Quantum Gas Microscopy

Quantum Gas Microscopy

W. Bakr et al., Science (2010) J. Sherson et al., Nature (2010)

K. Kwon et al., Phys. Rev. A (2022)

Quantum Gas Microscopy

W. Bakr et al., Science (2010) J. Sherson et al., Nature (2010)

Quantum gas microscopes FERMIONS

BOSONS

Harvard, ⁸⁷Rb

Tokyo, ¹⁷⁴Yb

Kyoto, ¹⁷⁴Yb

Aarhus, ⁸⁷Rb

Munich,⁸⁷Rb

KAIST, ⁷Li

USTC, ⁸⁷Rb

Harvard, ^{16x}Er Munich, ¹³³Cs Chicago, ¹³³Cs Munich,¹³³Cs

Glasgow, ⁴⁰K

MIT, ⁴⁰K

Harvard, ⁶Li

Munich, ⁶Li

Princeton, ⁶Li

Toronto, ⁴⁰K

Virginia, ⁶Li

Single Atoms

W. Bakr et al., Science (2010) & J. Sherson et al., Nature (2010) Addressing: C. Weitenberg et al., Nature (2011)

Quantum Gas Microscopy

Single atom detection

Potential Engineering

Single Atom Adressing

Potential Shaping

Fully tuneable coupling strengths +dimensionality +flux +frustration

P. Sompet *et al.* Nature **606**, 484 (2022) Tweezer SPT: Léséluc et al. Science 365, 6455 (2019)

Flexible Geometries and Large Sizes

Large Homogeneous 2D Systems (2000-5000 atoms, filling 95-98%)

Cs experiment in collaboration with M. Aidelsburger

Cs Quantum Gas Microscope

Rb Quantum Gas Microscope

see also: C. Chiu et al. Phys. Rev. Lett. 120, 243201 (2018) Idea: J.-S. Bernier et al. Phys. Rev. A 79, 061601 (2009) T.-L. Ho & Q. Zhou arXiv:0911.5506

Imaging

J. Koepsell et al. Phys. Rev. Lett. 125, 010403 (2020)

Spin & Charge Resolved Imaging

FHM Microscope

Density and spin readout: M. Boll et al. Science 353, 1257 (2016), J. Koepsell et al. Phys. Rev. Lett. 125, 010403 (2020), see also Harvard (Greiner), Princeton (Bakr) arXiv:2203.15023, MIT (Zwierlein) arXiv:2208.05948

Full Spin & Density Resolved Detection

FHM Microscope

Density and spin readout: M. Boll et al. Science 353, 1257 (2016), J. Koepsell et al. Phys. Rev. Lett. 125, 010403 (2020), see also Harvard (Greiner), Princeton (Bakr) arXiv:2203.15023, MIT (Zwierlein) arXiv:2208.05948

Full Spin & Density Resolved Detection

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \hat{c}^{\dagger}_{i,\sigma} \hat{c}_{j,\sigma}$$

AFM Heisenberg Model

Half filling & strong interaction

$$\int \int \int \mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad J = \frac{4t^{2}}{U}$$

Away from half filling: *t-J* model competition between

hole delocalization

A. Maruzenko et al. Nature (2017), M. Boll et al. Science (2016), T. Hilker et al. Science (2017), L. Cheuk et al. Science (2016), P. Brown et al. Science (2017)

Fermi Hubbard Model (FHM)

$$T/t \sim 0.2 - 0.25$$

See also:

Harvard: Parsons et al., Science (2016), Mazurenko et al. Nature (2017), MIT: Cheuk et al., Science (2016), Princeton: Brown et al., Science (2017), Bonn: Drewes et al., PRL (2017)

2D Spin Correlations

Doping in 1D Fermi Hubbard Model

INTERNATIONAL SERIES OF MONOGRAPHS ON PHYSICS + 121

Quantum Physics in One Dimension

THIERRY GIAMARCHI

Charge -e

Fractionalization

Deconfinement of Quasi-particles that make up the elementary particle

Charge -e

Quasi-Particle

The Electron

1/2Spin

Spin 1/2

Quasi-Particle

AFM

Postselection to $M_z = 0$!

 $\xi(0,T)$ Largest possible decays length !

Incommensurate Magnetism

Charge -e

Fractionalization

Deconfinement of Quasi-particles that make up the elementary particle

Charge -e

Quasi-Particle

The Electron

1/2Spin

Spin 1/2

Quasi-Particle

J. Vijayan *et al. Science* **367**, 186 (2020)

DMRG Simulation: C. Kollath, U. Schollwöck, W. Zwerger Phys. Rev. Lett. 95, 176401 (2005)

FHM Dynamics

Dynamical Spin Charge Separation

Hole Dynamics

Spin Dynamics $\langle \hat{S}_i^z \hat{S}_{i+1}^z \rangle$ _

(squeezed space)

FHM Dynamics

Spin & Charge Velocities

Fractionalization - Hole Shedding Spinon

Spin attached to hole

 $\langle \hat{S}_{i-1}^{z} \hat{h}_{i} \hat{S}_{i+1}^{z} \rangle < 0$

Hole got rid of spin

SC Separation

Spin-Hole-Spin Correlations

 $\hat{\Sigma}_{j}^{2} = \left(\Sigma_{i}\hat{S}_{i}^{z}f_{j}^{\sigma}(i)\right)^{2}$

 $\left<\hat{\Sigma}_{i}^{2}\right> - \left<\hat{\Sigma}_{i}^{2}\right>_{BG} = 1/4$

Probe Magnetization Fluctuations in Region σ

See also: Kivelson, S. & Schrieffer, J. R. Fractional charge, a sharp quantum observable. *Physical Review B* **25**, 6447–6451 (1982).

Detection of the Spin-1/2 Spinon

SC Separation

Fractionalization at Finite Temperatrues

Holon created with unit efficiency **Spinon** created with **50-60% efficiency**

LMU

Probing Thermalization in a QMB System

ETH assumes that locally:

$$\rho_A = \frac{1}{Z_A} e^{-\beta E_n}$$

$$S_{VN} = -tr\left(\rho_A \log \rho_A\right) = S_{th}$$

Entanglement Entropy is Thermal Entropy in a QMB System

Thermalization in an Isolated QMB System

A. Kaufmann et al. Science 2016

Remaining System acts as "Thermal Reservoir" for smaller subsystem.

A. Kaufmann *et al.* Science 2016

To Show:

1) Global State Remains Pure 2) Locally, system looks thermal 3) Probe local vN Entanglement Entropy (or related quantity)

Bounds von Neumann Entropy

 $S_{\nu N} \ge S_2(\rho)$

Probing Renyi Entropy

Probing State Purity via Many-Body Quantum Interference (here for bosons)

$$= -\log\left(tr\left(\rho^2\right)\right)$$

see C.M. Alves & D. Jaksch PRL 2004 A. Daley et al. PRL 2012

 $tr(\rho^2) = \langle f \rangle$

$$\langle \hat{P} \rangle = \langle \Pi_i p_i^{(k)} \rangle$$

Thermalization in an Isolated QMB System

Thermalization in an Isolated QMB System

Thermalization in an Isolated QMB System

Promising: Double Quantum Advantage (in Space & Time)

But also challenging for experiments!

Large System Sizes Homogeneous Systems Long Time Evolutions

...Time evolution...

Quantum Transport - Atom-by-Atom

See also: (Endres group) J. Choi et al., Nature 613, 468 (2023)

Eigenstate Thermalisation Hypothesis

- J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Phys. Rev. E 50, 888 (1994).
- M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
- R. Nandkishore, Phys. Rev. B 92, 245141 (2015).
- L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol Adv. Phys. 65, 239 (2016).

Dynamics for Thermalisation

Experiments Thermalisation A. M. Kaufman et al., Science 353,794 (2016).

Non-Equilibrium Dynamics

Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. & Landim, C. Rev. Mod. Phys. 87, 593–636 (2015).

Hardcore bosons (on a ladder (2x50 sites) with tunable coupling)

Coupled ladders (interacting)

1d chains (free fermions)

LMU

Thermalisation: Integrable vs. Chaotic

Related:

Fluctuation hydrodynamics

See also: S. Trotzky et al. Nat. Phys. 8, 325 (2012)

Local equilibration

Global equilibrations takes longer and longer for larger subsystem

Subsystem Fluctuations

Determination of dynamical exponent

LMU

Fluctuation Hydrodynamics

Timescales - Integrable to Chaotic

$$C(i - j) = \langle \hat{N}_i \hat{N}_j \rangle - \langle \hat{N}_i \rangle \langle \hat{N}_j \rangle$$
Integrable (free fermions)
$$\int_{2}^{4} \int_{2}^{4} \int_{1 \le J = 0.5}^{4} \frac{1}{J_1 = 0.5} \int_{-18}^{2} \frac{1}{J_2 = 0.5} \int_$$

See also:

M. Cheneau, ..., I. Bloch, S. Kuhr, Nature (2012) Y.-G. Zheng, ..., Z.-S. Yuan, J.-W. Pan, arXiv:2210.08556

Equilibrium transport theory:

R. Steinigeweg et al., Phys. Rev. B (2014)

T. Rakovszky, C. W. von Keyserlingk & F. Pollmann Phys. Rev. B (2022)

Rung Density-Density Correlations

Density-Density Correlations

Fluctuation Hydrodynamics

Full counting statistic / fluctuations powerful new observables for quantum transport

(Nonlinear) Noisy classical dynamics can efficiently describe via MFT

Test of fluctuation-dissipation theorem

Determination of equilibrium transport through out-of-equilibrium dynamics

When does MFT fail? Higher order cumu

Random Unitary Circuits: E. McCulloch, J. De Nardis, S. Gopalakrishnan & R. Vasseur Full arXiv:2302.01355 Quantising MFT: D. Bernard J. Phys. A: Math. Theor. 54, 433001 (2021).

Summary Slide - Fluctuation Hydrodynamics

charge fluctuation dynamics in chaotic quantum many-body systems

KPZ Spin Transport in Heisenberg Quantum Magnets

Numerical Evidence

M. Ljubotina et al., Nature Comm. (2017) M. Ljubotina et al., Phys. Rev. Lett. (2019) **Review:** see V. Bulchadini, S. Gopalakrishnan, E. Ilievski J. Stat. Mech. 084001 (2021)

Experiment & Theory

Experiment: D. Wei, A. Rubio-Abadal, K. Srakaew, C. Gross, J. Zeiher, I.B. Theory: B. Ye, F. Machado, J. Kemp. N. Yao & S. Gopalakrishnan Science **376**, 716–720 (2022) See also: E. Rosenberg et al arXiv:2306.11457 (Google)

Growth of Interfaces

Bacterial/Tumor Growth (Eden Growth Process)

Coffee Stains Funker Yunker et al. Nature 2021

Snow Surfaces

Growth of Interfaces

 $h(x,t) \simeq v_{\infty}t + At^{1/3}\chi(X,t)$

I. Corwin, Notices of the AMS 63, 230 (2016) K. Takeuchi Physica A **504,** 77 (2018)

KPZ Universality Class (ID)

- $t^{1/3}$ height fluctuation with **GOE/GUE Tracy-Widom** Limit
- $t^{2/3}$ transv. spatial correlations

$$\bar{h}(x,t)$$
 $\delta h(x,t)$

$$\delta h \propto t^{\beta} \qquad \beta = 1/2$$
$$\xi \propto t^{1/2} \qquad z = 3/2$$

Non-linear stochastic differential equation describing temporal change of height field

M. Kardar, G. Parisi & Y.-C. Zhang PRL **56**, 889 (1986) C.A. Tracy & H. Widom Comm. Math. Phys. **159**, 151 (1994) C.A. Tracy & H. Widom Comm. Math. Phys. **177**, 727 (1994) M. Prähofer & H. Spohn PRL 84, 4882 (2000)

 $\hat{S}^{Z}(x,t) \sim \partial_{x}h(x,t)$

Kardar-Parisi-Zhang Equation $rac{\partial h(ec x,t)}{\partial t} =
u
abla^2 h + rac{\lambda}{2} (
abla h)^2 + \eta(ec x,t)$

Growth of interfaces/surface growth

I. Corwin, Notices of the AMS **63**, 230 (2016)

KPZ Universality

Tomanaga-Luttinger Liquid

High (Infinite) T Low-q, Long Times

Crossover M. Dupont, N.E. Sherman & J.E. Moore PRL 2021

Low T High-q (Spinons)

Infinite T Heisenberg Dynamics

How does a single spin spread in this environment?

Numerical Evidence - Infinite T Heisenberg Dynamics

M. Ljubotina *et al.,* Nature Comm. (2017) M. Ljubotina *et al.,* Phys. Rev. Lett. (2019) Review: see V. Bulchadini, S. Gopalakrishnan, E. Ilievski J. Stat. Mech. 084001 (2021)

Tomaž Prosen Ljublijana

Numerical Evidence - Infinite T Heisenberg Dynamics

Consider spin domain wall at $T \rightarrow \infty$

M. Ljubotina *et al.,* Nature Comm. (2017) M. Ljubotina et al., Phys. Rev. Lett. (2019) **Review:** see V. Bulchadini, S. Gopalakrishnan, E. Ilievski J. Stat. Mech. 084001 (2021)

 $\langle \hat{S}^{z}(x,t)\hat{S}^{z}(0,0)\rangle \sim f_{KPZ}(x/t^{1/z}) = f_{KPZ}(x/t^{2/3})$

X

Anomalous Transport!

Connecting Spin Transport Hydrodynamics to KPZ Equation

<u>Quantum Numerics</u> $\langle \hat{S}^{z}(x,t)\hat{S}^{z}(0,0)\rangle \sim f_{KPZ}(x/t^{1/z})$

Solutions of KPZ Equation

Spatio-Temporal Correlations of Height Field

Slope Correlations of Height Field $\langle \partial_x h(x,t) \partial_x h(0,0) \rangle \sim \partial_x^2 C(x,t) \sim f_{KPZ}(x/t^{1/z})$

$C(x,t) = \langle \left[h(x,t) - h(0,0) - t \langle \partial_t h \rangle \right]^2 \rangle$

Conjecture

 $\langle \hat{S}^{z}(x,t) \, \hat{S}^{z}(0,0) \rangle \sim f_{KPZ}(x/t^{1/z})$

 $\hat{S}^{z}(x,t) \sim \partial_{x}h(x,t)$

 $\hat{P}(t) \sim h(0,t)$

$\langle \partial_x h(x,t) \partial_x h(0,0) \rangle \sim f_{KPZ} \left(x/t^{1/z} \right)$

Magnetization Profile

Polarization Transfer

Consequences / Predictions

Magnetisation Profile

Polarisation Transfer (Domain Wall)

Fluctations (Time)

 $\delta P(t) = \delta h = At$

KPZ scaling function $f_{KPZ}(x/t^{2/3})$ $\langle \hat{P}(t) \rangle \propto t^{1/z} = t^{2/3}$

$$z = 3/2$$

Dynamical exponent

$$t^{1/3}\chi(0,t) = A t^{\beta}\chi(0,t)$$
Tracy-Widom Distribution

$$\beta = 1/3$$

Fluctuations

function

Superdiffusive Transport in Spin Chains - Neutron Scattering

A. Scheie *et al.* Nature Phys. **17**, 726–730 (2021)

Dynamical Structure Factor

$$S(Q,\omega \to 0) \approx Q^{-z}$$

@ 300K

Alan Tennant, Oak Ridge National Lab

Numerical Evidence:

- M. Ljubotina et al., Nature Comm. (2017)
- M. Ljubotina et al., Phys. Rev. Lett. (2019)

Understanding (generalied GHD, SU(2) & Integrability,...)

- S. Gopalakrishnan and R. Vasseur, Phys. Rev. Lett. (2019)
- J. De Nardis, Phys. Rev. Lett. (2019)
- S. Gopalakirshnan, R. Vasseur, and B. Ware, PNAS (2019)
- V. B. Bulchandani, Phys. Rev. B (2020)

Reviews:

- B. Bertini at el. Rev. Mod. Phys. (2020)
- V. B. Bulchandani, S. Gopalakrishnan, and E. Ilievski, arXiv:2103.01976

Heisenberg Model Revisited

$$-\hat{S}_{i}^{y}\hat{S}_{i+1}^{y} + \Delta\hat{S}_{i}^{z}\hat{S}_{i+1}^{z}$$

Space time scaling

$$x \sim t^{1/z}$$

Subtle interplay of **integrability** (stable quasiparticles) & Non-abelian SU(2) symmetry in Heisenberg model.

Exp.: A. Scheie *et al.* Nature Physics (2021) **Related:** Transport via Spin-Spirals S. Hild et al. Phys. Rev. Lett. (2014) P.N. Jepsen et al. Nature (2020)

~~~~~~~~~~~~~~~~~~~~~~

⁸⁷Rb

 $\hat{H} = -J\sum$

KPZ

rows

20

50 spins **Tunable 1D to 2D!**

$$\left(\hat{S}_{i}^{x}\hat{S}_{i+1}^{x} + \hat{S}_{i}^{y}\hat{S}_{i+1}^{y} + S_{i}^{z}\hat{S}_{i+1}^{z}\right)$$

Our System - 1000 Spin Heisenberg System

D. Wei et al., Science **376**, 716 (2022)

State Preparation

Single shot images

 $t/\tau = 36$

Spin Dynamics in Heisenberg Domain Wall

Experimental Measurement - 1000 Spin Heisenberg System

High Purity

Averaged density $(\eta = 0.22)$

$$\bar{n}_{\downarrow}$$
 $t=0$

 \bar{n}_{\downarrow} $t/\tau = 36$

Low Purity

$$\rho \sim (1 + \eta \sigma_z)^{N/2} \otimes (1 - \eta \sigma_z)$$

Polarisation Transfer

Breaking Superdiffusion - Breaking Integrability

Breaking Superdiffusion - Breaking Non-Abelian Symmetry

Ballistic-Superdiffusion-Diffusion

Tracy-Widom Distribution Functions

height field (at origin) of KPZ equation

Quantum Dynamics

S. Gopalakrishnan, A. Morningstar, R. Vasseur & V. Khemani arXiv.2203.09526 see also: Ž. Krajnik et al., Phys. Rev. Lett. 128, 160601 (2022).

Full Counting Statistics & Anomalous Transport

Experimental Evidence for KPZ

D. Wei *et al.* Science **376**, 716–720 (2022) **see also:** A. Scheie *et al.* Nature Phys. **17**, 726–730 (2021)

- Superdiffusive transport (z=3/2) can arise from linear model!
- Skewness of Polarisation fluctuation distribution constant
- Breaking SU(2) symmetry OR breaking integrability destroys KPZ behaviour

Open Question

see also: E. Rosenberg *et al* arXiv:2306.11457 (exploring low domain wall visibilities)

Briefly: Probing MBL

 $\rho_A = \frac{1}{Z_A} e^{-\beta H_A}$

$S_A \equiv \operatorname{tr}\left[\rho_A \ln \rho_A\right] \propto L^d$

Are there scenarios when this fails?

System fails to act as its own heat bath!

Nandkishore et al., Annu. Rev. Cond. Mat. 2015; Altman et al. Annu. Rev. Cond. Mat. 2015,

Eigenstate Thermalisation Hypothesis

Deutsch (91), Srednicki (94,98), Rigol, Dunjko & Olshanii (2009), D'Alessio, Kafri, Polkovnikov, Rigol, Adv. Phys. 65, 239 (2016)

MBL

Dynamic phase diagram of 1D with short-enough range interactions MBL phase "prethermal MBL" oppeans MBL, at this but its expected actual phase to thermatize in Evenusition M N=>00, t=>00 limit. limits 1 >00 roughly speaking! here MBL is too. Is not sibible in perturbatively stabl numerics, nonputurbatively u experiments. Longer vange interactions or d>1 1 prethermal MBL MAA (no true MBL phase in this limit)

Phase Diagram - D. Huse Lecture (?)

Important Points

Very little theoretically known about MBL in d>1 (stability of MBL unclear)

(validation through a quantum simulator)

Experiments (almost) isolated from environment

- Calls for particularly precise characterization of the experiments
- but small residual coupling limits observation time (>1000 t)

Probing MBL on Different Length and Timescales

MBL

System Summary

- Prepare Domain Wall (no tunneling dynamics)
- Turn on disorder potential 2.
- Lower the lattice depth 3. (near critical point)
- Measure atomic distribution 4.

* Tunneling time is 6.4 ms. * Disorder is changed for each image. * Take 100 picture for averaging.

U = 24J $\Delta = 0 - 20J$

MBL with a small bath

A. Rubio-Abadal, J-y. Choi et al., PRX 2019

Dynamics without mixture

Engineered disorder with controlled non-disordered (ergodic) grains!

Probing MBL Instabilities

- Avalanches? Stability? Range?
- Timescales of Instability?

Where Next?

Enhanced Programmability

Opportunities

- (Precision) Many-body physics, New detection methods, Novel quantum phases, Non-equilibrium dynamics
- Materials science, High-energy physics, Quantum chemistry, Coherent Quantum annealing, Optimization, Metrology

Challenges

- Programmability, scalability, reducing calibration errors
- Certification and verification; demonstration of practical quantum advantage.
- Developing applications relevant to industry and other fields of science, and connections to an end-user base (e.g. spin models / optimization)
- Entropy management (cooling)
- Cycle times

Ignacio Perez

Simon Karch

Christian Schweizer

Scott Hubele

Cs Quantum Gas Microscope Team

Alexander Impertro, Cesar Cabrera Hendrik von Raven, **Julian Wienand** Till Klostermann, Monika Aidelsburger, IB

Sophie Häfele

- h

Romain

Vasseur

Ewan

McCulloch

Sarang Gopalakrishnan

Petar Bojovic

Si Wang

Thomas Chalopin

Joannis Koepsell

Jayadev Vijayan

Team leader: Timon Hilker

Daniel Adler

Suchita Agarwal

REAL SuporDu Bleght

TRA

David Wei Johannes Zeiher

and a

1

Pascal Weckesser

KO

T(C)

fr: Tisch .

Kritsana Srakaew

Simon Hollerith HIGH A

Ignacio Perez

Simon Karch

Christian Schweizer

Scott Hubele

Cs Quantum Gas Microscope Team

Alexander Impertro, Cesar Cabrera Hendrik von Raven, **Julian Wienand** Till Klostermann, Monika Aidelsburger, IB

Sophie Häfele

Ewan McCulloch Theory

Vasseur

Sarang Gopalakrishnan

