
Dynamics of Oceans:

Pt 3: Small-Scales and Climate

Professor Baylor Fox-Kemper


Brown University

Dept. of Earth, Environmental, and Planetary Sciences


(Formerly U. Colorado Atmospheres and Oceans)

Supported by NASA (NNX09AF38G), NSF (0934737, 1245944, 2220280), ONR (N00014-17-1-2963), 

NOAA (NA19OAR4310366), Gulf of Mexico Research Initiative, , Schmidt Futures


Boulder School for Condensed Matter and Materials Physics

July 18, 2022



Weather, 
Atmosphere


Fast


Ocean, 
Climate


Slow 

3.4m of ocean 
water has 
same heat 
capacity as 
the WHOLE 
atmosphere

ECCO Movie:  Chris Henze, NASA Ames



Weather, 
Atmosphere


Fast


Ocean, 
Climate


Slow 

3.4m of ocean 
water has 
same heat 
capacity as 
the WHOLE 
atmosphere

ECCO Movie:  Chris Henze, NASA Ames



Weather, 
Atmosphere


Fast


Ocean, Climate

Slow 

3.4m of ocean 
water has 
same heat 

capacity as the 
WHOLE 

atmosphere

ECCO Movie:  Chris Henze, NASA Ames

The essence of the 

Hasselmann 2021

Nobel in Physics!



Weather, 
Atmosphere


Fast


Ocean, Climate

Slow 

3.4m of ocean 
water has 
same heat 

capacity as the 
WHOLE 

atmosphere

ECCO Movie:  Chris Henze, NASA Ames

The essence of the 

Hasselmann 2021

Nobel in Physics!



For Today: Small-scales affect Climate

Key Ocean Climate Questions


Large Eddy Simulation Closures


Smagorinsky, Leith, QG Leith


Effects on Global Kinetic Energy


Submesoscale affects Mixed Layer


Wave-Driven Turbulence affects Mixed Layer


Regional Mixed Layer Depth affects 
Climate Sensitivity



Key Ocean Climate Questions
Sea Level Rise


Ocean Anthropogenic Heat Uptake


Earth’s Energy Balance


Ocean Anthropogenic Carbon Uptake


Earth’s Carbon Balance


Ocean Acidification


Will Currents & Stratification Change?


Affects the above & ecosystems…



SIXTH ASSESSMENT REPORT
Working Group I – The Physical Science Basis

Components of ocean, cryosphere and sea level assessed in this chapter. (a) Schematic of processes (mCDW=modified Circumpolar Deep 
Water, GIA=Glacial Isostatic Adjustment). White arrows indicate ocean circulation. Pinning points indicate where the grounding line is most 
stable and ice sheet retreat will slow.  

our IPCC 
chapter 
emphasizes


PROCESSES

contributing 
to sea level 
rise



SIXTH ASSESSMENT REPORT
Working Group I – The Physical Science Basis

Heating of the climate system has caused global mean sea level 
rise through ice loss on land and thermal expansion from ocean 
warming (high confidence)



Simple: Planetary 
Energy Balance

Image: Trenberth et al. 2009

Top of Atmosphere

Imbalance!!


341.3-101.9-238.5=0.9


This equals net absorbed 



GMST:  Surface Energy Budget=Ocean Heat Content Budget

3.4m of ocean has heat capacity of whole atmosphere

Ocean Mixed Layer is about 100m deep.

Slide: Brown et al., 2014

Top of Atmosphere

Imbalance!!


341.3-101.9-238.5=0.9


This equals net absorbed 



Video: ZEKE HAUSFATHER, Carbon Brief, 2017

www.carbonbrief.org/analysis-how-well-have-climate-models-projected-global-warming

Evaluating the Performance 
of Past Climate Model 

Projections

Z. Hausfather, H.F. Drake,T. 
Abbott, G.A. Schmidt, 2019 


https://doi.org/10.1029/2019GL085378
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IPCC AR5, 2013

Indeed, Hausfather et al. 2019 
show that  the early climate 
projections often went wrong 
because they assumed the 

wrong human emissions profile, 
not the wrong climate response.




IPCC AR5, 2013

Biggest 
Uncertainty   at 

2100:

What will humans 

choose?

Indeed, Hausfather et al. 2019 
show that  the early climate 
projections often went wrong 
because they assumed the 

wrong human emissions profile, 
not the wrong climate response.




Handling the partially-
resolved mesoscale…

In effect, the mesoscale in (highest-resolution) 
climate models is a Large Eddy Simulation for 
these modes.


What kind of LES closure will work?



Boundary 
Currents

Eddies

Ro=O(0.1)

Ri=O(1000)

Full Depth

Eddies strain to 
produce Fronts

100km, months

The Character of the 
Mesoscale

100 
km

(Capet et al., 2008)

Eddy processes mainly baroclinic & 
barotropic instability. Parameterizations of 

baroclinic instability (GM, Visbeck...).


(NASA GSFC Gallery)
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A Mesoscale Eddy can be covered with
 1-10 Rhode Islands



3D Turbulence Cascade

1963: Smagorinsky Scale & Flow Aware Viscosity Scaling,

So the Energy Cascade is Preserved,


but order-1 gridscale Reynolds #:    

Re=1

Re*=1

Re⇤ = UL/⌫⇤

2⇡

�x

Spectral 

Density 

of 

Kinetic

Energy

k�5/3

Suitable  
For  

Nonhydostatic 
Boussinesq; 

Wave-averaged



Smagorinsky Viscosity (Cited by 17445) in 2 min

BFK and D. Menemenlis. Can large eddy simulation techniques improve mesoscale-rich ocean models? In M. Hecht and H. Hasumi, editors, Ocean 
Modeling in an Eddying Regime, volume 177, pages 319-338. AGU Geophysical Monograph Series, 2008.

Make k*

Kolmogorov Scale

k*

All flux at k*

”viscous”

https://scholar.google.com/scholar?cites=13107624081140840962&as_sdt=4005&sciodt=0,6&hl=en


2D Turbulence Differs

Re*=1

2⇡

�x

1996: Leith Devises Viscosity Scaling,

So that the Enstrophy (vorticity2) Cascade is Preserved

Spectral 

Density 

of 

Kinetic

Energy

Inverse

Energy 

Cascade
Enstrophy

Cascade

R. Kraichnan, 1967 JFM

Barotropic or 

stacked layers

C.E. Leith, 1996 Physica D

Suitable  
For  

2D Oceans, 
E.g., Stommel  
& Munk Gyres 

Best of: Graham & 
 Ringler (2013)



Re*=1

2⇡

�x

F-K & Menemenlis Revise Leith Viscosity Scaling,

So that diverging, vorticity-free, modes are also damped

Mesoscale Turbulence Like 2D cascade, but a little divergent 


-5/3

range

Suitable  
For  

2D Oceans, 
Or  

Hydrostatic 
Boussinesq! 

BFK and D. Menemenlis. Can large eddy simulation 
techniques improve mesoscale-rich ocean models? In 
M. Hecht and H. Hasumi, editors, Ocean Modeling in an 
Eddying Regime, volume 177, pages 319-338. AGU 
Geophysical Monograph Series, 2008.



QGLeith: Pot’l Enstrophy cascade (efficient versions ready for Hydrostatic Boussinesq at 10km and finer!) 


S. D. Bachman, B. Fox-Kemper, and B. Pearson. A scale-aware subgrid model for quasigeostrophic 
turbulence. Journal of Geophysical Research-Oceans, 122:1529-1554, March 2017.

Potential 
Enstrophy

Cascade

Inverse

Energy 

Cascade

B. Pearson, BFK, S. D. Bachman, and F. O. Bryan, 2017: Evaluation of scale-aware subgrid 
mesoscale eddy models in a global eddy-rich model. Ocean Modelling, 115:42–58. 

Provides lateral viscosity, diffusivity, and GM 
coefficient without overdamping resolved eddies
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Re*=1

2⇡

�x

QG Turbulence: Pot’l Enstrophy cascade

A Mesoscale Ocean Large Eddy Simulations Closure 


Spectral 

Density 

of 

Kinetic

Energy

Inverse

Energy 
Cascade

Potential 
Enstrophy

Cascade

J. Charney, 1971 JAS
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QG Leith

Parameterization


But, in QG, PV links 

buoyancy (diff.) to vorticity (visa.)
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slope, in agreement with Large Scale QG (hereafter LSQG) as found by Smith et al. [2002]. These slopes are
also in agreement with observations by Le Traon et al. [2008], who found the sea surface height spectra to fol-
low k211=3, which would imply a KE slope of k25=3. They argued this is SQG, not large-scale QG, but both are
consistent.

The energy spectral performance of the dynamically prescribed QG Leith viscosity (Figure 6, top) is depen-
dent on the filter width !, consistent with previous studies on dynamical filters [e.g., Najjar and Tafti, 1996].
In these simulations a wider test filter (!5 8) reproduces the correct spectra more closely than the narrow
filter (!5 2), in contrast with previous studies which have found little sensitivity to the choice of ! [Lund,
1997]. Nonetheless, the performance by simply setting K 5 1 rivals that of the most expensive, large-stencil
filter and suggests that the extra computation cost of the dynamical scheme will outweigh its potential ben-
efits when used in a GCM. Avoiding the additional complexity of designing filters for use with complex
topography is a beneficial side benefit.

By contrast, both harmonic and biharmonic forms of the 2-D Leith viscosity underdamp energy (Figure 6,
middle row, left and center column) and are noisy at small scales with spectral slopes that are too shallow
and not in agreement with QG (or 2-D) theory. This underdamping is symptomatic of the difference
between the potential enstrophy cascade in these simulations and the enstrophy cascade that is assumed
in the 2-D Leith theory. Note that this underdamping persists even though Bu! is quite large, and thus the
modest differences between 2-D and QG Leith are significant even at high resolution.

Figure 6. Energy spectra for the simulations where the deformation radius is explicitly resolved, decreasing in resolution from Ds5Ld=10 (black), Ds5Ld=5 (blue), Ds5Ld=2:5 (blue), Ds5
Ld (green), to Ds52Ld (red). The dashed black lines show the k23 spectral slope of energy anticipated by theory in the LSQG forward potential enstrophy cascade regime. The gray shad-
ed area represents ‘‘truth,’’ which is the range of spectra covered by the highest-resolution simulations excluding Smagorinsky. Subpanels indicate the results for simulations using differ-
ent subgrid schemes: (top left) QG Leith, Kq51, (top center) dynamic QG Leith, filter width 52Ds, (top right) dynamic QG Leith, filter width 58Ds; (middle left) harmonic 2-D Leith,
K251, (middle center) biharmonic 2-D Leith, K451, (middle right) harmonic Smagorinsky !253:0; (bottom left) biharmonic Smagorinsky, !453:0, (bottom center) constant harmonic,
m25Ds2=Dt, (bottom right) constant biharmonic, m45Ds4=Dt. Vertical line indicates approximate fastest growing instability wave number of 2p=3:9Ld . The spectra are measured at the
simulation stopping time, which occurs before the edge of the front reaches the lateral boundary.

Journal of Geophysical Research: Oceans 10.1002/2016JC012265

BACHMAN ET AL. SUBGRID MODEL FOR QG TURBULENCE 18

models with increasing resolution
theory

S. D. Bachman, B. Fox-Kemper, and B. Pearson, 2017: A scale-aware subgrid model for quasi- geostrophic turbulence. 
Journal of Geophysical Research–Oceans, 122:1529–1554. URL http: //dx.doi.org/10.1002/2016JC012265.  

“Forcing Scale”

Where does ocean energy go?

Spectrally speaking



Where does ocean energy go?

Spectrally speaking

theory

S. D. Bachman, B. Fox-Kemper, and B. Pearson, 2017: A scale-aware subgrid 
model for quasi- geostrophic turbulence. Journal of Geophysical Research–
Oceans, 122:1529–1554. URL http: //dx.doi.org/10.1002/2016JC012265.  



Where does ocean energy go?

Spectrally speaking

theory

Too Smooth

S. D. Bachman, B. Fox-Kemper, and B. Pearson, 2017: A scale-aware subgrid 
model for quasi- geostrophic turbulence. Journal of Geophysical Research–
Oceans, 122:1529–1554. URL http: //dx.doi.org/10.1002/2016JC012265.  



Where does ocean energy go?

Spectrally speaking

theory

Too Noisy

Too Smooth

S. D. Bachman, B. Fox-Kemper, and B. Pearson, 2017: A scale-aware subgrid 
model for quasi- geostrophic turbulence. Journal of Geophysical Research–
Oceans, 122:1529–1554. URL http: //dx.doi.org/10.1002/2016JC012265.  



Where does ocean energy go?

Spectrally speaking

theory

Just Right

Too Noisy

Too Smooth

S. D. Bachman, B. Fox-Kemper, and B. Pearson, 2017: A scale-aware subgrid 
model for quasi- geostrophic turbulence. Journal of Geophysical Research–
Oceans, 122:1529–1554. URL http: //dx.doi.org/10.1002/2016JC012265.  



QG Leith:  
Works OK in an idealized flow: 
Let’s try it in a realistic, global 

model!

B. Pearson, BFK, S. D. Bachman, and 
F. O. Bryan, 2017: Evaluation of scale-
aware subgrid mesoscale eddy 
models in a global eddy-rich model. 
Ocean Modelling, 115:42–58. 



LES for Pot’l 
Enstrophy

LES for EKE

Mesoscale Ocean LES: QGLeith

ACC in Global!

Channel:

100m Dissipation
Global:

Global, POP, realistic forcing 
10km (nominal) global 

42 vertical levels  
(most in upper 200m) 

B. Pearson, BFK, S. D. Bachman, and F. O. Bryan, 2017: 
Evaluation of scale-aware subgrid mesoscale eddy models in a 
global eddy-rich model. Ocean Modelling, 115:42–58. 



LES for Pot’l 
Enstrophy

LES for EKE

Mesoscale Ocean LES: QGLeith

ACC in Global!

Channel:
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(most in upper 200m) 

B. Pearson, BFK, S. D. Bachman, and F. O. Bryan, 2017: 
Evaluation of scale-aware subgrid mesoscale eddy models in a 
global eddy-rich model. Ocean Modelling, 115:42–58. 

Traditional QG Leith 

Global Energy 
Budget STILL 
DEPENDS on 
subgrid, even 
at HI-RES.



B. Pearson and BFK. Log-normal turbulence 
dissipation in global ocean models. 
Physical Review Letters, 120(9):094501, 
March 2018.

A (weak) 

dissipation of  energy 

with pot’l enstrophy 

cascade

…


 that’s

lognormally distributed


(super-Yaglom ‘66)


90% of KE dissipation 
in 10% of ocean

A fun & 
meaningful 

result! 

(Credit conversations with 

Royce in Dresden)



Fronts

Eddies

Ro=O(1)

Ri=O(1)

near-surface 
(H=100m)

1-10km, days


W/H~U/L

hydrostatic

Globally resolved in 
2070-2100 

Character of the Submesoscale

10 
km

(Capet et al., 2008)

Eddy processes often 
baroclinic instability 


BFK, R. Ferrari, and R. W. Hallberg. Parameterization of 
mixed layer eddies. Part I: Theory and diagnosis. Journal of 
Physical Oceanography, 38(6):1145-1165, 2008

BFK, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, 
M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. Samuels. 
Parameterization of mixed layer eddies. III: Implementation 
and impact in global ocean climate simulations. Ocean 
Modelling, 39:61-78, 2011.
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Image	credit:	D.	
Schwen via	C.	Bitz



without diurnal cycle is less than with cycle (ML)not
The vertical buoyancy flux in the ML (<w’b’>)
Having a Mixed Layer Counts!

B. Fox-Kemper, R. Ferrari, 
and R. W. Hallberg. 
Parameterization of mixed 
layer eddies. Part I: Theory 
and diagnosis. Journal of 
Physical Oceanography, 
38(6):1145-1165, 2008.



without diurnal cycle is less than with cycle (ML)4x
The vertical buoyancy flux in the ML (<w’b’>)
Having a Mixed Layer Counts!

B. Fox-Kemper, R. Ferrari, 
and R. W. Hallberg. 
Parameterization of mixed 
layer eddies. Part I: Theory 
and diagnosis. Journal of 
Physical Oceanography, 
38(6):1145-1165, 2008.



GMST:  Surface Energy Budget=Ocean Heat Content Budget

3.4m of ocean has heat capacity of whole atmosphere

Ocean Mixed Layer is about 100m deep.

Slide: Brown et al., 2014

Top of Atmosphere

Imbalance!!


341.3-101.9-238.5=0.9


This equals net absorbed 



http://www.oc.nps.edu/

0.7 W/m2

=


Atmosphere:

1.9K/yr


=

3.4m Ocean:


1.9K/yr

=


34m Ocean:

0.19K/yr

=1% of 


mixed layer

seasonality

Surface, Mixed Layer, 
Seasons?

Beginning December 1949,
a weathership or mooring at 
Ocean Station P (50°N, 
145°W, depth 4220 meters)



The Ocean Mixed Layer is

home to submesoscales & Langmuir

Mixed Layer Depth climatology

From Argo float data courtesy C. de Boyer-Montegut



The Ocean Mixed Layer is

home to submesoscales & Langmuir

Mixed Layer Depth climatology

From Argo float data courtesy C. de Boyer-Montegut



Mixed layer depth in (a-d) winter and (e-h) summer. (a, e) Observed climatological mean mixed layer depth (based on density threshold) 
from the Argo Mixed Layer Depth (Holte et al., 2017) from observations 2000-2019. (b, f) Bias between the observation-based estimate 
(2000-2019) and the 1995-2014 CMIP6 climatological mean mixed layer depth. (c, d, g, h) Projected MLD change from 1995-2014 to 
2081-2100 under (c, g) SSP1-2.6 and (d, h) SSP5-8.5 scenarios. 



Prototype: Mixed Layer 
Front Adjustment

Simple Spindown Plus, Diurnal Cycle

and Parameterized Mixing 

Note: initial geostrophic adjustment overwhelmed by eddy restratification

B. Fox-Kemper, R. Ferrari, 
and R. W. Hallberg. 
Parameterization of mixed 
layer eddies. Part I: Theory 
and diagnosis. Journal of 
Physical Oceanography, 
38(6):1145-1165, 2008.



Prototype: Mixed Layer 
Front Adjustment

Simple Spindown Plus, Diurnal Cycle

and Parameterized Mixing 

Note: initial geostrophic adjustment overwhelmed by eddy restratification

B. Fox-Kemper, R. Ferrari, 
and R. W. Hallberg. 
Parameterization of mixed 
layer eddies. Part I: Theory 
and diagnosis. Journal of 
Physical Oceanography, 
38(6):1145-1165, 2008.



Parameterization of Finite Amp. Eddies: Ingredients
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What does it look like?

N2
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Global Ocean Climate is SENSITIVE to these 

Mixed Layer Eddies!  At least as parameterized 

Implemented in IPCC AR5 & 6: NCAR, GFDL, Hadley, NEMO,…
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MLEs on Mixing Layer Depth in 
Eddy-Resolving Southern Ocean Model

Bulk Mixed Layer New Mixed Layer Model 

BFK, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. Samuels. Parameterization of mixed layer 
eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modelling, 39:61-78, 2011.



Bulk Mixed Layer New Mixed Layer Model MLEs on Mixing Layer Depth in 
Eddy-Resolving Southern Ocean Model

BFK, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. Samuels. Parameterization of mixed layer 
eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modelling, 39:61-78, 2011.



SI are roughly 10x 
smaller than MLIMLI Scale (km)

SI Scale (km) February August

J. Dong, BFK, H. Zhang, and C. Dong. The scale of submesoscale baroclinic instability globally. JPO, 50(9):2649-2667, 2020.  dx.doi.org/10.1175/JPO-D-20-0043.1 

J. Dong, BFK, H. Zhang, and C. Dong. The Scale and Activity of Symmetric Instability Estimated from a Global Submesoscale-Permitting Ocean Model. 


 JPO, 2021.  dx.doi.org/10.1175/JPO-D-20-0159.1 




Sensitivity of 
Climate to 
Submeso: 
AMOC 

&  
Cryosphere 
Impacts

Affects sea ice

NO RETUNING 

NEEDED!!!

May Stabilize AMOC

These are impacts:

bias change unknown

B. Fox-Kemper, G. Danabasoglu, R. Ferrari, 
S. M. Griffies, R. W. Hallberg, M. M. Holland, 
M. E. Maltrud, S. Peacock, and B. L. Samuels. 
Parameterization of mixed layer eddies. III: 
Implementation and impact in global ocean 
climate simulations. Ocean Modelling, 
39:61-78, 2011.



Physical Sensitivity of Ocean Climate to 
Submesoscale Mixed Layer Eddy Restratification: 

BFK, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. Samuels. Parameterization of mixed layer 

eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modelling, 39:61-78, 2011.

With MLE 

Parameterization Bias w/o MLE

Improves CFC uptake (water masses)

So, affects ocean heat & carbon uptake, too!



PARAMETERIZATION OF 
SUBMESOSCALE AND LANGMUIR-

SCALE PROCESSES AND 
INTERACTIONS

Waves, Langmuir, and Climate

L. Cavaleri, BFK, and M. Hemer. Wind waves in the coupled climate system. Bulletin of the 
American Meteorological Society, 93(11):1651-1661, 2012.
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Near-surface

Langmuir Cells & Langmuir Turb.

Ro>>1

Ri<1

1-100m (H=L)

10s to 1hr

w~u=O(10cm/s)

Nonhydrostatic

Stokes drift

Eqtns: Wave-Averaged aka Craik-
Leibovich


The Character of Langmuir Turbulence

Image: NPR.org,  Deep Water Horizon Spill



P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P. Chini. Langmuir-submesoscale interactions: 
Descriptive analysis of multiscale frontal spin-down simulations. Journal of Physical Oceanography, 

44(9):2249-2272, September 2014.

Diverse types of interaction: Stronger Langmuir (small) Turbulence, 
Fronts vary from place to place, one orientation is stronger?
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A photo of Langmuir windrows impinging a front in Narragansett Bay, Rhode Island (courtesy P. Cornillon)



What Pays the Bills:       
Parameterizing Turbulence to Improve 

Climate and Weather Models
These turbulent phenomena aren’t only pretty—
they accumulate into sizable effects onto global 
properties, especially boundary layer depth.


The boundary layer in turn filters the exchange of 
energy, carbon, momentum, etc., between the 
changing atmosphere and the ocean reservoir.


Langmuir Turbulence is an excellent recent 
example, which energizes the boundary layer 
turbulence, so entrainment and mixing are faster.

Q. Li, B. G. Reichl, BFK, A. J. Adcroft, S. Belcher, G. Danabasoglu, A. Grant, S. M. Griffies, R. W. Hallberg, T. Hara, R. Harcourt, T. Kukulka, W. G. 
Large, J. C. McWilliams, B. Pearson, P. Sullivan, L. V. Roekel, P. Wang, and Z. Zheng. Comparing ocean boundary vertical mixing schemes including 

Langmuir turbulence. Journal of Advances in Modeling Earth Systems (JAMES), 11(11):3545-3592, 2019.



3 Effects Dominate open ocean 

“Wave-Averaged Equations”: 


(Craik, Leibovich, McWilliams et al. 1997)

All rely only on Stokes drift of waves

1: Stokes Advection: parcels, tracers, 
momentum move with Lagrangian, not 
Eulerian flow


2: Stokes Coriolis: water parcels experience 
Coriolis force during this motion


3: Stokes Shear Force


N. Suzuki and BFK. Understanding Stokes forces in 
the wave-averaged equations. Journal of Geophysical 

Research-Oceans, 121:1-18, 2016.
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Typical effect: Downward Force for 
down-Flow Stokes
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TABLE 3. RMS errors (m) of summer and winter mean mixed layer depth in comparison with observation (de

Boyer Montégut et al. 2004, updated to include the ARGO data up through 2012). Numbers with ± sign give

the 90% confidence interval, estimated from the RMS errors of 1000 bootstrap estimates of the 50-year mean.
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GMST:  Surface Energy Budget=Ocean Heat Content Budget

3.4m of ocean has heat capacity of whole atmosphere

Ocean Mixed Layer is about 100m deep.

Slide: Brown et al., 2014

So, we’ve improved 
the mixed layer, 

shouldn’t it improve 
the climate 
projections 
somehow?
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Fig. 3. Simulated SST variations (without and with feedback effect) and total heat flux at x = 0, y = LJ4.  The heat 
flux time series is subsampled at 5-day intervals and the SST time series are low-passed, using a quadratic Lanczos 
filter (cut-off frequency 8 - lo-' Hz). 
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cools, and when it blows from the south, the water 
warms. With this crude parameterization an 
equation formally analogous to eq. (1.1) is obtained 
for the rate of change of SST, 

dT pa C;: KvlUl 
-=C, , ( l  + B )  

10' dt pw c; h 
(3.5) 

In our simulations, we have set K = 0.25 (" C/m/s) 
and taken C,, = gm 
~ m - ~ ,  pw = 1 gm ~ m - ~ ,  C; = 0.24 cal gm-' (" C)-I, 
C; = 0.96 cal gm-' ("C)-', and h = 25 m. A 
mixed-layer depth of 25 m has been suggested by 
Thompson (1976) for low mid-latitudes (30" N) on 
the basis of a comparison of the observed seasonal 
SST cycle with predictions by a copper-plate 
model. The effective mixed-layer depths at higher 
latitudes are considerably greater (a value of 1 0 0  m 
is taken in the following section for station India at 

B = 3, p" = 1.25 

100 
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(10-7 I lb -6  Hz 
( 1  / rnon th) 

Fig. 4 .  Simulated spectrum of sensible heat flux (dashed 
lines) and SST anomaly (continuous lines) at x = 0, y = 
LJ4. The arrows indicate the 95% confidence interval. 

To incorporate heat transfer into our at- 
mospheric model we assume that the air-sea 
temperature difference is proportional to the north- 
south velocity V, (To - T )  = KV,  K = const. Thus 
when the wind blows from the north, the water 

59"N). With our choice of K ,  the r.m.s. air-sea 
temperature difference generated by the model is 
1.25 "C. 

(b) Simulated SST anomalies neglecting feedback 
Time series of the stochastic atmospheric forcing 

according to eq. (3.5) were constructed at each grid 
point, and the SST changes were then calculated by 
straightforward integration. Fig. 3 illustrates the 
integral response of the SST to the rapidly varying 
fluxes. To draw attention to the evolution of the low 
frequencies in the SST fluctuations, the SST time 

Tellus 29 (1977), 4 

A stochastic, predictable persistence model: 

Frankignoul & Hasselmann (77)
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series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
(°C)2 year-', i.e. the random atmospheric forcing 
produces a standard deviation in the SST of about 
0.7 OC in one year. As predicted by relation (1.5), 
the simulated SST anomaly spectrum is propor- 
tional to the inverse frequency squared at low fre- 
quencies (Fig. 4). This is again in agreement with 
the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 

The wavenumber spectrum of the SST anomalies 
is proportional to the wavenumber spectrum of the 
atmospheric input (Fig. 2, dotted lines). In contrast 
to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
SST occurs at wavenumbers 2 and 3. This corres- 
ponds roughly to the observed scale of the 
dominant SST anomaly patterns, which are 
typically several thousand kilometers in diameter, 
and is also consistent with the observation that the 
dominant scales of the SST anomalies appear to be 
somewhat smaller than the scales of air tem- 
perature or sea-level pressure anomalies (e.g. 
Kraus & Morrison, 1966; Davis, 1976). 

Although our ocean-atmosphere model is admit- 
tedly highly simplified, the main features of the SST 
spectral response to short time scale weather 
forcing appear to be reproduced reasonably well in 
the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
transport) will need to be considered in more 
quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 

Tellus 29 (1977), 4 

sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
temperature for which ull = 0, eq. (3.1) then takes 
the form of a first-order autoregressive (Markov) 
process 

dt h 

where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 
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Even Simpler: 2-Layer Homogeneous Energy Balance Model (Gregory, 2000)



Even Simpler: 2-Layer Homogeneous EBM (Gregory, 2000; 
Winton et al. 2010; Geoffroy et al. 2013)


The 2-layer model parameters are estimated 

from 25 CMIP6 model timeseries—


None of the parameters are observable

9 further CMIP6 models are used as out-of-sample validation

3 MLD

Regions;


Initial MLD

G. Hall and BFK. Regional mixed layer depth 
as a climate diagnostic and emergent 
constraint. GRL, 2021. Submitted. 
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None of the parameters are observable

But MLD is, simplify into regions


We can use the 

mixed layer depth as 


An EMERGENT CONSTRAINT


That is, an observable that correlates 

or constrains the other properties useful for


projections.


CMIP6 GCMs give MLD & 2-Layer Model Properties

G. Hall and BFK. Regional mixed layer depth as a climate diagnostic and emergent 
constraint. GRL, 2021. Submitted. 

3 MLD

Regions;


Initial MLD

• [55N, 75N]

• [25S, 25N]

• [65S, 45S] 
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Regional mixed layer depth as a climate diagnostic and emergent constraint  

     
    
  

CMIP6 data via pangeo.io 
Code at repository.library.brown.edu

          
    
     
      
Emulate CMIP6 model oceans with 2-layer ocean emulator. 
Understand emulator parameters as they depend on 
Mixed layer depth, an observable emergent constraint 

“Using these correlations and 
observations from the Argo float 
network, we revise the ensemble mean 
and narrow the 66% range of 
equilibrium climate sensitivity (ECS) for 
the particular CMIP6 model collection 
from 4.51 (3.13–5.71) °C, to 4.66 
(3.88–5.43) °C, amounting to a 40% 
reduction in the span of the uncertainty 
range.”
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Regional mixed layer depth as a climate diagnostic and emergent constraint  

     
    
  

CMIP6 data via pangeo.io 
Code at repository.library.brown.edu

Approximately halving the uncertainty range for [transient climate response] has a net 
present value of about $10.3 trillion (year 2005 US$) if accomplished in time for 
emissions to be adjusted in 2020, falling to $9.7 trillion if accomplished by 2030. 
      -C. Hope, 2015, Phil. Trans. A., https://doi.org/10.1098/rsta.2014.0429

~40% reduction in S range

~20% reduction in TCR range 

https://doi.org/10.1098/rsta.2014.0429


For Today: Small-scales affect Climate

Key Ocean Climate Questions


Large Eddy Simulation Closures


Smagorinsky, Leith, QG Leith


Effects on Global Kinetic Energy


Submesoscale affects Mixed Layer


Wave-Driven Turbulence affects Mixed Layer


Regional Mixed Layer Depth affects 
Climate Sensitivity



Extras



Surface Energy Budget

O(2W/m2) change to QBML as important as GHG

Slight oversimplification—sensitivity + budget

Slide: Brown et al., 2014
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Fig. 3. Simulated SST variations (without and with feedback effect) and total heat flux at x = 0, y = LJ4.  The heat 
flux time series is subsampled at 5-day intervals and the SST time series are low-passed, using a quadratic Lanczos 
filter (cut-off frequency 8 - lo-' Hz). 
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cools, and when it blows from the south, the water 
warms. With this crude parameterization an 
equation formally analogous to eq. (1.1) is obtained 
for the rate of change of SST, 

dT pa C;: KvlUl 
-=C, , ( l  + B )  

10' dt pw c; h 
(3.5) 

In our simulations, we have set K = 0.25 (" C/m/s) 
and taken C,, = gm 
~ m - ~ ,  pw = 1 gm ~ m - ~ ,  C; = 0.24 cal gm-' (" C)-I, 
C; = 0.96 cal gm-' ("C)-', and h = 25 m. A 
mixed-layer depth of 25 m has been suggested by 
Thompson (1976) for low mid-latitudes (30" N) on 
the basis of a comparison of the observed seasonal 
SST cycle with predictions by a copper-plate 
model. The effective mixed-layer depths at higher 
latitudes are considerably greater (a value of 1 0 0  m 
is taken in the following section for station India at 

B = 3, p" = 1.25 

100 
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( 1  / rnon th) 

Fig. 4 .  Simulated spectrum of sensible heat flux (dashed 
lines) and SST anomaly (continuous lines) at x = 0, y = 
LJ4. The arrows indicate the 95% confidence interval. 

To incorporate heat transfer into our at- 
mospheric model we assume that the air-sea 
temperature difference is proportional to the north- 
south velocity V, (To - T )  = KV,  K = const. Thus 
when the wind blows from the north, the water 

59"N). With our choice of K ,  the r.m.s. air-sea 
temperature difference generated by the model is 
1.25 "C. 

(b) Simulated SST anomalies neglecting feedback 
Time series of the stochastic atmospheric forcing 

according to eq. (3.5) were constructed at each grid 
point, and the SST changes were then calculated by 
straightforward integration. Fig. 3 illustrates the 
integral response of the SST to the rapidly varying 
fluxes. To draw attention to the evolution of the low 
frequencies in the SST fluctuations, the SST time 

Tellus 29 (1977), 4 

A stochastic, predictable persistence model: 

Frankignoul & Hasselmann (77)
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series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
(°C)2 year-', i.e. the random atmospheric forcing 
produces a standard deviation in the SST of about 
0.7 OC in one year. As predicted by relation (1.5), 
the simulated SST anomaly spectrum is propor- 
tional to the inverse frequency squared at low fre- 
quencies (Fig. 4). This is again in agreement with 
the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 

The wavenumber spectrum of the SST anomalies 
is proportional to the wavenumber spectrum of the 
atmospheric input (Fig. 2, dotted lines). In contrast 
to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
SST occurs at wavenumbers 2 and 3. This corres- 
ponds roughly to the observed scale of the 
dominant SST anomaly patterns, which are 
typically several thousand kilometers in diameter, 
and is also consistent with the observation that the 
dominant scales of the SST anomalies appear to be 
somewhat smaller than the scales of air tem- 
perature or sea-level pressure anomalies (e.g. 
Kraus & Morrison, 1966; Davis, 1976). 

Although our ocean-atmosphere model is admit- 
tedly highly simplified, the main features of the SST 
spectral response to short time scale weather 
forcing appear to be reproduced reasonably well in 
the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
transport) will need to be considered in more 
quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 

Tellus 29 (1977), 4 

sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
temperature for which ull = 0, eq. (3.1) then takes 
the form of a first-order autoregressive (Markov) 
process 

dt h 

where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 
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series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
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the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 

The wavenumber spectrum of the SST anomalies 
is proportional to the wavenumber spectrum of the 
atmospheric input (Fig. 2, dotted lines). In contrast 
to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
SST occurs at wavenumbers 2 and 3. This corres- 
ponds roughly to the observed scale of the 
dominant SST anomaly patterns, which are 
typically several thousand kilometers in diameter, 
and is also consistent with the observation that the 
dominant scales of the SST anomalies appear to be 
somewhat smaller than the scales of air tem- 
perature or sea-level pressure anomalies (e.g. 
Kraus & Morrison, 1966; Davis, 1976). 

Although our ocean-atmosphere model is admit- 
tedly highly simplified, the main features of the SST 
spectral response to short time scale weather 
forcing appear to be reproduced reasonably well in 
the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
transport) will need to be considered in more 
quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 
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sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
temperature for which ull = 0, eq. (3.1) then takes 
the form of a first-order autoregressive (Markov) 
process 

dt h 

where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 
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series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
(°C)2 year-', i.e. the random atmospheric forcing 
produces a standard deviation in the SST of about 
0.7 OC in one year. As predicted by relation (1.5), 
the simulated SST anomaly spectrum is propor- 
tional to the inverse frequency squared at low fre- 
quencies (Fig. 4). This is again in agreement with 
the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 
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to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
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perature or sea-level pressure anomalies (e.g. 
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the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
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quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 
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sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
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process 
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where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
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Even Simpler: 2-Layer Homogeneous Energy Balance Model (Gregory, 2000)



Even Simpler: 2-Layer Homogeneous EBM (Gregory, 2000; 
Winton et al. 2010; Geoffroy et al. 2013)


The 2-layer model parameters are estimated 

from 25 CMIP6 model timeseries—


None of the parameters are observable

9 further CMIP6 models are used as out-of-sample validation

3 MLD

Regions;


Initial MLD

G. Hall and BFK. Regional mixed layer depth 
as a climate diagnostic and emergent 
constraint. GRL, 2021. Submitted. 
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None of the parameters are observable

But MLD is, simplify into regions


We can use the 

mixed layer depth as 


An EMERGENT CONSTRAINT


That is, an observable that correlates 

or constrains the other properties useful for


projections.


CMIP6 GCMs give MLD & 2-Layer Model Properties

G. Hall and BFK. Regional mixed layer depth as a climate diagnostic and emergent 
constraint. GRL, 2021. Submitted. 

3 MLD

Regions;


Initial MLD
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• [25S, 25N]

• [65S, 45S] 



Zoom: Submeso-Langmuir Interaction!
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Descriptive analysis of multiscale frontal spin-down simulations. JPO, 44(9):2249-2272, 2014.
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Typical effect: Downward Force for 
down-Flow Stokes

N. Suzuki and BFK. Understanding Stokes forces in the wave-averaged equations. Journal of 
Geophysical Research-Oceans, 121:1-18, 2016.
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Typical effect: Downward Force for 
down-Flow Stokes

“wavy hydrostatic” if
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P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P. Chini. Langmuir-submesoscale interactions: 
Descriptive analysis of multiscale frontal spin-down simulations. Journal of Physical Oceanography, 

44(9):2249-2272, September 2014.
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A front that’s not aligned with winds & waves is weaker
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frontogenesis. Journal of Geophysical Research-Oceans, 121:1-28, May 2016.
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Do Stokes force directly affect larger scales?

Ro =
U

fL
J. C. McWilliams and BFK. Oceanic wave-balanced surface fronts and filaments. Journal of Fluid Mechanics, 730:464-490, 2013. 
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Do (wavy hydrostatic) Stokes Forces Matter?

Yes! At Leading Order (in LES)

N. Suzuki, BFK, P. E. Hamlington, and L. P. Van Roekel. Surface waves affect frontogenesis. 
Journal of Geophysical Research-Oceans, 121:1-28, 2016.

N. Suzuki and BFK. Understanding Stokes forces in the wave-averaged equations. Journal 
of Geophysical Research-Oceans, 121:1-18, 2016.



Hoskins (1974) showed that if a front in thermal wind balance is 
symmetrically unstable, the PV must be anticyclonic.


Haney et al (2015) extend Hoskins’ analysis to flows in Lagrangian 
thermal wind balance in the special case of constant Stokes shear.


In the absence of Stokes drift, this is equivalent to the familiar 
criteria on Richardson Number, with Stokes drift is distinct.

S. Haney, BFK, K. Julien, and A. Webb. Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. JPO 45:3033-3056, 2015.

Analytic & Numerical Wavy Submesoscale Stability: 
Symmetric Instabilities
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Frontal Consequences:       
Observing Energy Flux from Global to Dissipative Scales

Energy flows from the global winds & tides to mm-
scale dissipation by viscosity


Fronts are a key concentration effect of energy, 
aiding in the transfer


However, the presence of fronts also complicates 
observations of the energy flow


Observations by drifters, etc. must handle the strong 
heterogeneity due to the presence of fronts

N. Suzuki, BFK, P. E. Hamlington, and L. P. Van Roekel. Surface waves affect frontogenesis. Journal of Geophysical Research-Oceans, 
121:1-28, 2016.


J. C. McWilliams and BFK. Oceanic wave-balanced surface fronts and filaments. Journal of Fluid Mechanics, 730:464-490, 2013.




‘Observed’ scale-sensitivity?

J. Pearson, B. Fox-Kemper, R. Barkan, J. Choi, A. Bracco, and J. C. 
McWilliams. Impacts of convergence on Lagrangian statistics in the Gulf of 

Mexico. Journal of Physical Oceacnography, February 2018. Submitted.

S. D. Bachman, B. Fox-Kemper, and B. Pearson, 2017: A 
scale-aware subgrid model for quasi-geostrophic turbulence. 
Journal of Geophysical Research–Oceans, 122:1529–1554.

Some Theory/Model combos 
 are inconsistent 

 (e.g., Smagorinsky in a QG regime)
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