

Quantum Simulation & Computing using Ultracold Atoms Potentials, Interactions, Gates, Models....

Floquet Topological Quantum Matter & Quantum Gas Microscopy

Topological Matter, Floquet Systems, Anomalous Floquet Topological Systems, Quantum Gas Microscopy, Fractional Charge & Spin-Charge Separation

Quantum Matter Out-Of-Equilibrium

Many Body Localisation, Thermalization, Measuring Entanglement Entropy, Fluctuation Hydrodynamics, Anomalous Spin Transport (KPZ)

Integer Quantum Hall Effect

Fractional Quantum Hall Effect

Quantum Hall Effect in 2D Electron Gases

$$\sigma_{xy} = v e^2 / h$$

v Integer

Chern Insulators

(w/o magnetic field see D. Haldane 1988)

$$\Psi(R) \to e^{i(\varphi_{\text{Berry}} + \varphi_{\text{dyn}})} \Psi(R)$$

Adiabatic evolution through closed loop

$$\varphi_{\text{Berry}} = \oint_{\mathcal{C}} A_n(R) dR = i \oint_{\mathcal{C}} \langle n(R) | \nabla$$

$$\varphi_{\text{Berry}} = \oint_{\mathcal{A}} \Omega_n(R) \, dA$$
 Be

M.V. Berry, Proc. R. Soc. A (1984)

Berry connection $A_n(R) = i \langle n(R) | \nabla_R | n(R) \rangle$

Berry curvature

$$\Omega_{n,\mu\nu}(R) = \frac{\partial}{\partial R^{\mu}} A_{n,\nu} - \frac{\partial}{\partial R^{\nu}} A_{n,\mu}$$

Berry Phase in Quantum Mechanics

$$\Psi_k(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u_k(\mathbf{r}) \quad \mathsf{Ble}$$

Adiabatic motion in momentum space generates Berry phase!

Chern Number (Topological Invariant)

Berry Phase for Periodic Potentials

- och wave in periodic potential

Quantized Hall Conductance

Thouless, Kohmoto, den Nijs, and Nightingale (TKNN), PRL 1982 Kohmoto Ann. of Phys. 1985

Berry Phase

2D Brillouin Zone

Joshua Zak

going straight means going around!

$$\varphi_{Zak} = i \int_{k_0}^{k_0 + G} \langle u_k | \partial_k | u_k \rangle$$

Non-trivial Zak phase:

- •Topological Band
- •Edge States (for finite system)
- •Domain walls with fractional quantum numbers

Band structure has torus topology!

Zak Phase -

the ID Berry Phase

J. Zak, Phys. Rev. Lett. 62, 2747 (1989) R. King-Smith & D. Vanderbilt Phys. Rev. B 47, 1651 (1993)

R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976)

J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47, 986 (1981)

AB

Real Space

$$\varphi_{AB} = \frac{q}{\hbar} \oint_C \mathbf{A}(\mathbf{r}) \, d\mathbf{r} = \frac{q}{\hbar} \int_S \nabla \times \mathbf{A}(\mathbf{r}) \, d^2$$
$$\varphi_{AB} = \frac{q}{\hbar} \int \mathbf{B} \, d\mathbf{S} = 2\pi \, \Phi / \Phi_0$$

Aharonov-Bohm Phase

Aharonov-Bohm Effect

Y.Aharonov

..., contrary to the conclusions of classical mechanics, there exist effects of potentials on charged particles, even in the region where all the fields (and therefore the forces on the particles) vanish.

> Y.Aharonov & D. Bohm Phys. Rev.(1959) W. Ehrenberg & R. Siday Proc. Phys. Soc B (1949) Exp: A.Tonomura, et al. Phys. Rev. Lett. (1986)

Band Topolgy 'Aharonov Bohm' Interferometer in Momentum Space

Real Space

$$\varphi_{AB} = \frac{q}{\hbar} \oint_C \mathbf{A}(\mathbf{r}) \, d\mathbf{r} = \frac{q}{\hbar} \int_S \nabla \times \mathbf{A}(\mathbf{r}) \, d^2 r$$
$$\varphi_{AB} = \frac{q}{\hbar} \int \mathbf{B} \, d\mathbf{S} = 2\pi \, \Phi / \Phi_0$$

Aharonov-Bohm Phase

Momentum Space

$$\varphi_{\text{Berry}} = \oint_C \mathbf{A}_n(\mathbf{q}) \, d\mathbf{q} = \int_{S_q} \nabla \times \mathbf{A}_n(\mathbf{r}) \, d\mathbf{S}_q$$
$$\varphi_{\text{Berry}} = \int \mathbf{\Omega}_n(\mathbf{q}) \, d\mathbf{S}_q$$

Berry Phase

Extensions to 2D and Multi-Bands: An Aharonov Bohm and Wilson Line Interferometer for **Determining Bloch Band Topology**

 π -Magnetic Flux

Real space

 π -Berry Flux

Crystal momentum space

L. Duca et al. Science **347**, 288 (2015) T. Li et al. Science **352**, 1094–1097 (2016) D. Abanin et al. PRL **110**, 165304 (2013)

Berry Phase around K-Dirac cone

$$\varphi_{\text{Berry},\mathbf{K}} = \oint_C \mathbf{A}(\mathbf{q}) \, d\mathbf{q} = \pi$$

Berry Phase around K'-Dirac cone

$$\varphi_{\text{Berry},\mathbf{K}'} = -\pi$$

Berry Phases in Graphene

Stückelberg

Accelerating the Lattice

Arbitrary accelerations in any direction can be applied!

Band Topology

Forces applied by lattice acceleration and magnetic gradients!

The Interferometer

Band Topology

Zooming into the Edge

Band Topology

Interferometry Results

Examples for Floquet Hamiltonians

Floquet

Double Well Tunneling

C. Schweizer et al. Floquet approach to $\mathbb{Z}2$ lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019)

Harper Hamiltonian: J = K and ϕ uniform.

 $\phi/2\pi$

The lowest band is topologically equivalent to the lowest Landau level.

D.R. Hofstadter, Phys. Rev. B 4, 2239 (1976) see alo Y. Avron, D. Osadchy, R. Seiler, Physics Today 38, 2003

Harper Hamiltonian and Hofstadter Butterfly

Artificial magnetic fields

- Atoms in a 2D lattice
- Tunneling inhibited along one direction using energy offsets

- Induce resonant tunneling with a pair of **far-detuned** running-wave beams

 - → **Independent** of the internal structure of the atom

Experimental method

→ **Reduced heating** due to spontaneous emission compared to Raman-assisted tunneling!

M. Aidelsburger et al., PRL (2011); M. Aidelsburger et al., Appl. Phys. B (2013)

Artificial magnetic fields

- Interference creates a running-wave that *modulates* the lattice
- The **phase of the modulation** depends on the position in the lattice

- Realization of *time-dependent* Hamiltonian, where tunneling is restored
- Discretization of the phase due to underlying lattice \rightarrow

Experimental method

Lattice modulation:

$$V_K^0 \cos(\omega t + \phi(\mathbf{r}))$$

with **spatial-dependent** phase
 $\phi(\mathbf{r}) = \delta \mathbf{k} \cdot \mathbf{r}$

$$\delta \mathbf{k} = \mathbf{k}_2 - \mathbf{k}_1$$
$$\omega = \omega_2 - \omega_1$$

 $\phi_{m,n}$

M. Aidelsburger et al., PRL (2011); M. Aidelsburger et al., Appl. Phys. B (2013)

Artificial magnetic fields

• Time-dependent Hamiltonian:

$$\hat{H}(t) = \sum_{m,n} \left(-J_x \ \hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} - J_y \ \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n} + \text{h.c.} \right)$$

$$+ \sum_{m,n} \left[m\Delta + V_K^0 \cos(\omega t + \phi_{m,n}) \right] \hat{n}_{m,n}$$

$$\text{Note: Corrections could be important!}_{\text{see e.g. N. Goldman & J. Dalibard PRX 4,031027 (2014)}_{\text{& related work M. Bukoy, L. D'Alessio & A. Polkovnikov arXiv:1407.48}$$

$$\hat{H}_{eff} = \sum_{m,n} \left(-Ke^{i\phi_{m,n}} \ \hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} - J \ \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n} + \text{h.c.} \right)$$

• To avoid excitations to higher bands $\hbar\omega$ has to be smaller than the band gap

Experimental method

303

F. Grossmann and P. Hänggi, EPL (1992) M. Holthaus, PRL (1992) A. Kolovsky, EPL (2011); A. Eckardt, PRL (2005) A. Eckhardt, EPL (2007); P. Hauke, PRL (2012) A. Bermudez, PRL (2011); A. Bermudez, NJP (2012)

Experimental parameters:

The value of the flux is **fully tunable** by changing the geometry of the driving-beams!

Experimental setup

$$|\mathbf{k}_1| \simeq |\mathbf{k}_2| = \frac{\pi}{2d}$$

$$\Rightarrow \phi_{m,n} = \frac{\pi}{2}(m+n)$$

 $\pi/2$

Flux through one unit cell:

$$\Phi = \phi_{m,n+1} - \phi_{m,n} = \frac{\pi}{2}$$

depends only on phase difference along y!

From XX to XYZ Spin Models

$$H(t) = H_{XX} + H_{drive}(t)$$

$$H_{XX} = \sum_{i,j} J_{ij} / \hbar \left(S_x^i S_x^j + S_y^i S_y^j \right)_{and}$$

$$H_{drive}(t) = \sum_i \Omega(t) \left[\cos\varphi(t) S_x^i + \sin\varphi(t) S_y^i \right],$$

$$H_{Floq} = \frac{1}{t_c} \sum_{i=1}^5 \widetilde{\mathscr{H}}_i \tau_i$$

$$H_{\rm XYZ} = \frac{2}{3} \sum_{i,j} J_{ij} / \hbar \left(\delta_x S_x^i S_x^j + \delta_y S_y^i S_y^j + \delta_z S_z^i S_z^j \right)$$

Anomalous Topological Floquet System

Integer quantum Hall effect

- Remarkably stable plateaus independent of microscopic details
- Robustness rooted in top. properties of the energy bands TKNN, Phys. Rev. Lett. (1982)

 Ξ

0-

- Chern number uniquely determines # net edge modes in the gap
- → known *bulk-edge correspondence*

Chern number = difference between the number of chiral edge modes *above* and below the band.

Chern Number and Edge Modes

Periodically driven systems

- Periodically driven system: *periodic quasienergies*
- Anomalous Floquet phases: All Chern numbers are zero but chiral edge modes exist

→ new set of top. invariants: Winding numbers

$$\mathcal{C}^{\pm} = \mp (W^0 - W^{\pi})$$

Static system: bounded energies

T. Kitagawa et al., Phys. Rev. B 82, 235114 (2010) M. Rudner et al., PRX **3**, 031005 (2013)

Anomalous Floquet phases

- average one period $\tilde{H} = 0$ $\rightarrow C = 0$
- but there is transport on the edge

see also: A. Quelle et al., New J Phys. **19**, 113010 (2017) T. Kitagawa et al., Phys. Rev. B 82, 235114 (2010)

Modulated hexagonal lattice

ARTICLES https://doi.org/10.1038/s41567-020-0949-y

Realization of an anomalous Floquet topological system with ultracold atoms

Karen Wintersperger^{1,2}, Christoph Braun^{1,2,3}, F. Nur Ünal^{0,4,5}, André Eckardt^{0,4,6}, Marco Di Liberto⁷, Nathan Goldman⁷, Immanuel Bloch^{1,2,3} and Monika Aidelsburger^{1,2}

Bulk characterization

Preparation of initial state

Preparation of initial state

Preparation of initial state

Edge state in the Anomalous regime

C. Braun et al. arXiv:2304.01980

Photonic systems: L. J. Maczewsky et al., Nat. Commun. 8, 13756 (2017).

Probing Topology in real space

Edge state in the Anomalous regime

Probing Topology in real space

- Experimental realization of an anomalous Floquet system \bullet
- Experimental observation of edge states

C. Braun et al. arXiv:2304.01980 Photonic systems: L. J. Maczewsky et al., Nat. Commun. 8, 13756 (2017).

Outlook:

- Interplay of topology & disorder & interactions lacksquare
- Optical speckle potential \bullet

P.Titum et al. Phys. Rev. X 6, 021013 (2016)

Summary and Outlook

K.Wintersperger, et al. Nat Phys. 16, 1058-1063 (2020)

Band dispersion in anomalous regime

T. Sedrakyan et al., PRL. (2015)

