zero temperature and finite frequency using the coupling
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Figure 90: The resistivity and the renormalized tunneling rate are shown as a function of temperature

in the next-leading logarithmic order of the renormalization group. The bare parameters are vz = 0.24
and vx = 0.001.

strengths evaluated at frequency scale x = ω/D in a golden rule estime. This gives

(8.1.7) ∆τ−1(ω, 0) =
4π

ρ0
[(vz)2 + (vx)2 + (vy)2]x=ω/D .

We then estimate the additional resistivity due to the TLS as

(8.1.8) ∆ρ(T ) ≈ m

ne2
cTLS∆τ−1(ω)|ω=kBT

where n is the electronic density, e the electron charge, m the electron band mass, and cTLS the

concentration of TLS. More appropriate formulae can be found in Vladár and Zawadowski [1983(c)]
where the transport lifetime is properly evaluated. The result of the expression (8.1.8) is shown in

Fig. 90 with the calculated TLS splitting ∆0 for a symmetrical level using ∆ = 0 (c.f. Eq. (3.4.15)).
At low temperatures for zero splitting of the levels, the non-Fermi liquid excitation spectrum

produces an anomalous saturation of the resistivity. According to conformal field theory [Ludwig and

Affleck [1991], Affleck and Ludwig [1993]] and the NCA [Cox and Ruckenstein [1993]] δρ(T ) ≈ ∆ρ(0)[1−
aT 1/2] in the weak-coupling limit (vx(0), vz(0) << 1), where a is a pure number that may depend on

the presence of ordinary potential scattering at the impurity site. So far, reliable calculation of the
crossover from high to low temperatures can be done only with the NCA (a large N technique) or the

direct 1/M expansion discussed in Sec. 3.4.5 (Gan et al. [1993]).
Examples of logarithmic resistivity signatures for TLS candidates. In amorphous materials, there

are many experiments which show a logarithmic increase of the resistivity with decreasing temperature
at low temperatures. The most convincing are those in which the amplitude of the maximum resistivity

attained at low temperature decreases with sample annealing and disappears with re-crystallization.
In order to rule out the spin Kondo effect as an origin for this anomaly, any dependence on applied
magnetic field must be weak. Even in these cases, it is hard to rule out localization as a source of similar

logarithmic temperature dependence. Typical resistivity data of this type are shown in Fig. 91, taken
from Kästner et al. [1981] from a study of Pd80Si20 alloys.

A completely different example is the resistivity in highly doped conducting polymers at low
temperatures studied by Ishiguro et al. [1992]. One example is highly doped polyacetylene. In this

case, the authors argue against the competing localization mechanism mentioned above as a source for
the logarithmic upturn in the resistivity. An alternative explanation in terms of magnetic impurities

associated with certain carbon groups has been put forward (Cruz et al. [1995]).
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Figure 91: Resistivity vs. temperature of Pd80Si20 in the amorphous, annealed, and crystallized state
for magnetic fields 0 ≤ H ≤ 5T . The positive magneotresistivity has always been subtracted. From

Kästner et al. [1981]
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Figure 92: Total resistivity ρ(T ) vs. temperature for Pb1−xGexTe. The closed circles correspond to the

experimental results by Takano et al. [1989].

Resistivity of Pb1−xGexTe. PbTe is a type II − V I crystalline semiconducting compound in
which a small amount of Pb can be replaced by Ge. The material thus obtained is either a p-type or
n-type degenerate semiconductor. The ambiguity arises because the concentration of charge carriers is

different from sample to sample and cannot be controlled in a systematic way. Because the ionic radius
of Ge2+ of 0.73Å is much smaller than the 1.2Å radius of Pb2+, the Ge atoms do not stay at the lead

positions, but slide around in the various body diagonal directions ([111]) giving rise to eight possible
equilibrium positions. The randomness of the Ge atoms induces local strain fields that lift the eight-fold

degeneracy, plausibly leaving only two close in energy at each Ge site and thus giving rise to a TLS.
The relevant experimental work was performed by Takano et al. [1984].

The experimental data concerning resistivity minima was analyzed by Katayama et al.[1987].
The theoretical fit to the data of Takano et al. [1984] is based upon use of Eqs. (8.1.7,8), and is

shown in Fig. 92. The curve clearly shows a logarithmic temperature dependence over about a decade
of temperature. The composition of the sample for which the fit was performed has x = 0.006, a
carrier density of 3.41×1018cm−3, an effective band mass of m∗ = 0.053, a Fermi energy of EF = 718K,

and an estimated bandwidth of D = 665K. The coupling strength vz(0) = 0.33 was estimated from a
knowledge of the Ge positions, and vx(0)/vz(0) was taken to be 0.001 in order to give the correct Kondo

scale TK = 0.89K. However, the leading logarithmic formulae were used to estimate TK , and with this

estimate for vx(0) the more correct estimate provided by T
(II)
K will be too small. This can be remedied

by making vx(0) = 0.01, which seems perhaps too large. A more likely explanation is that the ratio of

vx(0)/vz(0) may be about right, but that the higher lying levels must be properly taken into account
as per the discussion of Sec. 3.4.2 and the work of Zaránd and Zawadowski [1994(a,b)]. In order to get

more accurate estimates, ultrasonic attenuation studies are needed in the future.
While this is a good material for study given that the exact source of TLS is known, there are

complications. The random strain field induces a distribution of splittings, as discussed above. Also,

the Ge ions not only introduce carriers and, apparently, the TLS Kondo effect, they also give rise at
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Si N3 4

Figure 93: The point contact prepared by Ralph and Buhrman [1992,1994]. The gate (shaded) is made
of Si3N4. The diameter of the orifice is 2r. The contact is crystalline copper.

higher concentrations to ferroelastic transitions which intervene in the Kondo upturn. Thus there is
practically no way to sample cleanly the non-Fermi liquid behavior at lower temperatures.

TLS at Dislocations TLS may be formed at dislocations. Endo et al. [1988] studied different
dilute aluminum alloys where dislocations where introduced by shock loading or extension at different

temperatures. The increase of the density of dislocations was associated with a logarithmic increase in
the resistivity at low temperatures.

Point Contact Spectroscopy of Nanoscale Junctions. The most convincing measurement of TLS

scattering amplitudes to date has been in the study of nanoscale junctions or gates through point contact
spectroscopy sampling of dI/dV of the gates (Ralph and Buhrman [1992], Ralph et al. [1994], Ralph

and Buhrman [1994]). The method of fabrication of such a junction is shown in Fig. 93. It starts with
electron beam lithography as developed by Ralls and Buhrman [1988,1991] and reactive ion etching

to make a hole in a silicon nitride membrane. The minimum size of the hole is 3-15 nm. Then the
membrane is rotated and covered by different metals (Al,Ag,Pt,Ti,V and primarily Cu have been used)

on both sides. The electron mean free path of the electrodes is about 180 nm at 4.2K. In the region
of the gate very likely TLS are formed. The low frequency noise can be recorded by measuring the

conductance of that gate as a function of time ( Ralls and Buhrman [1988]). The recorded conductivity
is similar to the one shown in Figs. 87,88 and those slow fluctuations are due to slow TLS.

The effect of the fast TLS cannot be seen through the resistivity fluctuations and can only be

sampled by dI/dV characteristics. In that case there is a voltage difference between two electrodes
attached on either side of the gate. On one side the Fermi energy is higher and thus the gate works

something like a tunnel junction. Current is driven by electrons propagating ballistically through the
small gate orifice. Because there is no barrier but actually a geometrically limited path for the electrons,

the experiment is equivalent to point contact spectroscopy in which a sharp metal tip is placed against
a material. In that case, the tip contact serves as the small orifice. Two reviews of point contact

spectroscopy are Yanson and Shklyarevskii [1986] and Jansen et al. [1980].
The essential idea is as follows: even in the absence of scattering in the contact, the small orifice

produces a geometrically limited resistance RB0 to the incoming electrons because not all the electrons
can make it through the gate. In addition, the electrons experience scattering processes within the
contact giving rise to a resistance electrons. To the extent these are frequency dependent, they will be

sampled at a characteristic energy eV for each temperature because added electrons flying through the
gate come with energy eV above the Fermi level. As a result, the dynamic resistance of the junction is

given by (Jansen et al. [1980])

(8.1.9)
dV

dI
= R(V ) ≈ h

e2

8

(kFd)2
[1 + 0.4(

d

vF τ(ev)
)]

where h is Planck’s constant and d is the orifice diameter. This equation is actually the result for a
circular hole in a membrane.

For the hypothesized TLS in Ralph and Buhrman’s data, typical conductance curves G(V, T ) =
dI(V, T )/dV are shown in Fig. 94. The conductance is minimum at V = 0 indicating a zero bias anomaly,

and showing that the relaxation rate decreases with decreasing voltage. The conductance shows a clear
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Figure 94: (a) Differential conductance of a Cu constriction at T=100mK. The curve measured in 6 T
magnetic field is shifted down by 20e2/h for clarity. (b) V dependence of the differential conducatance

for B = 0 T and T=100 mK. (c) T dependence of th conductance for B = 0 T and V=0 mV. Straight
lines illustrate regions of logarithmic V, T dependencees. Inset to (a): Conductance of Cu constriction

with 200 ppm Mn at 100mK, 4 T, showing suppression of magnetic-impurity scattering by an applied
magnetic field. From Ralph and Buhrman [1992].
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region of logarithmic drop with voltage, indicative of a Kondo effect. To rule out a magnetic Kondo

effect, applied magnetic field was also measured–a Zeeman splitting of the central zero bias anomaly
would be expected, but none is observed in contrast to the devices controllably doped with magnetic

impurities. The voltage dependence of the observed relaxation rate is similar to frequency dependent
rate computed by Vladár and Zawadowski [1983(c)] for a TLS, and are also very similar to resistivity

results of Fig. 89. In Fig. 94(c) the temperature dependence of the zero bias conductance is shown.
This also shows a logarithmic temperature dependence with a break in that behavior at lower T that
could was discussed in the original work as either a new lnT, lnV dependence or a possible

√
T,
√
V

dependence at lower temeperature, which is characteristic of the low temperature two-channel Kondo
model resistivity. At even lower temperature and bias, the two-channel Kondo scaling must be stopped

by the presence of the renormalized TLS splitting. This occurs at a crossover scale we have denoted Tx in
this review, and which is called T∆ in the experimental paper of Upadhyay, Louie, and Buhrman [1997].

Fermi liquid behavior is recovered below this temperature scale. Thus, for T < Tx = T∆, T 2 behavior
should be seen in the zero bias resistance, and the

√
V behavior saturates below eV = kBT∆. This

crossover has been observed in Ti and V point contacts as we shall discuss further below (Upadhyay,
Louie, and Buhrman [1997]).

In order to confirm the behavior arose from defects of the TLS variety, Ralph and Buhrman
[1994] have performed a number of experimental tests. First, the effect is very reproducible–it shows up
in half of the fabricated junctions and while initial studies focussed on Cu junctions, similar conductance

curves have been found in silver, vanadium, titanium, and platinum devices. It is interesting that the
effect of Tx is shown only by Ti and V samples (Upadhyay, Louie, and Buhrman [1997]). Furthermore,

application of a high current to the junction leads to a shift of the TLS parameters measured after
the high current is switched off and then used to fit the data, which strongly suggests that the current

rearranges the atomic positions (electromigration) and modifies the TLS in the point contact (Upadhyay,
Louie, and Buhrman [1997]). Second, the effect only arises in unannealed junctions, in which the samples

are cooled to cryogenic temperatures hours after fabrication. Annealing removes the anomaly. Third,
to rule out static disorder as a source of the anomaly, six percent Au was co-evaporated with Cu; no

zero bias anomaly was found. (Moreover, it was observed that the conductance amplitude is too large
to correspond to candidate energy dependent effects such as weak localization and disorder enhanced
electron-electron scattering). Finally, to further rule out magnetic impurities as a source of the anomaly,

small amounts of Mn and Cr ions were controllably co-deposited with the host junction metal. Not only
do the Kondo anomalies associated with these impurities show a sizeable magnetic field dependence, the

resulting conductance signals are stable over periods of months indicating that the magnetic impurities
do not anneal away from the junction.

Ralph and Buhrman noted that the magnitude of the conductance anomaly indicated the pres-
ence of several scattering centers within the junction region (based upon the scattering being at half of

the unitarity limit at T = 0 (c.f. Sec. 6.1.4) in conjunction with Eq. (8.1.9)) as the contribution to the
conductance of a single scatterer in these junctions is of the order of e2/h. They also ascribe the likely

TLS sites to dislocation jogs or kinks. They observe that these same kind of zero bias conductance
anomalies have been observed in many types of metal point contacts for many years and suggest the
earlier measurements have also been of TLS Kondo scattering.

Perhaps the most compelling evidence that the observed anomalies correspond to TLS Kondo
centers is a demonstration of non-Fermi liquid scaling behavior at low temperatures (Ralph et al. [1994];

Ralph and Buhrman [1994]). Ralph et al. focussed on the conductance in regions below the apparent
Kondo scale inferred from the logarithmic regions seen first as voltage and temperature are lowered.

Motivated by conformal field theory results for the electronic self-energy (Ludwig and Affleck [1991],
Affleck and Ludwig [1993]), a scaling form for the conductance was assumed in which the conductance

contributions from different TLS within the junction was assumed to be additive. This is reasonable
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Figure 95: Scaling curves for the three Cu nanoconstriction samples of Ralph et al. [1994].

provided the different sites only interact weakly. The resulting scaling form is

(8.1.10) G(V, T )−G(0, 0) = Tα
∑

i

BiΓ(
AieV

[kBT ]α/β
)

where the summation is over the TLS sites, Γ(x) is a universal function, and Bi, Ai are non-universal
amplitudes which may vary, for instance, as a function of the position of the defect from the narrowest

point of the constriction. A test of this scaling for α = β = 1/2 is shown in Fig. 95. The function Γ(x)
must go as xβ for x→∞ so that G(V, T ) is independent of T for eV >> kBT . To normalize, Γ(0) = 1,

and dΓ(x)/dxβ → 1 for x → ∞. We can immediately infer α = β since the voltage only enters in the
Fermi functions of the leads in the combination V/T . Since the conformal theory gives α = 1/2 in

bulk, this is the expectation for the above scaling form; however, in attempting to describe the data,
α was allowed to vary. We note that the above scaling must crossover to Fermi liquid behavior below

Tx = T∆ ≈ ∆2/k2
BTK for ∆ < kBTK as discussed in Affleck et al. [1992] and in Secs. 4.2.e, 5.1.4,

6.1.2.c, and 7.2. No such deviations from non Fermi liquid behavior were found for the data of Ralph

and Buhrman for Cu junctions, indicating very small splittings for the putative TLS in the junctions.
Recently, a direct theoretical calculation of the scaling function was made using the NCA treatment of
the two-channel Kondo model (Hettler et al. [1994]), while an extensive discussion of the corresponding

effort based upon a conformal field theory approach appears in von Delft, Ludwig, and Ambegaokar
[1997b]. We note that it is quite puzzling that order ten scattering centers exist in the sample with

identical TK values as evidenced by the scaling curves.
To test the scaling hypothesis, Ralph et al. manipulated Eq. (8.1.10) to eliminate G(0, 0) and

considered

(8.1.11)
G(V, T )− G(0, T )

Tα
=
∑

i

Bi[Γ(Aix)− 1]

where x = eV/kBT . The quantity on the left hand side of this equation may be plotted for different
temperatures as a function of x with α varied. The result must be universal to the extent that Ai can

be approximated as a single constant, which holds experimentally with Ai ≈ 0.25− 0.35. Then
∑
iBi
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can be found from scaling the curves together for large x and is found to be ≈ 10− 30e2/h. The results

normalized together are shown for several samples in Fig. 96, where different α values are used in a,b.
The fit with α = 0.5 looks perfect, while the universality is lost with α = 0.3. The Fermi liquid value

(α = 2) is ruled out, as is apparently the possibility that α = 1. Deviations from universal behavior
are expected for T, V ≥ TK (a range of TK values of 0.6K≤ TK ≤5K is suggested). Sample 2 data are

shown in Fig. 96(c) for which TK ≈ 0.5K. For Sample 3 (Fig. 96(d)). at two different temperature
ranges universality can be found indicating very likely that there is a distribution of parameters with
two groups of TLS likely dominating. The idea is to determine α from those curves where universality

is well satisfied so that the scattering centers have uniform parameters.
The scaling hypothesis is further tested in applied magnetic field |H |. Applied field serves as a

channel field in this case, lifting the degeneracy of up and down spin electrons. In this case, the zero
bias scaling function for a single TLS site must be generalized to the two parameter form T 1/2Γ(V =

0, |H |/T 1/2) which follows from the considerations of channel field scaling (see Secs. 4.2.c,5.1.4,6.1.2.c).
Since this must be independent of T as T → 0, we infer that Γ(x = 0, y) ∼ y, y → ∞ so that the

subtracted conductance should scale as |H | for H → 0. This is observed for small H and T = 0.1K.
Nonlinear conductance spikes appear for fields above 1 Tesla which are clearly non-universal phenomena.

In contrast, the ordinary Kondo resistivity would be expected to show scaling with H2 for small H . At
the theoretical level, the microscopic origin of the channel splitting in the TLS model is unclear, unlike
the quadrupolar Kondo model for example. As discussed in Sec. 3.4.1.e, the Zeeman splitting of the

conduction states alone cannot produce a discriminating channel asymmetry unless the applied field
is of order the conduction bandwidth. Nonetheless, the observed field dependent scaling offers strong

support for the applicability of the two-channel Kondo model description.
The success of the above scaling analysis places a constraint on the values of ∆ for the TLS

in the junction. Given the estimate for the crossover scale Tx = T∆ = ∆2/k2
BTK (for ∆ < kBTK),

for TK=5K, the absence of fermi liquid behavior down to T = 0.4K implies Tx = T∆ < 0.4K and

∆ < 1.4K.
The recent experiments by Upadhyay, Louie, and Buhrman [1996] on Ti and V point contacts

appear to show the effect of the renormalized splitting below T∆ = Tx. For example, one Ti junction
studied down to 76mK appears to have T∆ = 1.4K and renormalized splitting ∆ = 0.4meV. In another
junction, two such crossovers appear, very likely due to two different TLS, with ∆ = 0.47 meV and 1.6

meV. Here ∆ is estimated from the formula T∆ = Tx = ∆2/(k2
BTK) with the two different TK estimates

of 6.2K and 28K and Tx read off from the crossover away from
√
V behavior. To confirm the origin

of these phenomena as arising from TLS Kondo scattering, it was observed that after the treatment of
the junction with a large current flow for 10 seconds the inferred splittings were seen to change from

0.5→ 0.7 meV, and 1.6→ 1.54 meV. This is explainable by rearrangement of atomic positions and hence
changed parameters of the TLS. We note that the alternative explanation of Altshuler, Wingreen, and

Meir [1995] is unable to explain the crossover to T 2 behavior at a fixed temperature scale. The obser-
vation of the additional scale T∆ = Tx gives us three distinct regions for the point contact resistance:

→ T > TK , ρ(T, V ) is logarithmic in T, V
→ TK > T > T∆ = Tx ρ(T, V ) displays non-Fermi liquid

√
T, V behavior

→ Tx = T∆ > T ρ(T, V ) displays T 2, V 2 saturation (Fermi liquid)

We note that the inferred ∆ values are relatively large. Since the distribution of TLS splittings
is apriori flat in energy, it is more probable to observe TLS with higher ∆ values. It remains still to

explain the origin of the small (or zero) estimated splittings in Cu based junctions as compared to Ti
and V based contacts. As mentioned above the overall size of the zero bias conductance is between

10-100 e2/h. However, the current induced change is already about e2/h indicating that the splitting
of a single TLS plays the role.

Analogous phenomena (apart from the non-Fermi liquid behavior) should appear for magnetic
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Figure 96: Scaling behavior of conductance for three different Cu nanoconstrictions at low volt-
age for eV, kBT < kBTK . (a),(b) Rescaled conductance of sample 1 for (top to bottom) T =

0.4, 0.6, 0.8, 1.1, 1.4, 1.75, 2.25, 2.8, 3.5, 3.9, 4.3, 4.9, and5.6K. (c) Rescaled conductance of sample 2 at
same T values up to 4.3K. (d) Rescaled conductance of sample 3 from 125mK to 7.6K. Arrows show

2 separate scaling curves. Insets: Integrated mean square deviation from the average scaling curve for
T ≤ 1.4K and -8≤ eV/kBT ≤ 8. The scale of the deviation axis is in (a) from 0 to 4 (e2/h)2 and in

(c) from 0 to 25(e2/h)2. Residual deviations for α = 0.5 are consistent with the amplifier noise. From
Ralph et al. [1994].
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impurities. Apart from the kind of controlled doping experiments with Mn and Cr impurities in the

metal junctions described above that were performed by Ralph [1993], some early point contact experi-
ments on Kondo alloys were performed (Jansen et al. [1980], Yanson [1995]) which showed characteristic

logarithmic Kondo anomalies in the resistivity. Earlier experiments were performed with tunnel junc-
tions. In this case, the magnetic impurities may reside either in the tunneling barrier or in the electrode

near the barrier (on a scale less than 50Å. In the first case, the resonant density of states near the
impurity induces near the Fermi energy actually assists the tunneling process and thus enhances the con-
ductance, producing a maximum at zero bias (Wyatt [1964], Appelbaum and Shen [1972]). On the other

hand, if the impurities are nearbye the interface, similar to the point contact configuration the junc-
tion resistance shows a maximum at zero bias (Bermon and So [1978], Mezei and Zawadowski [1971]).

This can be understood because the electrode impurities backscatter incoming electrons away from the
junction thus reducing the tunnel current.

Another interesting feature of the point contact experiment with magnetic impurities (Yanson
[1995]) is that the intensity of the zero bias anomalies are larger by one or two orders of magnitude

for small contact orifices. In a recent theory, Zaránd and Udvardi [1996a,b] have shown that the
local density of states fluctuation for the electronic density is enhanced for reduced orifice size. Since

TK ∼ exp(−1/J [ρ+ δρ]) this will strongly enhance TK for those centers for which the density of states
is enhanced, and strongly suppress TK (below observability) for other sites. According to that theory
this enhancement must occur at the Femri energy in an energy range with width not more than about

10% of the Fermi energy or even less. Naturally, the enhanced TK sites will be preferred. Obviously
something similar can carry through for the TLS Kondo scale.

Another point contact experiment where the zero-bias anomaly is attributed to TLS is in the
work of Keijsers et al. [1995]. In the original theory of Kozub and Kulik [1986] only the excitations

of the TLS to higher states were taken into account, without Kondo corrections. However, it looks as
though the TLS Kondo picture fits the data better as the temperature dependence looks predominantly

like a thermal smearing in contrast to the other explanation (Zaránd and Zawadowski [1995]). In these
experiments the apparent Kondo temperature (measured from the low temperature peak position of the

derivative of the differential resistance) increases with decreasing contact size (larger contact resistivity)
just like in the magnetic case discussed above (Yanson et al. [1995]). To the the large TK values inferred
from this interpretation requires the Zaránd and Zawadowski [1994a,b] enhancement arising from the

excited states.
Finally, we mention that recently Wingreen, Altshuler, and Meir [1995] have criticized the TLS

interpretation of the point-contact experiment by Ralph and Buhrman [1992] (Ralph et al. [1994],
Ralph and Buhrman [1994]). They argue that in tunneling experiments with disordered material zero

bias anomalies have been observed with square root behavior (for a review see Altshuler and Aronov
[1985]) reflecting the renormalization of the local density of states and that similar density of states

effects can occur in the present experiments. Ralph and Buhrman [1995] however presented evidence
against that argument by introducing controlled disorder into their contacts as mentioned earlier.

Furthermore, Wingreen, Altshuler, and Meir [1995] challenged the TLS concept itself by con-
sidering the effect of extrinsic disorder from impurities on the TLS parameters through the couplings
V x, V z (see sec. 2.1). In particular, they calculate the TLS self-energy diagrams of a Hartree type

with the TLS on one end of a conduction electron bubble and a non-TLS impurity on the other end.
Without the disorder interruption this diagram vanishes on tracing out the electron orbital pseudo-spin.

This physically corresponds to a Ruderman-Kittel charge interaction between the TLS and non-TLS
impurity. They then calculate the root mean square distribution of splittings ∆ and find that it goes as

EF v
z/
√
kF l which is about 50-100K for the estimated mean free path in Ralph and Buhrman’s experi-

ments [1992,1994]. This same estimate for the magnitude of the splitting can be obtained by replacing

the electron spectral functions in the Hartree diagram by the local density of states about the TLS site.
Separately, one can estimate an upper bound on the contribution to the spontaneous tunneling matrix

element ∆0 as ρ0

∫
Vx(ω)dω' 50K(Zaránd and Zawadowski [1995]). This is easily renormalized down-
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wards by scaling. (Calculating the root mean square spread in ∆0 induced by the extrinsic impurities

from the diagram considered by Wingreen, Altshuler and Meir [1995] produces a small estimate, of the
order of a few tenths of a Kelvin.)

With regard to the large estimated RMS spread in ∆ two remarks are to be made:
1) The modification of ∆ corresponds to a modification of the shape of the potential and thus must

influence ∆0. The TLS of interest are only those few for which the the splitting ∆ is small. The selection
of these TLS must be made on the basis of the renormalized (by scaling) potential and is unrelated to
the unrenormalized one. (An asymmetric potential may be made symmetric after the renormalization

and vice versa.) The existence of TLS with small splitting and asymmetry is an experimental fact
in amorphous materials. This most striking evidence for this is found in the existence of linear heat

capacities in amorphous superconductors below the superconducting transition temperature (Graebner
et al. [1977], Löhneysen et al. [1980], Lasjaunias and Ravex [1993]).

2) Recently Kozub [1995] has pointed out that in the argument of Wingreen, Altshuler, and Meir [1995],
the largest contribution to the RMS splitting comes from those impurities close (i.e., nearest neighbor

or next-nearest neighbor) to the TLS site (see also Smolyarenko and Wingreen [1997]). In a dilute case,
most TLS do not have such a neighbor so that the actual splitting modification by the disorder is likely

to be much smaller than reported. For those which do have a non-TLS impurity nearby, there will be a
‘wipeout’: the large splitting will destroy the TLS character and these simply will not be seen. Hence
some more detailed consideration of the non-TLS impurity configurations is needed than provided by

Wingreen, Altshuler, and Meir [1995].
Keijsers, Shklyarevskii, and van Kampen [1996] carried out another set of experiments using

metallic glasses in break junctinos. At zero bias resistivity measurements revealed the same kind of
telegraph nois due to a slow tunneling center as shown in Figs. 8788. When the slow center switches,

then the zero bias anomaly is also changed, and actually two different curves are measured for the zero
bias anomaly. This was interpreted as a demonstration of the interaction between a slow and a fast

tunneling center. When the slow center changes then the parameters of the fast ones are also tuned,
which results in a change of the zero bias anomaly. (Note that in Figs. 87,88 the interaction between

two slow centers is displayed.)
The curve indicates that the low energy cutoff determined by the asymmetry ∆ is tuned, and

that the other parameters must have remained almost the same so as not to modify the width of the zero

bias anomalies, which actually measure the Kondo temperature. This means that the vα interactions
are only very slightly tuned, which is the case when the assisted tunneling processes are induced via

transitions through the excited states of the potential well. The first excited state overlaps with both
minima of the TLS (see Sec. 3.4.2 and Zaránd and Zawadowski [1994a,b]). Assuming the orbital Kondo

effect picture, the top of the anomaly is chopped off at different heights after the ∆ parameter of the
TLS is tuned. The difference in the conductance is shown in Fig. 98 for a single junction (curve (3)

of Fig. 97). The theoretical fit, given by the solid line, assumes that the scattering resonance has the
shape given by the second order renormalization group equations discussed in Sec. 3.4.1, and a sharp

cutoff is used for eV < ∆. The fit is remarkably good. On the other hand, the theory of Kozub and
Kulik [1986] woudl provide the difference between two curves shown in the inset. The experimental data
clearly does not show the long tail expected from the Kozub and Kulik [1986] theory, and thus offers

strong support for the origin of the zero bias anomaly in terms of the orbital Kondo effect associated
with TLS. An important feature of the experimetnal data is that the changes in the conductance are

smaller than e2/h which makes it possible to interpret them as arising from a single modulated TLS.
In similar experiments, two such transitions are superposed, indicating that at least two fast TLS are

affected by the slow TLS.
Recently a new experiment was performed by Balkashin et al. [1997] to distinguish between the

TLS Kondo theory and the theory of Kozub and Kulik [1986] which includes direct excitation of the TLS
without the Kondo effect. The two interpretations have two different characteristic energy scales, namely

the Kondo scale TK and, for Kozub and Kulik [1986], the Korringa-linewidth ΓK = (ρV z)2(∆0/E)2E
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Figure 97: Experimental evidence for modulation of fast TLS by slow TLS (telegraph noise) in mechan-
ically controlled metallic glass break junctions. The differential resistance Rd is measured as a function

of bias voltage for Fe80B20 (1 and 2) and Fe32Ni36Cr14P12B6 (3) break junctions at T=1.2K. (1) A 6.6ω
contact, showing almost no noise. (2) A 366Ω contact that shows clear noise around zero bias. The

noise amplitude decreases as the bias voltage increases. (3) A 145ω contact, showing a clear two-level
switching behavior between two different Rd peaks. From Keijsers, Shklyarevskii, and van Kampen

[1996].
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Figure 98: Conductance difference for mechanically controlled metallic glass break junctions. The dots

are obtained from the measured resistance change values shown in curve (3) of Fig. 97, with uncertainties
of order 0.1e2/h. The solid line is obtained from the theory of Vladár and Zawadowski [1983a,b,c] using
a Kondo scale of TK ≈35K, and two different splittings for the fast TLS of E1 = 3.5meV, E2=8meV,

with the assumption that the modulation by the slow center induces these two different splitting values.
The inset shows conductance difference curves generated by the theory of Kozub and Kulik [1986]. This

figure is from Zaránd , von Delft, and Zawadowski [1997].

where E =
√

∆2
0 + ∆2 is the full splitting of the two-level system including asymmetry and spontaneous

tunneling. This latter result follows provided the temperature is low compared to E so that kBT is
replaced by E, and that vx = vy = 0 so the V z interaction induces the transition in the presence of

spontaneous tunneling and asymmetry (Vladár and Zawadowski [1983c]). To fit the zero bias anomalies,
TK or ∆0 must be in the range of 1 meV. Thus, knowing that (ρ0V

z)2 ' 0.1, the two characteristic
frequencies are very different, of order 1 meV for the Kondo case, and 10−2 meV for the direct excitation

model of Kozub and Kulik [1986].
In these more recent experiments, an a.c. bias was superimposed on a d.c. bias in the form

V = V0 + V1cos(ωt) .

For ω << ω0, where ω0 is the characteristic energy of either theory, then at each time during the
oscillation period the zero bias anomaly is determined by the instantaneous bias. Thus the time average

of the current is

Ī = ¯I(V0 + V1cosωt) ≈ I(V0) +
1

4

∂2I

∂V 2
V 2

1

provided that V1 << V , and no significant frequency dependence is expected.

On the other hand, when ω > ω0, the oscillating voltage averages out during the characteristic
time scale t0 = 1/omega0, and the change in conductance must vary as 1/ω with an amplitude propor-

tional to V 2
1 . The experiment was performed at two different frequencies, ω = 0.6GHz, 60GHz, where

the latter frequency corresponds to 0.25 meV. No significant dependence upon the amplitude or ω was

found. Hence, the relevant energy scale must be significantly larger than 0.25 meV. As argued above,
this can only be true for the Kondo effect, so the experiments offer further support for interpretation

in terms of the TLS Kondo effect.
Summarizing, it can be claimed on solid ground that there are several cases where only the

orbital Kondo effect of a TLS can explain the observed zero bias anomalies, and in several cases the
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effect observed is of order e2/h in the conductance, indicating that only one or at most a few TLS are

playing the relevant role.
The above considerations notwithstanding, it remains an open question why several almost

symmetric (∆ ≤1.4K by estimates above) TLS with identical TK values exist in the devices of Ralph
and Buhrman [1992,1994].

Other Candidate Systems and Thermodynamics. Another promising candidate system of the
mesoscopic variety has been studied by Gregory [1992] who finds Kondo anomalies which don’t split in
magnetic field in oxide coated tungsten wires in a crossed geometry.

Finally, we comment on the thermodynamics and other measurements on more concentrated
systems such as the metallic glasses. In these the TLS have a broad distribution and for a large

number of them the noncommutative terms can be neglected. Certainly the most important effect
in this case is the renormalization of the splitting (see Eq. (8.1.4)). That downward renormalization

may change an initially uniform distribution P (∆) = constant to one which is peaked at low energy
scales. The effect of the TLS on the electrons can also be probed in the superconducting states of

amorphous metals where the conduction electrons and therefore the infrared divergences are cut off
below by the superconducting gap. Tuning the gap by external magnetic field to smaller values will

allow the suppressed infrared renormalization to return and the energies of the TLS to be pushed to
smaller values. Such a renormalization effect has been observed, where the tunneling particle is atomic
hydrogen in a superconducting metal (Yu and Granato [1985]). The splitting renormalization shown in

Fig. 90 is enhanced by the noncommutative terms and that enhancement should be verified by further
experiments.

8.2 Experimental Data on Two-Channel Quadrupolar and Magnetic Candidate
Heavy Fermion Materials

Questions about the possibility of non-Fermi liquid physics in the heavy fermion materials are not new,

and occurred concommitant with similar observations for the cuprate superconductors (on the theory
side, see Cox [1987b]; on the experiment side see Ott [1987]).

Since 1991, a number of heavy fermion materials have come to light which display logarithmic
upturns in the specific heat and more occasionally the susceptibility. Concommitant with these log
upturns is usually a non-Fermi liquid resistivity. In Table 14, we summarize the results for various

materials in which evidence exists for non-Fermi liquid behavior.
These non-Fermi liquid behaviors can be broadly summarized in three categories:

(1) Dilute or Local In this case doping on the rare earth/actinide sublattice away from a fully concen-
trated compound reveals the non-Fermi liquid behavior. The examples are: Y1−xUxPd3 (Seaman et al.

[1991], Andraka and Tsvelik [1991]), Th1−xUxRu2Si2 (Amitsuka et al. [1993,1994]), Th1−xUxPd2Si2
(Amitsuka et al. [1995]), La1−xCexCu2.2Si2 (Andraka [1994]), Th1−xUxPd2Al3 (Maple et al. [1994]),

Th1−xUxNi2Al3 (Kim, Andraka, and Stewart [1993]), Th1−xUxBe13 (Aliev et al. [1994]). It is of interest
that all of these materials except Y1−xUxPd3 are heavy fermion superconductors when x = 1. These are

the systems for which the single impurity multi-channel Kondo model which is the focus of this paper
have the best chance of working. Thus a compelling proof of single impurity behavior is important, and
we shall discuss the evidence for this in each case.

(2) Concentrated and Ordered Two compounds appear substantially non-Fermi liquid like at the fully
concentrated limit: the heavy fermion superconductors UBe13 (Aronson et al. [1989], McElfresh et al.

[1994], Cox [1995]) and CeCu2Si2 (Steglich et al. [1995]). A third candidate has recently arisen, PrInAg2

(Yatskar et al. [1996]) which has 4f2 Pr ions in a Γ3 ground state (confirmed by neutron scattering

studies). This material shows some behavior incompatible with a Fermi liquid. Two criteria specify the
assignment of non-Fermi liquid behavior: (i) a continual rise of C/T at and below the superconduct-

ing transition (under application of a magnetic field (UBe13: Steglich [1996]; CeCu2Si2: Steglich et al.
[1995])– PrInAg2 does not superconduct, but does show a region of logarithmic temperature dependence

in C/T prior to a low temperature saturation; (ii) anomalously large residual resistivities and linear in
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Alloy/Compound TK C/T χ(T ) ρ(T ) Single Ion?

Y1−x(Th1−y ,Uy)xPd
(∗)
3 ∼40K lnT 1− aT 1/2 1−AT Yes

Th1−xUxRu2Si
(∗)
2 12K lnT lnT 1 +BT 1/2(?) Yes

(H ‖ c)
Th1−xUxPd2Si

(∗)
2 12K lnT lnT 1 +BT 1/2(?) Yes

(H ‖ c)
La1−xCexCu2Si

(∗)
2 ∼10K lnT lnT 1−AT Approx.

Th1−xUxM2Al3 ∼ 20K lnT lnT (?) 1−AT ?

Th1−xUxBe13 ∼ 10K lnT 1− aT 1/2 1 + BT 1/2 or Yes(χ(0))
1 +AT No(C/T )

UBe13 10K lnT at H = 12T 1− aT 1/2 1 +AT -

CeCu2Si2 10K lnT ? 1 +AT -

PrInAg2 2K const. ? AT? -

Table 14: Non-Fermi Liquid Heavy Fermion Alloys and Compounds. This table lists the relevant

properties of all non-Fermi liquid heavy fermion alloys and compounds for which a two-channel Kondo
model description (in either dilute or concentrated limits) may be an appropriate starting place. The

columns for specific heat, susceptibility, and resistivity indicate the low temperature behavior. All
(but possibly CeCu2Si2 and PrInAg2) have logarithmic in T specific heat coefficients over an extended

temperature range. Those alloys marked with an asterisk show evidence for significant residual entropy
at low temperatures. The coefficients A,B listed in the resistivity column are assumed positive, as is

a in the susceptibility column. The column under ‘Single Ion?’ answers whether single ion scaling has
been observed. Adapted from Cox and Jarrell [1996].
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T resistivity behavior which is suppressed in magnetic field and pressure (for UBe13) (UBe13: Aronson

et al. [1989]; CeCu2Si2: Steglich et al. [1995])–PrInAg2 does not have a particularly large residual
resistivity but never shows a region of Fermi liquid like T 2 behavior.

(3) Concentrated and Disordered Three systems, UCu5−xPdx (Andraka and Stewart [1992]), U(Pt1−xPdx)3

(Kim, Stewart and Andraka [1992]), and CeCu6−xAux (Löhneysen et al. [1994]) fit into this category.

Each is near an antiferromagnetic instability which is accessed by tuning the concentration of dopants
off the rare earth/actinide sublattice. The non-Fermi liquid behavior appears closely associated with
this proximity to a T = 0 magnetic transition, which has been extensively discussed recently by Millis

[1994] (in an ordered system–the role of disorder in this theory requires further study). In the case of
UCu5−xPdx, the disorder may play a role in inducing a spread of Kondo temperatures which extends

all the way down to T =0K based upon interpretation of inhomogeneous line broadening measurements
in copper nuclear magnetic resonance lines (Bernal et al. [1995]; MacLaughlin, Bernal, and Lukefahr

[1996]). These authors relied on the work of Dobrosavljević, Kotliar, and Kirkpatrick [1992] who argued
that non-Fermi liquid behavior may be mimicked by this distribution of local fermi liquids in the vicinity

of a metal insulator transition with a log normal distribution of the local conduction density of states
about the impurity sites. An unusual local dynamic scaling of the neutron scattering cross section with

frequency was observed by Aronson et al. [1995] over a wide range of x including x = 1 which is likely
an ordered compound. This suggested that other mechanisms may be at work to induce the non-Fermi
liquid behavior. The work of Miranda, Dobrosavljević, and Kotliar [1996,1997] has produced a different

form of the probability distribution than Dobrosavljević, Kotliar and Kirkpatrick [1992], derived in infi-
nite spatial dimensions, which holds away from the metal insulator transition. This form is in complete

agreement with the form used by Bernal et al. [1995] in fitting experimental data. With this form, they
reproduce the simple Gaussian distribution of coupling constants used by Bernal et al. [1995], and they

are able with this distribution to (i) fit the linear temperature dependence of the resistivity, and (ii)
the dynamic susceptibility of Aronson et al. [1995]. Hence, taken together with the experimental work

of Bernal et al. [1995], it genuinely appears that the UCu5−xPdx system is described by the modified
Kondo disorder theory as put forward by Miranda, Dobrosavljević, and Kotliar [1996,1997]. In related

work, the optical conductivity of UCu3.5Pd1.5 has been studied (DeGeorgi and Ott [1996]). This can be
fit with the same disorderd distribution of Kondo scales used by Bernal et al. [1995] (also MacLaughlin,
Bernal, and Lukefahr [1996]) and Miranda, Dobrosavljević, and Kotliar [1996,1997] as was shown by

Chattopadhyay and Jarrell [1996] (see also Jarrell et al. [1996c]).
Another material which defies the above categorization yet displays non-Fermi liquid behavior

is Ce1−xThxRhSb (Andraka, [1994b]). This material is a Kondo insulator for x→ 0, but for the range
0.2 ≤ x ≤ 0.4 shows possible non-Fermi liquid behavior in the form of a specific heat coefficient which

appears logarithmically divergent over approximately a half decade of temperature.
Our attention shall focus here on a brief review of materials in categories (1) and (2) with regard

to their possible explanation in terms of the two-channel Kondo effect. We discuss each system in order.
Y1−xUxPd3. The striking properties of this material have garnered considerable attention.

Fig. 99(a) shows the specific heat for the composition x = 0.2 with the entropy shown in Fig. 99(b) as
taken from Seaman et al. [1991]. The specific heat shows logarithmic behavior over about one-and-one-
half decades of temperature, with an upturn clearly visible below 0.5K which we shall return to dicuss

later in this subsection. The specific heat difference when integrated to yield the entropy difference has
a clear shoulder near R/2 ln 2 per mole U near T = 20K. At higher concentrations apparent spin glass

order sets in (evidenced by a hysteresis in the magnetization) and in the corresponding temperature
range R ln 2 entropy is recovered. This suggests that R/2 ln2 entropy per U site should appear below

the lowest temperature in Y0.8U0.2Pd3. In addition, the resistivity in the same temperature range goes
as 1−AT after showing a linear in lnT behavior at higher temperatures, and the magnetic susceptibility

appears to go as 1 − BT 1/2 (once a subtraction of apparent large moment paramagnetic impurities is
made). Taken together, these data put forward a compelling view of this material as a non-Fermi liquid

metal.
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Figure 99: Specific heat and entropy of Y1−xUxPd3. (a) shows the specific heat per mole for x = 0.2

(with YPd3 subtracted off), and displays a lnT behavior over about a decade and a half of temperature.
The specific heat integrated from the lowest temperature yields the entropy curve shown in (b); notice
that for x > 0.2, of order R ln 2 entropy is available below T = 30K; hence, entropy appears to be

missing from the x = 0.2 curve. From Seaman et al. [1991].

A number of facts make the quadrupolar Kondo effect (Cox [1987b,d]) a worthwhile model to
begin with to try to understand the physics of this system:

Tetravalence of U ions. The quadrupolar Kondo effect requires tetravalent U ions. From photoemis-
sion experiments clear evidence of “Fermi level tuning” is observed (Kang et al. [1992]). This means

that the U 5f occupied peak shifts with doping. If the U ions were trivalent, they would not shift the
occupancy because the Y ions are also trivalent. However, tetravalent U ions would shift the f-level

provided the underlying density of states is small, which is the case for YPd3. This Fermi level tuning
complicates the proof of single ion behavior, though this may be remedied by combined Th,U doping

as we discuss further below. The tetravalence is further supported by the absence of significant lattice
constant change with doping; there is a very close size match between U4+ and Y3+ ions which is not

the case for U3+ ions.
Cubic Symmetry The quadrupolar Kondo effect requires a site of either cubic, hexagonal, or tetragonal
symmetry. Cubic symmetry is indeed maintained in this material. YPd3 has a cubic Cu3Au structure,

as does antiferromagnetically ordered UPd4 (which has 50/50 disorder of U and Pd ions on the Au
sublattice of the Cu3Au structure). It is also informative that UPd3 has a dhcp structure with one site

that is pseudo-cubic for the U ions. It is known in the UPd3 case that the U ions are tetravalent and
have well resolved crystal field splittings (Buyers et al. [1980], McEwen et al. [1994]; indeed, UPd3

shows a complex triple-Q vector quadrupolar order–see Walker et al. [1995]).
Logarithmic behavior of C/T and residual entropy. The data obviously support the two-channel Kondo

model in this case. For tetravalent U ions in cubic symmetry, only the non-magnetic Γ3 doublet can
provide the two-channel Kondo effect. The fact that order R ln 2 entropy is available also points to-

wards the Γ3 doublet ground state. Employing the thermodynamics calculations of Sacramento and
Schlottmann [1989,1991] yields an estimated Kondo scale of 40K for x = 0.2 and about 200K for x = 0.1.
The increase is explainable in terms of the Fermi level tuning hypothesis.

Different temperature dependence to χ and C/T As discussed extensively in the Secs. 5,6, and 7, the
susceptibility relevant to the impurity pseudo-spin must have the same temperature dependence if the

two-channel Kondo effect is to prevail. The fact that the temperature dependence is significantly dif-
ferent argues for the quadrupolar Kondo effect.

236



Figure 100: Resistivity of Y1−x(Th1−y ,Uy)xPd3, from Seaman and Maple [1994].

Low temperature upturn in C/T Below about 0.6K the specific heat rises above the logarithmic behav-

ior, which has been studied more extensively by Ott [1993], who rules out a nuclear Schottky anomaly
as an explanation (only small abundance Pd isotopes are candidates in zero magnetic field and there is

simply too much entropy involved in the upturn). This upturn is quite reminiscent of the upturns visi-
ble in Fig. 85 in the calculations of Sacramento and Schlottmann [1991] representing the Schottky-like

anomaly arising from the removal of ground state residual entropy. In the quadrupolar Kondo case the
‘magnetic field’ analogous to that of the pure spin Kondo model can either be strain fields or electric

field gradients. The Y,U sizes are close which suggests little strain contribution; however, the charge
difference can lead to sizeable random electric field gradients. An estimate of the mean electric field

gradient splitting from Thomas-Fermi theory gives ∆ ' 5K at x = 0.2 (Cox, Kim, and Ludwig [1997]).
In conjunction with the spin crossover temperature T xsp = ∆2/TK discussed in Secs. 5.1,4.2, 6.1.3.c, and
7.2, this produces a crossover scale estimate of about 0.6K in good agreement with the location of the

upturn.

Two crucial questions arise about the ground state of this system. First, is the non-Fermi liquid
physics associated with collective effects associated with the proximity to antiferromagnetic and/or spin

glass ordering, or with single ion physics? Second, is the identification of a ground state non-magnetic
doublet on the U ions appropriate? Alloying experiments shed considerable light on these questions,

strongly affirming the single ion picture and the doublet ground state assignment. There are two classes
of alloying experiments:

1) Y1−x(UyTh1−y)xPd3 Alloys Seaman et al. [1994] have studied this system to shed light on
whether the origin of the non-Fermi liquid behavior is to be found in single ion physics. The idea is

that the Fermi level tuning introduces an intrinsic doping dependence to the Kondo scale through the
f energy ε̃f (TK ∼ exp(−π|ε̃f |/2Γ)) and so simply reducing the number of U ions is insufficient to

test the single ion hypothesis in this case. However, by introducing tetravalent Th ions of nearly the
same size as the U ions, the f -level can be kept approximately constant and the U concentration can

be diluted. In this way it is found that for x = 0.1, 0.2 very nearly the same Kondo scale and low
temperature resistivity behavior are maintained down to low concentrations of U ions (order 1-5%).

However, the distance from the spin-glass and/or antiferromagnetic ordering is increased. This provides
strong support for a single ion interpretation. Resistivity curves for this system are shown in Fig. 100.
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2) M1−xUxPd3 alloys, M=Sc,Pr,La Here the trivalence of the M ions is kept fixed but the ionic

volume is shifted systematically (Gajewski et al.[1994]). The volume primarily affects the hybridiza-
tion: for the largest ion (La) the effect is to expand the lattice providing negative chemical pressure

which would hypothetically drive down the hybridization width Γ and reducing the Kondo scale in turn
relative to Y1−xUxPd3 for a given x value. For the smallest ion (Sc, radius smaller than Y) the lattice

would be compressed, which increases the hybridization width Γ, driving the Kondo scale up for fixed
x. In the case of large ions, if TK is sufficiently reduced it should be possible to see the full R ln 2 en-
tropy in the quadrupolar Kondo picture due to the random field gradient splitting of the non-magnetic

Γ3 doublet. These expectations are born out. For M=Sc, the region of non-Fermi liquid behavior is
extended all the way out to x = 0.3, where the estimated Kondo scale is comparable to that of M=Y at

x = 0.2, while for x = 0.2 the estimated Kondo scale for M=Sc is quite large (order 200K). For M=Pr,
a mixed behavior is seen in the specific heat, as a pronounced peak in C/T is visible in the few K range.

There is still a logarithmic upturn in the resistivity at higher temperatures but a downturn visible at
low temperature in the same region where C/T peaks. For M=La, no Kondo anomaly is seen in the

resistivity. At the same time, a clear peak arises in C at about 6K. This peak may be fit by a Gaussian
broadened Schottky anomaly, and clearly has R ln 2 entropy per U ion. We note that the peak position

gives an estimated average splitting of the doublet ground state by 11K which is within a factor of two
of the random field gradient estimate of Cox, Kim, and Ludwig [1997]. The size mismatch of the La
and U ions will certainly induce random strain fields that can enhance the splitting above the random

field gradient splitting. The specific heat curve for M=La and x = 0.1 is shown in Fig. 101.

Hence, there are a number of reasons to believe that the non-Fermi liquid physics of this alloy
are driven by the one-impurity quadrupolar Kondo effect. However, a number of criticisms can be made

of this interpretation based upon other experimental data:

Critique (1): Resistivity. The electrical resistivity shows a linear behavior even below 1K where,
on the basis of NCA calculations one would expect a rollover to T 1/2 behavior (See Secs. 5.1 and 5.3

and Cox and Makivic [1994], Kim and Cox [1997]).

Critique (2): Field Dependent Specific Heat. Andraka and Tsvelik [1991] pointed out that the

magnetic field dependence of the specific heat does not follow what would be expected for a quadrupolar
Kondo system. At low fields, the magnetic field acts as a channel field which should produce a large

increase of the specific heat coefficient as calculated by Andrei and Jerez [1995] (see Sec. 7.2 for a dis-
cussion). At higher values the Γ3 level splits quadratically in the field which would also have the effect

of increasing the specific heat coefficient. The detailed scaling function fit to C(T,H)/T −C(0, T )/T is
that it appears to go as f(H/T β) with β = 1.3 whereas the channel-field scaling would yield β = 0.5 and

the spin-field scaling (through quadratic in H splitting of the Γ3 doublet) would yield β = 0.25. More-
over, the specific heat coefficient pretty much just drops with magnetic field, whereas one would expect

from the calculations of Andrei and Jerez [1995] an enhancement as the residual entropy is shoved out
of the ground state. Similar behavior is seen in U(Cu1−xPdx)5 (Kim, Stewart, and Andraka [1992].) A
possible complication with this picture is that in the quadrupolar Kondo picture there is a substantial

background specific heat associated with excited magnetic triplet levels which would presumably drop in
the applied magnetic field. Mysteriously, the magnetoresistance of this material is very small (Seaman

and Maple [1994]). Only detailed numerical analysis within the NCA or other suitable method can be
used to address this point on the theory side.

Critique (3): Neutron Scattering Cross Section. Unpolarized neutron scattering studies have

been carried out by Mook et al. [1993] and McEwen et al. [1994] which subtract Y1−xThxPd3 as
a reference. A subsequent polarized neutron study was carried out by Dai et al. [1995]. For high

concentrations, the McEwen et al. [1994] and Dai et al. [1995] studies suggest that the U ground state
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Figure 101: Specific heat of La0.9U0.1Pd3 (from Seaman and Maple [1994]).
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is a Γ5 magnetic triplet level. Indeed, the Dai et al. [1995] study finds evidence for antiferromagnetic

Bragg peaks at x = 0.5 which have the same structure as UPd4. Moreover, for x = 0.2 they find
evidence for near critical scattering in S(~q, ω) near these same Bragg peaks. For x = 0.2, both studies

present evidence for two inelastic transitions which is compatible with the Γ3 doublet ground state (this
would have magnetic transitions to each of the excited triplets), at energies of about 6 meV and 39 meV.

McEwen et al. [1994] take the Γ3 interpretation. However, Dai et al. [1995] argue from the polarized
data that significant quasielastic scattering exists below 1 meV in energy and have made a preliminary
case for a Γ5 ground state.

There are two difficulties with this assignment in reconciling with the experimental thermo-
dynamics: (a) the intensity of this peak yields a T → 0 magnetic susceptibility which exceeds the

experimental value by a factor of at least 20, and a T = 10K entropy which exceeds the experimental
value by a factor of 3-5; (b) the energy scale associated with the peak is at most 10K, and the only

characteristic energy scale from the data is 40K. Clearly more work is needed to understand the ori-
gin of this quasielastic scattering; the presence of concentration gradients in U ions and large moment

paramagnetic impurities as evidenced in the magnetization need to be examined closely.

Critique (4): Ultrasonic Sound Velocity Measurements Sound velocity measurements on poly-
crystalline samples show no appreciable softening at any temperature (Amara et al. [1995]), which not
only calls to question the quadrupolar Kondo effect (for which a logarithmic transverse anomaly would

be expected at low temperatures) but also the Kondo effect itself (as most Kondo systems show a sig-
nificant temperature dependence in the measured sound velocities due to the strong volume dependence

of TK– see Lüthi and Thalmeier [1988]). A possible drawback is the polycrystalline character of the
samples measured thus far (Mandrus [1995]).

Critique (5): Concentration Gradients. The Y1−xUxPd3 is subject to signficant concentration

gradients (Mydosh et al. [1993], Seaman et al. [1993]) which may affect the ability to sort out single
ion from concentrated physics effects. Recent studies show that this is a relatively small effect, in that

the mean square concentration deviation is about 10near 0.2 the concentration would range from about
0.18 to 0.22–see Maple et al. [1996]).

Clearly an unambiguous assignment of the quadrupolar Kondo effect as the source of non-Fermi
liquid physics cannot be made at this time, though there are a number of good arguments on behalf of

this picture for this alloy system.

Th1−xUxRu2Si2 and Th1−xUxPd2Si2 Single crystals of tetragonal Th1−xUxRu2Si2 have been
studied by Amitsuka et al. [1993a,b] from x = 0.01 − 0.07. The magnetic susceptibility, electronic

specific heat, and electrical resistivity were measured. The magnetic susceptibility for x = 0.01 is
shown in Fig. 102(a) , where it is clear that for in plane fields the susceptibility has weak temperature

dependence, while for c-axis fields there is a logarithmic divergence apparent over about 2 decades of
temperature. The solid curve is a fit of Sacramento and Schlottman’s Bethe-Ansatz calculations for
M = 2, SI = 1/2 to the c-axis data, and the fit is quite good over four decades of temperature. The

estimated Kondo scale is 11K. This is clearly a single site effect, as the c-axis concentration dependent
susceptibility is shown in Fig. 102(b). Below about 0.5K, rounding is visible in the χc(T ) curves, but

above this temperature the curves are identical for four different concentrations up to x = 0.07. The
rounding is reminiscent of that seen for applied field in Fig. 84 from Sacramento and Schlottmann [1991].

A heuristic interpretation is that interaction effects between the U ions are producing a self-consistent
magnetic field that induces the crossover. Actually, only a self-consistent fluctuation is likely important

since the crossover scale goes as H2.
Taking the TK value from the χc fits, Amitsuka et al. produce a satisfactory zero parameter fit

to the x = 0.07 C/T data, which is shown in Fig. 103, where the solid curve is taken from Sacramento
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Figure 102: Magnetic susceptibility of Th1−xUxRu2Si2 for several values of x from Amitsuka et al.

[1993]. The fit to the scaled curves is from the Bethe-Ansatz calculations of Sacramento and Schlottman
[1991].

and Schlottmann [1989,1991]. Because the theory curve integrates to (R/2) ln2 entropy per mole U ,

that implies that a residual entropy of (R/2) ln2 remains below the lowest temperature measured which
also fits with the M = 2, SI = 1/2 theory.

Because the U ions are presumably tetravalent, the crystal symmetry is tetragonal, and the
c-axis susceptibility obeys a Curie law well above TK , it is reasonable to suggest that this physics arises

from the quadrupolar Kondo effect in tetragonal symmetry as discussed in Sec. 2.2.3. This would arise
from a non-Kramers doublet which can be Zeeman split by an applied field along the c-axis.

An experimental difficulty with this proposal is the resistivity, shown in Fig. 104. The shape of
the resistivity curves for several different concentrations is clearly the same (the magnitude is subject
to systematic correction from the different crystal geometry). While the magnitude is sufficiently large

(order 40 µ − Ω-cm) to warrant consideration as a Kondo system, there are two differences from the
two-channel Kondo theory: (1) There is no high temperature linear in lnT region present in the data;

(2) There is a low temperature downturn below TK, which, over limited regions, may be fit with T ,T 1/2,
or lnT behavior.

It is difficult to conceive of simple explanations for these resistivity discrepancies, but we do
note a number of important considerations which could modify the behavior:

(i) The resistivity is significantly dependent on the details of the hybridization matrix elements between
conduction states and the U 5f states. For example, in the simplest M = 1, SI = 1/2 model for

Ce3+ ions, a low temperature downturn in the resistivity is possible due to the “hot-spots” along prin-
ciple axis directions at which the Γ7 conduction partial wave states must have vanishing hybridization
matrix elements (see Cox [1987c], and Trees [1993,1995] (Trees and Cox [1994]) for a discussion of the

hybridization hot-spots and Kim and Cox [1995b] for a discussion of their influence on resistivity).
(ii) The T 1/2 coefficient expected at sufficiently low temperatures can experience a sign reversal for

sufficiently large potential scattering on the U site which breaks particle-hole symmetry (Affleck and
Ludwig [1993]–see eqn. (4.6)). If this is true there should be a substantial thermoelectric power present

(this can only be non-zero for the M = 2, SI = 1/2 model in the presence of particle-hole symmetry
breaking).

(iii) A possible culprit for the potential scattering is excited crystal field levels, which will clearly break
particle-hole symmetry, and which complicate the search for lnT upturns at high temperatures. (See
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Figure 103: Specific heat of Th1−xUxRu2Si2 for x=0.07 from Amitsuka et al. [1993]. The fit is to the
theoretical calculation of Sacramento and Schlottman [1991] with the value TK = 11K determined from

the magnetic susceptibility.
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Figure 104: Resistivity of Th1−xUxRu2Si2 from Amitsuka et al. [1993].
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Figure 105: Susceptibility (left plot) and specific heat (right plot) per Ce for La1−xCexCu2.2Si2. From
Andraka [1994].

Cox and Makivic [1994] for a discussion.)

(iv) The resistivity
√
T coefficient can reverse sign in the strong coupling regime since the term is pro-

portional to the leading irrelevant operator which is proportional to the deviation from the fixed point

coupling. Arguing against this are the small Kondo scale and the excellent fits to Bethe-Ansatz results
which are computed in the weak coupling limit.

In Th1−xUxPd2Si2 (Amitsuka et al. [1995]) the qualitative and quantitative features are similar.
Again, in χc(T ) (per U ion) a region of single ion behavior (overlapping curves for different concen-

trations) with a rounding of χc that increases with increasing x, and the in plane susceptibility has
a smaller value and negligible temperature dependence. For the lowest concentration (x = 0.03) a fit
to χc(T ) with the Bethe-Ansatz results is similarly good. The specific heat per U ion shows a lnT

behavior for low concentrations and drops as x is increased. This is actually mysterious since it is not
clear where the entropy goes. The authors note that the estimated residual entropy for the x = 0.03

sample is actually somewhat larger than R ln 2/2. The resistivity does show a Kondo like minimum at
temperatures of order 20K, but below a maximum again drops in a manner that may be fit over limited

regions by T , T 1/2, or lnT behaviors.
It should be mentioned that the dilute system La1−xUxRu2Si2 does not show any evidence for

non-Fermi liquid behavior for x ≤ 0.15 (Marumoto, Takeuchi, and Miyako [1996]).
Given the sheer number of details for these two materials which check with the M = 2, SI = 1/2

model, further experimental investigation of these materials is clearly warranted despite the difficulties
in understanding the resistivity. In particular, it would be desireable to have the specific heat measured
under conditions of uniaxial stress in the basal plane and c-axis fields. This should shove out the residual

entropy and confirm the assignment to a tetragonal quadrupolar Kondo model.
La1−xCexCu2.2Si2 This system has been studied by Andraka [1994] and shows great promise as

a dilute M = 2, SI = 1/2 magnetic Kondo system. The added magnetic susceptibility and specific heat
per Ce ion for x = 0.05, 1, 0.2 are shown in Fig. 105. We note that there is rough single ion behavior

in that the χ curves for x = 0.05, 0.1 are very close, and the specific heat curves are all close though
deviations occur at lower T . For x = 0.2 there is hysteresis in χ which is taken as evidence for spin

glass behavior.
We focus on x = 0.1 results. Clearly both χ and C/T exhibit a lnT behavior at low temperatures.
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From a fit to the lnT slope of the C/T curve, one estimates TK ≈ 12K. Separately, one may compute

the Landau-Wilson ratio. To do this requires a knowledge of the effective moment of the presumed
doublet ground state of the Ce3+ ion. Fortunately we know from neutron scattering, susceptibility,

and specific heat measurements (see Grewe and Steglich [1991] for details and references as well as
Gorymychin and Osborne [1994]) that despite the tetragonal crystal structure, the crystal field on the

Ce site is pseudo-cubic with a Γ7 doublet ground state and excited Γ8 quartet at about 360K. To then
compute the Landau-Wilson ratio, we should compare the logarithmic slopes of the χ and C/T curves
since there can be background constant terms in each quantity. Using the Γ7 moment of µeff = 10µB/7

gives RW = 2.7(1), to be compared with the expected value of 8/3 from Secs. 6.1.3, 6.2.3, and 7.2. The
agreement is obviously excellent.

The electrical resistivity appears to show linear in T behavior down to 1.4K, but in view of the
results of Sec. 5 from the NCA (Cox and Makivic [1994], Kim and Cox [1995b]) a T 1/2 law should not

be cleanly seen until about 0.05TK, which sits below 0.6K. Indeed the theory curve of Fig. 106 is a fit of
the NCA calculations of Kim and Cox [1995b] to the x = 0.1 data, and it is credible given the limited

range of the experimental data (about a decade). However, a clear break is seen in the data which takes
it below the theory curve.

A separate qualitative confirmation of the validity of the M = 2, SI = 1/2 model is that when
magnetic field is applied, the specific heat coefficient shows a significant increase. In quantitative detail,
it is not as large as for the M = 2, SI = 1/2 model for the given field strengths, but the behavior

sharply contrasts with the M = 1, SI = 1/2 model where C/T should simply drop as the Kondo
resonance Zeeman splits (Andrei, Furuya, and Lowenstein [1993]). We note that the presence of a

sizeable background term in C/T of Fig. 105 likely corresponds to the tail of the lifetime broadened
Schottky anomaly of the excited Γ8 quartet. This should drop in magnetic field, which complicates the

direct analysis of the data in terms of the M = 2, SI = 1/2 model.
Clearly the material satisfies the requirement of cubic symmetry, and the question arises whether

it satisfies the necessary requirement of greater fluctuation weight to f2 than f0 in the ground state.
As discussed in Secs. 2.2.2,2.2.3, and 5.3, this is sampled by the thermopower which should be negative

well above TK (Cox [1993], Kim and Cox [1995,1997]). Early measurements of the thermopower on
La1−xCexCu2Si2 by Aliev et al. [1984] revisited more recently by Buschinger, Geibel, and Steglich
[1996] show that for low concentrations the thermopower goes positive. A complication is that the host

system has a positive thermopower and so a proper way to isolate the Ce concentration must be worked
out, which has not yet been done. For example, the Nordheim-Gorter correction has been used for the

Kondo system La1−xCexB6 to isolate the Ce ion induced thermopower (Winzer [1975]). According to
the work of Buschinger, Geibel, and Steglich [1996], this correction actually enhances the positive peak

in S(T ) for dilute samples.
The thermopower has not been measured for the x = 0.1 samples of Andraka [1994]. However,

it has been measured for x = 1, and it is found that a sign change to negative thermopower occurs near
T = 70K, which is so large compared to TK that it is not attributable to lattice coherence effects. The

thermopower in this case reaches a maximum amplitude of about -30µV/K, which is too large to be
attributed to anything but resonant scattering, which the Kondo effect provides quite naturally. It is
intriguing that a study of Ce based 1-2-2 compounds shows that the thermopower at 20K has a strong

correlation with the unit cell volume, undergoing an abrupt change from negative to positive near the
CeCu2Si2 unit cell volume. Based on the suggestions by Cox [1993] and Kim and Cox [1995a,b] that the

M = 3, SI = 1/2 Kondo effect can be realized with pressure, the crossing point is a promising region to
look for three channel Kondo model candidate materials.

Andraka [1994] has argued that the quantitative discrepancies in the specific heat, and the
apparent linear in T resistivity argue against the M = 2, SI = 1/2 magnetic Kondo effect. However, as

argued above, the resistivity actually is in good agreement with theory over the measured temperature
range, and the specific heat coefficient increase is difficult to interpret given the large and possibly field

dependent background term. Andraka [1994] also argues that x = 0.1 is a special concentration, since
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Figure 106: Fit to the resistivity of La1−xCexCu2.2Si2 by Kim and Cox [1997]. Theory (open symbols)
is from an NCA calculation in the M = 2 channel Kondo limit using the NCA as discussed in Sec. 5.1.6;

small dots are experimental points.
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at x = 0.05, 0.15 the logarithmic anomalies are not seen. Moreover, the x = 0.15 sample is argued

to possess a ‘spin glass’ transition due to irreversibility in the magnetization. Caution should be lent
to accepting these arguments uncritically, however, because the CeCu2Si2 system is well known to be

extremely sensitive to preparation conditions. After nearly twenty years of study for the concentrated
case, only recently (Steglich et al., 1995) has the ternary phase diagram been carefully worked out. It

is found that the concentrated system has an extreme sensitivity to small variations (order percent) in
the Cu concentration. The nominal 2.2 stoichiometry for Cu is based on starting composition during
preparation and places the x = 1 samples in the slightly copper rich stoichiometry which leads to

the most cubic crystal field scheme as well as superconductivity and lattice non-Fermi liquid behavior.
Slight deficiency of Cu from this concentration leads to a still uncharacterized magnetic state. Hence,

for a conclusive answer to the question of whether the x = 0.1 physics is or is not single ion in origin,
we must await more careful studies of samples with well characterized Cu concentration.

Th1−xUxBe13 Aliev et al. [1992,1993,1994] have studied this system. extensively. At the value
x = 0.9 which is certainly far from dilute, they find C/T ∼ − lnT , χ(T ) ∼ 1−AT 1/2, ρ(T ) ∼ 1+BT 1/2

(with B > 0), all of which fit the two-channel cubic quadrupolar Kondo picture as discussed in Secs.
2.2.1, and 5.2. A complication is that in this crystal structure no dopants appear to leave the volume

unchanged which means the hybridization is strongly affected by the doping. (Indeed, since the Th ions
are larger they expand the lattice and diminish the hybridization which will lower TK . The data appear
to suggest this happens relative to the bulk x = 1 system.) An extensive study of M1−xUxBe13 alloys

by Kim et al. [1990] revealed that while the specific heat could be significantly altered by doping, the
magnitude of the low temperature magnetic susceptibility was hardly affected. This suggests further

that the origin of the specific heat and susceptibility are different, consistent with an interpretation in
terms of van Vleck susceptibility which is important for the two-channel quadrupolar Kondo effect in

cubic symmetry. Clearly it is desireable to dilute further.
A further consistency with the quadrupolar Kondo effect is the non-linear susceptibility (Aliev

et al., [1995a,b]). This was motivated in part by earlier measurements of Ramirez et al.[1994] on
UBe13 which shall be discussed below. In theory, the non-linear susceptibility χ(3)(T ) defined from the

magnetization via

(8.2.1) χ(3)(T ) = 6[M(H, T )− χ(T )H ]/H3 .

For a magnetic doublet ground state, χ(3) is expected to be large and negative, as is easily seen from
straightforwardly expanding the Brillouin function magnetization to obtain χ(3) ∼ 1/T 3 for localized

moments. This would be modified, at low temperature, to ∼ 1/T 3
0 for a Kondo system. In a more

general situation, χ(3) depends upon the orientation of H . For a purely localized quadrupolar moment

system with a cubic non-Kramers Γ3 ground doublet, Morin and Schmitt [1981] have shown that for
a field along a principle axis, χ(3) will display a positive Curie law divergence, while for a field along

a body diagonal χ(3) will be of van Vleck character at low temperature and negative. This result is
easily understood in terms of the magnetoelastic coupling of the Γ3 ground state–principle axis fields
induce tetragonal distortions which are quadratic in H and split the doublet. There is no linear coupling

however to strains along the body diagonal (matrix elements do exist to excited states). Hence, the non-
linear susceptibility for a principle axis field is essentially a measure of the quadrupolar susceptibility.

While the quadrupolar Kondo effect would modify this from a 1/T divergence to − lnT , the divergence
would still be present, and the characteristic anisotropy provides an excellent test of the applicability

of the quadrupolar Kondo model (Chandra et al., [1993], Ramirez et al., [1994]).
Aliev et al. [1995a,b] performed measurements only on polycrystalline samples. As shown in

Fig. 107, for x = 0.1 they found that the powder averaged χ(3) is predominantly negative at high
temperatures but finds a minimum and changes sign as the temperature is lowered, which is in accord

with the expectations of the previous paragraph. In contrast, when pure UBe13 is measured for simi-
larly prepared polycrystalline samples, χ(3) is relatively large, negative, and decreases with decreasing
temperature, qualitatively in agreement with a magnetic ground state. Indeed, the polycrystalline data
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Figure 107: Non-linear susceptibility measurements on UBe13 and U0.9Th0.1Be13 from Aliev et al.
[1995a,b]. Triangles are measurements on a polycrystal of UBe13, circles are measurements on a poly-

crystal of U0.9Th0.1Be13. Line is taken from the data of Ramirez et al. [1994]. Right hand figure is
a blow up of the low temperature region for U0.9Th0.1Be13 indicating the tendency to a sign change
expected for a quadrupolar Kondo material.
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Figure 108: Mixed valence scenario for U1−xThxBe13 proposed by Aliev et al. [1995a,b]. For x = 0, the
picture is one of almost complete mixed valence between f2 and f3 configurations. It is conjectured that
the Th doping favors the f2 energetically and diminishes the degree of valence mixing. This favoring

could arise from a reduction in the hybridization broadening of the configuration energy levels. The
broadening is indicated schematically by the dotted curves about each doublet level.

agrees excellently with Ramirez et al.’s [1994] single crystal data, which excludes the possibility of large
moment paramagnetic impurities giving rise to the x = 0 χ(3) results.

Based upon this work and the positive coefficient of
√
T in the x = 0.1 resistivity, Aliev et al.

[1995a,b] put forward an interesting set of hypotheses: first, the x = 0.1 samples are in the strong

coupling regime. That is, the coupling strength exceeds that of the non-trivial fixed point. This can
explain the positive coefficient of the resistivity. Second, the ionic ground state changes as a function

of Th doping, being an f3Γ6 doublet for x = 0, and an f2Γ3 doublet for x = 0.1. This would require
the U ions to be strongly mixed valent between 3+ and 4+, which is not implausible. This scenario is

illustrated in Fig. 108. This second hypothesis checks with the first hypothesis because it is precisely
in the mixed valence regime where strong coupling might plausibly occur (the dimensionless Schrieffer-
Wolff exchange can grow to order unity). The hypotheses are very interesting because the different

symmetry ground states would seem to imply a novel quantum critical point at the precise point in x
where the levels cross.

There are three major concerns with the hypotheses:
1) Taking the Th ions as tetravalent, the substitution would add electrons, and this would actually drive

the uranium ions more towards trivalence.
2) While the non-linear susceptibility for pure UBe13 is strongly temperature dependent, the suscepti-

bility is not, and hence this interpretation is problematic.
3) It is not clear that a sufficiently small energy scale can be generated in the mixed valent regime for

the uranium ions, though some variational treatments of the ion with full spherical symmetry suggest
this is possible (Read et al., [1986]; Nunes, Rasul and Gehring [1986]).

Nevertheless, the hypotheses of Aliev et al. are very intriguing and deserve further exploration.
Th1−xUxPd2Al3 and Th1−xUxNi2Al3 These two hexagonal systems reveal − lnT specific

heat coefficients at low temperatures and low concentrations (x ' 0.1) (Maple et al. [1994] (Pd), Kim
et al. [1993] (Ni)). The susceptibility in the Pd based system for a polycrystalline sample can be fit to

either − lnT or 1−A
√
T behavior at low temperatures. In each case the resistivity apparently saturates

with a linear in T law. The U ions in these systems are likely tetravalent so that they are candidates

for the quadrupolar Kondo effect in hexagonal symmetry arising from a non-Kramers doublet. The low
concentration data clearly shows single ion scaling. Kim et al. [1993] argue that in the Ni case there

is a proximity to a spin glass ordering. Nevertheless, given the same crystal structure and the single
ion scaling observed in Th1−xUxPd2Al3, it is clear that these systems deserve further careful study as
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quadrupolar Kondo candidates.

Concentrated non-Fermi liquid Compounds: UBe13, CeCu2Si2, and PrInAg2

UBe13

UBe13 is certainly the most anomalous of the heavy fermion superconductors. We identify the

following set:
(1) The specific heat is very weakly dependent upon magnetic field and highly sensitive to pressure.
The low temperature value is of order 1000 mJ/mole-K2, corresponding to an effective mass of several

hundred free electron masses.
(2) The specific heat still rises with decreasing temperature on entering the superconducting state and

with suppression of Tc by magnetic field continues to rise down to 0.3K (where measurements stop).
This is clear evidence that the superconducting instability does not occur in a Fermi liquid normal

phase.
(3) The magnetic susceptibility is weakly pressure dependent in comparison to the specific heat and

under pressure has a completely different temperature dependence (McElfresh et al. [1993]).
(4) Doping on the U sublattice which drives away the specific heat anomaly leaves the low temperature

susceptibility essentially unchanged.
(5) The magnetization is linear in field up to 20T.
(6) The dynamic magnetic susceptibility reveals no significant structure on the scale of 1 meV as is ev-

idenced in C/T , and instead shows a broad ‘quasielastic’ response on the scale of 15 meV as evidenced
both in neutron scattering and Raman spectra. Concommitant with the peak in χ′′ is a Schottky

anomaly in the specific heat, suggesting that the 15 meV peak represents highly damped crystal field
levels for which further evidence appears in nuclear magnetic relaxation of the 9Be sites. This dynamic

susceptibility peak integrates to give 80% of the static susceptibilty up to the experimental cutoff. This
places a stringent bound on any hypothetical moment carrying state in the low frequency region: given

a 10K Kondo scale, to explain the residual susceptibility the effective squared moment must be less
than 0.25µ2

B which would appear to rule out an interpretation in terms of a 5f3Γ6 ground state.

(7) The electrical resistivity at the superconducting transition is reproducibly large (order 80-100µ−Ω-
cm, and is reversibly suppressed by applied pressure and magnetic field (Aronson et al. [1989], Batlogg it
et al. [1987], Andraka and Stewart [1994]). There is no region in ambient pressure or zero field in which

a T 2 coefficient is visible in the resistivity (rather, a linear in T term is present). In applied magnetic
field, there is some evidence that the resistivity obeys a scaling law ρ(T,H)/ρ(T, 0) ≈ f(H/|T − T0|β)

where β = 1, T0 = 0 (Batlogg et al. [1987]) and β = 0.7, T0 = 0.5K (Andraka and Stewart [1993]) have
been fit to the data.

(8) The muon Knight shift (Luke [1995]), 9Be nuclear Knight shift (MacLaughlin et al. [1983]), and
neutron scattering form factor (Stassis et al. [1985]) show no change upon entering the superconducting

state.
(9) The upper critical field has a large low temperature limit which has been estimated above the Pauli

paramagnetic value in at least one study (though not in others).

Different interpretations of these experimental data abound, most notably that the onset to

superconductivity occurs above the coherence temperature which marks the beginning of well defined
Fermi liquid behavior. We note that even if this is true, the superconductivity occurs in the absence of a

well defined Fermi liquid state so that it is meaningless to use a quasiparticle picture for the description
of the normal phase. We take points (1)-(9) to represent the following picture: heavy fermions arise in

UBe13 in a non-Fermi liquid state (evidenced by points (2) and (6) particularly) which is likely not due
to a magnetic lattice Kondo effect (evidenced by points (1),(3-5),(7,8)) but may potentially arise from

a non-magnetic Kondo effect. The logical candidate is the quadrupolar Kondo effect (Cox [1987b], Cox
[1988a,b], Cox [1993], E. Kim et al. [1996]; see also secs. 2.2.1, 2.2.3, and 5.2).

In this body of theory, it has been established that the quadrupolar Kondo effect can plausibly
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explain the thermodynamic data and dynamic magnetic response measured in NMR, inelastic neutron

scattering, and Raman spectroscopy. In particular, the susceptibility arises from vanVleck processes
(virtual excitations to excited magnetic triplet levels) which have a different physical origin and overall

energy scale than the specific heat coefficient. The low temperature relaxation of the NMR corresponds
to the triplet to non-magnetic doublet peak shown in the schematic vanVleck response of Fig. 71. This

peak has little overall spectral intensity and so is not clearly resolved in neutron scattering data (though
the more recent data of Shapiro et al. [1993] may be showing some evidence for this behavior).

An interpretation of the unusual resistivity in terms of an infinite dimensional two-channel Kondo

lattice picture is given in Cox [1996] (see also Sec. 9.3.2). In particular, it is argued that the finite
resistivity is an intrinsic feature of the two-channel lattice in the absence of an ordering transition due

to the ‘spin-disorder’ scattering off the degenerate many body clouds surrounding each Kondo site (see
secs. 3.4.5, 5.1,6.1.4 for further discussion of this spin-disorder scattering). It is noted that ordinary

Kondo lattice behavior cannot give the observed negative magnetoresistance at low temperature in
this reference and in McElfresh et al. [1993] (where an interpretation of the pressure dependent χ(T )

data in terms of the quadrupolar Kondo effect is given). It is possible that positive magnetoresistance
expected for the ordinary Kondo lattice is obscured by the superconducting transition, but the large

extrappolated residual resistivity goes against this interpretation (essentially the resistivity is already
very close to its T = 0 value by any reasonable extrappolation scheme). The detailed scaling function
predicted by the theory of Cox [1996] does not agree with the experimental data, but this may well be

due to the oversimplifications induced by the infinite dimensional limit.
At this point, one main piece of experimental data is held up as an objection to this point of

view: non-linear susceptibility measurements (Chandra et al. [1993], Ramirez et al. [1994]). response
can be expected, and thus a low temperature positive susceptibility is anticipated which is non-divergent.

The data of Ramirez et al. [1994] show apparently divergent χ(3) curves for both body diagonal and
principal axis fields. This would appear to rule out the quadrupolar Kondo effect. Three concerns may

be raised about the data:
(1) χ(3) measurements on Th doped samples by Aliev et al. [1995a,b] show the anticipated anisotropy

and roughly correct temperature dependence.
(2) There is anisotropy in χ(3) which goes the correct direction: if the body diagonal curve is subtracted
from the principal axis curve, a weakly divergent response may remain.

(3) Points (1,2) suggest that an extrinsic origin to large negative non-linear susceptibility is possible.
Contamination by large moment paramagnetic impurities such as Ho3+ ions can weakly affect the mag-

netic susceptibility (which scales as the effective moment squared times the concentration of impurities)
while dominating the non-linear susceptibility (which would scale as the concentration times the fourth

power of the effective moment). However, this scenario would produce significant sample dependence
to χ(3), while the polycrystalline data of Aliev et al. [1995a,b] fall right on top of that of Ramirez et al.

[1994]. This would appear to argue against extrinsic origin to χ(3).

CeCu2Si2

Careful recent studies of CeCu2Si2 coupled with attention to the ternary phase diagram show

the following (Steglich et al. [1995]):
(1) In the slightly copper rich region which has only a superconducting phase at low temperature and

magnetic field, the specific heat coefficient which has a large slope at the superconducting transition
continues to rise on initial suppression of Tc with magnetic field. This, as for UBe13, argues that the

normal state from which the superconductivity occurs is not a Fermi liquid state.
(2) The normal state has a dominant linear in T resistivity with large (order 30-40 µ − Ω) residual

value. The linear term goes to zero in applied magnetic field while a T 2 term grows, and an appreciable
region over which T 2 behavior is seen in the resistivity opens up at precisely the region where some

kind of field induced magnetic order occurs. The boundary of the T 2 region tracks the boundary of the

251



magnetic order. The linear term in ρ(T ) vanishes at precisely the field where the magnetic order first

arises.

Given the data for La1−xCexCu2.2Si2 discussed earlier in this subsection, it is reasonable to
propose CeCu2Si2 as a candidate magnetic two-channel Kondo lattice system. In terms of the infinite

dimensional resistivity theory used to interpret UBe13 (Cox [1995]; see also Sec. 9.3.2), the low field
behavior is compatible with the non-Fermi liquid behavior expected for the lattice. In higher fields, the
combination of magnetic order with applied field induces a crossover to Fermi liquid physics associated

with the same crossover in the impurity problem (c.f, Secs. 4.2, 5.1,6.1.2,7.2). The crossover scale in the
infinite dimensional theory would track (Hmol+Hext)

2/TK , where Hmol is the molecular field associated

with the magnetic orderand Hext is the applied field. This gives a rough interpretation of the high field
T 2 region in the resistivity.

PrInAg2

This is the first compound studied in a promising program to look for quadrupolar Kondo physics

in lanthanide intermetallics (Yatskar et al., [1996]). In this material, neutron scattering confirms that
the Pr ions are in a Γ3 ground state. The material shows anomalous properties, though not so unusual
as UBe13. The specific heat at low temperatures is large (C/T tends to a low temperature value of

around 6 J/mole-K2!) which is strongly indicative of Kondo effect physics. There is a pronounced region
of − lnT behavior in the specific heat prior to saturation. However, the residual resistivity is clearly

finite, although the low temperature behavior is not quadratic in the temperature. There is no evidence
for long range quadrupolar or superconducting order.

The discovery of the first unambiguous quadrupolar Kondo lattice candidate presents reasons
for theorists like the present authors to feel both excited and challenged. In particular, this result stands

in stark contrast to the d = ∞ calculations discussed briefly above in relation to UBe13 and more in
Sec. 9.3.2, where a residual resistivity is present for the lattice.

A tentative reconciliation of existing theory, data for UBe13, and data for PrInAg2 may
rest upon “banding” effects which are excluded rigorously in infinite dimensions. Namely, for the
quadrupolar(magnetic) two-channel lattice, inclusion of realistic inter-orbital hybridizations leads to a

k-dependent splitting of the spin(channel) states in momentum space, except at special points in the
Brillouin zone (only the Γ point and X point [zone-corner]) for the cubic lattice have degeneracy of the

spin(channel) labels). As argued later in Sec. 9.3.2, these effects manifest in the k-dependence of the
self energy which enters as a 1/

√
d correction. This splitting is of no concern in the conventional single-

channel Kondo lattice where only one band plays a role in the physics. However, in this case, a new route
to Fermi liquid physics is offered: if the self-consistent band splitting is small compared to the lattice

Kondo scale, the system will pass close to the non-Fermi liquid fixed point prior to reaching a ground
state which removes the residual degeneracy of the two-channel Kondo screening clouds. However, if the

renormalized splitting exceeds the two-channel scale, a novel metallic state will be formed in which the
finite paraquadrupolar susceptibility stabilizes the system against quadrupolar/collective-Jahn-Teller
ordering. Of course, if the intersite coupling or strain-quadrupole coupling exceeds the Kondo scale and

banding energy, this will separately cut off the non-Fermi liquid physics. If the Kondo scale exceeds the
intersite strain-quadrupole coupling and banding energy, we create the situation most favorable for the

formation of a heavy fermion superconducting state through odd-frequency staggered pairs.
Regardless, this is an exciting experimental development and offers a number of directions. For

example, PrPb3 is also a cubic system with a Γ3 ground state, but in this case collective Jahn Teller
order does set in at low temperature (Miksch et al. [1982]). However, only about R/2 ln2 entropy

is removed per Pr at below the ordering transition. Moreover, dilution studies might reveal a pure
quadrupolar Kondo ground state in the impurity regime. The study of such Pr based compounds will

be a very interesting new thrust to watch in the coming years.
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Summary Six heavy fermion alloys show non-Fermi liquid behavior for which leading candidates

models are the two-channel quadrupolar Kondo effect for the five U based alloys, and the two-channel
magnetic Kondo effect for the Ce alloy. This picture explains most data but runs up against difficulties

in explaining resistivity data for most of these systems. This picture naturally explains the Ubiquity of
uranium based alloys, since the quadrupolar Kondo model is far easier to obtain than the two-channel

magnetic model (c.f. Secs. 2.2, 3.4.4, 5.3). An intriguing experimental correlation is that five of these
systems become heavy fermion superconductors when the U or Ce sublattice is fully occupied. This
covers the known heavy fermion superconductors excluding UPt3 for which no Th based reference com-

pound exists (with the same crystal structure). Two of the heavy fermion superconductors (UBe13

and CeCu2Si2) have superconducting transitions which occur relative to normal phases which are not

describable in terms of well defined Fermi liquid quasiparticle states. There are promising signs that
UBe13 is describable as a two-channel Quadrupolar Kondo lattice, and CeCu2Si2 as a two-channel mag-

netic Kondo lattice. On the basis of the above discussion, all of these systems warrant further study
to clarify the origin of the non-Fermi liquid behavior and whether its origin is in impurity or lattice

versions of the two-channel Kondo model.
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Figure 109: Quantum dot device (for coulomb blockade). (a) The voltage applied to the shaded areas

localizes the electron states in the area of the dot and the electrode which are connected by the gate.
The gate voltage Vg controls the charge in the dot, while the strength of the link between the electrode

and the dot can be adjusted by the auxiliary potential Va which controls width and the potential height
of the gate. The electronic wave functions are appreciably non-zero only within the solid line. (b) The
area of the gate is enlarged, and the wave function in this region has the form given by Eq. (9.1.2).

9 Related Theoretical Developments

9.1 Related Models

9.1.1 Connection to Coulomb Blockade Physics

The basic idea of the mapping of the coulomb blockade to a multichannel Kondo model hinges on the

ability to view the charge variables as a pseudospin. The dynamical charge fluctuations in a small
metallic particle can be described by a pseudospin if the number of electrons is fluctuating primarily

between two integer values N,N + 1 with all the other charging states neglected. It is precisely this
situation which is called the “coulomb blockade”. The origin of the restriction to two charge states arises

from a proper setting of applied voltage to the metallic particle and a sufficiently small capacitance so
as to create a large charging energy that effectively takes charge states .., N − 1, N + 2, ... off to very
large energies.

Such systems can be fabricated using nanotechnology methods. First, a two-dimensional elec-
tron gas is produced in a semiconductor through quantum well formation. Then additional electrodes

are added on the top of the device to produce potential shifts in the quantum well and “pinch” the
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Figure 110: Average quantum dot charge as a function of bias number N = CgVg/e (c.f. Eq. (9.1.1)).

The solid line is in the limit of zero transmission coefficient, indicating that in this limit where no charge
leakage arises, the charge on the dot is quantized. If N is half-integer, then the charge is not well defined

in this limit. For non-zero transmission amplitude, the number of electrons in the dot can fluctuate, so
that the time average of the charge < Q > deviates from an integer value (dotted line). Further increase

of the transmission amplitude can lead to a complete washout of the charging steps (light solid line).

constriction through which electrons enter the blockade region, as shown in Fig. 109 . The Coulomb

energy in the metallic particle or quantum dot may be expressed in terms of the capacitance C, gate
voltage Vg, and dot charge Q as

(9.1.1) Ec =
Q2

2C
− gVgQ =

(Q− CgVg)2

2C
− Cg2V 2

g

2

where g is a geometric factor. By changing Vg the charge corresponding to the minimal energy is fixed.
This procedure is unique except when CgVg = (N + 1/2)e, where N is an integer. In this case the

Coulomb energies of the N,N + 1 dot charge configurations are degenerate and this gives rise to strong
charge fluctuations between these two states (see Fig. 110 ).

The coupling of the quantum dot to the external electrode is via the link of Fig. 109 which
is characterized by the transmission amplitude T . The number of electrons can fluctuate on the dot,

and if the amplitude T is gradually increased, the charging steps of Fig. 110 can be washed out. This
has been seen experimentally (van der Vaart et al. [1993]; Pasquier et al. [1993]). More sophisticated

arrangements have since been constructed by Molenkamp et al. [1995], Waugh et al. [1995,1996],
Livermore et al. [1996], where two quantum dots connected by a weak are constructed in a similar

manner to Fig. 109. In this case, the charge fluctuation between the two symmetrical dots can be
studied in a very controllable way.

Now we turn to the connection of this system to the multi-channel Kondo model as discussed

by Matveev [1991,1995] and Matveev, Glazman, and Baranger [1996a,b] (see also G. Falci, G. Schön,
and G. Zimányi [1995], where a path integral method is applied). The key idea is again the mapping

to the pseudospin as discussed above. The charge change about the biased value of (N + 1/2)e is then
analogous to the magnetic polarization of a spin impurity, and Vg is analogous to a magnetic field. The

tunneling of electrons into and out of the dot which changes the charge states then plays the role of a
transverse coupling in the spin model, or of the assisted hopping in the TLS Kondo model of Sec. 2.

The capacitance C plays the role of the magnetic susceptibility. As in the TLS and quadrupolar Kondo
effects, the real magnetic spin is a spectator field and gives rise to the channel index. In principle, by

regulating the auxiliary gate voltage Va of Fig. 109, the number of channels can increase beyond two by
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allowing occupancy of more than one transverse sub-band. In this one assumes the wave functions on

either side (electrode or dot) are given by

(9.1.2) ψ(x, y) = φn(y)eikx

with energy En(k) = En + k2/2m∗. However, in practice the fillings of different sub-bands will not be
identical, meaning that channel degeneracy between occupied sub-bands will not be satisfied. Hence, in

contrast to Matveev [1991,1995] and Matveev, Glazman, and Baranger [1996a,b] one can expect that
the condition CgVg = (N + 1/2)e is satisfied for charge fluctuations only in one sub-band, so that the

only stable fix point must be a two-channel one. See also Golden and Halperin [1996a,b].
The main goal of the theory is to calculate the profile of the charging steps shown in Fig. 110

as a function of the transmission coefficient T . Assuming just a single sub-band, the effective model
Hamiltonian has been formulated in Matveev [1991], and is given by

(9.1.3) H = H0 +HT

where

(9.1.4) H0 =
∑

k,σ

εkc
†
kσckσ +

∑

k,σ

εpc
†
pσcpσ +

Q2

2C
+ φQ

and

(9.1.5) HT =
∑

kpσ

[tkpc
†
kσcpσ + h.c.]

with k indexing states on the left of the gate and p states on the right of the link. The matrix element tkp
describes the weak transmission rate across the gate in a way similar the classic tunneling Hamiltonian.
All energies are measures with respect to the Fermi energy. φ in Eq. (9.1.4) is the energy shift due to

the applied gate voltage. Q is the charge on the right hand side (in the dot) measured with respect to
the occupied states, i.e.

(9.1.6)] Q = e
∑

pσ

[c†pσcpσ − θ(−εp)]

such that < Q(φ = 0) >= 0.
To see the presence of Kondo like logarithms in this problem, it is sufficient to carry out per-

turbation theory in tkp to second order. In that case one obtains a logarithmic singularity in < Q > of
the form

(9.1.7) < Q(2) >≈ Ne(0)Nd(0)t2 ln[
|e/2C − φ|
|e/2C + φ| ]

valid for −e/2C < φ < e/2C, where t2 is a suitably energy averaged matrix element, and Ne,d(0) is the
Fermi level density of states for the electrode (e) or dot (d). This result clearly demonstrates that the

perturbation theory breaks down as the steps of Fig. 110 are approached.
Next, Matveev [1991] looked at the region φ = −e/2C + u, with u << e/C. In this case higher

energy charged states can be removed through the use of the projection operators P0, P1 which restrict
to charge Q = 0, 1 (it is clear that an equivalent procedure can be followed for N,N + 1, with N

arbitrary). Then the Hamiltonian becomes

H01 = [
∑

k,σ

εkc
†
kσckσ +

∑

k,σ

εpc
†
pσcpσ][P0 + P1] + euP1
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(9.1.8) +
∑

kp

[tkpc
†
kσcpσP1 + t∗kpc

†
pσckσP0] .

We distinguish two cases here:

(i) Point Contact In this case the transverse (y) dimension of the gate is comparable to the Fermi wave
length 2π/kF so that the transverse part of the wave function φn is always the same, e.g. φ0. In this
case a suitable dimensionless coupling is g = Ne(0)Nd(0)|t|2, where t is the Fermi level value of tkp.

(ii) Wide Junction Limit. In this case the dimension is large compared to the Fermi wavelength and a
large number of transverse sub-bands can contribute (a number of order Mtrans ≈ Ak2

F where A is the

transverse gate area). As mentioned above, however, the equivalence in this limit to a multi- channel
Kondo model with M = 2Mtrans is questionable because the different sub-bands have very different

transmission amplitudes and occupancies.
The Hamiltonian of Eq. (9.1.8) actually has the two-channel Kondo form, assuming just a

single relevant sub-band, as we shall now demonstrate. Replace the indices k, p now by k, α α = ±1/2
corresponding to the electrode momenta (+) or dot momenta (−). By restricting to just the Q = 0, 1

subspace the projection operators can be written in terms of 2× 2 matrices, viz.

H01 =
∑

kασ

εkc
†
kασckασ

(
1 0
0 1

)
+ eu

(
0 0
0 1

)

(9.1.9) +t
∑

kk′σ

[c†k,+,σck′,−,σ

(
0 0
1 0

)
+ c†k,−,σck′,+,σ

(
0 1
0 0

)
]

where we have replaced tkp by the constant value near the Fermi energy. Eq. (9.1.9) can be rewritten

in terms of spin 1/2 or Pauli matrices in the conduction pseudospin space (electrode or dot index α,
denoted by Pauli matrices σi) and the “impurity pseudospin” (charge Q denoted by spin 1/2 matrices

Si) to give the form

(9.1.10) H01 =
∑

kασ

εkc
†
kασckασ + eu(1/2− Sz) +

t

2

∑

kk′αα′σ

[c
†
kασσ

+
αα′ck′α′σS

− + c
†
kασσ

−
αα′ck′α′σS

+]

which has the form of a purely transverse two-channel Kondo bare coupling in a magnetic field h = eu

and transverse coupling J⊥ = t. The channel index is the real magnetic spin index, as in the quadrupolar
and TLS Kondo models. It is worth noting an oddity about this Hamiltonian, which is that the “impurity

spin” enters solely through the Hilbert space restriction to the Q = 0, 1 subspace. This means that
the “impurity” spin is composed from the same electrons which form the dot portion of the continuum
states. This rather odd situation is certainly to be distinguished from TLS, magnetic, or quadrupolar

Kondo effects where the continuum states and impurity pseudospin states form disjoint Hilbert spaces.
Starting with the planar 2Mtrans Kondo model and using either multiplicative renormalization

group methods (Matveev [1991]) or bosonization methods (Matveev [1995]), for u→ 0 one approaches
an intermediate coupling fixed point at temperatures small compared to the Kondo scale

(9.1.11) kBTK = D0(N(0)J⊥)Mtrans exp[
−π

4N(0)J⊥
]

where N(0) =
√
Ne(0)Nd(0),D =

√
DeDd, Di the bandwidth on the electron or dot side. Using the

results from two-channel Kondo theory the average charge is

(9.1.12) < Q > −e/2 ' e ue

kBTK
ln[
kBTK
eu

]

and the effective dot capacitance then

(9.1.13) Ceff =
−∂2Fed
∂u2

∼ 1

TK
ln[
TK
T

]
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for temperatures T ≤ TK , where Fed is the free energy per electron of the electrode-dot system.

In the latter paper (Matveev [1995]), the “tunneling” formulation is avoided by the introduction
of a narrow conducting gate (see Fig. 109(b), where the electronic charge density is determined by

the energy of the electrode and the dot. In this case, the electron energy varies continuously going
through the gate, and therefore the bosonization technique can be applied. In this case the transmission

coefficient can be large, with g of order unity, in which case the smeared step in Fig. 110 is replaced by
a straight Ohmic line that is only slightly modulated near the special integer and half integer charging
values. Considering the theory of the coupled dots studied by Waugh et al. [1995,1996] and Livermore

et al. [1996] we refer to the works Golden and Halperin [1996a,b] and Matveev, Glazman, and Baranger
[1996a,b].

9.1.2 Hopping Models with Several Sites

The concepts of the TLS Kondo model can be generalized to more than two sites, either with the sites

forming a lattice or a cluster. In the first case, a proton or muon hopping between interstitial sites is a
good candidate, while the second may be realized when in a crystalline solid a larger atom is replaced by

a smaller one such that the substituent atom sits in a cavity where several equivalent potential minima
are present. We believe the Pb1−xGexTe described in Sec. 8.1 presents one such example. In amorphous
metals, the formation of three or four almost degenerate sites can be ruled out by the stress due to the

non-uniformity. In contrast, e.g., in Pb1−xGexTe, much less stress is expected because the substituent
atoms provide the disorder (note the recent papers on more than two sites by Zaránd [1996] and by

Moustakas and Fisher [1997]).
The Hamiltonian for the lattice system is given by Eqs. (2.1.37,38) and (2.1.39), where the

heavy particle is created by h†~R at lattice position ~R, and the conduction electrons form a band. The
single heavy particle hops on a lattice, so that its dispersion in the absence of coupling to the conduction

electrons is described by a tight binding band with width proportional to the one site hopping rate. We
use the notation for the momentum space heavy particle operator h†~Q defined by

(9.1.14) h†~Q =
1√
N

∑

~R

e−i
~Q·~Rh†~R .

Electron assisted hopping (see Fig. 9) connects neighbors separated by displacement a~δ where a is the

lattice spacing and ~δ a unit vector assuming the heavy particle hops on a simple cubic lattice.
With this notation, the interaction Hamiltonian described by Eqs. (2.1.38) and (2.1.39) has the

form (Zawadowski [1987])

(9.1.15) Hint ∼
∑

σ, ~Q′+~k′=~Q′′+~k′′+ ~K

[V +
1

2
u
∑

~δ

cos(
~Q′′+ ~Q′

2
· ~δa)]h

†
~Q′′
h~Q′c

†
~k′′σ

c~k′σ .

The non-local nature of the assisted hopping shows up in the second term of that Hamiltonian as a form
factor. The momentum is conserved to within a reciprocal lattice vector. The calculation of the two

second order diagrams for the scattering amplitude shown in Fig 2. can be performed straightforwardly,
and the diagrams to order u2 don’t cancel one another because of the presence of the form factor in

Eq. (9.1.15). Actually, new form factors can be generated. The 2D and 3D cases are very complicated
because an infinite set of couplings is produced in that way. The situation simplifies in 1D because only

one new form factor is generated and the couplings correspond to forward and backward scattering in
the problem of the 1D electron gas. The renormalization results in logarithmic terms where the low
energy cutoff is due to the spontaneous hopping of the heavy particle on the lattice. From that work it

is learned that the form factor of the assisted hopping makes the model non-commutative. The cluster
problem has been discussed recently by Zaránd [1996].
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(a) (b)

Figure 111: Diagrams for Coulomb assisted hybridization of light and heavy particles. At left is the
conduction electron self energy, where the wavy line is the interaction, light lines are conduction elec-

tron propagators, and the heavy line represents the heavy electron propagator. The diagram at right
represents the induced electron-electron interaction brought about by this coupling.

In general, we expect these results to be most relevant to the finite cluster limit because the
sites can be close to each other (on the scale of a lattice spacing) whereas in the lattice the overlap of

the heavy particle wave function from site to site is apt to be very small. It is important to note that
the low energy cutoff here is due do the spontaneous hopping, as mentioned above.

We now turn to the related problem of occupation dependent hopping. These models are given
by the Hamiltonian of Eqs. (2.1.40) and (2.1.41) and by an additional heavy/light particle Coulomb

interaction acting between the light and heavy particle on the same atomic site. The idea is that
in the presence of a light particle, hybridization is assisted between light and heavy particles. The

heavy particle is assumed to correspond to a weakly dispersed electronic band in this case as opposed
to a muon or proton. The advantage of these models is that the heavy particle hybridizes with the
conduction electrons so that the heavy particle wave function overlap does not appear and limit the

physical relevance of the model. The model becomes noncommutative, because the light particle assisted
hybridization has a form factor tγ(~R,~δ) which has a simple Fourier transform proportional to

(9.1.16) t(~k1,~k2;~k3) = tei(
~k1+~k2−~k3)·~δa

if the light particle occupation with spin σ assisted a light particle of opposite spin to hop to a neighboring
heavy site. In Eq. (9.1.16) the momenta ~k1 and ~k2 refer to the annihilated light particles and ~k3 to the

created light particle.
It is quite easy to show that the number of newly generated form factors remains finite on

renormalization, and that their form can be generated from Eq. (9.1.16) by omitting one, two, or
all three of the momenta in that form factor. (The situation is somewhat different if the Coulomb

interaction takes place on neighboring sites.) The vertex equation for this problem can be solved in the
leading logarithm approximation, and results in an enhancement of the bare assisted hopping. There

is a low energy cutoff in this problem set by the heavy particle energy εh (measured with respect to
the fermi energy). This parameter is crucial, as it can be shown that is not renormalized to zero upon

scaling of the bandwidth. This therefore cuts off the logarithmic divergence of the vertex function. The
attractive feature of the model is that a mass enhancement of the conduction electrons together with a
strong anisotropic pairing interaction are generated from this relatively simple source, namely, angular

dependent form factors in the interaction matrix elements. Typical diagrams are shown in Fig. 111.
An interesting competition arises between the mass enhancement and the superconductivity. The

highest Tc for superconductivity from this mechanism can be obtained when m∗ ' 2me. Much higher
mass enhancements can be obtained, but in that case the superconductivity is essentially suppressed to

zero temperature as the wave fucntion renormalization z << 1 (Penc and Zawadowski [1994]). We note
that these Coulomb assisted hopping models may be considered in dilute or lattice limits, and may be

of relevance for those heavy fermion systems in which the f -level is close to the Fermi energy (on the
scale of εh/EF ≤ 0.1, say), or for those superconducting compounds in which atomic orbitals are near

the Fermi energy and are weakly hybridized with the conduction electrons so that they form a heavy
band (Zawadowski [1989b,c]).
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Finally, we discuss the related impurity model proposed by Giamarchi et al. [1993]. The model

Hamiltonian is

(9.1.17) H =
∑

k,l

εkc
†
klckl +

t√
Ns

(c
†
koh + h†cko) +

1

Ns

∑

kk′l

Vl(c
†
klckl − 1/2)(h†h− 1/2)

where the operator c†kl creates a spinless conduction electron in angular momentum state l about the
impurity with radial momentum k, and h† creates a “heavy” particle at the impurity site. The hy-

bridization is assumed to occur only in one of the angular momentum channels (l = 0), but the Coulomb
screening takes place between all the channels with the impurity. Because of the large number of chan-

nels, it turns out the an electron can be confined to the impurity orbital as T → 0, and this gives
rise to non-Fermi liquid behavior. Clearly this model is much simpler than the previous ones, because

the interaction term has no form factors and is therefore commutative. The attractive feature of the
non-Fermi liquid behavior is, however, limited to the situation when the localized orbital sits precisely

at the Fermi energy. As soon as one shifts it off by energy εh, the logarithms are cut off and Fermi liquid
behavior is recovered. Unfortunately, just as in the previous model, the energy εh is not renormalized

upon scaling (Zawadowski and Zimányi [1995]). Physically it is hard to accept that accidentally small
values of εh/EF are likely to occur.

In conclusion, it can be said that the impurity models of this type are attractive only if the

couplings are noncommutative so that they can be enhanced by the logarithmic terms in perturbation
theory. However, due to the infrared cutoff imposed by εh, they are not good candidates to describe

non-Fermi liquid systems.

9.1.3 Application of Two-Channel Models to the Cuprate Superconductors

Emery and Kivelson [1993,1994] have proposed a number of other models for realizing the two-channel
Kondo effect in the context of explaining marginal fermi liquid theory in the cuprate superconductors.

We shall briefly mention here two of them, both of which hinge critically upon the idea of phase
separation in the cuprates.

First, the idea came of a quantized hole running in a bound state around the boundary of a
region of short ranged magnetic order. The idea is to think of the orbital moment of the hole as the
longitudinal component of the pseudo-spin. A counter-clockwise traversal of the boundary would count

as an up-pseudo-spin, and a clockwise traversal would count as a down pseudo-spin. A mobile electron
outside the domain can flip the orbital moment of the hole. Since the real spin of the electron is a

spectator, this is argued to map to a two-channel Kondo problem.
A second realization is that of a small region of segregated holes. If a motion of the region can

be triggered by a passing carrier, there will be a net flip of an electrical dipole moment. Because the
electric dipole moment is independent of the magnetic spin of the carrier, this again is expected to map

to a two-channel Kondo problem.

9.2 Majorana Fermion Approach to the Two-Channel Model

Coleman and Schofield [1995] and Coleman, Ioffe, and Tsvelik [1995] have developed an alternative

approach to the two-channel model using Majorana fermions to represent the conduction electrons.
The mapping to the two-channel model rests upon introducing a single channel model in which the
impurity spin couples not only to the conduction electron spin but also their isospin or axial charge.

This introduction of Majorana fermions has some of the same flavor as the approach of Emery and
Kivelson [1992] and Sengupta and Georges [1994]; in particular, the residual entropy, logarithmically

divergent specific heat and susceptibility, and marginal local dynamic susceptibility emerge from the
presence of a decoupled local Majorana degree of freedom. However, in contrast to the bosonization

route, (i) no exchange anisotropy is introduced, (ii) the Majorana fields emerge immediately at the initial
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stages of calculation, and (iii) the non-trivial fixed point, rather than being at intermediate coupling

strength, is shoved off to strong coupling. This has an advantage in that while the intermediate coupling
fixed point is not accessible to any finite order perturbation theory schemes, an explicit perturbation

theory may be set up about the strong coupling fixed point in powers of the hopping over the exchange
integral.

The non-trivial physics then emerges from the undispersed local Majorana fermion, which may
be viewed as a bound state of three other Majorana fermions. This method has been used to lend
support to the idea that the channel anisotropic two-channel model is in fact a non-Fermi liquid in

contrast to conformal field theory and numerical renormalization group results but in agreement with
Bethe-Ansatz calculations. The particular representation of the model in terms of spin and isospin does

not generalize to the two-channel Kondo lattice; however, a lattice extension does exist and we shall
discuss that later in this subsection.

The primary approach is outlined in the paper by Coleman, Ioffe, and Tsvelik [1995] and we
shall follow their arguments here. The first step is to write down the following Hamiltonian for a single

channel of conduction states, restricted to a one-dimensional chain assumed to represent the radial
quantization discussed for the NRG and CFT approaches:

(9.2.1) H = it
∑

n,σ

[c†σ(n+ 1)cσ(n)− h.c.] + J ~SI · [~σc(0) + ~τc(0)]

where σc(0) is the conduction spin density at the origin where the impurity sits, and τc(0) is the isospin

density. Because the low energy spin and isospin degrees of freedom decouple, correlation functions
of the two-channel model involving conduction spins from each channel are completely equivalent to

correlation functions of the model specified by Eq. (9.2.1) where one of the channel spins is replaced
by spin, the other by isospin. This equivalence may be established formally, and is done so in an

appendix to Coleman, Ioffe, and Tsvelik [1995]. The authors call this a “compactified” Hamiltonian
in that uncoupled degrees of freedom are removed; this jargon does not refer to the application of
compactification of dimensions used in string theory.

An unusual aspect of Eq. (9.2.1) is that the analogue to overcompensation of the two-channel
model is not possible at any finite coupling strength because in view of the Pauli principle it is impossible

to have both maximal spin and isospin at a given site. As a result, the nontrivial coupling fixed point is
pushed off to infinite coupling strength. Practically, this corresponds to a change of the cutoff procedure;

because only the first two perturbative terms in the beta function are universal in form, higher order
terms can shift the fixed point coupling around. The particular choice here shifts it to infinity.

The next step is to replace the conduction electrons by Majorana fermion variables. An explicit
representation in terms of “scalar” and “vector” Majorana variables is

(9.2.2) (c†↑(n)c†↓(n)) = (0i)
1√
2

(Ψ(0)(n)− i ~ψ(n) · ~σ)

where ~σ are Pauli matrices and the Ψi (i = 0, 1, 2, 3) obey the Majorana anticommutation relations

(9.2.3) {Ψ(i),Ψ(j)} = 2δij .

In terms of these Majorana variables, the spin plus isospin combination of Eq. (9.2.2) may be written
as

(9.2.5) ~σc(n) + ~τc(n) = −i~Ψ(n)× ~Ψ(n) .

The i = 0 Majorana component has the interpretation of a ‘charge’ degree of freedom, and the i = 1, 2, 3

components make up a ‘spin’ vector.
Since the coupling flows towards infinite strength, the fixed point Hamiltonian at zero temper-

ature is simply

(9.2.6) H∞ = −iJ ~Simp × (~Ψ(0)× ~Ψ(0))
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which has a two fold degenerate ground state corresponding to either a net spin singlet or isospin singlet

(in this model the impurity has the rather bizarre feature of either playing the role of spin or isospin).
The degeneracy is implied by the presence of the Majorana fermion operators Ψ(0) and

(9.2.7) Φ = −2iΨ(1)(0)Ψ(2)(0)Ψ(3)(0) ,

both of which commute with the fixed point Hamiltonian. Application of the complex fermion combi-
nation ζ = (Ψ(0)(0)− iΦ)/

√
2 will allow one to flip back and forth between the spin and isospin singlet

states. The excited states of this Hamiltonian are spin and isospin triplet states.
Adding the hopping back in to the nearest neighbor site on the chain, one may admix singlet

and triplet states of the strong coupling Hamiltonian. If one eliminates the virtual triplet fluctuations
through a canonical transformation that projects to the singlet levels, the resulting effective Hamiltonian

is, for the ‘spin’ sector

(9.2.8) H∗ = it
∞∑

n=1

~Ψ(n+ 1) · ~Ψ(n) + αΦΨ(1)(1)Ψ(2)(1)Ψ(3)(1)

where α = 3t3/4J 2, and the now strongly coupled state at the origin is explicitly excluded. The form of

the interaction term in this Hamiltonian is very similar to that of Eq. (6.2.20) introduced by Sengupta
and Georges [1994] within the Emery and Kivelson [1992] bosonization approach. The Φ fermion of Eq.
(9.2.8) plays the same role as the â fermion of Sengupta and Georges [1994], and as a result contributes a

residual ‘half’ degree of freedom to the entropy. Indeed, perturbation theory in α about the fixed point
may be carried out, and the diagrammatics are precisely analogous to the work of Sengupta and Georges

[1994], so that χ(T ), C/T are second order in Φ and diverge logarithmically with the temperature, and
have a Landau-Wilson ratio of 8/3. Moreover, (i) the mixed susceptibility in which one line is a Φ

propagator and the other a Ψ propagator is marginal in form (Varma et al. [1989]), and the calculation
is completely analogous to that of Eq. (6.2.38); (ii) the self energy of the Ψ fields is ‘marginal’ (Varma

et al. [1989]) in that ΣΨ(ω, T ) ∼ −ω ln(ω/ωc) + imaxω, T and the calculation is precisely analogous to
that of the ‘spin’ fermion self energy of Emery and Kivelson [1992] (see Eq. (6.2.42)); (iii) the self energy

of the Φ fermion is regular, with an imaginary part that vanishes as T 2. It is this quasiparticle-like
sharpness to the Φ state which supports the marginal behavior at low temperatures.

Coleman, Ioffe, and Tsvelik [1995] then extend the model in two different ways. First, they

notice that the original Hamiltonian enjoys an O(3) symmetry. A well regulated large N expansion
may be obtained when this is extended to O(N). For even N , the Ψ self energies are analytic, while for

odd N they are non-analytic. However, no divergent thermodynamic properties arise apart from the
physical case N = 3.

Second, they extend the model specified by Eq. (9.2.8) to the lattice, and note that the Φ
fermions of each site will acquire a dispersion in the lattice which will lift the residual entropy and

induce a crossover from the non-Fermi liquid state; the estimated crossover scale is α2/t which is of
the order of the induced φ hopping through the Ψ fermions. This lattice generalization is not the same

as the two-channel Kondo lattice model, but nonetheless offers a potential theoretical playground for
understanding non-Fermi liquid behavior in a lattice model.

Coleman and Schofield [1995] have also considered the situation in which the spin and isospin

channels of Eq. (9.2.1) are not identical, which then simulates the channel spin anisotropy of the original
two-channel Kondo model. They find within this formalism that channel anisotropy may not drive the

physics to a Fermi liquid fixed point. This possibility was anticipated by Andrei and Jerez [1995],
who suggested that marginal operators could allow a flow to a line of Non-fermi liquid fixed points

in the overcompensated model with exchange anisotropy, but called for further studies of asymptotic
correlation functions to support or refute this conjecture. This consideration does not at all affect the

thermodynamics presented by Andrei and Jerez [1995].
The parent O(3) symmetric Anderson model which maps to this compactified Kondo model in

the limit of large Coulomb repulsion has recently been studied with the numerical renormalization group
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by Bulla and Hewson [1997]. They find that the calculated properties are indeed in agreement with

those of the two-channel Kondo model, but rather than a non-Fermi liquid fixed point in the presence
of spin/isospin symmetry breaking (analogous to channel anisotropy for the two-channel model) the

crossover is to a Fermi liquid fixed point. These NRG results are independent of the Coulomb repulsion
U in the O(3) Anderson model, indicating that the correspondence to the non-fermi liquid fixed point

has greater validity than anticipated by Coleman and Schofield [1995]. This has been further confirmed
by weak and strong coupling perturbation studies by Bulla, Hewson, and Zhang [1997].

Finally, Schofield [1997] has shown that the Emery-Kivelson bosonization (Emery and Kivelson

[1992]) can be easily extended to yield a description in terms of the compactified or σ−τ model, further
cementing the equivalence of this formulation to the two-channel model.

9.3 Steps Toward the Lattice Problem

In this last subsection, we will briefly overview the steps made to extend the theory of impurity models
to the lattice. These steps consist of studies of two impurity single- and two-channel Kondo models,

which we discuss in Sec. 9.3.1, and approaching the problem from the d = ∞ limit (d the spatial
dimensionality) which we discuss in Sec. 9.3.2.

9.3.1 Two Impurity Model

The two-impurity Kondo model has proven to be a source of non-Fermi liquid physics in both the one-

and two-channel cases. It is of interest to review the one-channel model first, both to set the tone of
the discussion and to note a strong similarity between a non-trivial fixed point of that model with the
two-channel one-impurity model, first stressed by Gan [1995b]. Following that, we shall overview the

more complex physics of the two-impurity two-channel Kondo fixed point.
For both the one- and two-channel models, a competition results between the Kondo effect and

the intersite impurity coupling (RKKY interaction). For antiferromagnetic RKKY interaction, non-
trivial non-Fermi-liquid fixed points develop for particle-hole symmetric limits of the models. For the

one-channel model, a single (unstable) non-trivial fixed point emerges, while for the two-channel model
an entire sheet of non-trivial fixed points emerge with continuously tuneable exponents. However, in

the case of the single-channel model, the non-trivial fixed point is removed with particle-hole symmetry
breaking associated with asymmetry of the density of states about the Fermi energy or the addition of

potential scattering. It is not yet clear whether the manifold of fixed points is removed in the two-channel
model, but the bias based upon the one-channel results is that it is removed.

(1) One-Channel Two Impurity Model

The Hamiltonian for this model is simply

(9.3.1) H =
∑

~kσ

εkc
†
~kσ
c~k,σ + J

∑

j=1,2

~SI(~Rj) · Sc(~Rj)

where j indexes the site of the two impurities. Although at second order in J , RKKY interactions
between the impurities will be generated, a “bare” interaction term −I0

~SI(~R1) · ~SI(~R2) is often added

to Eq. (9.3.1) to allow for greater tuneability of the model parameters (with this convention, I < 0
is antiferromagnetic). This model possesses a non-trivial fixed point for suitably defined particle hole

symmetry at antiferromagnetic RKKY coupling, as was first identified by Jones and Varma [1987,1989]
and subsequently characterized by Jones, Varma, and Wilkins [1988].

It is convenient to project the conduction electrons into local channels which are of even and
odd parity about the midpoint of the line between the two impurities. It is only these states which

couple to the impurity. The projection allows for a reduction to an effective one-dimensional problem
analogous to that of the two-channel model as outlined in Sec. 6.1. Assuming a symmetry conduction
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band of width 2D, the projected local annihilation operators are (Silva et al. [1996])

(9.3.2) c0σ± = A±

∫ D

−D
dε

1

Ns

∑

~k

δ(ε− εk)[ei
~k·~R1 ± ei~k·~R2]c~kσ

= A±
∫ D

−D
cεσ±

√
1± sin kR12

kR12
dε

where A± is a normalization constant, R12 = |~R1 − ~R2| and +(-) indicates even(odd) parity about the

inversion center. Note the correspondence to the operators for the TLS defined in Eq. (A.2.5a,b) of
App. II (also, the ± corresponds to the e(o) labels of Moustakas and Fisher [1995,1996]). Defining the

square-root factor in Eq. (9.3.2) by N±(E)/A±, it is possible to write the exchange interaction term of
Eq. (9.3.1) as (Affleck, Ludwig, and Jones [1995])

(9.3.3) Hint =
J

4
[~SI(~R1) + ~SI(~R2)] · (

∑

p=±,µν
~σµν)

∫ D

−D
dε

∫ D

−D
dε′Np(ε)Np(ε

′)c†εµpcε′νp

+
J

4
[~SI(~R1)− ~SI(~R2)] · (

∑

p=±,µν
~σµν)

∫ D

−D
dε

∫ D

−D
dε′Np(ε)N−p(ε

′)c†εµpcε′ν−p .

As stressed by Affleck, Ludwig, and Jones [1995] and more recently, in the context of the TLS

Kondo effect by Zawadowski et al. [1997], there are two kinds of particle-hole symmetry relevant to
such a two-site quantum impurity problem. First (Type I), we require that

(9.3.4) Np(E) = Np(−E) and cεµp → (−1)1/2−µc†−εµp

which preserves the parity index. This simply says that the local parity projected densities of states are

invariant under inversion about the Fermi energy. Another kind of particle-hole transformation (Type
II) corresponds to the mapping of electron minima to hole maxima for a nearest neighbor tight binding

model (under which ~k → ~k+ ~Q/2, where Q = π(111)/a in three-dimensions). In this case, parity labels
get interchanged and the symmetry is specified by

(9.3.5) Np(−E) = N−p(E) and cεµp → (−1)1/2−σc†−εµ−p .

It turns out that by considering, for example, a two-impurity Kondo model on a nearest neighbor
lattice in one dimension, that if the two sites differ by an odd number of lattice spacings, the model

is invariant under type II symmetry, while for an even difference in the number of sites, the model is
invariant under type I symmetry (Fye and Hirsch [1989]; Fye [1994]; Affleck, Ludwig, and Jones [1995]).

In this particular model, the induced RKKY couplings will be antiferromagnetic for odd separation
and ferromagnetic for even separation. Affleck, Ludwig, and Jones [1995] further note that potential

scattering will break Type I particle-hole symmetry but not type II particle-hole symmetry. In this
sense, Type I particle-hole symmetry places a stronger constraint on the model.

In the presence of particle-hole symmetry of Type I, Millis, Kotliar, and Jones [1990] have

given the following argument to explain the existence of a non-trivial fixed point: for zero total RKKY
interaction strength (bare+induced), the ground state will be characterized by the independent impurity

fixed point (two isolated and screened Kondo impurities). This is a stable fixed point (there are only
irrelevant operators about it), and the phase shift in each parity channel is π/2. On the other hand,

for infinite antiferromagnetic RKKY coupling, the local moments are quenched into a singlet with no
dynamics remaining, and the phase shift for scattering off of the extended singlet is zero in each channel.

This fixed point is also stable for Type I particle-hole symmetry (no relevant or marginal operators about
the fixed point). They also showed that these two possible phase shift values, zero or π/2, are the only

allowablve values in the presence of Type I particle-hole symmetry. In consequence, as a parameter
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Figure 112: Phase diagram of the two-impurity Kondo model with full particle-hole symmetry. For

I → −∞, the system goes to the local singlet fixed point, which is a Fermi liquid, in which the local
moments just lock out in a singlet. For I = 0, the local moments each are Kondo compensated (this

is actually extended to positive I < ∞). Most striking is the non-trivial unstable fixed point for
antiferromagnetic RKKY interaction strength I/TK ≈ −2.3. After Jones and Varma [1987,1989].

such as the intersite coupling strength tunes one between the independent impurity fixed point and

the antiferromagnetic singlet fixed point while Type I symmetry is enforced, there must be a point
arising in which the phase shift jumps discontinuously between 0 and π/2. This implies a critical point

separating the stability regimes of the two different fixed points along the axis of the intersite coupling
(normalized to the one impurity Kondo scale). The renormalization group flow diagram for this model

is shown in Fig. 112 in terms of the total intersite coupling I = I(J) + I0 where I(J) is the induced
RKKY coupling strength (measured in units of the Kondo scale). (Note that for infinite ferromagnetic

I the odd channel drops from the problem, and the model maps to the single channel spin 1 Kondo
impurity model, while in general for ferromagnetic I <∞, a two-stage Kondo quenching occurs of the
net impurity spin (first even and then odd, or vice-versa), as first envisioned by Jayaprakash, Krishna-

murthy, and Wilkins [1980]. The universality class of the successive quenching model is the same as the
two isolated impurities fixed point.)

The original NRG work of Jones and Varma [1987,1989] and Jones, Varma, and Wilkins [1988]
together with the CFT calculations of Affleck and Ludwig [1992] and Affleck, Ludwig, and Jones [1995]

confirms that the critical point is characterized by a second order transition, at which the staggered
susceptibility, specific heat coefficient, and local pair field susceptibility in the spin singlet sector diverge

logarithmically. Moreover, the residual entropy is (R/2) ln2 and the Fermi level scattering rate is at half
the unitarity limit. These results have a strong similarity to the results for the two-channel one-impurity

model. It should be noted that the original NRG work was based upon an “energy-independent” coupling
constants approximation. Namely, the coupling strengths in Eq. (9.3.3) were set to their Fermi level
values and the energy dependence ignored. This manifestly introduces full particle-hole symmetry and

thus to a critical point of some sort (as explained in the preceding paragraph), although the non-trivial
fixed point was an unexpected result (instead a simple level crossing could have resulted).

Gan [1995b] has proposed that this critical point is very similar to the two-channel one-impurity
non-trivial fixed point. The idea is that the critical point is identified by a doubly degenerate ground

state in each case. For the two-channel fixed point, the ground state has a double degeneracy in spin.
For the two-impurity one-channel fixed point, the double degeneracy corresponds to a level crossing

in a finite size spectrum. The levels roughly are described by the isolated Kondo singlets on the one
hand, and the extended singlet on the other hand. The level degeneracy is lifted by the deviation of the

RKKY coupling from the critical value, and in this sense the RKKY coupling plays exactly the same
role as a spin field in the two-channel Kondo model, so that for I − Ic 6= 0, the specific heat coefficient
and staggered susceptibility diverge as (I − Ic)−2, similar to the 1/H2

spin divergence for the two-channel

one impurity model.
To understand why the mapping breaks down, it is helpful to mention a few details of the CFT

approach to the model as explained in detail in Affleck and Ludwig [1992], and Affleck, Ludwig, and
Jones [1995]. They first consider a free fermion theory. For each parity channel of the free theory, when

full particle-hole symmetry is maintained, there is a global conservation of SU(2) axial charge or isospin
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(as defined in Secs. 4 and 6.1) and the SU(2) spin symmetry. Hence, the total free field symmetry

group may be taken to be SU(2)iso,+ ⊗ SU(2)sp,+ ⊗ SU(2)iso,− ⊗ SU(2)sp,−. The conformal charge
of this theory provides a dimensionless measure of the numbers of degrees of freedom present in the

Hamiltonian (it is technically defined in terms of the commutation relations of the Fourier transforms of
the real space Hamiltonian density, which obey the so-called Virasoro algebra when conformal invariance

holds–a complete discussion is beyond the scope of this paper–we refer the reader to Affleck, Ludwig,
and Jones and references therein). Each of the SU(2) spin and isospin currents obey the level k = 1
Kac-Moody algebra (c.f. the discussion of Sec. 1), and each has a conformal charge of c = 1, so that

the total conformal charge of the effective one-dimensional model is ctot = 4.
Now, the presence of the impurities breaks the SU(2)sp,+ ⊗ SU(2)sp,− spin symmetry into a

global SU(2) spin symmetry. The impurities do nothing to the isospin symmetry, provided we maintain
full particle-hole symmetry. If the Kac-Moody commutation relations are computed for these currents

one finds that the level is k = 2. For a general k-level KM algebra, the conformal charge of the resulting
Sugawara Hamiltonian density quadratic in the KM currents is c = 3k/(k + 2). Thus for example, for

k = 1 we recover c = 1 as claimed above, while for k = 2 we obtain c = 3/2. This means that the
sum of conformal charges for isospin and global spin currents is c′ = 7/2. However, the representation

in terms of the global spin current can be done for the free Hamiltonian which implies that we are not
counting all the degrees of freedom (or else we would obtain c′ = ctot = 4).

The missing conformal charge is c = 1/2. There is a unique, unitary conformal theory with

conformal charge c = 1/2, and it is the Ising model. Hence, quite surprisingly, the remaining degrees of
freedom obtained after coupling to the impurities and preserving maximal isospin and spin symmetry

are that of the Ising model! As an example, in terms of the primary i = 1/2 field hp of the k = 1 isospin
algebra, the j = 1/2 field gµ of the SU(2) k = 2 spin algebra, and the order parameter field σ of the

Ising model, the one-dimensional fermionic operators are given by

(9.3.6) ψµp(x) ∼ (hp)1gµσ

where the 1 on the hp field denotes the first component of the spinor field and the i is the species
label. The creation operator would pick out the second component of the isospin spinor doublet. This

operator has a scaling dimension of 1/2 since ∆h = 1/4, ∆g = 3/16, and ∆σ = 1/16 add up to 1/2.
Affleck and Ludwig [1992] first noticed that the non-trivial fixed point of this model admits

a very large SO(7) symmetry. Gan [1995a], proposed that this SO(7) symmetry can be understood
from writing a Majorana fermion representation of the full model. The full free theory has an SO(8)

symmetry in this representation as discussed in Sec. 6.3 (Maldocena and Ludwig [1996]). In Gan’s
[1995a] approach, a single Majorana fermion is decoupled by the impurity leaving behind a global

SO(7) symmetry to the remaining free Majorana fields. It is apparent from the consideration of these
paragraphs, that a full mapping of the two-channel one-impurity model to that of the two-impurity

one-channel non-trivial fixed point (at particle-hole symmetry) cannot be established–the symmetries
of the problems are simply too different.

It is unlikely that this non-trivial fixed point will be generically relevant to the understanding of

experimental data for heavy fermion or TLS materials, although it is possible that for some systems a
crossover region may exist regulated by the properties of this fixed point. As shown in detailed studies

by Jones [1991], the addition of simple potential scattering induces a line of Fermi-liquid fixed points
between the two isolated impurity fixed point and the antiferromagnetic fixed point, with continuously

varying phase shifts. In extensive Quantum Monte Carlo studies, Fye [1994] found no evidence for the
non-trivial fixed point in nearest neighbor tight binding models both in one- and three-dimensions. In

retrospect, this is related to the breaking of Type I particle-hole symmetry in his calculations. Finally,
Silva et al. [1996] have performed an extensive series of NRG calculations in which no approximation

is made for the energy dependence of the couplings. They do not find the non-trivial fixed point when
they consider only the two impurity Kondo model (with I0 = 0), but they do find that they can get
close to the non-trivial fixed point by shrinking the bandwidth parameter ∆ = vFkF ; this has the effect
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of dynamically restoring particle hole symmetry. Further, they find that they can scale all of their

data for specific heat coefficient and uniform susceptiblity onto common curves as a function of the
bandwidth parameter and fixed impurity separation. The specific heat curve is sharply peaked as a

function of RKKY interaction strength (tuned by J and ∆) which indicates that at least for sufficiently
small asymmetry, it is in principle possible to observe a specific heat peak due to the proximity to the

non-trivial fixed point.

(2) Two Impurity Two-Channel Model.

To define the two-channel two-impurity model, we simply augment the conduction bands of Eqs.
(9.3.1,9.3.2,9.3.3) by channel indices. The phase diagram for ground states of this model, obtained

from NRG calculations under the assumption of energy independent coupling constants, is shown in
Fig. 113., taken from Ingersent, Jones, and Wilkins [1992], and Ingersent and Jones [1994] (see also

Jones and Ingersent [1994]). The most salient features are arguably:
(i) an unstable non-Fermi liquid fixed point at the origin, corresponding to the isolated impurities–we

should not be surprised that the isolated impurity fixed point is unstable, as the Kondo spin clouds
around each two-channel site must eventually feel each other for T → 0 since the length scale of the

two-channel clouds is divergent (this is not the case for the one channel model);
(ii) stable Fermi liquid fixed points for sufficiently large difference between even and odd exchange cou-
pling strengths;

(iii) a complete manifold of non-Fermi liquid fixed points for antiferromagnetic intersite spin coupling,
with a marginally stable line marking the leftmost boundary of this manifold.

We shall now discuss points (i-iii) in order.
The instability of the isolated two-channel one-impurity fixed point is often simplistically pointed

to as evidence of the irrelevance of the single impurity model to any realistic description of heavy fermion
or TLS materials. The difficulty with this simplistic argument is that it ignores the quantitative aspect

of crossover: namely, while the fixed point is unstable, it may still regulate the physics over a large
parameter range for sufficiently small values of the intersite coupling strength and even-odd coupling

difference. Indeed, as discussed in Sec. 8.2, the apparent single ion physics present for Th1−xUxM2Si2
(M=Ru,Pd) suggests that over a wide temperature range the two-channel one impurity fixed point
governs the low energy scale excitations until some interaction physics enters (in this case, well below

1K for the concentrations studied). At issue then is the need for quantitative estimate of the crossover
temperatures and exponents for this model.

In addition to the intersite interaction strength, the two-impurity two-channel model has an
additional relevant parameter, which is the asymmetry between even and odd coupling strengths, with

Jp(0, 0) = JNp(0), p = ±. The understanding of this is as follows, argued for the case of zero intersite
spin interaction: if Je differs from Jo, then there are sufficient conduction degrees of freedom to fully

screen the spin for either channel, so whichever couples most strongly will simply drive the system to
the stable isolated impurity fixed point of the single channel Kondo model, a Fermi liquid fixed point.

We note that this crossover is related to the “banding” of the electrons, in that we cannot retain two-
fold degenerate bands at all points of the Brillouin zone for the full two-channel lattice. Here we are
seeing that fact reflected by the generic difference of even and odd coupling constants in the two-point

Brillouin zone of the two-impurity model. As noted in Sec. 8.2, this banding effect may be relevant for
understanding the unusual behavior of the quadrupolar Kondo lattice candidate PrInAg2 (Yatskar et

al. [1996]).
A fortunate point about the crossover to Fermi liquid behavior for non-zero Je − Jo is that the

crossover exponent is extremely small. Specifically, the crossover temperature identified from the NRG
(Ingersent and Jones, [1994b]) is found from |Je − Jo| ∼ T∆eo which gives a scale Teo ∼ |Je − Jo|1/∆eo.

Numerically, it is found ∆eo ≈ 0.1! This implies that unless |Je − Jo|/Je ≈ 1, the crossover is extremely
slow.

Finally, we turn to the manifold of fixed points. Georges and Sengupta [1995] have developed a
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Figure 113: Phase diagram of the two-channel, two-impurity Kondo model. Relevant parameters are
the RKKY coupling strength (measured in units of the Kondo scale) and the even-channel/odd-channel

exchange asymmetry (vertical axis). Most striking is the marginal sheet for negative RKKY coupling.
From Ingersent and Jones [1994].
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complete conformal field theory (in concert with Abelian bosonization) for the particle-hole symmetric

model, which properly displays continuously tuneable scaling dimensions to the primary field operators
as the intersite coupling strength is tuned, indicating that the intersite interaction is a marginal param-

eter in the theory. This theory is considerably more complex than that of the one-channel two-impurity
model, and we shall not go into details here. Suffice to say, as for the two-impurity one-channel model, it

is a matter of concern whether the non-trivial fixed point manifold is robust to the lifting of particle-hole
symmetry.

9.3.2 d =∞ Limit

Given the very interesting data on UBe13 and CeCu2Si2, it is worth studying the properties of the two-
channel Kondo lattice. One regime where this can be carried out rigorously is in the limit of infinite

spatial dimensions where the lattice problem becomes a self-consistent impurity problem.
Key Ideas of the d→∞ limit

The procedure for going to the infinite dimension limit is by now well known and has been discussed
extensively in the original works of Metzner and Vollhardt [1989] and Müller-Hartmann [1989] as well as

two recent review articles by Pruschke et al. [1995] and Georges et al. [1996]. There are two key ideas,
which we illustrate for simplicity on a hypercubic lattice assuming a nearest neighbor tight-binding

model for the conduction electrons.
First, the energy dispersion relation in d dimensions is

(9.3.7) ε~k = −2t
d∑

i=1

coskia

where t is the tight binding matrix element and a is the lattice constant. This can be viewed as a sum of

random variables, each distributed on the interval [−2t, 2t]. Accordingly, the density of states must take
a Gaussian form as d→ ∞ by the central limit theorem. The width of the Gaussian is

√
2dt = t∗. To

have a sensible density of states in the limit, we obviously should hold t∗ fixed, which means t ∼ 1/
√
d.

This scaling immediately implies that the self energy becomes purely local in this limit, as we

illustrate in Fig. 114 for the two-channel Kondo lattice model. This illustrates a contribution to the
conduction electron energy in real space. If the sites i and j are identical, the diagram plus all higher

order ones will be non-zero. However, suppose i 6= j. Then the real space conduction propagator
G(i, j, ω) ∼ t||i−j||, where ||i − j|| measures the minimal number of nearest neighbor hops required
to connect sites i, j. Because three intersite propagators appear in the diagram and t ∼ 1/

√
d, then

clearly this self energy contribution scales as d−3||i−j||/2 as d→ ∞. Note that for when i, j are nearest
neighbors we get the largest contribution, and when Fourier transformed this will give a momentum

space contribution scaling as 1/
√
d.

Because the self-energy becomes purely local, the problem is reduced to an effective impurity

problem. Specifically, one picks a single site (say i) which is called the impurity. One makes an initial
guess for the “medium” propagator G̃c(i, i, ω), i.e., the conduction propagator for a lattice with this site

plucked out. One solves then for the self energy of the conduction electrons by an appropriate impurity
method (e.g., quantum Monte Carlo or the NCA), and constructs an estimate for the local propagator

through

(9.3.8) Gc(i, i, ω) =
1

Ns

∑

~k

1

ω − εk + µ − Σ(ω)

where Ns is the number of sites, and µ is the chemical potential. This equation crucially illustrates the

self consistency required to solve the lattice–the same self energy which enters the momentum space
propagator enters the local propagator. The new estimate for the medium propagator is given by

(9.3.9) G̃c(i, i, ω) = (Gc(i, i, ω)−1 + Σ(ω))−1
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Figure 114: Self energy diagrams for the two-channel Kondo lattice for d = ∞. A dashed bubble

represents a local moment susceptibility, a solid bubble represents a conduction electron susceptibility;
wavy lines represent the exchange interaction. For site index i = j, the diagram is of order 1/d0, while

for i 6= j, the diagram is at least of order 1/d3/2 which holds for nearest neighbor sites.

which is then used for the next iteration of the impurity problem. Iterations continue until self consis-
tency of Eq. (9.3.8) is reached, or until the medium propagator, say, does not change from iteration to

iteration.

Examples: Hubbard and Anderson Lattice Models
The mapping to an effective impurity model affords considerable qualitative insight into a number of
problems. For example, the Hubbard model then becomes a self-consistent Anderson impurity model.

This implies that the density of states should possess satellite peaks separated by the Coulomb inter-
action U and corresponding to transitions of the singly occupied state to empty and doubly occupied

orbitals. In addition, in any metallic phase, a quasiparticle “Kondo resonance” will appear in the
vicinity of the Fermi energy. The energy scale of this quasiparticle resonance is self-consistently de-

termined and has no simple analytic form (Pruschke et al. [1993,1995], Georges et al. [1996]). For
the single-channel Anderson lattice model, at particle-hole symmetry a band insulator forms with an

indirect gap determined by the “coherently enhanced Kondo scale”(Jarrell [1995]). For sufficiently small
hybridization (and therefore effective on-site exchange coupling) the band insulator may give way to

an antiferromagnetic insulator, with the combination of intersite RKKY and superexchange coupling
driving the formation of the antiferromagnetic state. Finally, the energy scale may in turn be coherently
suppressed in the metallic phase (Tahvildar-Zadeh et al. [1996]).

Two-particle Properties

Because of the local character of the problem, great simplification also results for two-particle properties
(Pruschke et al. [1995], Georges et al. [1996]). Specifically, the irreducible interaction functions for

particle-hole and particle-particle propagators become momentum independent. This makes evaluation
of the magnetic susceptibility and s − wave pairing susceptibilities particularly straightforward. Any

quantity which involves off-site vertices, such as the conductivity (current vertex) or a d−wave pairing
susceptibility will be formally of order 1/d. In the case of the conductivity, the diagram can still be

evaluated, but the local character of the interaction implies that no vertex corrections will arise to
leading order in 1/d. To see this, consider the lowest order vertex correction, illustrated in Fig. 115.
Momenta which arise on each side of the diagram will be independently summed, and the interaction

function entering the vertex correction is independent of momentum, so that factors of
∑
~k
~k will be

present in the conductivity. This will vanish. Hence, only the bubble diagram need be retained in a

calculation of the conductivity.
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Figure 115: Conductivity vertex correction in d =∞. The interaction vertex is momentum independent,

and as a result, only the bubble diagram (with fully dressed electron propagators) need be retained.

Application to the Two-Channel Kondo Lattice Model
The two-channel Kondo lattice model is amenable to such a treatment in infinite dimensions. In the

simplest form of this model we simply have two degenerate bands of electrons which have identical
coupling to the local moments ~SI(~R) located on every site of the lattice ~R, viz.

(9.3.10) H =
∑

~kσα

ε~kc
†
~kσα

c~kσα + J
∑

~R

~SI(~R) ·
∑

~k~k′µνα

ei(
~k−~k′)·~R~Sc|µνc†~kµαc~k′να

where ~Sc are spin 1/2 matrices in the conduction space. This model is unrealistic in the sense that it is

impossible for two spin 1/2 bands to be degenerate throughout the Brillouin zone; however, we will see
that this lack of degeneracy is irrelevant in the infinite dimension limit.

In the two-channel Kondo model considerable attention has been paid to the conductivity, mo-
tivated in large measure by the data for UBe13 discussed in Sec. 8.2. An initial effort with a Lorentzian

density of states for which self-consistency of Eq. (9.3.2) is trivial showed that the paramagnetic state
of this model should be an incoherent metal. Namely, the resistivity would be finite and the density of
states finite if the paramagnetic phase is extrapolated to T = 0 (Cox [1996]). Concommitant with this

residual resistivity is a residual resistivity which may be shown to be R/2 ln2 per site at half filling of
the conduction bands. It was further argued that application of a “spin field” (a field which couples

linearly to the local moment spin operators) or a “channel field” (which linearly couples to the con-
duction electron channel spin) would restore a phase shift description at zero temperature and hence

induce a crossover to Fermi liquid behavior. Because the Lorentzian density of states is automatically
self consistent, these crossovers would lead to the same arguments in scaling functions for physical

properties that occur in the impurity limit. Specifically, the crossover temperature is proportional to
the square of either applied spin or channel fields. Non-trivial self consistency in infinite dimensions

(due to, e.g., a starting Gaussian density of states) will not modify the fixed point structure of the
effective impurity problem but will generically lead to self-consistent modification of the next-leading
critical behavior. Thus, for example, we would not expect the zero temperature amplitude of the t-

matrix to be modified in the particle-hole symmetric case, but we may well expect the T,H dependent
corrections to be modified. This appears to be the case as we argue below for the magnetoresistance.

This unusual behavior may be traced back directly to the behavior of the single particle t-matrix
at the Fermi energy, which is purely imaginary and half the unitarity limit. As discussed in Sec. 8.3,

this calculation indicates that: (i) the application of a field which couples linearly to the spin degrees of
freedom or a field which couples linearly to the channel degrees of freedom will induce a crossover to the

Fermi liquid state, (ii) the residual scattering may be understood as corresponding to “spin-disorder”
scattering off the degenerate two-channel Kondo clouds. In the absence of a phase transition which

271



0.0 0.2 0.4 0.6 0.8 1.0
T/T0

0.0

0.1

0.2

0.3

0.4

1-
ρ(

T
)/

ρ(
0)

0.1 1.0 10.0
T/T0

0.0

0.5

1.0
ρ(

T
)/

ρ(
0)

J=0.400
J=0.500
J=0.625
J=0.750

Figure 116: Resistivity of the two-channel Kondo lattice in infinite spatial dimensions at half filling.

The four different curves are four different J values as indicated. The best fit to the lower temperature
data is with a linear in T behavior, as indicated in the inset. From Jarrell, Pang, Cox, and Luk [1996].

either orders the moments or induces superconductivity, there must be a residual resistivity analogous

to that of Gd metal above its Curie point (Cox and Jarrell [1996]).
Since the Lorentzian density of states has unphysically long tails in energy and hence infinite

moments in powers of the frequency, this result understandably met some skepticism in the community.
Accordingly, a study with a more physical density of states was required to convincingly prove the

result.
Quantum Monte Carlo (QMC) studies with a nearest neighbor tight binding model (with a

Gaussian DOS) were first carried out by Jarrell et al. [1996a], and these studies reached the same
conclusion as for the Lorentzian density of states: the resistivity at the Fermi energy is finite, along
with the density of states, which develops a cusp at T → 0. Resistivity calculations from this work

(at half-filling) are displayed in Fig. 116 (note the scaling behavior for curves computed with different
exchange coupling values J ; note also that J of Jarrell et al. [1996a] corresponds to J here). The QMC

code was based upon the Hirsch-Fye algorithm (Hirsch and Fye [1986]) as modified by Fye [1986] for
the Kondo model. Calculation of real frequency properties was carried out with the maximum entropy

method for analytically continuing imaginary time data to real frequencies. It should be noted that the
low temperature resistivity appears linear in T to an excellent approximation, which is in reasonable

agreement with experiments on a number of materials. In the temperature range covered by the QMC,
the resistivity appears to monotonically increase with decreasing temperature. There are reasons to

believe that this may shift, at least at lower temperatures, away from half-filling. We discuss this point
further below.

Corollary results include:

(i) A residual entropy (at half filling) of (R/2) ln2 per site. This implies that the same “spin-disorder”
scattering interpretation of the preceding paragraphs holds in this more physical case as well.

(ii) An absent Drude peak in the optical conductivity at low temperatures (there is a “charge fluctuation”
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Figure 117: Conductivity of the two-channel Anderson lattice in infinite dimensions in zero and applied
magnetic field. The model parameters assure a mapping of the effective impurity model to a Kondo

model. Application of a magnetic field restores a Drude like peak. From Anders, Jarrell, and Cox
[1997].

peak at energies of the order of J ) (Fig. 117). These results for zero field appear to be in excellent

agreement with the optical conductivity data for UBe13 (Degeorgi [1997]).
(iii) The occupancy function n(ε~k , T ) saturates to a temperature independent non-step function form

at low T , with a width fixed by the scattering rate of the conduction electrons.
(iv) a finite imaginary part to the conduction electron self energy which immediately implies (through

Kramers’-Kronig analysis) that the real part has a positive slope in the vicinity of the Fermi energy. This
in turn implies that the “mass enhancement” 1−∂ReΣ/∂ω|0 can be less than one and possibly negative.
Taken together with (iii) above, we see that Fermi liquid theory has broken down very severely for this

lattice system. (Note that this breakdown implies the usual Fermi liquid relation between specific heat
and mass enhancement also breaks down, so heavy fermion behavior is not excluded.)

In addition to these interesting features, the lattice calculations reveal a “coherent enhance-
ment” of the Kondo scale over the impurity limit. Roughly, it is found numerically that T latt0 ≈
EF (T imp0 /EF )1/

√
π . The QMC was unable to reach temperatures below ' 0.1T latt0 due to a combination

of the familiar fermion sign problem and the L3 scaling of running time with the number of time slices L.

Magnetoresistance of the Two-Channel Kondo lattice

Anders et al. [1996] have studied the magnetoresistance of the two-channel Kondo lattice in infinite
dimensions. This is a difficult problem to solve with the QMC approach, particularly at low temperatures
of order µBH/kB where the magnetic field H induces pronounced effects. Accordingly, Anders et al.

[1996] opted for the Non-Crossing Approximation (NCA) to solve the effective impurity model. As
argued in Sec. 5, the NCA provides a reliable method for calculating properties of the overcompensated

multichannel impurity models, in particular giving exactly the right critical exponents for all SU(M)⊗
SU(N) models, and providing amplitudes correct to within 7% for the resistivity and residual entropy

of the two-channel spin 1/2 model (N = M = 2). The NCA is not well suited to a Fermi liquid regime,
but does correctly describe the crossover region of the multichannel model in applied spin and channel
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Figure 118: Magnetoresistance of the two-channel Anderson lattice in infinite dimensions in the Kondo
regime. Application of a field reduces the residual resistivity driving the system towards Fermi liquid

behavior. The points are from the quantum Monte Carlo data of Jarrell et al. [1996] and Fig. 116.
From Anders, Jarrell, and Cox [1997].

fields, as discussed in Sec. 5.

The NCA approach actually solves the two-channel Anderson lattice model, in which a ground
configuration “spin” doublet hybridizes through a quartet of conduction states (possessing spin and
channel indices) with an excited configuration “channel” doublet. This corresponds to the lattice gen-

eralization of the 3-7-8 model of Eq. (2.2.20). The restriction to two configurations assures that
particle-hole symmetry is broken, equivalent to moving away from half-filling in the pure Kondo lattice

case.
The NCA results for the magnetoresistance are shown in Fig. 117 First, focussing on the H = 0

curve, it is clear that it agrees well with the QMC results in the region above ' 0.1T0. Below this an
interesting dip in the resistivity arises. This is attributed by Anders et al. [1996] to the breaking of

particle-hole symmetry by the NCA together with the self-consistent development of a downward cusp.
The resistivity still extrapolates to a finite value as T → 0.

In applied field H , the resistivity drops dramatically, and in fact, the extrapolated resistiv-
ity is negative. This is taken as a sign that a crossover to a Fermi liquid is being induced, since
the T 2 curvature of the Fermi liquid resistivity would lead to a negative intercept for a linearly ex-

trapolation from the crossover regime. The magnetoresistance obeys an approximate scaling form,
[ρ(T,H)− ρ(T, 0)]/ρ(T, 0)≈ f [H/(T + .006T0)

.39], where f(x) is a monotonic decreasing function of x.

Concommitant with this resistivity drop is the inducement of a Drude like feature in the optical conduc-
tivity near zero frequency and well below the charge transfer peak. Hence, as argued for the Lorentzian

case, a return to Fermi liquid behavior in applied spin field is strongly suggested. However, the approach
to this Fermi liquid fixed point is significantly different in quantitative detail from the analysis of the

Lorentzian case, due to the effects of lattice self consistency in infinite spatial dimensions.
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9.4 Pairing Effects

In this subsection, we examine the possibility of pairing generated by the local moment fluctuations of

the two-channel Kondo model. The idea is intuitively clear as noted long ago by Cox [1990] (see also
Cox and Jarrell [1996]). Namely, if one examines the basic renormalization group picture of Fig. 48, it is
clear that at each length scale, the effective impurity at the core has a pair of electrons in a spin triplet,

channel spin singlet state. In a first study using conformal theory, Ludwig and Affleck [1991] were
unable to find evidence for such a triplet pairing correlation and rather found an unusual singularity in

the channel for spin singlet, channel-spin singlet, odd-in-radial-parity. Because the odd-in-radial-parity
does not readily translate into a local pair correlation in a realistic model, it remained unclear whether

local pairing correlations could plausibly arise in the two-channel Kondo impurity model.
The simplistic picture of triplet pairing is not totally wrong, as first clarified by Emery and

Kivelson [1992] using their Abelian bosonization method. The resolution lies in the understanding that
the triplet pair is in correlation with the local moment spin at the core of the RG picture. This unusual

pair field/spin correlation is then a net spin singlet (i.e., it transforms as a scalar under the SU(2)
rotations of the total spin of the system). As such, it can mix with other spin-singlet, channel-spin
singlet operators which also possess charge ± 2. The complete spectrum of such pair operators with

singular susceptiblities was worked out in detail by Ludwig and Affleck [1994] using conformal field
theory. The primary viable candidate for such an operator is an odd-frequency pairing state, which,

put another way, has a node in the relative time coordinate of the electron pair. This possibility
of odd-frequency pairing has independently received considerable attention as a candidate for novel

superconductivity in real materials (Balatzky and Abrahams [1992]; Balatzky et al. [1994]; Coleman,
Miranda, and Tsvelik [1993,1994]; Heid [1996]; Heid et al. [1995,1996]; Jarrell, Pang, and Cox [1997]).

Given a mechanism for generating strong local pairing correlations for a single impurity, one is
tempted to view this result as a kind of Cooper problem in real space for the lattice. Namely, assuming

the correct interpretation of the strong local pair correlations to be the formation of a single pair about
the impurity at T = 0, it is tempting to speculate that a lattice of two-channel Kondo sites may produce
a superconductor provided the pairs are able to move coherently from site-to-site. Evidence for just

such a superconductor has been found in the extreme limits of one-dimension (Zachar, Kivelson, and
Emery [1996]) and infinite dimensions (Jarrell, Pang, and Cox [1997]; Cox and Jarrell [1996]).

Among the unusual properties of such an odd-frequency superconductor are that:
(i) the anomalous Green’s function has no equal time expectation value and thus the gap function itself

is not a suitable order parameter;
(ii) zone center (zero center-of-mass momentum) pairing is apparently at best metastable (Coleman,

Miranda, and Tsvelik [1993,1994]; Heid et al. [1995,1996]; Heid [1996]) though this point remains
controversial (Balatzky et al [1994]);

(iii) zone boundary (finite center-of-mass momentum) pairing is apparently stable (Coleman, Miranda,
and Tsvelik [1993,1994]; Heid et al. [1995,1996]; Jarrell, Pang, and Cox [1997]);
(iv) the excitations of this system may be spectacularly unusual (one treatment predicts a gapless branch

of Majorana or “real fermions” in the ordered state which has zero charge and spin at the Fermi energy
but contributes to the specific heat–see Coleman, Miranda, and Tsvelik [1993,1994]);

(v) the superconductivity is intrinsically intertwined with the local non-Fermi liquid behavior in the
lattice.

The plan of this subsection is to first review the impurity results for a diverging local pair field
susceptibility (Sec. 9.4.1). Then we’ll review a Pairing symmetry analysis useful for constructing phe-

nomenological theories in the heavy fermion materials. This analysis not only gives the local symmetry
of the pair wave functions but with the assumption of “negative pair hopping” consistent with the

staggered pairing of item (iii) in the preceding paragraph identifies which point(s) in the Brillouin zone
are likely for the center-of-mass momentum. In Sec.9.4.3 we will overview the status of understanding
on odd-frequency pairing independent of the two-channel Kondo model. Finally, in section 9.4.4 we will

describe the microscopic evidence for pairing in the two-channel Kondo lattice from studies in one- and
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infinite-dimensions.

9.4.1 Overview of Odd-in-frequency Pairing

In this subsection we shall overview the salient features of odd-in-frequency pairing which are rele-
vant to the subsequent discussion for the two-channel Kondo lattice. In order, we shall discuss: (1)
Pauli Principle arguments allowing for odd-in-frequency pairs; (2) phenomenology for a non-singular

pairing interaction; (3) equivalence of odd-in-frequency pairs to appropriately defined even-frequency
and composite pair fields; (4) the likely instability of odd-in-frequency pairs with zero center-of-mass

momentum; (5) the possible connection of composite pairs to Majorana fermions and 3-body fermionic
bound states; (6) Evidence for odd-in-frequency pairing in other models.

(1) Pauli Principle Arguments allowing Odd-in-frequency Pairs.
The odd-in-frequency idea was first introduced by Berezinskii [1974] and later elucidated by Balatsky

and Abrahams [1992]. Berezinskii was interested in unusual pairing possibilities for superfluid 3He. The
basic idea is simple. If we for the moment suppress channel degrees of freedom, a pair field operator at

position ~r and imaginary time τ will, prior to any explicit symmetrization, have the form

(9.4.1) Pµν(~r, τ) = ψµ(~r, τ)ψν(0, 0)

where µ, ν are spin indices. The conventional Pauli principle analysis suggests that we can identify
allowed pairing symmetries by considering spatial parity PR and “spin parity” PS which is the sign of

the pair wave function under exchange of the spin labels. This clearly gives the standard results that
for PR = +, corresponding to relative pair angular momentum ` = 0, 2, 4... for the pair, we must have

PS = −, or a spin singlet, and for PR = − corresponding to pair angular momentum ` = 1, 3, 5... we
must have PS = + or a spin triplet pair.

Berezinskii [1974] noted that there is no reason to focus exclusively on spatial parity in con-
sidering the Pauli principle. Rather, we can also augment the conventional discussion with the notion
of temporal parity PT (sign under the exchange of the imaginary or Euclidean time argument). Note

that application of temporal parity in Euclidean time is not the same as time reversal, a point of easy
confusion. This notion is particularly apt for the two-channel Kondo impurity model given the confor-

mal invariance at the fixed point: the real radial coordinate and the Euclidean temporal coordinate are
equivalent, so there should be no practical difference between spatial and temporal parity in this sense.

Odd temporal parity immediately translates to odd-in-(Matsubara)frequency pairs in exactly the same
way that odd spatial parity translates to pair wave functions in momentum space which are odd under
~k → −~k.

With the new possibility of temporal parity, two new symmetry classes are opened up for pairing

of electrons with spin 1/2. The PT=+ case was already covered. For PT = −, we may have spin singlet
pairs (PS = −) with odd angular momentum ` = 1, 3, 5.... (PR = −), or spin triplet pairs (PS = +1)
with even angular momentum ` = 0, 2, 4....

The addition of the channel degree of freedom in the two-channel Kondo model generalizes this
further. We can then discuss the possibility of oddness under channel exchange or PCH , the “channel

parity.” The list of possible pair fields is as follows:

PR = +,PT=+,PS = +,PCH = − (` even,spin triplet,channel singlet);
PR = +,PT=+,PS = −,PCH = + (` even,spin singlet,channel triplet);

PR = −,PT=+,PS = +,PCH = + (` odd,spin triplet,channel triplet);
PR = −,PT=+,PS = −,PCH = − (` odd,spin singlet,channel singlet);

PR = +,PT=-,PS = −,PCH = − (` even,spin singlet,channel singlet);
PR = +,PT=-,PS = +,PCH = + (` even,spin triplet,channel triplet);
PR = −,PT=-,PS = −,PCH = + (` odd,spin singlet,channel triplet);
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PR = −,PT=-,PS = +,PCH = − (` odd,spin triplet,channel singlet).

The odd-in-frequency pair field has an unusual property relative to an even-in-frequency pair

field: it can have no equal time expectation value, and thus cannot by itself serve as an order param-
eter field. To see this, consider the case with no channel degrees of freedom which is a spin singlet,

and thus we have the following anomalous Green’s function in ~k, ω space (repeated indices are summed):

(9.4.1) F (~k, ω) = iσ(2)
µν

∫
d3r

∫ β

0
dτei

~k·~r−ωτ < Tτψµ(~r, τ)ψν(0, 0) > .

The Pauli matrix in front antisymmetrizes the pair amplitude. The numerator of this anomalous Green’s
function is, of course, just the “gap function”∆(~k, ω), specifically

(9.4.2) F (~k, ω) = − ∆(~k, ω)

ω2 + ε2k + ∆(~k, ω)∆∗(~k,−ω)
=

∆(~k, ω)

ω2 + ε2k − |∆(~k, ω)|2

where we used the odd-in-frequency property to simplify the denominator and neglected the normal
self energy contribution for simplicity. For an even in frequency superconductor, the squared gap term

in the denominator enters with a positive sign. Since the denominator is even in frequency, we can see
that the numerator must be odd in frequency given the assumed odd-in-frequency behavior of F . Now,

if we invert the Fourier transform to find ∆(~k, 0) we see that

(9.4.3) ∆(~k, 0) =
1

β

∑

omega

eiωτ∆(~k, ω)|τ=0 = 0

which indicates that the gap function itself cannot serve as a suitable order parameter and rather some
moment of the gap function with frequency is an appropriate order parameter.

For example, consider d∆(~k, τ)/dτ . The time derivative operation is explicitly odd-in-temporal
parity, cancelling the odd-in-temporal parity of the gap function. The derivative explicitly pulls down

a factor of ω in the summand of Eq. (9.4.3) which allows the sum to be non-vanishing for τ → 0. This
insertion of a time derivative is analogous to the insertion of a spatial form factor in the case of p- or

d-wave pairing for PT = +.
(2) Phenomenology for a non-singular pairing interaction.

Balatsky and Abrahams [1992], Abrahams [1992], Abrahams it et al. [1993], Balatsky et al. [1994],
and Abrahams et al. [1995] have considered extensively the phenomenology of an odd-in-frequency

superconductor which has a non-singular pairing interaction. Abrahams [1992] in particular considers
a simple interaction form allowing for both s and p-wave pairs which is separable in incoming and
outgoing electron energies and momenta

(9.4.4) V~k,~k′(ωn, ω
′
n) = −2

ωnω
′
n

N(0)Ω2
c

[λ0 + 3λ1(~k · ~k′)]

where Ωc is a cutoff frequency for th mediating Boson (all interaction strength is assumed to die above

the cutoff) and λ0, λ1 are assumed to be positive. Note that this interaction can only be generated
dynamically so that there is practically no simple way to derive odd-frequency pairing from a mean field

Hamiltonian in the spirit of the BCS approximation and Bogulubov theory.
With this simple interaction form, Abrahams [1992] shows that the Eliashberg equations can

admit a solution with off-diagonal long range order in the p-wave channel between two temperatures
T+
c > T−c . The condition for achieving superconductivity depends upon the relative strengths of the

couplings λ0 (which enters the normal self energy and therebye determines mass renormalization of
the couplings and dynamical pairbreaking) and λ1. Specifically, to develop p-wave spin singlet pairing

requires λ1 > λ0 +1/4, while to have a re-entrant normal phase (T−c > 0) requires λ1 < 1+λ0. Perhaps
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the most important aspect of these requirements is that the renormalization of the interaction strength

by the normal self energy requires a critical coupling strength of the net attractive interaction to produce
the odd-frequency pairing. In contrast, for a net attractive interaction even-in-frequency pairing can

occur for arbitrarily small interaction strength. This result for odd-frequency pairing appears to be
generically true for models with non-singular interactions.

Abrahams et al. [1993] consider the specific model examples of phonon mediated pairing and
an effective interaction generated by the random phase approximation (RPA) for the Hubbard model.
In the case of phonon mediated pairing, while an attractive odd-frequency interaction may appear, it

cannot satisfy the constraints required to produce a superconducting transition at a finite temperature.
In contrast, the RPA model interaction for the Hubbard model can produce an odd-frequency transition.

They further argue that because of the pseudo-gap (away from the central coherent quasiparticle band)
between the Mott-Hubbard sidebands, that ∂Σ(ωn)/∂ωn > 0 over the majority of the energy range of

the electronic fluctuations responsible for pairing. This allows for the renormalization factor λ0 ≈ 0
which makes odd-in-frequency pairing more plausible.

(3) Connection to Even-Frequency and Composite Pair Fields
One of the intriguing aspects of odd-frequency pairing is that the pair field can linearly mix with other

operators containing even frequency pair fields of different symmetry. This fact was first noticed by
Emery and Kivelson [1992] for the two-channel Kondo model. To illustrate the idea, we will restrict our
attentions to this model.

With the notation introduced above, consider the pair field PR+,T−
0;0 (~R, τ) given by

(9.4.4) PR+,T−
0;0 (~R, τ) = σ(2)

µν σ
(2)
αβΨµα(~R, τ)

∂

∂τ
Ψνβ(~R, τ)

with Einstein summation convention implicit on the spin indices µ, ν and channel indices α, β. This

operator creates a single odd-frequency pair at position ~R and Euclidean time τ . The point made
by Emery and Kivelson [1992] is that the time derivative may be explicitly carried out through the

commutator with the Hamiltonian of the fermion pair field operator.
For definiteness, let us model the kinetic energy of the electrons through a nearest neighbor

tight-binding Hamiltonian, so that for a two-channel Kondo hypercubic lattice model we have

(9.4.5) H = −t
∑

~R,~δ,µ,α

Ψ†µα(~R+ δ)Ψµν(~R) +
J

2

∑

~Rµνα

~SI(~R) · ~σµνΨ†µα(~R)Ψνα(~R)

where we assume the nearest neighbor vectors ~δ are only positively directed. Given (∂Ψ/∂τ) = [Ψ,H],

the explicit evaluation of the time derivative in Eq. (9.4.4) gives

(9.4.6) PR+,T−
0,0 (~R, τ) = −2tPR−,T+

0,0 (~R, τ) + 4J ~SI(~R, τ) · ~PR+,T+
1;0 (~R, τ)

where PR−,T+
0;0 is an odd-radial-parity, even-frequency pair field given by

(9.4.7) PR−,T+
0;0 (~R, τ) =

∑

~δ

[Ψ↑,+(~R, τ)Ψ↓,−(~R+ ~δ, τ)−Ψ↓,+)(~R, τ)Ψ↑,−(~R+ ~δ, τ)

+ Ψ↓,−(~R, τ)Ψ↑,+(~R+ ~δ, τ)− Ψ↑,−(~R, τ)Ψ↓,+(~R+ ~δ, τ)] ,

and ~PR+,T+
1;0 is a spin-triplet even-parity, even-frequency pair field with components

(9.4.8.a) PR+,T+
1,1;0 (~R, τ) = Ψ↑,+(~R, τ)Ψ↑,−(~R, τ) ,

(9.4.8.b) PR+,T+
1,−1;0 (~R, τ) = Ψ↓,+(~R, τ)Ψ↓,−(~R, τ) ,
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and

(9.4.8.c) PR+,T+
1,0;0 (~R, τ) = [Ψ↑,+(~R, τ)Ψ↓,−(~R, τ) + Ψ↓,+(~R, τ)Ψ↑,−(~R, τ)] .

Eq. (9.4.7) describes a very peculiar pairing field, first suggested by Ludwig and Affleck [1991]
(see also Ludwig and Affleck [1994]) about which a few words are in order. If one applies the full spatial

parity operator to it, one discovers it is even in parity. Indeed, the closest construction to this field for
the single channel Kondo model is the “extended s-wave pair field” which has the form

∑

~δ

[Ψ↑(~R, τ)Ψ↓(~R+ ~δ, τ)−Ψ↓(~R, τ)Ψ↑(~R+ ~δ, τ)] .

This field is both even in parity and even under exchange of sites ~R, ~R + ~δ. In fact, it is easy to
demonstrate that the two operations are not distinct. However, for the field of Eq. (9.4.7), spatial

inversion does not correspond to the exchange of sites, for which the field is manifestly odd. What is
true is the following: if we understand that the combination of annihilation operators summed upon ~δ for

a given spin and channel destroys an “s-wave” symmetric (full crystal symmetry) electron state in the
first shell of atoms about the indexed site ~R, the operation of site exchange corresponds to the inversion

operation about the midpoint of the one sided chain formed by applying the Lanczos tri-diagonalization
procedure to the reference site. Namely, consider the effective one-dimensional chain first discussed by
Wilson [1975] (viz., Sec. 4.1). When considering the two-channel model, the inversion operator applied

to the pair field of (9.4.7) (with inversion measured about the midpoint between the origin and the first
Wilson “site” or “onion-skin shell”) is precisely the same operator as site exchange. It is not however

the full 3D parity operator. Indeed, discretizing the continuum form of Ludwig and Affleck [1991,1994]
yields precisely the same result.

Overall, this connection of the odd-frequency pair field to the odd-radial-parity and composite
pair fields is a rather remarkable result. Even though we are dealing with the bare Hamiltonian, and

not that of the low temperature excitations about the fixed point, Eqs. (9.4.6-8) hint at the outcome
of the conformal field theory. Namely, the even-parity, odd-frequency pair field linearly mixes with an

even-frequency, odd-radial-parity pair field. This is an explicit real space reflection of the approximate
conformal invariance of the free-fermion Hamiltonian for points on opposite sides of the Fermi surface.
This follows since the tight binding Hamiltonian, linearized about the Fermi energy, will indeed resemble

a light-cone Hamiltonian for points on opposite sides of the Fermi energy, with the Fermi velocity equal
to the speed of light. Hence, spatial and temporal parity are seen to be equivalent operations on the

pair fields. Also, the dot-product of the spin triplet field with the local moment indicates that the
interactions with the local moments will produce composite pair fields as candidate order parameters

which are “bound states” of the spin with the triplet pairs. The mixing with the odd-frequency is
symmetry allowed since the inner product of the triplet field with the local moment operator produces

an object that is a scalar under spin rotations. This result for the composite field of course has a
beautiful correspondence to the NRG pictures of the two-channel Kondo fixed point, where at each

length scale a core spin is correlated with a triplet conduction pair. Indeed, as argued in Sec. 6.1,
the leading irrelevant operator about the two-channel fixed point continues to have the form of the
interaction term in Eq. (9.4.3) with SI replaced by the conformal primary spin field Φs.

We note that to the extent the effective electron-electron interactions remain local in position
space, it is perhaps unlikely that the odd-radial-parity pair field will be the first to condense. The reason

is that unlike the odd-frequency field which requires only a local attractive interaction for condensation,
coupling to this field will require an interaction that is extended at least over a lattice constant–an

extended discussion will appear later in Sec. 9.4.2 where it is noted that the odd-radial-parity field
is rigorously excluded from condensation on the infinite dimensional two-channel (hypercubic) lattice.

However, this point should be explored in greater detail numerically.
It appears overall, then, from the impurity model, that the likely candidate for an observ-

able pairing correlation in the two-channel Kondo model is an odd-frequency, even-parity, spin-singlet,
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channel-singlet pair field, or equivalently, a composite field consisting of a local moment bound to an

even-frequency, even-parity, spin-triplet, channel singlet.

(4) Apparent Instability of Odd-Frequency Pairing for ~q=0 Pairs.
Two theoretical works point the the possibility that odd-frequency pairing is actually unstable for

pairs with zero center of mass momentum q, at least to the extent that a the solutions reside within
Eliashberg-Migdal theory, i.e., the vertex corrections in the self energies and conductivity are negligible.

The most straightforward analysis is put forward by Coleman, Miranda, and Tsvelik [1993], who

estimate the superfluid density close to Tc for an assumed q = 0 odd-frequency transition. The general
form of the superfluid density or inverse penetration depth for q = 0 pairs close to Tc in the absence

of vertex corrections to the conductivity is (suppressing momentum and other dependencies of the gap
function)

(9.4.9) ρs ∼
1

λ2
∼
∑

ωn

∆(ω)∆∗(−ω)

|ωn|3

where ∆ is the gap function. For even-frequency pairing, this is positive definite. For odd-frequency
pairing, it is negative definite. The interpretation of this result is straightforward: ρs is proportional to

the curvature of the free energy with respect to the order parameter at ~q=0 (or, in position space in the
center of mass coordinates, to the coefficient of the gradient terms in the free energy). ρs(q = 0) < 0

simply implies that the uniform phase solution of the free energy is not stable. It does not rule out
odd-frequency pairing. Another loophole in this conclusion is that the denominator is modified to
(ω2
n−|∆(ωn)|2)3/2 for finite ∆. If a discontinuous transition to finite ∆ occurred with |∆(ωn)| > |omegan|

for at least a few values of n, then ρs(q = 0) > 0 would be possible (Heid [1995]).
Heid [1995] pointed out another difficulty with q = 0 odd-frequency pairs as treated within

Eliashberg theory. Employing minimal assumptions, he was able to show that within Eliashberg theory
you cannot simultaneously lower the free energy and find a solution to the self consistency equations

for q = 0 odd-frequency pairs. This means practically that the Eliashberg solutions are extrema but
rather maxima of the free energy and not minima. Within a simple model, there appear to be no such

restrictions on pairs with finite center of mass momenta (Heid [1995]).
The physical interpretation suggested by Coleman, Miranda, and Tsvelik [1993, 1994,1995] is

that the phase of the odd-frequency pairs is staggered at the atomic level. This conclusion is model
dependent, since strictly speaking the above mentioned instability only implies finite q pairing is favored,
not necessarily zone boundary pairing.

Balatsky et al. [1994] and Abrahams et al. [1995] note that in the composite operator picture,
the leading contribution to the anomalous conductivity diagram does in fact have a vertex correction.

The leading order diagram is displayed in Fig. 119. The interaction is proportional to the local moment
susceptibility. This diagram contributes positively to the q = 0 superfluid density. Hence, the possibility

remains that in moving beyond Eliashberg-Migdal theory to include vertex corrections that q = 0 pairs
may be stabilized.

(5) Connection to Three-body Bound States and Majorana Fermions.

Coleman, Miranda, and Tsvelik [1995] have noted on rather general grounds that odd-frequency pairing
can result from the formation of “anomalous three body” bound states amongst fermions. This intriguing
possibility rests on the potential to form Majorana fermion bound states. Because the Majorana fermions

have constant squared amplitudes, it becomes possible to develop anomalous expectation values to three
body Majorana bound states.

As a concrete example, Coleman, Miranda, and Tsvelik [1995] follow their earlier work (Coleman,
Miranda, and Tsvelik [1993,1994]) and focus on a mean field theory for the single channel Kondo lattice.

280



k k k’kk χ

Figure 119: Leading order diagrams for the Meissner “stiffness” for odd-frequency superconductors. The

Meissner stiffness, or “superfluid density” is proportional to this anomalous diagram of the electrical
conductivity. The first diagram (at left) includes only renormalized anomalous propagators, and, as

argued by Coleman, Miranda, and Tsvelik [1994] gives a negative superfluid density or Meissner stiffness
for an odd-frequency superconductor with ~q = 0 center of mass momentum. The second (at right) is

the vertex correction discussed by Balatsky et al. [1994] and Abrahams et al. [1995] which is argued
to enforce a positive sign to the Meissner stiffness for ~q = 0 center of mass momentum pairing in which

the composite order parameter representation is used. The dashed bubble appearing as a vertex is a
spin susceptibility. Note that this diagram at right is ineffective (vanishes) for a purely local moment
driven interaction, because the different momentum sums integrate to zero.

At a given site ~R, the interaction term in the Hamiltonian takes the form

(9.4.10) HK(~R) =
J

2
~SI(~R) · σµνΨ†µ(~R)Ψν(~R)

= const. − Jξ†ν(~R)ξν(~R)

where the spinor field ξ is defined by

(9.4.11) ξν(~R) = ~SI(~R) · σµνΨµ(~R) .

If we represent the local moment by a pseudo-fermion, we can see that ξ represents a composite field of
three fermions. To produce a mean field theory, Coleman, Miranda, and Tsvelik [1995] make the ansatz

that

(9.4.12) −Jξν (~R, τ) = 2Vν(~R)φ̂(~R, τ) + fluctuations

where Vν is a c-number spinor field that serves as the mean field three body amplitude, and φ̂ is a

Majorana fermion field.
The above transformation of the interaction term and mean field Ansatz do not immediately

permit an approximate model solution. However, it is easy to show that the operators ηa(~R, τ) =
2SaI (~R, τ)φ̂(~R, τ) obey the canonical anticommutation relation {ηa(~R), ηb(~R′)} = δabδRR′ , and further,

(ηa)2 = 1/2, so the ηa are Majorana fermions. With the mean field Ansatz, this converts the interaction
term on a given site into

(9.4.13) HK,MF (~R) = [Ψ†µ(~R)(~σµν · ~η(~R))Vν(~R) + h.c.] +
2V †ν (~R)Vν(~R)

J
.

This mean field Hamiltonian hybridizes the three branches of Majorana fermions ηa with three

of four Majorana fermion branches of the conduction electron fields. The unhybridized Majorana
fermion remains so in the superconducting state, leaving a linear spectrum of excitations. Coleman,

Miranda, and Tsvelik [1993,1994,1995] put forward the intriguing speculation that this corresponds to
the observed linear specific heat coefficients below Tc in some heavy fermion superconductors.

Because the Majorana fermions are admixtures of electron and hole operators, the full solution
breaks U(1) gauge symmetry, i.e., it is a superconducting state. The energy is lowest for Vν(~R) ∼
exp[i ~Q · ~R/2], with ~Q = [π, π, π]/a in three dimensions. This is the phase of a single anomalous
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three body fermion field–this implies that the phase of an anomalous Majorana pair is staggered, i.e.,

alternates with a periodicity determined by ~Q itself.
The presence of the Majorana field implies that because the Green’s function of the η fields in

the frequency domain goes as ω−1, the gap function ∆(ω) ∼ V 2/ω. Namely, the gap function is singular.
Although Coleman, Miranda, and Tsvelik [1993,1994,1995] do not construct an explicit realization of

the effective fermionic interaction which can generate this anomalous gap function, one can infer that is
must be an interaction which is singular in the incoming and outgoing relative frequencies of the pair.

The singular pairing amplitude implies that the usual BCS coherence factors have an unusual

form in the superconducting state. Specifically, the gapless Majorana excitations have vanishing charge
and spin at the Fermi energy. This implies that the vanishing matrix element will induce power law

behavior in nuclear relaxation and ultrasound as observed in the heavy fermion systems, but leave open
the possibility of non-vanishing linear specific heat coefficients and electronic Lorentz numbers in the

superconducting state.

(6) Evidence for Odd-Frequency Pairing Correlations in Other Models
The mean field theory of Coleman, Miranda, and Tsvelik [1993,1994,1995] suggests that a natural model

in which to look for odd-frequency pairing states is the single channel Kondo lattice model, or the closely
related single channel Anderson lattice model. Unfortunately, searches in d = ∞ fail to produce any
evidence for pairing in the Anderson lattice model except possibly at unphysically low fillings for the

conduction band (Jarrell [1995,1997]). It must be emphasized that a possible reason the correlations are
missed in this case is that in the spin singlet sector, the odd-frequency pair fields must have odd-parity,

and hence live only at order 1/d. In the spin triplet sector, it is possible in principle to have an order
(1/d)0 contribution in principle, but in practice, the Pauli principle will tend to legislate against this,

favoring at least d-wave pairs which are again of order 1/d. Zachar, Emery, and Kivelson have identified
a special parameter region of the one-dimensional Kondo lattice model in which a spin gap develops as

an example of where staggered, odd-frequency, spin-singlet pairing correlations are enhanced. In this
region, the physics maps to a special version of two-channel Kondo lattice model because of the absence

of back-scattering enforced by the spin gap. It remains to be seen whether these correlations can be
made to survive in d > 1.

A possible understanding of this discrepancy between the d = ∞ results and the Majorana

mean field theory lies in the nature of the differing fixed point physics between the one-channel and
two-channel Kondo models. The mean field theory depends crucially on a decoupling of the spin-

dependent interaction term of the single-channel model and assumes that this term is dominant in the
low energy scale physics. However, for sufficiently large J , which suppresses antiferromagnetism and

enhances the Kondo physics, the single channel model is described by a collection of Kondo singlets
which become mobile away from half filling. Hence, the leading irrelevant operator about the low energy

fixed point are not likely to be of the exchange interaction form required in the Majorana mean field
theory. On the other hand, in the two-channel Kondo lattice the leading irrelevant operator about the

paramagnetic fixed point (which is a collection of two-channel impurity fixed points), at least in d =∞,
is in fact of the exchange interaction form. Hence, while the single channel model on this basis does not
look like a candidate for odd-frequency pairing, the two-channel Kondo lattice looks rather promising.

As detailed in Sec. 9.4.4, in d =∞ at least, this possibility of odd-frequency pairing in the two-channel
Kondo lattice is in fact realized.

Bulut, Scalapino, and White [1994] have demonstrated that the pairing vertex of the Hubbard
model in two-dimensions calculated from Quantum Monte Carlo has maximum eigenvalues for pair am-

plitudes corresponding to even-frequency d-wave singlet pairs, and odd-frequency, p-wave singlet pairs.
However, there is no indication of either eigenvalue reaching unity for the temperature range studied,

which would indicate a superconducting transition.
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9.4.2 Local Pair Field Susceptibility

The possibility of a truly divergent pair field susceptibility in the two-channel Kondo model was first

worked out by Ludwig and Affleck [1991,1994] using conformal field theory. The actual calculation
of the pair field susceptibilities within the conformal theory is a tour de force in the formalism. We
shall not discuss the details of these calculations here but rather summarize and overview the resulting

physical picture.
To see the possibility of a diverging pair field susceptibility, it is helpful to recall our discussion

of the scaling dimensions of possible operators discussed in Sec. 6.1.2.b. For a pair field operator with
charge Q = ±2, spin S = 0, and channel spin Sch = 0, the scaling dimension is Q2/8 + S(S + 1)/4 +

Sch(Sch + 1)/4=1/2. This implies that the corresponding local pair field susceptibility must have a
logarithmic divergence as T → 0.

However, the antisymmetry in spin and channel degrees of freedom requires that we antisym-
metrize in some other variable to satisfy the Pauli principle. Let us denote the pair field operators

by capital P
Rλ,Tγ
S;Sch

, where λ = ±, γ = ± and the R, T refer to spatial and temporal parity. The Pauli
principle requires that the product PRPTPSPch = −1 where PR is spatial parity, PT is temporal parity,
PS is spin parity (symmetry under spin exchange), and Pch is channel parity (symmetry under channel

exchange). The first guess implemented by Ludwig and Affleck [1991] was to choose a pair field of the
conduction electrons odd in the one dimensional spatial coordinate about the origin. Specifically, they

chose to effect this by inserting a spatial derivative into the pair field operator (using the notation of
Sec. 6.1.1) as given by

(9.4.14) PR−,T+
0;0 (r, τ) = εµνεαβcµα(r, τ)

∂

∂r
cνβ(r, τ) = 2ikFΨLµα(r, τ)ΨRνβ(r, τ)εµνεαβ

which shows that the radial parity gets translated into antisymmetry under exchange of left and right

fields. Note that εij = iσ
(2)
ij is the two-dimensional antisymmetric matrix, and that we have employed

Einstein summation convention in the above equation. Ludwig and Affleck [1991,1994] then showed
that this operator does indeed give a local susceptibility which is log divergent.

However, there is a physical problem with this particular operator when reconnected to the
full three dimensional physics. When discretized, this operator corresponds the amplitude of the spin-

singlet, channel-singlet pair field operator described by Eq. (9.4.7). At the local level, because the
operator is off-site, the on-site irreducible vertex will allow no coupling. If we consider the extension to

the two-channel Kondo lattice, as considered in Fig. 120, Fourier transformation gives a form factor of∑d
i=1 cos[(ki + Qi)a] for pairs with CM momentum ~Q. Because the irreducible vertex function, which

enters the bound part of the pair field susceptibility, is purely local in either the impurity limit or lattice
limit, the momenta sums on either side of the lowest order “bound” correction are independent, and the

integral of the cosine sum vanishes. We note that the argument hinges in detail upon the assumption
of momentum independent exchange or hybridization vertices on-site–it is conceivable that non-zero
contributions may arise from inclusion of a more realistic momentum dependence to the hybridization,

but these would be likely smaller in magnitude than the purely on-site contribution of the odd-frequency
pair field. More numerical work is in order to assess the importance of this pair field in these more

realistic circumstances.
One corollary which is, in retrospect, obvious is that one may equally well insert a time derivative

as a space derivative into the singlet pair field operator in view of the conformal invariance of the fixed
point and the ensuing space-time equivalence. This procedure completely circumvents the problems

with the radial derivative mentioned above. This time derivative pair field operator is

(9.4.15) PR+,T−
0;0 = εµν εαβcµα(r, τ)

∂

∂τ
cνβ(r, τ) .

Ludwig and Affleck [1994] considered this field as well as the composite operator which linearly mixes

with this time derivative field as discussed in the previous subsection and below.

283



ω’Γ(ω, )

k k’

-(k’+Q)
-(k+Q) 

x(k,Q) x(k’,Q)ω’ω, ,

Figure 120: Inefficacy of odd-radial-parity pairing for a local pairing interaction and presumed mo-
mentum independent hybridization/exchange between conduction electrons and local electrons. This

Feynman diagram represents a contribution to either the full lattice pairing susceptibility for pairs
with center of mass momentum ~Q in the local approximation or d = ∞ limit, or a term in the

local pairing susceptibility for the impurity. This local susceptibility is acquired by summing over
~Q. Similar to the conductivity diagram of Fig. 114, the locality of the interaction together with the

x(~k, ~Q) =
∑
i cos[(ki + Qi)a] dependence of the vertices guarantees that this contribution must vanish.

This term wou

However, the first consideration of the equivalent composite operator field was by Emery and
Kivelson [1992,1994] using the Abelian bosonization approach, which we turn to next. Emery and

Kivelson first considered the composite operator formed from the dot product of the local moment
spin with the three components of the spin triplet pair field PR+,T+

1,m;0 where m = ±1, 0 indexes the spin

component. As discussed in the previous subsection and by Emery and Kivelson [1994], this is equivalent
Because the starting model breaks the SU(2) spin symmetry to a U(1) symmetry about the z-axis, it
is sufficient to consider the composite operator (evaluated at the origin now where ψLµα = ψRµα)

(9.4.16) P̃ = τ zP
R+,T+
1,0;0 = −iâb̂[ψL,↑,+ψL,↓,− + ψL,↓,+ψL,↑,−]

= −iâb̂ψc(ψsf + ψ†sf )

where we are using the notation of Sec. 6.2.1. Recall that â is the de-coupled local Majorana fermion

of the impurity spin field, b̂ is the local Majorana degree of freedom which couples to the conduction
electrons, ψc is the charge fermion degree of freedom obtained from refermionization of the charge boson

field, and ψsf is the spin-flavor fermion field which is obtained from refermionization of the spin-flavor
boson field.

The calculation of the pair field susceptibility associated with P̃ is given by the expression

(9.4.17) χP̃ P̃ (T ) =

∫ β

0
< P̃ (τ)P̃ †(0) > .

Emery and Kivelson argue that the leading singular term of the correlation function in the above integral
goes as 1τ for large times. The argument goes as follows: first, for positive times, the Green’s function

of the â field Ga(τ) is just constant, i.e., we can just view â as a constant of the motion (c.f. Eq.

(6.2.28)). Second, because the combination b̂(ψsf + ψ†sf ) is precisely the combination that enters the

effective resonant level Hamiltonian of Eq. (6.2.19), we may view this too as a constant of the motion
and extract it from the expectation value. A more precise way of putting this is that when we perform

the possible Wick contractions, because of the special character of Majorana fermions this factor is an
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allowed contraction. A corresponding contraction for complex fermion fields would generally not be

possible (except in a superconducting state). Contraction of b̂(τ)(ψsf +ψ†sf )(τ) with b̂(0)(ψsf +ψ†sf )(0)
will generate subleading singular corrections to χP̃ P̃ . Finally, the remaining Green’s function is just the

charge fermion Green’s function which behaves as 1/τ for long times and so generates a log divergence.
We can evaluate χP̃ ,P̃ more precisely using the Green’s functions of Sec. 6.2.2 and App. IV,

and it is illuminating to do so. First, denote ψsf + ψ†sf = χsf and put Ṽ = iJx/
√
πa in Eq. (6.2.19)

(this is the effective hybridization between b̂ and χsf . Then the expectation value

(9.4.18) < b̂χsf >= − < χsf b̂ >=
Ṽ

βNs

∑

k

∑

n

1

iωn − vFk
1

iωn + iΓsgnωn

where ωn = 2π(n + 1/2)/β is a Fermion Matusubara frequency. Recall that Γ = πN(0)Ṽ 2/2 is the
resonant level width, which is one kind of local Kondo scale in the approach. It is straightforward to

evaluate this sum and obtain

(9.4.19) < b̂χsf >≈
[N(0)Ṽ ]

2
ln[
D

Γ
]

where N(0)/2 = 1/(4πvF ) is the Fermi level DOS of the χsf fields, and D = 2vF is the bandwidth (cut-

off) of the linear dispersion relation. Putting this together and using Gc(τ) ≈ Gs(τ) ≈ 1/[βD sin(πτ/β)]
we obtain

(9.4.20) χP̃ P̃ (T ) ≈ 1

2πD
[
N(0)|Ṽ |2

4
] ln2(

D

Γ
) ln(

D

T
)

≈ 1

2πD

Γ

D
ln2(

D

Γ
) ln(

D

T
) .

Given that Γ measures the Kondo scale, the interesting point to notice about this susceptibility

is that while it is log divergent, it is very small! The effective energy denominator is not TK as appears in
the log divergent spin susceptibility but rather D2/TK which is huge! Hence, at the impurity level, this

is a terrifically small effect, only presumably visible at very, very low temperatures. In fact, Quantum
Monte Carlo studies on the two-channel impurity model failed to reveal any hints of a logarithmic

divergence (Pang and Jarrell [1995]). Nevertheless, as discussed in Sec. 9.4.4, a possibility for odd-
frequency pairing does emerge in the lattice.

We close this subsection by noting that the local pairing vertex can be evaluated within the NCA
discussed in Sec. 5. This program has been carried out by Cox and Ruckenstein [1997]. The diagram
is shown in Fig. 121. Prior to a translation to the full physical subspace, the interaction strength for

pairs with zero center of mass energy is manifestly antisymmetric in the exchange of either incoming or
outgoing frequencies at low frequencies. The explicit asymptotic form valid for |ω|, |ω′| << T0 is

(9.4.21) I(ω, ω′) ≈ −sgn(ω)sgn(ω′)
1

8N(0)2

1

|ω>|
F (π/2,

|ω<|
|ω>|

)

where F is the complete elliptic integral of the first kind, and ω>,< are determined from the min,max of

|ω|, |ω′|. It is clear that this interaction form is singular and non-separable in the incoming and outgoing
frequencies. To translate back to three dimensions in the heavy fermion case requires multiplication on

the left by factors of Y3m(k̂)Y ∗3m′(k̂) where k̂ is the direction of incoming momentum and on the right

by corresponding factors in k̂′,the direction of the outgoing momentum. The momentum dependence
arising from this may allow for some small contribution to the odd-radial-parity pair field discussed by

Ludwig and Affleck [1991,1994], but a test of this requires explicit numerical calculations for a more
realistic model.
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Figure 121: On-site interaction vertex from the NCA for the two-channel Anderson model in the Kondo
limit. Each wavy line is an excited configuration propagator, carrying the channel index α, each dashed

line a ground configuration propagator carrying the spin index µ. Solid lines are external conduction
legs, put in for illustrative purposes.

Ion Group P00 ν

U4+ O Γ2 ∼ (x2 − y2)(y2 − z2)(z2 − x2) 2

Ce3+ O Γ2 ∼ (x2 − y2)(y2 − z2)(z2 − x2) 1

U4+ D6 Γ2 ∼ (x3 − 3xy2)(y3 − 3yx2) 2

Ce3+ D6 Γ2 ∼ (x3 − 3xy2)(y3 − 3yx2) 3

U4+ D4 Γ2 ∼ xy(x2 − y2) 3

Table 15: Symmetry of local spin-singlet, channel-singlet pair fields (P00) and dimensionality ν of P00

space due to exchange anisotropy. From Cox and Ludwig [1997].

9.4.3 Pairing Symmetry Analysis

By identifying the physical correspondence of the spin and channel indices of the spin-singlet, channel-

singlet pairs discussed in the previous subsection, one can identify the actual symmetry such pair
correlations would display in a real material assuming that the two-channel Kondo model serves as
an appropriate starting point. This information can then provide a useful input to phenomenological

studies of odd-in-frequency pairing.
In the case of the Heavy Fermion materials, this symmetry analysis has been carried out by

Cox and Ludwig [1997] for the two-channel model in the allowed symmetry groups as discussed in Sec.
2.2.4. We shall only briefly describe the method and results here, which are summarized in Table 15.

The logic is that regardless of whether the local pseudo-spin is magnetic or quadrupolar, one
pair of conduction labels will be a magnetic pseudo-spin determined by the vector space of a doublet

irrep of the double point group at the impurity site, and one pair of indices will be orbital/quadrupolar
determined by a doublet irrep of the ordinary point group at the impurity site. On physical grounds,

by analogy to the spin 1/2 problem, the magnetic pseudo-spin singlet should always transform as A1g,
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i.e., have the full symmetry of the underlying group. This is indeed the case as explicitly verified

from the tables of Koster et al. [1963]. On the other hand,the orbital singlet must change sign under
any operations which interchange the orbitals, and these are indeed effected by ordinary point group

transformations. The only viable candidate is the pseudo-scalar irrep, present for any point group (apart
from triclinic) and notated by A2g. As in the case of the magnetic pseudo-spin, it can be explicitly

verified that this result for the orbital singlet holds for the cubic, hexagonal, and tetragonal point groups
of interest. As a result, transformation properties of the overall singlet pair irrep under the local point
group operations must be A1g ⊗A2g = A2g.

The A2g irrep generically must be composed of high order angular momentum states about the
local moment site. For example, in cubic symmetry A2g ∼ [x2 − y2][y2 − z2][z2 − x2] which minimally

derives from l = 6 or i-wave pairs! Similarly, in hexagonaly symmetry, the A2g state transforms as
(x3 − 3xy2)(y3 − 3yx3) ∼ sin[6θ] where θ = tan−1[y/x], which is also of minimal i-wave character.

Finally, in tetragonal symmetry, A2g ∼ xy(x2 − y2) which is minimally of g wave character. We note
that should such pair correlations drive a superconducting instability in the lattice, it is unclear how

the complex nodal structure of the pair wave functions locally will affect the excitation spectrum. A
complete theory of this must await a microscopic approach to the odd-in-frequency pairing state found

(at least in d =∞) for the two-channel Kondo lattice.
We close this section by noting that inroads on Ginsburg-Landau phenomenology of odd-in-

frequency staggered superconductors can be made with the above result and an assumed “negative pair

hopping” in real space consistent with the suggestion that the pairs prefer zone boundary momenta.
With the local pair symmetry and with the negative pair hopping assumption, one can uniquely iden-

tify likely zone boundary momenta as free energy minima, and construct unique GL theories for all the
heavy fermion superconductors. This program is in fact underway, initiated by the work of Heid et al.

[1995,1996,1997] and Martisovits and Cox [1997]. A review of the phenomenology is beyond the scope
of this article, but perhaps the most interesting features to emerge are:

1) For the frustrated hcp lattice of UPt3, a degenerate space group irrep is favored which, in the presence
of an ordered antiferromagnetic state, can fully account for the complex H − vs.− T phase diagram of

this material (Heid et al., [1995,1996,1997]). In contrast, while a degenerage space group irrep is also
favored for the 1-2-3 materials (UM2Al3, M=Pd,Ni) which have a simple hexagonal structure, there can
be no degeneracy lifting coupling of induced (by a magnetic moment) or applied strain to the super-

conducting order parameter to all orders in the strain (Martisovits and Cox [1997]). This is consistent
with the simple single phase diagrams observed for these materials.

2) In the two cases so far examined the presence of time reversal symmetry breaking can induce mi-
crocurrents and thus additional staggered magnetic moments in the material (Heid et al. [1996,1997];

Martisovits and Cox [1997]). For relative real phases between order parameter components, an in-
duced charge density wave is possible. Observation of such induced staggered order would provide a

spectacular confirmation of the staggered pairing hypothesis.
Finally, we note that superconductivity induced by the TLS Kondo effect has been suggested as

a possibilty for A15 materials (T. Matsuura and K. Miyake [1986]; K. Miyake, T. Matsuura, and C.M.
Varma [1989]; K. Miyake [1996]) and the cuprate superconductors (N.M. Plakida, V.L. Aksenov, and
S.L. Drechsler [1987]; J.R. Hardy and J.W. Flocken [1988]; A.M. Tsvelik [1989]). Depending upon the

nature of the anharmonic double well, a similar symmetry analysis should be possible for these models
as well.

9.4.4 Superconductivity in the two-channel Kondo lattice

d =∞ Limit

Given the residual entropy and correlated residual resistivity found in the two-channel Kondo

lattice model in infinite dimensions by Jarrell et al. [1996,1997], it is natural to assume that in the
absence of external symmetry breaking fields (c.f. Anders, Jarrell, and Cox [1997]) that the system
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Figure 122: Screening clouds about adjacent two-channel Kondo sites in the lattice for strong coupling
J ≥ EF , near half filling of each channel. The overall spins are antialigned because the Pauli principle

prevents hopping for conduction electrons of equal spin, which gives rise to a superexchange ∼ (t∗)2/J .

will be driven to some spontaneous symmetry breaking to remove the residual entropy. Just such a
possibility is found by Jarrell, Pang, and Cox [1997a,b], as we shall describe in this section.

Following Jarrell, Pang, and Cox [1997a,b], we note that in at least two regions of the phase dia-
gram, there are very natural candidates for this symmetry breaking identified from the strong coupling

limit (J >> t).
First, near half filling (unit occupancy of each channel) antiferromagnetism is certainly a fa-

vorable possibility. To see this, examine Fig. 122 which shows adjoining two-channel Kondo clouds
in the strong coupling limit. The overall spin of the clouds is anti-aligned because of superexchange–
by hopping an electron from channel one on site a to channel one on site b to form virtual singlets,

followed by a subsequent hop of the original site b electron to site a, we see that the overall energy
can be lowered by a factor Jeff ' 4t2/J > 0. The positivity of this effective exchange assures that the

coupling is antiferromagnetic. As usual, the Pauli principle favors antiparallel spin coupling in such a
superexchange process.

Second, near quarter (half an electron per spin per channel) filling at strong coupling, in the
absence of electron- electron interactions, it is favorable to form Kondo spin singlets at each site rather

than two-channel spin doublets at every other site. The former gives an energy of −3J/4 per site, while
the latter gives an energy of −J/2 per site. The addition of on-site interactions between electrons will

further stabilize this state, while the addition of intersite density-density electrons will presumably help
destabilize the singlets on every site. Neglecting interactions, we see that because the spin singlets are
of necessity channel doublets, that there is an intrinsic degeneracy in the problem which the system

would like to remove. Fig. 123 illustrates how this can occur via channel superexchange, in which a
channel one electron at site a hops to site b to form a trivial local moment spin doublet at site a and

a two-channel screened spin doublet at site b. The original channel 2 electron at b then hops to a.
The energy lowering in the process is of order Jcheff ' 4t2/J . The positivity of this effective exchange

indicates that an antiferromagnetic pattern of channel spin is favored near quarter filling.
A priori, there is no reason to anticipate a substantial limitation of the boundaries of spin

and channel ordering as a function of filling n, though experience with other models (the Hubbard
model and Anderson lattice model, for example) suggest that the boundaries ought to be rather close

to half(quarter) filling for spin(channel) ordering. If this is the case, the third law of thermodynamics
would again bias us to look for some other kind of ordering in the intermediate fillings. Based upon the
outlook of strong odd-frequency pairing correlations from the impurity model,it is natural to consider
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Figure 123: Illustration of channel superexchange near quarter filling in the two-channel Kondo lattice

for strong coupling. At quarter filling, singlets on every site are energetically favored over doublets on
every other site. However, hopping is blocked for spins on adjacent sites in the same channel, while it

is not blocked for spins in opposite channels. Hence, a channel superexchange of order (t∗)2/J results.

an instability to an odd-frequency superconducting phase.
Most of these above expectations are born out in the calculations of the phase diagram of the

d = ∞ two-channel Kondo lattice model as studied by Jarrell, Pang, and Cox [1997a,b] with the same

Quantum Monte Carlo method discussed in Sec. 9.3.2 in the work of Jarrell et al. [1996,1997]. The
exception is that no strong evidence for channel spin ordering is found in the vicinity of quarter filling,

though it may represent a possible secondary phase transition at very low temperatures.
To hunt for instabilities of the spin, channel, and pairing degrees of freedom, the corresponding

susceptibilities were evaluated by Jarrell, Pang, and Cox [1996,1997]. These are shown in Fig. 124. The
resulting phase diagram is shown in Fig. 125. The remarkable features resulting from this study are:

1) The antiferromagnetism persists for a rather large range away from half filling, and is commensurate
except very close to the critical value of the filling where it becomes incommensurate. The antifer-

romagnetic transition temperature is a function of the bare coupling J , and for arbitrary fillings and
coupling strengths, a combination of RKKY and superexchange couplings determine the overall transi-
tion temperature. It was not possible numerically to go to sufficiently large couplings to detect the 1/J

behavior anticipated above.
2) The antiferromagnetism is peculiarly weak on two counts: a) only a very small singularity is observed

in the total bulk staggered magnetic susceptiblity (it is quite strong in the local-moment-only contri-
bution to the bulk susceptibility, and so Jarrell, Pang, and Cox [1997a,b] employed this to accurately

identify the antiferromagnetic transition and critical behavior), and b) to within numerical accuracy,
this singularity is characterized by a non-universal J dependent critical exponent γ < 1.

3) The line of temperatures T ∗ represents a lower bound on a first order superconducting transition
to an odd-in-frequency pairing state in which the conduction electrons pair into spin-singlets, channel-

singlets, and the pair wave function possesses even spatial parity. The specific value of T ∗ is determined
by where the pair field susceptibility PS in this channel changes sign as a function of temperature. As
argued below, this must correspond to a lower bound for a first order phase transition.

4) The pair field susceptibility is computed for pairs with arbitrary center of mass momentum within
the Brillouin zone. To within numerical accuracy, the temperature T ∗ at which PS(~q) changes sign is

identical for all ~q values. As argued later in this subsection, this is an artifact of infinite dimensions
which will likely be removed at finite d in favor of a zone-boundary center of mass momentum for the

pairs.
5) Quite remarkably, the temperature T ∗ goes as C(J)T latt0 where T latt0 is the lattice Kondo tempera-
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ture determined from a fit of the local susceptibility in the local moment channel to the single impurity

results for each value of n, J . The prefactor C(J) ≈ 0.5 is a weakly J dependent number. Since T latt0

signifies the energy scale for formation of local non-Fermi liquid physics, this suggests an interpretation

of the superconducting instability in terms of pairs best understood in real space and strongly associ-
ated to the non-Fermi liquid formation. This point of view is sharpened by the observation for at least

J < t that T ∗ is close to the temperature at which Z = 1 − ∂ReΣ(ω)/∂ω|0 changes sign, where Σ is
the conduction electron self energy. In a conventional Fermi liquid, Z represents the dynamical mass
enhancement of the quasiparticles. A negative value of Z certainly indicates a complete breakdown of

the quasiparticle concept.
6) Though an examination of the staggered channel susceptibility with no coupling to pairing or spin

degrees of freedom does indicate a narrow region about quarter filling where ordering is possible, the
transition temperature for such ordering is very small compared to T ∗, and so Jarrell, Pang, and Cox

[1997a,b] focus instead upon the magnetic and superconducting order.
7) The frequency dependent form factor of the spin-singlet channel-singlet pair field which was found

from the maximum eigenvector of the pairing kernel is singular in ω–it goes as 1/ω, in precise agreement
with the result of Coleman, Miranda, and Tsvelik [1993,1994] obtained in a Majorana fermion mean

field theory of the ordinary Kondo lattice. While this has a finite overlap with a pair field possessing a
regular form factor in frequency (e.g., going as ω), the result suggests that it is necessary to have a sin-
gular interaction vertex to induce the pairing. This further suggests that the physical order parameter,

while possessing an admixture of the time derivative pair field (which produces a form factor linear in
ω in the frequency domain), is predominantly composed of more complicated non-local time operations

in the time domain.
To further understand the results and motivation behind the numerical study, it is convenient

to consider the problem from the point of view of Ginsburg-Landau (GL) mean field theory, though the
numerical findings of Jarrell, Pang, and Cox [1997a,b] are more general than what is provided by this

limited theoretical framework. The following presentation follows completely the more extensive work
of Jarrell and Pruschke [1996], and Jarrell et al. [1997].

Consider the bulk free energy functional for a general scalar order parameter O(T ). It is given
by

(9.4.22) F [O] ≈ O2(T )

2χ
(1)
O (T )

+ bO4(T ) + cO6(T ) + .....

where χ
(1)
O is the static linear susceptibility corresponding to the order parameter O–for example, for

antiferromagnetism it is the linear response coefficient relating the induced staggered magnetization to

an applied staggered field. Of course, Eq. (9.4.22) is simplified in that if the order parameter is not a
scalar we must generally add more terms. Also, if the order parameter admits a cubic invariant (like

volume) we need to include odd powers. However, the above form is sufficient for our purposes. In
the study for spin and channel ordering, Jarrell, Pang and Cox [1997a,b] found it sufficient to hunt for

divergences in the staggered spin and channel susceptibilities. As discussed above, just such divergences
were found. This common scenario is represented graphically in Fig. 126.

Now, in terms of GL theory, the order parameter undergoes a second order transition when the

coefficient of the quadratic term vanishes. This clearly implies that χ
(1)
O (T ) must diverge. GL theory

of course admits the possibility of first order transitions. The customary scenarios require either: (i)
that the order parameter admit a third order invariant as happens for isostructural phase transitions

or quadrupolar ordering, or (ii) the fourth order term changes sign from positive to negative while the
second order and sixth order terms remain positive. This is the situation in which a mean field theory

of tri-critical points becomes possible. These scenarios are represented graphically in Fig. 127.
Another rather unusual possibility signifies the presence of a first order transition (Jarrell and

Pruschke [1996]; Jarrell et al. [1997]): if χ
(1)
O (T ) itself changes sign at a temperature T ∗. Clearly, such
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Figure 126: Usual Landau scenario for a second order transition. Sketched is the free energy F as a

function of the order parameter O. At T > Tc, there is a quadratic curvature upwards. For T = Tc, the
free energy is quartic in the order parameter. For T < Tc, the free energy has a quadratic curvature

downwards. As a result, a stable minimum at finite O arises continuously from zero order parameter as
the temperature is lowered.
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Figure 127: Usual first order transition scenarios. These are either driven by the presence of a third

order term (as occurs for liquid crystals, quadrupolar, or structural transitions), or by a change of
sign of the fourth order term in the Landau free energy. In either case, the transition occurs when a
metastable state is lowered through a degeneracy point with the zero order parameter minimum at a

critical temperature Tc. Below Tc the metastable state becomes fully stable.
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Figure 128: Anomalous first order transition scenario for odd-frequency pairing in the two-channel

Kondo lattice. Given the finding of a sign change to the pair field susceptibility at a temperature T ∗,
and noting that the order parameter susceptibility is the inverse of the free energy curvature at the

origin (O = 0), we see that the low O curves “pile up” on approach to T ∗ at which point the free
energy has infinite curvature at the origin. Immediately below T ∗, the free energy has negative infinite
curvature, and clearly stability requires a minimum at a finite value of O. The only consistent way to

make this happen is for there to be a minimum at finite O above T ∗, implying that T ∗ is a lower bound
for the first order transition temperature.

a sign change represents a thermodynamic instability. This scenario is displayed in Fig. 128. As can be

seen, above T ∗, a minimum at O = 0 is clearly present, while below T ∗, a minimum at finite O is present.
Because these cannot be smoothly connected, we infer that the transition must be discontinuous. Of

course, if χ
(1)
O passes through zero, the very assumption of a Taylor’s expansion in powers of O for F [O]

breaks down. One approach to remedy this problem is to apply a gedanken external field hO conjugate
to O and work in the Legendre transformed free energy A[hO] = F − hOO. By using

(9.4.23) A[hO] ≈ −χ
(1)
O

2
h2
O −

χ
(3)
O

4!
O4 − χ(5)

6!
O6 + ....

where χ(i)is the i-th order non-linear susceptibility, for hO → 0, one can systematically invert A to

obtain F . The point is that clearly A is the sensible starting point free energy when χ
(1)
O → 0.

Now, consider first the case χ
(3)
O < 0. This gives the usual situation that the GL free energy

is stabilized by the fourth order terms, as it is straightforward to show that for O → 0, that β ≈
−χ(3)

O /[24(χ
(1)
O )4] > 0. However, for χ

(1)
O → 0, this expansion clearly breaks down. Evaluation right at

T ∗ where the linear susceptibility vanishes gives

(9.4.24) F [O] ≈ −χ
(3)
O

4!
h4
O + hOO + ....

=
χ

(3)
O

8
(

6O

|χ(3)
O |

)4/3 + ....
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which is manifestly negative. Stabilization must occur from the sixth order and higher terms in the free

energy. Because this energy is already negative at T ∗, we infer as claimed that a transition to a finite
value of O must have occurred at a temperature above T ∗.

For χ
(3)
O > 0, we cannot give quite so explicit a proof of this fact. However, we note that when

the non-linear susceptibility is positive, the fourth order GL term in O is negative, which indicates the

presence of a free energy minimum at finite values of O. Taken together with the observation that
the free energy must be negative for infinitesimal values of T ∗ − T > 0, O, then we infer that again a

transition to finite O must have occurred above T ∗.
Finally, we return to the question of 1/d effects upon this phase transition. As mentioned in

item (4) above in the discussion of the results for the phase diagram, this transition in d = ∞ does
not distinguish between different center-of-mass momenta for the Cooper pairs. We expect this to

change when d < ∞. The argument is as follows. The superfluid density or stiffness can be read
off as the coefficient of the diamagnetic term in the electrical conductivity. This results from the

anomalous diagram shown in Fig. 119(a). In a systematic 1/d expansion, as mentioned in Sec. 9.3.3,
the conductivity itself is of order 1/d. The locality of the self energy implies that correct to this order one
can omit any vertex corrections from the conductivity. This implies that the conductivity has precisely

the bubble form assumed in the argument of Coleman, Miranda, and Tsvelik [1993,1994] to infer that
the superfluid density/stiffness at the zone center is negative for an odd-frequency superconductor, while

it is positive at the zone boundary. Hence, it appears likely that the restoration of a superfluid density
at finite d will lift the degeneracy between different ~q (center-of-mass momentum of Cooper pairs) and

thus induce a staggered pairing state. While it cannot be ruled out that vertex corrections will modify
this result (Balatsky et al. [1994], Abrahams et al. [1995]), to the extent the leading order (in 1/d)

term determines the sign of the superfluid stiffness, it seems unlikely that the vertex corrections will
modify this conclusion.

In closing this subsection, it is worth noting that this unusual pairing must be described by
physics which goes beyond Eliashberg-Migdal theory in the local dynamics (in that the local spin
fluctuations mediating the pairing must be self consistently adjusted) but not in the intersite dynamics.

Hence, it should be possible to develop a kind of real space Eliashberg theory (Jarrell et al. [1997]) to
understand the physics of this model in the superconducting state. It will of course be important to

develop a theory of a finite order parameter to properly identify the location of the first order transition
and to assess the impact of the antiferromagnetism on the superconducting transition.

Jarrell, Pang, and Cox [1997a,b] have noted that the possibility of coexisting superconductivity
with predominantly commensurate antiferromagnetism along with the anomalous normal state proper-

ties makes the two-channel model a leading candidate to explain the heavy fermion superconductors. It
should be noted that the observed superconducting transition in these materials appears to be second

order. Detailed numerical studies are required to assess whether finite dimensionality effects induce a
second order transition or whether a sufficiently weak first order transition can be found to bring this
fascinating state more into alignment with experiment.

One-Dimensional Diluted Kondo Lattice

Zachar, Kivelson, and Emery [1996] have studied a single channel Kondo lattice in one dimension

with Abelian bosonization techniques. Dilution requires that the spacing between local moments be
significantly larger than the spacing between atoms yielding the conduction electrons. The model is

soluble in the anisotropic limit analogous to that of Toulouse for the single channel impurity model.
Specifically, Jz = πvF must be taken to obtain a soluble model.

In this limit for incommensurate filling of the conduction band, there is an antiferromagnetically
ordered ground state in transformed spin variables and a gap to spin excitations of ∆s ∼ vF [cJ⊥/vF ]2/3

where c is the local moment density. By transformed spin variables we mean τ̃x(j) = U †(j)τx(j)U(j)

where τx(j) is the local moment spin (x-component) at site j and U(j) = exp[−i
√

2π
∑
j τ

z
j θs(rj)] is a
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stringlike operator that effects a unitary rotation of the system. θs is a “spinlike” bosonic momentum

variable introduced through the transformations

(9.4.25) Ψ†λ,σ(x) ∼ exp[i
√
π(θσ(x) + λφσ(x)) + iλkFx]

where λ = ± is the left moving (+) or right moving (-) index and σ =↑, ↓ is the spin index. The
fields θσ(“momentum”) and φσ(“coordinate”) are canonically conjugate. The field θs = [θ↑ − θ↓]/

√
2.

Note that the physical spin variables are disordered by virtue of the excitation gap, and thus have an
exponential decay in real space. Diluteness of the local moment array is self consistently determined by

requiring that the spin correlation length vF /∆s is large compared to the inter-impurity spacing.
The free fermi gas in one dimension would have spin, charge, and pair correlations which decay

as x−2 for large distance x. If it is found that one has correlation functions decaying as x−α for α < 1,
one can have an indication from the one-dimensional model that there is an enhancement of the ordering

tendencies. Zachar, Kivelson, and Emergy find just such enhancement for 2kF ordering of the conduction
charge and of the composite spin field Ψ†L↓ΨR↑τx where Ψ are conduction fields either of left (L) or right
(R) moving character and τx is the local spin operator. They also find enhanced ordering tendencies

for the staggered singlet superconducting field (−1)jΨ†L↑(j)Ψ
†
R↓(j) and the staggered composite field

(−1)jΨ†L↓(j)Ψ
†
R↓(j)τ

x(j), which, as argued earlier, should mix linearly with the staggered singlet spin
field. Because L,R act as channel indices here, the staggered singlet spin field is completely analogous

to that of the two-channel model. Satisfying the Pauli principle requires odd-in-frequency pairing. This
remarkable folding down of the one-channel model in one-dimension to an effective two-channel model

is possible because the spin gap stabilizes backscattering terms to zero. It is unclear from the study
how generic the spin gap is away from the soluble points, and this is obviously something to be explored

further.
Subsequent to the work of Zachar, Kivelson, and Emery [1996], Coleman et al. [1997] have

suggested that a novel two-channel pairing state can be bootstrapped out of a superficially one-channel
lattice when electrons of differing local angular momentum (but the same parity) couple to a given

local-moment site.
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10 Conclusions and Directions

We have shown in this review that in order to arrive at exotic Kondo states which display non-Fermi
liquid fixed points the minimal generalization of the single channel Kondo model is via the addition of

channel or flavor quantum numbers to the conduction electrons. The two-channel spin 1/2 Kondo model
obtained in this way has been shown to describe a great variety of physical phenomena from disparate

areas of condensed matter physics, such as amorphous metals, nanometer scale point contact devices,
certain rare earth and transition metal ions in metals (some of which become exotic superconductors
at full concentration of the ions), and quantum dots in the Coulomb blockade regime. In particular,

it is apparent that any time a local pseudo-spin degree of freedom is non-magnetic, a mapping to a
two-channel Kondo model is possible in which the channel degree of freedom is the magnetic spin or

time reversal index of the conduction electrons, guaranteed to be degenerate in the absence of magnetic
field by Kramers’ theorem. Given this broad variety of possibilities, we can only anticipate that new

models and experimental systems will be discovered for which a mapping to a model with a non-Fermi
liquid fixed point will be on solid ground.

We have stressed that the most likely physical route to a non-Fermi liquid Kondo fixed point is
through the two-channel spin 1/2 Kondo model. However, other intriguing possibilities exist for stable

fixed points involving a large effective impurity spin (Zaránd [1996], Moustakas and Fisher [1997])
or unstable fixed points with a large effective conduction spin either for TLS Kondo sites or rare
earth/actinide ions (Fabrizio and Gogolin [1994]; Fabrizio and Zaránd [1996]; Kim and Cox [1996];

Sengupta and Kim [1996]; Kim, Cox, and Oliveira [1997]).
On theoretical grounds, the two-channel Kondo model itself is very well understood. On the

high temperature side, the multiplicative renormalizatin group (Sec. 3) provides a solid indication of
which sectors of parameter space in the model are needed to describe various physical phenomena (valid

for T ≥ TK , TK the Kondo temperature). Knowing the relevant sector of parameter space, one is guided
to the low temperature regime where a variety of powerful methods are available to characterize the

physics. Asymptotically, at low temperatures, conformal field theory and Abelian bosonization may
be brought to bear (Sec. 6) (valid for T << TK). The numerical renormalization group (Sec. 4) and

the Bethe-Ansatz method (Sec. 7) may be employed to fully characterize the crossover from low to
high temperatures provided the model is sufficiently simple (e.g., no excited crystal field states) and the
temperature range of interest is far from the band edges. With these methods it is, however, difficult

(though not impossible) to obtain dynamical properties. The non-crossing approximation provides an
excellent way to study these models in thermodynamic, transport, and spectral properties over all

temperature ranges including a variety of interesting physical phenomena (especially realistic electronic
structure inputs and excited multiplet states) while being limited practically to the rare earth and

actinide ions.
These methods all predict universality in physical properties and are heavily intertwined, in that,

for example, the conformal theory must assume a fixed point, and have that assumption confirmed by
matching to finite size spectra from say the NRG or Bethe-Ansatz approaches. Once such a comparison

is made, one may confidently employ the predictions of the conformal theory for, say, a T 1/2 low
temperature behavior in the resistivity. The non-crossing approximation is strictly controlled only for
large spin degeneracy N , and its very successful application to the problem for N = M = 2, where M

is the channel degneracy, is justified a posteriori by a comparison of the critical exponents, amplitudes
such as the zero temperature resistivity and entropy, and temperature dependent thermodynamics to

exact results such as arise from the Bethe-Ansatz and CFT. In this way, one has confidence in using
the NCA to calculate the full temperature dependence of quantities such as the thermopower, electrical

resistivity, and van Vleck susceptibility, which are accessed either not at all or in limited ways by the
other methods.

Experimentally, there is growing evidence that the TLS interacting with electrons in metals can
be described by the two-channel Kondo model. However, further studies are required to answer certain
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critical questions, such as:

→ How does the TLS form in metallic glasses, mesoscopic devices, and interfaces?
→ Why are there so many TLS with small asymmetry, for example, in the case of nanoscale point

contact devices?
→ What is the role of the complete set of excited states in the TLS?

→ What is the effect of static impurities in the metallic host on the orbitals and spherical waves of the
conduction electrons and how does that affect the orbital screening phenomenon about the TLS?

Considering the physics of TLS is not only of interest for establishing the existence and relevance

of the two-channel Kondo problem, but also for understanding the signals present in many mesoscopic
samples, devices, and interfaces, and thus is highly relevant to the ongoing technological developments

in nanoscale physics.
Concerning the possibility of two-channel Kondo physics for heavy fermion alloy systems, it

must be said that an impressive body of evidence argues for understanding of many systems in terms of
the two-channel Kondo effect. A complete verification of the behavior has not proven possible for any

one system however, usually due to: (i) unusual behavior of transport coefficients such as the resistivity
and thermopower which do not appear reconcilable with the simple two-channel Kondo model, (ii)

unusual thermodynamic scaling in applied magnetic field, or (iii) history dependent freezing effects
associated with spin glass physics. However, the clear observation of single ion scaling phenomena in
Y1−x(Th1−y ,Uy)xPd3, Th1−xUxRu2Si2, Th1−xUxPd2Si2, Th1−xUxM2Al3, Th1−xUxBe13, and, partially,

in La1−xCexCu2Si2 suggests that further experimental studies on very well characterized crystals are
worthwhile. In the case of the U based systems, single crystal ultrasound and non-linear susceptibility

measurements are worthwhile to directly probe the non-Kramers’ ground state. On the theory side,
the effects of excited crystal field levels and other physics beyond the simplest two-channel model

must be further investigated to assess whether the unusual behavior in transport coefficients may be
reconciled with the observations. Also on the experimental side, the recent discovery of anomalous Pr

based systems for possibly studying the quadrupolar Kondo effect (Yatskar et al. [1996]) worthwhile to
examine further, particularly by doping on the Pr sublattice with La to search for dilute quadrupolar

Kondo systems where a known non-Kramers’ ground state on the ion of interest is assured. Another
extremely interesting theoretical question inspired by experiment (Aliev et al. [1995a,b]) is to study the
situation of extreme mixed valence between two degenerate configurations (c.f., 108).

Perhaps the most wide open and exciting opportunidies for experimental and theoretical research
on the rare earth and actinide based multi-channel Kondo candidates are in the periodic compounds

such as UBe13, CeCu2Si2, and PrInAg2. Two of these are exotic superconductors. Investigations of the
two-channel Kondo lattice in infinite spatial dimensions yield a non-Fermi liquid normal state and either

superconducting or antiferromagnetic ground states (with possible coexistence) (Jarrell et al. [1996];
Jarrell, Pang, and Cox [1997]; Anders, Jarrell, and Cox [1997]). The normal state properties have a good

correspondence to UBe13, while the superconductivity that is found is odd in frequency and proceeds via
a very novel first order transition. It is important to further examine whether this transition is robust

upon passing to finite spatial dimension (where indications are that finite center of mass Cooper pairs
will be favored), what the effects of intersite magnetic correlations are upon the normal state non-Fermi
liquid behavior, and what the effects are of the inexactness of channel degeneracy (for the magnetic two-

channel lattice) or spin degeneracy (for the quadrupolar two-channel lattice) of the conduction states.
Moreover, complete studies of the ordered phases are necessary to characterize the degree of coexistence

vs. competition for the magnetic and superconducting order. Studies for a one dimensional model
of the single channel Kondo lattice which effectively maps to the two-channel lattice in certain limits

also support enhanced staggered odd-frequency pair correlations (Zachar, Emery, and Kivelson [1996]).
Because this is the first model Hamiltonian for which odd-frequency pairing is definitively observed, it

is important to further develop the phenomenological consequences of this unusual theoretical result.
For example, what are the low temperature excitations and how do they manifest in thermodynamics

and transport? What happens to Josephson tunneling and Andreev reflection? Some of these questions
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have been partially answered (see for example Coleman, Miranda, and Tsvelik [1994], Heid et al. [1995])

but clearly much work remains.
It is clear that this is a field which has blossomed extensively in recent years, and for which

there remains a promising future for theorists and experimentalists with an Edisonian spirit.
If this does not satisfy the reader, then he/she must go to hell experiencing hectic non-Fermi

liquid behavior with non-vanishing entropy in marked contrast to heaven where single channel physics
presides with peace ensured by a singlet ground state and Fermi liquid excitation spectrum. Thanks to
free will, the choice belongs to the reader.
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Figure 130: Quartic anharmonic well model for TLS Kondo effect.

Appendix I: Model Calculations of ∆x, V x.

In this appendix, we will summarize two model calculations of ∆x, V x which provide quantitative

justification to the simple theory of Sec. 2.1.3. The examples will follow from exact treatment of the
square barrier problem displayed in Fig. 129, and the quartic anharmonic potential problem of Fig. 130,

where the non-orthogonal wave functions associated with each well will be taken to be approximately
of harmonic oscillator (Gaussian) form.

The general prescription is as follows: We shall only treat the spatial dependence along the axis
of the TLS, assuming for convenience a symmetric model so that parity is a good eigenvalue. Denote

the lowest two eigenfunctions of the double well as φ±(z) where the subscript is the parity level. The
parity wave functions are delocalized over the double well. Define orthogonalized combinations of wave

functions for each side (right R or left L) by

(A.1.1) φR,L(x) =
1√
2

[φ+(x)± φ−(x)] .

The spontaneous tunneling rate ∆x is the splitting between the two states of definite parity, which is
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equal to the matrix element of the total Hamiltonian between the localized states. That is,

(A.1.2) ∆x = E− − E+ =< −|H |− > − < +|H |+ >= −2 < L|H |R > .

The assisted tunneling matrix element may be estimated by directly computing the matrix element of
the electron-ion coupling taking the state L→ R, i.e.,

(A.1.3) V x
~k,~k′

= −2 < ~k, L|Hel−ion|~k′, R >

= −2U(~k′ − ~k)

∫
dx(exp[i(~k− ~k′) · x̂]− cos[(k′x − kx)(d/2)])φL(x)φR(x) .

The subtraction procedure is the same as discussed in the section on the TLS Hamiltonian. We shall

use Eqs. (A.1.2,3) in estimating the parameters.
The above approach is equivalent to the derivation based upon the Feynman-Hellman theorem

developed by Ngai et al [1967] for estimating tunneling matrix elements.
Square Barrier Model. Here the atomic wave functions feel an infinite barrier at x = ±(d/2+r0),

and a square barrier of height VB for −d/2 < x < d/2. Following Ngai et al. [1967], it is straightforward

to find the wave functions φ±(x) from direct solution of the Schrödinger equation subject to the boundary
conditions

(A.1.4.a) φ±(±(d/2 + r0)) = 0 ,

(A.1.4.b) φ±(±|(d/2)+|) = φ±(±|(d/2)−|)

where the superscript indicates whether the limit is taken from the right (+) or left (-), and

(A.1.4.c)
d

dx
φ±(±|(d/2)+|) =

d

dx
φ±(±|(d/2)−|) .

Given the eigenvalues E± and wavenumbers k± =
√

2ME±/h̄ and q± =
√

2M(VB − E±)/h̄, we take
the Ansatz

(A.1.5)

A± exp[ik±x]± exp[−ik±x]d/2 ≤ x ≤ d/2 + r0

φ±(x) = B±
2 (exp[q±x]± exp[−q±x])− d/2 ≤ x ≤ d/2

±A± exp[−ik±x] + exp[ik±x]− (d/2 + r0) ≤ x ≤ −d/2
.

This yields the eigenvalue conditions,

(A.1.6.a) k+r0 + tan−1(
k+

q+
coth[q+d/2]) = π

and

(A.1.6.a) k−r0 + tan−1(
k−
q−
tanh[q−d/2]) = π

the wave function coefficients

(A.1.7) A± = ∓ exp[−2ik±(r0 + d/2)]

and

(A.1.8) B± = ∓2i(
k±
q±

)
cos(k±r0) exp[−ik±(r0 + d/2)]

(exp[q±d/2]∓ exp[−q±d/2])
.

We are interested in the limit of large barrier height, so that q± ≈
√

2MVB/h̄ = q0, and to leading order
k± ≈ k0 = π/r0, and the overall normalization coefficient of the even and odd parity wave functions is

1/r0. We denote the energy E0 = h̄2k2
0/2M by h̄ω0, and the Gamow factor λ = q0d.
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Retaining terms only to leading exponential order, we find that the tunneling rate ∆x is given

by

(A.1.9) ∆x = E− − E+ ≈ h̄ω0(
2d

r0
)
e−λ

λ
.

Using Eq. (A.1.3) and performing the expansion for small (kx − k′x)d = ∆kxd, we find that to leading
exponential order the assisted tunneling matrix element is given by

(A.1.10) V x
~k,~k′
≈ h̄ω0e

−λ

12
(
d

r0
)(∆kxd)2(

U(~k− ~k′)
VB

)

= ∆x[
λ

24
(∆kxd)2(

U(~k′ − ~k)

VB
)]

which agrees with the heuristic derivation given in Sec. 2.1.

Atom in a potential with quartic anharmonicity We take the potential energy to have the form

(A.1.11) V (x) = −αx2 + βx4

with α, β > 0. We identify the barrier width d/2 with the potential minima, viz.

(A.1.12) (
d

2
)2 =

α

2β
,

the barrier height VB with the depth of the two wells

(A.1.13) VB =
α2

4β
=

1

2
α(
d

2
)2 ,

and the oscillator energy h̄ω0 with the natural frequency of harmonic oscillations in the well minima,

so that

(A.1.15) h̄ω0 =

√
2α

M
.

We assume the wave functions φ0
L,R(x) to orthogonalization have the Gaussian form

(A.1.16) φ0
L,R(x) ≈ 1

π1/4r
1/2
0

exp(−(x± d/2)2

2r2
0

)

where the oscillator length r0 is given by

(A.1.17) r4
0 =

h̄2

2Mα
.

These wave functions have the overlap

(A.1.18) S =

∫
dxφ0

L(x)φ0
R(x) = exp(− d2

4r2
0

) = e−λ

which defines the Gamow factor λ = d2/4r2
0 in this model. When we orthogonalize, we obtain the wave

functions

(A.1.19) φL,R(x) ≈ φ0
L,R(x)− S

2
φ0
R,L(x)

which is correct to leading order in exp(−λ).
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With these approximately orthogonal orbitals, one can show exactly that in the expectation value

specified by Eq. (A.1.2), only the quartic potential term and the kinetic energy of the orthogonalized
pieces survives, so that

(A.1.20) ∆x = −2 < L|H |R >≈ h̄ω0e
−λ[1 + O(

1

λ
)] .

Similar considerations applied to Eq. (A.1.3) yield the estimate for V x that

(A.1.21) V x ≈ ∆x[
λ

16

U(~k′ − ~k)

VB
(∆kxd)2][1 +O(

1

λ
)] .

The use of the orthogonalized orbitals also justifies the use of δρ(~r) = ρ(~r)−(ρ(d/2)+ρ(−d/2))/2.

The argument is simple: by plugging ρ(~r) into (A.1.3) and using the orthogonalized orbitals given by
Eq. (A.1.19), one finds that

(A.1.22) < L|ρ(x)|R >≈
∫
dxφ0

L(x)φ0
R(x)[ρ(x)− 1

2
(< L|ρ|L > + < R|ρ|R >)] .

Assuming the oscillators to be well localized on the scale of density variation (∼ k−1
F ) so that

< L,R|ρ|L,R>≈ ρ(∓d/2), we see that the factor in braces is precisely δρ(x).

Hence, in two cases we find results for V x estimated from the formulation of wave functions of
orthogonal orbitals which agree to within factors of order unity with the Scalapino and Marcus formu-
lation of the theory.

Appendix II: Local representation for electrons in the TLS problem

In the most simple model for the TLS Kondo effect, the electrons are scattered by the tunneling

atoms in an s-wave channel assuming that the center of the coordinate system is the center of the atom
(for a discussion of the more general case, see Vladár and Zawadowski [1983a]). In the case of the TLS

the scattering contributes to different angular momentum channels if the mean position of the atom
is chosen as the center of the coordinate system. In this case, the wave functions used earlier are not

orthogonal. Therefore it is useful to introduce states which are even (e) and odd (o) about the center
of the tunneling system as has been done earlier in the two-impurity Kondo problem (Krishna-murthy,

Jayaprakash, and Wilkins [1980]) and in the TLS Kondo problem by Moustakis and Fisher [1995]. We
shall follow the latter description here.

The non-interacting Hamiltonian used by Moustakis and Fisher [1995] is

(A.2.1) H0 = ∆0(d†1d2 + d†2d1) +
∑

σ

∫
d~k

(2π)3
εkc
†
~kσ
c~kσ

where d†i creates the tunneling atom at position ~Ri, ∆0 is the spontaneous hopping matrix element,
and the last term describes the conduction band. The operators are assumed to obey continuum

commutation relations. Turning on an interaction between electrons and the TLS which does not
include assisted tunneling we have the coupling

(A.2.2) H1 =
V

Ns

∑

σ,i

∫ ∫
d~k

(2π)3

d~k′

(2π)3
e−i(

~k−~k′)·~Ric†~kσc~k′σd
†
idi

where V is the strength of the s-wave scattering off of the atom at either site. Measuring ~R1, ~R2 from
the midpoint of the TLS, we see that ~R1 = ~R/2, ~R2 = −~R/2, where ~R is the distance between the

impurities.
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We now introduce a new representation in which

(A.2.3)

∫
d~k

(2π)3
e±i

~k·~R/2c~k,σ =

∫
dk

2π
c±,k,σ

which defines c̃±,k,σ. Note that the operators c̃±,k,σ are not orthogonal at this point. We can properly

introduce now odd and even electron operators which are correctly normalized as

(A.2.4.a) cekσ =
1√
Ne

[c+,k,σ + c−,k,σ ] ,

(A.2.4.b) cokσ =
1√
No

[c+,k,σ − c−,k,σ]

with

(A.2.5.a) Ne(k) =
2k2

π2
[1 +

sin kR

kR
]

and

(A.2.5.b) No(k) =
2k2

π2
[1− sinkR

kR
] .

With this definition, and α = e, o,

(A.2.6) {cα,k,σ, c†α′,k′ ,σ′} = 2πδ(k− k′)δα,α′δσ,σ′ .

With this definition, we can introduce properly orthogonal left and right conduction operators as

(A.2.7.a) c1kσ =
1√
2

[ce,k,σ + co,k,σ]

and

(A.2.7.b) c2kσ =
1√
2

[ce,k,σ − co,k,σ] .

Note that this definition of conduction basis is completely general for a two-center problem and may
thus be applied to the two-impurity Kondo model as well.

We now return to rewrite the interaction Hamiltonian of Eq. (A.2.2). In terms of the e, o basis

we have

H1 =
∑

σ

∫ ∫
dk

2π

dk′

2π
[V1(c†e,k,σce,k′,σ + c†o,k,σco,k′,σ) + V2(c†e,k,σce,k′,σ − c

†
o,k,σco,k′,σ)

(A.2.8) +V3[(c†e,k,σco,k′,σ + c†o,k,σce,k′,σ)(d†1d1 − ddagger2 d2)]

where we take d†1d1 + ddagger2 d2 = 1 (appropriate to the restricted Hilbert space) and

(A.2.9) V1 = πN(0)V ,

(A.2.10) V2 = πN(0)V
sin kFR

kFR
,
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and

(A.2.11) V3 = πN(0)V

√
1− (

sinkFR

kFR
)2 .

This completes the derivation of the Moustakis and Fisher [1995] hamiltonian displayed in Eq. (3.5.12)

(recall that σz = d†1d1 − d†2d2).
Finally, we mention that in Eqs. (A.2.9) and (A.2.10), an averaged atomic potential can be

subtracted (i.e., a uniform background).

Appendix III: NCA Treatment of Spin and Channel Magnetization in the SU(N)⊗
SU(M) Multi-channel Model

We wish to pull out the singular low field dependence of the spin magnetization when γ ≥ 1 and
the channel spin magnetization when γ ≤ 1. Our treatment follows the calculations of susceptibilities

in Bickers [1987], Sec. V.B.3. We shall present a more detailed argument for the spin magnetization;
the details for the channel spin magnetization will be similar. Our notation follows Sec. 5.1. The

strategy is to develop and utilize an expression for the ground state energy as an integral over db where
the integrand contains only factors of gf viewed as depending on db through inversion of the constant

of integration relation (5.1.17). In applied field, gf will carry all the explicit field dependence and an
expression for the magnetization may be obtained. The field is assumed to enter through the Zeeman

energy HZ = −∑σ µHspσ where σ runs between −J = (N − 1)/2 to J .
First, we extend the NCA differential equations in the applied spin field. Now gf acquires a σ

dependence so the equations are

(A.3.1.a)
dgfσ
dω

= −1− γΓ̃

πdb

and

(A.3.1.b)
ddb
dω

= −1− Γ̃

πN

∑

σ

1

gfσ

subject to the boundary conditions

(A.3.2) db(−D) = D, gfσ(−D) = D + εf − µσHsp .

It is easy to see that we may write

(A.3.3) gfσ = gfJ + (J − σ)µHsp = gfJ + mH̃sp

where m = J − σ and H̃sp = µHsp. In consequence, the integration constant relation between db, gfJ is

(A.3.4) gfJ +
Γ̃

Nπ

∑

m

ln(
gfJ + mH̃sp

D
) + C = db +

γΓ̃

π
ln(

db
D

)

from which we infer C = −ε̃f + JH̃sp by evaluation at −D.

In principle, Eq. (A.2.4) allows us to solve for gfJ as a function of db, or vice versa. This gives
a route to integrate the differential equations of Eq. (A.2.1.a,b). We find

(A.3.5) ω = −db +

∫ db

D
dx

S1(x)

1 + S1(x)
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with

(A.3.6) Sj(x) =
Γ̃

Nπ

∑

m

1

(gfJ(x) +mH̃sp)j
.

The x in the integrand is expressing the dependence of gfJ on db. At the threshold which is also the

ground state energy, db vanishes. Hence

(A.3.7) E0 = −
∫ D

0
dx

S1(x)

1 + S1(x)

where the field dependence enters now only through gfJ in the integrand. Hence, we need a knowledge

of ∂gfJ/∂H̃sp. From Eq. (A.2.4), holding db fixed and differentiating with respect to H̃sp, we see that

(A.3.8)
∂gfJ

∂H̃sp

= −J + S ′1
1 + S1

where

(A.3.9) S ′j =
Γ̃

Nπ

∑

m

m

(gfJ +mH̃sp)j
.

Putting the above relations together, we obtain the spin magnetization from

(A.3.10) Msp = − ∂E0

∂H̃sp

=

∫ D

0
dx

[S2(x)(S ′1(x) + J)− S ′2(x)(1 + S1(x))]

(1 + S1(x))3
.

Our goal is to simply pull out the low field dependence on H̃sp. Hence we may evaluate the above

equation assuming gf is above the crossover value, but still in the the low energy regime so that
H̃sp ≤ gf << T0. This imposes an infrared cutoff on the integral determined by the relation between gf
and db of xc ≈ (Γ̃/π)(H̃sp/T0)1/γ in view of Eq. (5.1.18). The upper cutoff is specified by the maximal

value of db in the low temperature regime which is Γ̃/π. It is straightforward to show that for small
H̃sp,

(A.3.11) [S2(J + S ′1)− S ′2(1 + S1)] ≈ (
Γ̃

π
)2 1

g4
f

J(J + 1)/3H̃sp

and since for H̃sp < gf << T0, 1 + S1 ≈ Γ̃/πgf we see that

(A.3.12) Msp ≈
πJ(J + 1)H̃sp

3Γ̃

∫ Γ̃/π

xc(H̃sp)

dx

gf (x)

=
J(J + 1)

3
(
H̃sp

T0
)

1

γ − 1
[(
H̃sp

T0
)1/γ−1 − 1] .

For γ > 1, we see then that Msp ∼ (H̃sp/T0)1/γ; for γ = 1, Msp ∼ (H̃sp/T0) ln(T0/H̃sp). For γ < 1, Msp

is linear in H̃sp at low fields corresponding to the finite value of χsp(0).

We may follow analogous reasoning to obtain the channel spin magnetization Mch =
−(∂E0/∂H̃ch) in applied channel field which couples linearly to the channel states. The result is that for

γ < 1, Mch ∼ (πT0/Γ̃)(πH̃ch/Γ̃)γ , for γ = 1, Mch ∼ (πT0/Γ̃)(πH̃ch/Γ̃) ln(Γ̃/πH̃ch), and for γ > 1, Mch

simply varies linearly in the applied field corresponding to the finite value for χch(0). The prefactor of

(πT0/Γ̃) = Wch reflects the need to virtually excite to the channel configuration to polarize the channel
spin.
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Appendix IV: Green’s Functions in the Abelian Bosonization Approach to the Two-

Channel Kondo Model

In this appendix we briefly review the derivation of the Green’s functions in the Abelian
Bosonization approach to the two-channel Kondo lattice. Of interest are the Green’s functions for

the Majorana b̂ field and for the ψsf field.

Because the effective resonant level model of Eq. (6.2.19) only couples the combination ψsf +ψ†sf
to b̂, it is convenient to decompose the ψsf field into two real Majorana fields,

(A.4.1) χ̂sf =
1√
2

(ψsf + ψ†sf), λ̂sf =
1

i
√

2
(ψ†sf − ψsf) .

The λsf field decouples from the problem. The remaining resonant level model may be solved by

equation of motion methods. Define the Green’s functions

(A.3.2.a) Gb(τ) = − < Tτ b̂(τ)b̂(0) > ,

(A.4.2.b) Gbk(τ) = − < Tτ b̂(τ)χ̂sf,k(0) > ,

(A.4.2.c) Gkb(τ) = − < Tτ χ̂sf,k(τ)b̂(0) > ,

and

(A.4.2.d) Gkk′(τ) = − < Tτ χ̂sf,k(τ)χ̂sf,k′(0) > ,

where χ̂sf,k is the Fourier transformed Majorana field in momentum space.
The equations of motion in Matusubara frequency space read

(A.4.3.a) iωnGb = 1 +
Ṽ√
Ns

∑

k

Gkb ,

(A.4.3.b) (iωn − εk)Gkb =
Ṽ ∗√
Ns
Gbb ,

(A.4.3.c) iωnGbk′ =
Ṽ√
Ns

∑

k′′
Gk′′k′ ,

and

(A.4.3.d) (iωn − εk)Gkk′ = δkk′ +
V ∗√
Ns

Gbk′ ,

where Ṽ = iJ
√

2/πa is the effective mixing matrix element between b̂, χ̂sf , and εk is the energy of the
ψsf fermions.

It is now straightforward to solve these equations for the separate Green’s functions, and we

find

(A.4.4.a) Gb =
1

iωn + iΓsgnωn
,

(A.4.4.b) Gkb =
Ṽ ∗√
Ns

1

(iωn − εk)(iωn + iΓsgnωn)
=
Ṽ ∗

Ṽ
Gbk ,

and

(A.4.4.c) Gkk′ =
δkk′

iωn − εk
+
|Ṽ |2
Ns

1

(iωn − εk)(iωn + iΓsgnωn)(iωn − εk′)
.

This completes the derivation.
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Vladár , K., A. Zawadowski , and G.T. Zimányi , 1988b, Phys. Rev. B37, 2015.

315
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