Rydberg atoms in optical tweezers:

many-body physics and QIP

Antoine Browaeys

Laboratoire Charles Fabry, Institut d'Optique, CNRS, FRANCE

Many-body physics

Quarter simlation.

Many-body physics

Quantum metrology

 $\frac{\Delta\nu}{\nu_0} \propto \frac{1}{\sqrt{N}} \stackrel{\text{qu. states}}{\longrightarrow} \frac{\Delta\nu}{\nu_0} \propto \frac{1}{N}$

Many-body physics

Quantum information

Quantum metrology

Transition quantum / classical

Quantum state engineering with individual systems

Cold atoms and molecules

Trapped ions

Quantum state engineering with individual systems

Quantum state engineering with individual systems

Coupling range

See e.g. Hazzard et al., PRA 90, 063622 (2014)

Coupling range

See e.g. Hazzard et al., PRA 90, 063622 (2014)

Coupling range

Scalable: beyond 100 particles

See e.g. Hazzard et al., PRA 90, 063622 (2014)

Coupling range

Scalable: beyond 100 particles

See e.g. Hazzard et al., PRA 90, 063622 (2014)

Outline

Lecture 1: Dipolar interactions between atoms

- Lecture 2: Basics of Rydberg physics. Arrays of atoms. Rydberg blockade (2-body physics) & gates
- Lecture 3: Many-body physics with Rydberg atoms: spin models and transport

Goal: understand long-range interactions between atoms

Goal: understand long-range interactions between atoms

Van der Waals: C_6/R^6

système	C_6 [u.a.]	$\Gamma/2\pi$ [MHz]	λ [nm]
Li-Li	1389	5.87	671
Na-Na	1556	9.80	589
K-K	3897	6.04	767
Rb-Rb	4691	6.07	780
Cs-Cs	6870	5.22	852
Mg-Mg	627	80.9	235
Ca-Ca	2121	34.6	423
Sr-Sr	3103	32.0	461
Er-Er	1760	29.7	401
Dy-Dy	2275	32.2	421
Yb-Yb	1929	29	399

J. Dalibard, Collège de France, 2021

Goal: understand long-range interactions between atoms

Atomic dipoles (1)

Atomic dipoles (2)

Atomic dipoles (3)

Atomic dipoles (4)

Dipolar interaction between 2 atoms

A toy model for two interacting atoms

The off-resonant block: van der Waals

van der Waals from a "classical" viewpoint

The resonant block: resonant dipole interaction

Molecular potentials in real life: example of Rb₂

Ground state of "real" atoms

$C_6 = -\frac{27}{16}\frac{\hbar\Gamma}{k^6}\frac{\Gamma}{\omega_0}$						
système	C_6 [u.a.]	$\Gamma/2\pi$ [MHz]	λ [nm]	C_6 approché [u.a.]		
Li-Li	1389	5.87	671	1340		
Na-Na	1556	9.80	589	1500		
K-K	3897	6.04	767	3610		
Rb-Rb	4691	6.07	780	4100		
Cs-Cs	6870	5.22	852	5629		
Mg-Mg	627	80.9	235	630		
Ca-Ca	2121	34.6	423	1840		
Sr-Sr	3103	32.0	461	2750		
Er-Er	1760	29.7	401	930		
Dy-Dy	2275	32.2	421	1550		
Yb-Yb	1929	29	399	860		

ee →

 $\left(\frac{d^2}{p_3}\right)^2 \frac{1}{1+\omega_0}$

J. Dalibard, Collège de France, 2021

Excited states of "real" atoms: the Rydberg case

On-line interaction calculator for Rydberg atoms

https://arc-alkali-rydberg-calculator.readthedocs.io/en/latest/

Docs » Pairinteraction - A Rydberg Interaction Calculator

S. Weber

Pairinteraction - A Rydberg Interaction Calculator

The *pairinteraction* software calculates properties of Rydberg systems. The software consists of a C++/Python library and a graphical user interface for pair potential calculations. For usage examples visit the **tutorials** section of the documentation. Stay tuned by signing up for the newsletter so whenever there are updates to the software or new publications about pairinteraction we can contact you. If you have a question that is related to problems, bugs, or suggests an improvement, consider raising an issue on GitHub.

https://pairinteraction.github.io/pairinteraction/ sphinx/html/index.html

On-line interaction calculator for Rydberg atoms

https://pairinteraction.github.io/pairinteraction/sphinx/html/index.html

Outline

Lecture 1: Dipole interactions between atoms

Lecture 2: Arrays of atoms. Basics of Rydberg physics. Rydberg blockade (2-body physics) & gates

Lecture 3: Many-body physics with Rydberg atoms: spin models and transport