Experimental Probes of Many Body Localization & Non-Equilibrium Dynamics

Outline

Lecture 2

- **1** Probing Thermalization Dynamics in QMB
- **2** Thermalization to Negative Absolute Temperature

Non-Equilibrium Dynamics

- **3** Lieb Robinson Bounds
- **4** From Hubbard to Spin Dynamics

Outline

Lecture 1

Introduction

- 1 Many-Body Localisation in 1D & 2D
 - Probing MBL transition CDW & Domain Wall Dynamics
- **2** 2D MBL with Coupling to a Finite Bath
 - CDW Dynamics in the presence of a finite bath
- **3** Probing Entanglement Dynamics in MBL
- 4 Evidence for (Avalanche) Instabilities

Outline

Lecture 3

- 1 Bound Magnons
- 2 Spin-Charge Fractionalization in Fermi Hubbard Chains
- **3** Connection to Ground State Non-Local Order
- **4** Kardar-Parisi-Zhang Universality

$$\hat{H}_{ ext{l-bit}} = \sum_i \hat{T}_i^z + \sum_{i,j} \widetilde{J}_{i,j} \hat{T}_i^z \hat{T}_j^z + \sum_{n=1}^{\infty} \sum_{i,j,\{k\}} K^{(n)}_{i\{k\}j} \hat{T}_i^z \hat{T}_{k_1}^z \dots \hat{T}_{k_n}^z \hat{T}_j^z$$

"I-bits" are quasi-local integrals of motion

J.Z. Imbrie, Jour. Stat. Phys. 163:998-1048 (2016) "I-bits": Serbyn, PRL 2013 | Huse, PRB 2014 | Nandkinshore, Annu. Rev. Cond. Mat. 2015

Eigenstate Thermalisation Hypothesis

Deutsch (91), Srednicki (94,98), Rigol, Dunjko & Olshanii (2009), D'Alessio, Kafri, Polkovnikov, Rigol, Adv. Phys. 65, 239 (2016)

$$\rho_A = \frac{1}{Z_A} e^{-\beta H_A}$$

$$A$$

$$S_A \equiv \operatorname{tr} \left[\rho_A \ln \rho_A\right] \propto L^d$$

Are there scenarios when this fails?

System fails to act as its own heat bath!

Nandkishore et al., Annu, Rev. Cond. Mat. 2015; Altman et al. Annu, Rev. Cond. Mat. 2015.

Approaching Many-Body Localization from Disordered Luttinger Liquids

MBL

C. Karrasch, J. E. Moore Subjects: Strongly Correlated Electrons (cond-mat.str-el) 28. arXiv:1506.00592 [pdf, other] Protection of topological order by symmetry and many-body Andrew C Potter Ashvin Vishwanath Comments: 17 pages, 4 figures Subjects: Disordered Systems and Neural Networks (cond 29. arXiv:1505.07089 [pdf, other] Dynamics of many-body localisation in a translation invaria Merliin van Horssen, Emanuele Levi, Juan P. Garrahan Comments: 5 pages, 4 figures Subjects: Statistical Mechanics (cond-mat.stat-mech): Qua 30. arXiv:1505.06343 [pdf, ps, other] Many-body ground state localization and coexistence of loc Yucheng Wang, Haiping Hu, Shu Chen Comments: 5 pages, 6 figures Subjects: Disordered Systems and Neural Networks (cond-31. arXiv:1505.05386 [pdf, other] Revisiting Many-body Localization with Random Networks Benoît Descamps, Frank Verstraete Comments: 3 figures Subjects: Quantum Physics (quant-ph) 32. arXiv:1505.05147 [pdf, other] Many-Body Localization of Symmetry Protected Topologica Kevin Slagle, Zhen Bi, Yi-Zhuang You, Cenke Xu Comments: 5 pages 2 figures Subjects: Strongly Correlated Electrons (cond-mat.str-el) 33. arXiv:1505.02028 [pdf, other] Out-of-equilibrium states and quasi-many-body localization L. Barbiero, C. Menotti, A. Recati, L. Santos Comments: 5 pages, 4 figures Subjects: Quantum Gases (cond-mat.guant-gas) 34. arXiv:1504.06872 [pdf, other] Total correlations of the diagonal ensemble herald the many-body localization transition J. Goold, C. Gogolin, S. R. Clark, J. Elsert, A. Scardicchio, A. Silva Subj 35 Experiments: Cold Atoms, Ions, Man Xiao Com Subj NV Centers, Electronic Systems... 36 Many body localization in the presence of a single particle mot Ranian Modak, Subroto Mukeriee

Pioneering work:

I.V. Gornyi, A. D. Mirlin, and D. G. Polyakov, PRL (2005). D. M. Basko, I. L. Aleiner, B. L. Altschuler, Ann. Phys. (2006).

Review/intro:

D.A. Huse, R. Nandkishore, V. Oganesyan, Annu. Rev. Cond. Mat. 6, 15 (2015)

R.Vosk & E.Altman. Annu. Rev. Cond. Mat. 6, 383 (2015)

D. Abanin, E. Altman, I.B., M. Serbyn (2019) Rev. Mod. Phys. 91, 021001 (2019)

> ics (quant-ph) ilitv edae

ant-gas); Quantum Physics (quant-ph)

Comments: 5 pages, 6 figures Subjects: Disordered Systems and Neural Networks (cond-mat.dis-nn): Statistical Mechanics (cond-mat.stat-mech): Stronoly Correlated Electrons (cond-mat.str-ell 37. arXiv:1503.06508 [pdf. ps. other] Localization in a random \$k-y\$ model with the long-range interaction: Intermediate case between single particle and many-body problems Alexander L. Burin Comments: Modified version after review

Subjects: Disordered Systems and Neural Networks (cond-mat.dis-nn) 38. arXiv:1503.06147 [pdf, other] Many-body localization characterized from a one-particle perspective

A New Type of Phase Transition

The toy model of MBL: $\hat{H} = \sum_{i} h_i \hat{S}_i^z + \sum_{ij} J_{ij} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Numerics from Luitz et al. PRB 2015

Ergodic - MBL transition not visible in thermodynamic (equilibrium) quantities Properties of the many-body eigenstates change (area law entanglement) Experiment: Need to probe the dynamics at high energy density

> Early work: Altschuler et al, Ann. Phys. 2006 Oganesyan + Huse 2007 | Znidaric et al, PRB 2007 | Pal + Huse 2010

Important Points

Very little theoretically known about MBL in d>1 (stability of MBL in d>1 unclear)

Calls for particularly precise characterization of the experiments (validation through a quantum simulator)

Experiments (almost) isolated from environment but **small residual coupling** limits observation time (>1000 t)

Interesting Questions Connected to MBL

- Nature of the phase transition (universality, diverging scales, rare regions ...) Pal + Huse, PRB 2010 | Agarwal, PRL 2015 | Potter PRX 2015 | Vosk, PRX 2015 | Luitz, PRB 2016 ...
 Entanglement dynamics in the MBL phase Žnidarič, PRB 2008 | Bardarson, PRL 2012 | Serbyn, PRL 2013 | Vosk, PRL 2013 | Nanduri PRB 2014 ...
 Local integrals of motion Serbyn, PRL 2013 | Huse, PRB 2014 | Chandran, PRB 2015 | Ros, Nucl. Phys. B 2015 ...
 Stability to environmental couplings Nandkishore, PRB 2014 | Huse, PRB 2015 | Johni, PRL 2015 | Levi, PRL 2016 | Fischer, PRL 2016 | Luitz, PRL 2017 ...
- Coupling to small "baths" Nandkishore, PRB 2015 | Hyatt, PRB 2017
- Extensions of MBL to Floquet systems (time crystals, SPT phases) Ponte, PRL 2015 | Else, PRB 2016 | von Keyserlingk, PRB 2016 | Khemani, PRL 2016 | Yao, PRL 2017 ...

MBL

MBL

Phase Diagram - D. Huse Lecture (?)

A. Morningstar et al. arXiv 2107.05642

MBL 1D Quasi-Disordered Fermi-Hubbard

MBL

Measuring Localisation

MBL

Single Particle Orbitals

$$\xi_{sp} = \ln^{-1}(\Delta/2J)$$

Probing the Interacting Aubry-André Model

(see P. Hauke & M. Heyl, PRB 2015)

Mapping the Population of the Energy Bands onto the Brillouin Zones

Populating Higher Energy Bands

Measured Momentum Distribution!

Band Mapping

2D Superlattice Geometries (2 SL)

Higher Lattice Orbital Physics

see V. Liu, A. Ho, C. Wu and others work exp: related to A. Hemmerich's exp.

Coupled Plaquette Systems

see B. Paredes & I. Bloch, PRA 77, 23603 (2008) S. Trebst et al., PRL 96, 250402 (2006)

Experimental Results

Band Mapping

Optical Lattices

MU

Stimulated Raman transitions between vibrational levels are energy bands.

Optical Lattices

Single lattice site

used to populate higher

MBL

Relaxation

2D Quasiperiodic

Noninteracting localised - Interacting non-localised

MBL

U=0 - Anderson Localization

Influence of Initial Doublon Fraction

attractive

 $\dot{\mathbf{O}}$

20

 $J_{\rm dbl} = J^2 / U$

 $\frac{J_{\rm dbl}}{\Delta} \ll \frac{J}{\Delta}$

>50% doubloons

40% doublons

no doublons

G

LMU

noninteracting repulsive

10

M Žnidarič,T Prosen, P Prelovšek, Phys. Rev. B (2008 JH Bardarson, F Pollmann, JE Moore PRL (2012) M Serbyn, Z Papic, DA Abanin PRL (2013)

LMU

Probing Many-Body Localisation in 2D

MBL

0.6

0.5

0.4

0.3

0.2

-20

Ó

0.2

-10

Kinetic energy of doublons for large U

Doublons see effectively larger disorder

-4

0 U/J

Imbalance \mathcal{I}

System Summary

- I. Prepare Domain Wall (no tunneling dynamics)
 - Turn on disorder potential
- 3. Lower the lattice depth (near critical point)
- 4. Measure atomic distribution
- * Tunneling time is 6.4 ms. * Disorder is changed for each image. * Take 100 picture for averaging.

The setup		Other potentials
Types of potential	Potentials hist.	NN difference hist.
True random	50000- 00009- 0000- 0000- 0000- 0000- 00- 000- 0000- 000- 000-000000	16000 10000 10000 10000 10000 10000 10000 00000 00000 00000 00000 00000 000000 000000 0000000000
ID Quasiperiodic		000 000 000 000 000 000 000 000

Probing Non-Thermalization in AMO System

Very hard to probe whether the system has thermalised!

(but possible for small system sizes)

A. Kaufman *et al.* Science 2016

I) Start with recognisable (density) pattern

2) Evolve until steady state is reached (*always exp. limited)

MBL

3) Analyse if any remnant pattern detectable

Disorder Potential

Probing Thermalization far from Equilibrium

Evolution under 2d disordered Bose-Hubbard:

$$\hat{H} = -J \sum_{\langle i,j \rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j} + \frac{U}{2} \sum_{i} \hat{n}_{i} (\hat{n}_{i} - 1) + \sum_{i} (\delta_{i} + V_{i}) \hat{n}_{i}$$

System preparation far from equilibrium

Infinite temperature wrt. kinetic energy and disorder

See also experiments on ground state Bose-Glass: Kondov et al. Phys. Rev. Lett. (2015)

MBL

Domain Wall Dynamics

Without disorder W

der With disorder

Delocalization-to-Localization

Domain Wall Imbalance

Diverging Length Scale

Probing MBL on Different Length and Timescales

Dynamics without mixture

MBL with a small bath

MBL with a small bath **Dynamics without mixture** MMM (1.0 J[₽] 1.0 Doublon frac. p. 90 0.8 0.6 0 20 40 60 80 100 0 Time t (ħ/J) 0.1 600 0 200 400 800 1000 Time t (ħ/J) τ₁~0.6 ħ/J τ₂~105 ħ/J τ₃ > 2500 ħ/J

Better Separation of Timescales

Ć LMU

A. Rubio-Abadal, J-y. Choi et al., arXiv:1805.00056

Probing MBL Instabilities

Engineered disorder with controlled non-disordered (ergodic) grains!

MBL Coupled to a Finite Bath

Stability vs Coupling to an Atomic Bath and "MBL Proximity Effect"

MBL

Larger bath size kills the imbalance \Longrightarrow Localization non-trivial !

MBL with a small bathDynamics of the dirty component

MBL Coupled to Bath

MBL

MBL Coupled to Bath

Probing Dynamical Entanglement Features

Entanglement Entropy Growth

 Jt/\hbar 10¹

strength of LIOMs

FIG. 2 (color online). (a) Averaged entanglement entropy of

initial product states, in which all fermions are localized at some

sites, shows a characteristic logarithmic growth on long time

scales (system size is L = 12, W = 5). Growth rate is found to

be proportional to $\ln(Vt/\hbar)$ (inset). Saturated entanglement

(b) and the ratio $C = \bar{S}_{ent}(\infty)/\bar{S}_{diag}$ (c) decrease with W (for

Interaction induced entanglement of different spatial regions of system log(t) direct consequence of exponentially decaying interactions

(h)

L = 8L = 10L = 12

-- L = 8-- L = 10--- L = 12

→ V = 0 → 0.0005 → 0.001 → 0.005

-0.01 -0.05

-0.1

(a) 0.5 f

 $\bar{S}_{\text{ent}}(t)$

0.4

0.1

fixed V = 0.01).

M Žnidarič, T Prosen, P Prelovšek, Phys. Rev. B (2008) JH Bardarson, F Pollmann, JE Moore PRL (2012) M Serbyn, Z Papic, DA Abanin PRL (2013)

Initial State		٢	Step
	î	シ _レ (ネ+ナ)	1
F-Pulse		治(+++)	2
Evolve Bor the With Hull	$\frac{1}{2}e^{\int_{\mathbb{R}^{2}}t_{n}}$	$ \begin{array}{c} + & \psi \\ + & \psi $	I
T-Pulse	12e-14 + 12e-14 + 12e-14	+ 11) ^{weth} (11 + 117)	E.
Evolue Br the with Mal	\$ <u>6</u> (⊎↑ + 1°⊎)	+2(111+111)	IST
1/2 - Pulse	Ŀ	行(+小)	6

M. Serbyn PRL (2014)

Spin-Echo & DEER

Population Measurement

MBL

Big Open Questions

- * Stability of MBL
- * Nature of Transport in Ergodic Phase
- * Definition of Localization Length
- * Finite Coupling to Bath
- * Phase Diagram

Experimental Advances

- * Longer timescales
- * Larger systems
- * Structured disorder
- * Improved isolation from environment

Probing Thermalization in a QMB System

Thermalization

Thermalization in an Isolated QMB System

To Show:

 I) Global State Remains Pure
 2) Locally, system looks thermal
 3) Probe local vN Entanglement Entropy (or related quantity)

A. Kaufmann et al. Science 2016

Thermalization

Probing Renyi Entropy

Probing State Purity via Many-Body Quantum Interference (here for bosons)

Bounds von Neumann Entropy

$$S_{vN} \ge S_2(\rho)$$

see C.M. Alves & D. Jaksch PRL 2004 A. Daley et al. PRL 2012

Thermalization

Thermalization in an Isolated QMB System

Thermalization

Measure Renyi-2 Entropy

Thermalization in an Isolated QMB System Thermalization А В Before quench After quench Ensembles Diagonal Microcan Canonical Eigenstate $\phi(t) \rangle = \sum e^{-iE_nt/\hbar}c_n |n\rangle$ $\psi(t = 0)$ ш ergy $E \approx \langle E \rangle$ 0.095 0.143 0 0.034 0 С D Temperature = 3.8 J Temperature = 11 J $\hat{H}_{int} = \sum \hat{H}_{int}^i = \frac{U}{\alpha} \sum \hat{n}_i (\hat{n}_i - 1)$ 0.5 0.4 0.1 10.0.0 Temperature = 3.8 J 0.4 () d 0.2 0.1 ايسا ه

Negative Temperatures

For positive temperatures, we require lower energy bound $E_{\min}!$

For negative temperatures, we require upper energy bound $E_{\text{max}}!$

Requirements

Entropy vs Energy

Negative Temperatures

0 Optical density (a. u.) 1

Negative Temperature

Experimental Results

Negative Temperature w switching

Energy Bounds of the BH Model

Negative Temperature

Negative Temperatures

Collapse of Condensate

For attractive interactions (a<0), condensate collapses!

E.A. Donley et al. *Nature* **412**, 295-299 (2001) J. M. Gerton et al. *Nature* 408, 692 (2000)

Negative Temperatures

10 se 10² 1.0 anti trapping trapping 0.8 10¹ 40 40 0 80 $|\omega_{\rm hor}|$ / 2π (Hz) 0.6 Visibility 0.4 0.2 0.0 -0.2 100 700 0 200 300 400 500 600 Hold time in final lattice (ms) Negative Temperature State as Stable as Positive Temperature State! Ø

Negative Temperatures

Implications

Gases with negative temperature possess negative pressure!

$$\frac{\partial S}{\partial V}\Big|_{E} \ge 0 \qquad \text{and} \qquad dE = TdS - PdV$$

$$\implies \frac{\partial S}{\partial V}\Big|_{E} = \frac{P}{T} \ge 0$$

Carnot engines above unit efficiency! (but no perpetuum mobile!)

$$\eta = \frac{W}{Q_1} = 1 - \frac{T_2}{T_1}$$

Some statements for the second law of thermodynamics become invalid!

Lieb-Robinson bounds

Spin chain short-range interactions

Lieb-Robinson bounds

1D Mott insulator out of equilibrium

Calabrese and Cardy (2006) Nachtergaele, Ogata and Sims (2006) ... and many others since then

1D Mott insulator out of equilibrium

Light-cone like spreading of correlations Quasiparticle dynamics time d = v t• Two-point parity correlation function $\simeq 0$ in the initial state $C_{d}(t) = \langle s_{i}(t)s_{i+d}(t)\rangle - \langle s_{i}(t)\rangle \langle s_{i+d}(t)\rangle$ >0 when $t \simeq d/v$ $s_{j}(t) = e^{i\pi[n_{j}(t)-\bar{n}]} \begin{cases} +1 & \text{if } \mathbf{i} \\ -1 & \text{if } \mathbf{i} \end{cases} \text{ or } \mathbf{i} \end{cases}$

Light-cone like spreading of correlations

Quasiparticle dynamics

• Two-point parity correlation function

Spreading velocity

Light-cone like spreading of correlations

normalised correlation

0.8

1.2

Outline

Lecture 3

1 Bound Magnons

- 2 Spin-Charge Fractionalization in Fermi Hubbard Chains
- **3** Connection to Ground State Non-Local Order
- 4 Kardar-Parisi-Zhang Universality in Heisenberg Quantum Magnets

Superexchange Interactions

Superexchange induced flopping

 $H_{eff} = -J_{ex}\vec{S}_i \cdot \vec{S}_j = -J_{ex}\left(\hat{S}_i^x \cdot \hat{S}_j^x + \hat{S}_i^y \cdot \hat{S}_j^y\right) - J_{ex}\hat{S}_i^z \cdot \hat{S}_j^z$ $= -\frac{J_{ex}}{2} \left(\hat{S}_{i}^{+} \hat{S}_{j}^{-} + \hat{S}_{i}^{-} \hat{S}_{j}^{+} \right) - J_{ex} \hat{S}_{i}^{z} \hat{S}_{j}^{z}$

T. Fukuhara, M. Endres, M. Cheneau P. Schauss, Ch. Gross, I. Bloch, S. Kuhr, U. Schollwöck, A. Kantian, Th. Giamarchi

Sherson et al. Nature 467, 68 (2010), see also Bakr et al. Nature (2009) & Bakr et al. Science (2010)

Quantum Magnetism

Spin impurity dynamics

Spin impurity dynamics

Heisenberg Hamiltonian

$$H=-J\sum\left(\hat{a}_{i}^{\dagger}\hat{a}_{j}+\hat{a}_{i}\hat{a}_{j}^{\dagger}
ight)\,$$
 single particle tunneling

Line-shaped light field created with DMD SLM

Quantum Magnetism

Coherent quantum dynamics of single spin at zero temperature

T. Fukuhara, P. Schauss, S. Hild, J.Zeiher, M. Cheneau, M. Endres, I. Bloch, Ch. Gross

T. Fukuhara et al., Nature 502, 76 (2013) for photons: O. Firstenberg et al., Nature 502, 71 (2013)

Magnon Bound States

A Challenge for CM Physics

Very difficult to observe in spectroscopic data in real materials!

Dynamical Evolution

Bound Magnon Motion

Breakup and Single Spin Motion

Propagation Velocity

Magnon Bound State

Experimental Results

Magnon Bound State

Outline

- 1 Bound Magnons
- 2 Spin-Charge Fractionalization in Fermi Hubbard Chains
- **3** Connection to Ground State Non-Local Order
- **4** Kardar-Parisi-Zhang Universality

Spin & Charge Velocities

C

LMU

AFM order around a Single Hole

0000000000

AFM

String Order String Order in 1D Systems String Order E.g. in ID gapped systems where $\langle \hat{A}(\mathbf{x}) \hat{A}(\mathbf{y}) \rangle$ decays exponentially with distance H However, they can show hidden non-local order: $\left[\lim_{|\mathbf{x}-\mathbf{y}|\to\infty} \langle \hat{A}(\mathbf{x}) \left(\prod_{\mathbf{z}\in S(\mathbf{x},\mathbf{y})} \hat{B}(\mathbf{z}) \right) \hat{A}(\mathbf{y}) \rangle = c$ H We say the order is hidden, because a "global view" of the underlying state is required. (Topological Order: X.-G.Wen) Hid Allows us to characterize state only via its ground state correlations! Hid

M. den Nijs, K. Rommelse, Phys. Rev. B 40, 4709 (1989). E. Kim, G. Fa'th, J. So Iyom, D. Scalapino, Phys. Rev. B 62, 14965 (2000) E. G. Dalla Torre, E. Berg, E. Atrana, Phys. Rev. Lett. 97, 260401 (2006) F. Anfuso, A. Rosch, Phys. Rev. B 75, 144420 (2007) E. Berg, I. E. Dalla Torre, T. Giamarchi, E. Altman, Phys. Rev. B 77, 245119 (2008)

AFM

Ø

LMU

Two Point Correlator - Doped Chains

d Chains AFM

Two Point Correlator - Doped Chains

Quantum Gas Microscopy of Kardar-Parisi-Zhang Superdiffusion

Kardar-Parisi-Zhang Equation

 $rac{\partial h(ec{x},t)}{\partial t} =
u
abla^2 h + rac{\lambda}{2} (
abla h)^2 + \eta(ec{x},t)$

Fields Medal (2014)

Non-linear stochastic differential equation describing temporal change of height field

Growth of interfaces/surface growth

I. Corwin, Notices of the AMS 63, 230 (2016)

Coffee Stains

Growth of Interfaces

M. Kardar, G. Parisi & Y.-C. Zhang PRL 56, 889 (1986) C.A. Tracy & H. Widom Comm. Math. Phys. 159, 151 (1994)

M. Prähofer & H. Spohn PRL 84, 4882 (2000)

C.A. Tracy & H. Widom Comm. Math. Phys. 177, 727 (1994)

Theory: B. Ye, F. Machado, J. Kemp. N. Yao, S. Gopalakrishnan arXiv:2107.00038

Experiment: D. Wei, A. Rubtio-Abadal, K. Srakaew, C. Gross, J. Zeiher, I.B.

A Quantum Surprise: Infinite Temperature Spin Transport in Heisenberg Quantum Magnets is in KPZ Universality Class

Numerical Evidence

M. Ljubotina et al., Nature Comm. (2017) M. Ljubotina et al., Phys. Rev. Lett. (2019) Review: see V. Bulchadini, S. Gopalakrishnan, E. Ilievski arXiv:2103.0197

Numerical Evidence - Infinite T Heisenberg Dynamics

M. Ljubotina et al., Nature Comm. (2017) M. Ljubotina et al., Phys. Rev. Lett. (2019) Review: see V. Bulchadini, S. Gopalakrishnan, E. Ilievski arXiv:2103.0197

S. Gopalakirshnan, R. Vasseur, and B. Ware, PNAS (2019)

V. B. Bulchandani, S. Gopalakrishnan, and E. Ilievski, arXiv:2103.01976

V. B. Bulchandani, Phys. Rev. B (2020)

B. Bertini at el. Rev. Mod. Phys. (2020)

Reviews:

Exp.: A. Scheie *et al.* Nature Physics (2021) Related: Transport via Spin-Spirals S. Hild *et al.* Phys. Rev. Lett. (2014) P.N. Jepsen *et al.* Nature (2020)

Anomalous Transport

14 ×

1

Experimental Measurement

Anomalous Transport

Experimental Measurement

Single shot images

t/τ= 36

Anomalous Transport

Breaking Superdiffusion - Breaking Integrability

Anomalous Transport

I↓> atoms

Polarisation Transfer

M. Ljubotina et al., Nature Comm. (2017). M. Ljubotina et al., Phys. Rev. Lett. (2019) Exp. Spin Chains: A. Scheie et al. Nat. Phys. (2021)

Breaking Superdiffusion - Breaking Non-Abelian Symmetry

Experimental Evidence for KPZ

- **1** Superdiffusive transport (z=3/2) can arise from linear model!
- **2** Polarisation fluctuation scale (β =1/3)
- 3 Skewness of Polarisation fluctuation distribution constant (and compatible with Tracy-Widom GOE/GUE)
- 4 Breaking SU(2) symmetry OR breaking integrability destroys KPZ behaviour

arXiv:2107.00038

Outlook

- Search for New Phases of Matter
- Extremely Strong Magnetic Field Physics
- Novel Quantum Magnets
- Controlled Quasiparticle Manipulations
- Non-Equilibrium Dynamics (New Types of Universality?)
- Thermalization in Isolated Quantum Systems
- Entanglement Measures in Dynamics
- Supersolids
- Cosmology Black Hole Models?

:

- High Energy Physics/String Theory
- New clocks/Navigation
- Novel Quantum Light Matter Interfaces

