Synthetic electromagnetism with neutral atoms

I. B. SpieIman

Floquet topology
G. H. Reid, A. Pineiro, A. Fritsch, and M. Lu, with Justyna Zwolak

Synthetic Hall cylinder
M. Zhao, J. Tao, and Q. Liang

SOC, disorder, and weak measurement:
E. Altuntas

Ultracold neutral atoms as a material system

Cold atoms are good "materials"

> Numerous properties can be controlled and measured on all relevant timescales and in any lab

Very simple Hamiltonians

Cold atoms are bad "materials" Short lived, and do so in vacuum

Interesting features all added by hand (complex experiments).

Starts like this
400 K

Ends here every 15 s

50 nK

Anatomy of an experiment

Total cycle time is about 15 seconds

We make a new BEC, measure it, destroy it, and repeat.

How to engineer atomic quantum (and photonic) systems

Bottom-up engineering (Micromanaging quantum systems)
Build the system up from well controlled quantum building blocks, e.g., qbits.

Martinis group / google; Science (2017)

Monroe group; Nature (2017)

Hamiltonian engineering (Coaching quantum systems)
Build the Hamiltonian up with well calibrated control techniques

Bloch group; Nature (2002)

Jin group; Nature (2003)

Lin et al; Nature (2011)

Our tools

Optical lattices

e.g., adding potentials
$H=\frac{\hbar^{2} \mathbf{k}^{2}}{2 m}+\frac{V}{2} \cos \left(2 k_{r} x\right)+\ldots$

Interaction tuning

e.g., Feshbach resonances

$$
\begin{equation*}
H=\ldots+g_{3 \mathrm{D}} \delta\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)+\ldots \tag{0}
\end{equation*}
$$

(really a regularized delta function...)

Gauge fields / SOC

e.g., laser induced motion

$$
H=\frac{[\mathbf{k}-\hat{\mathcal{A}}(\mathbf{x})]^{2}}{2 m}+\ldots
$$

Lattice and gauge fields: why?

Fundamental physics of novel matter

Quantum Hall (bosons or fermions, magnetic field), Quantum magnets (spin-spin interactions, non-zero range) p-wave superconductors (fermions, spin polarized p-wave interactions) Topological insulators (generally with spin-orbit coupling) (almost!) chaos

Outline

Fields in free space

Fields in synthetic dimensions

Edge

Bulk

B. Stuhl and Hsin-I Lu, et al. Science (2015)

In this talk we will study the behavior of quantum matter in the presence of static magnetic fields
prence

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

What do magnetic fields do?

To spins

Zeeman effect, example of ${ }^{87} \mathrm{Rb}$

Energy in dimensions of Hz

To charges

1. Freshman mechanics

Mechanical variables and forces

$$
\mathbf{F}=q \mathbf{v} \times \mathbf{B}
$$

2. Junior mechanics

Canonical variables and vector potential

$$
\mathbf{B}=\nabla \times \mathbf{A} \quad \text { e.g., } \mathbf{A}=\frac{B}{2}(x \hat{y}-y \hat{x})
$$

$$
H=\frac{(\mathbf{p}-q \mathbf{A})^{2}}{2 m}
$$

$$
\dot{p}_{j}=-\frac{\partial}{\partial x_{i}} H, \quad \dot{x}_{j}=\frac{\partial}{\partial p_{i}} H
$$

What we want to create for neutral atoms

Single particle hamiltonian

$$
\hat{H}=\frac{\hbar^{2}}{2 m}\left[\left(k_{x}-\frac{q A_{x}}{\hbar}\right)^{2}+\left(k_{y}-\frac{q A_{y}}{\hbar}\right)^{2}\right]+V(\mathbf{x})
$$

How to control the kinetic energy term coupling between internal, spin, degrees of freedom.

Here I will be interested in a synthetic field normal to a 2 D plane. Some common gauge choices are:

$$
A=\left\{-\frac{B y}{2}, \frac{B x}{2}, 0\right\}
$$

$$
A=\{0, B x, 0\}
$$

Landau gauge: relevant here
Symmetric gauge: natural for rotating
systems

$$
\mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \quad B=\nabla \times A
$$

Synthetiolectromagnetism with neutral atoms

But wait our neutral atoms are charge neutral!

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

How to "charge" neutral particles

How to simulate magnetic fields

(1) Rotation: the Hamiltonian in the rotating frame has an effective field. For high fields fine tuning is required.

References: V. Schweikhard et al PRL 92040404 (2004), J. R. Abo-Shaeer, C. Raman, and W. Ketterle PRL 88070409 (2002), K.W. Madison et al PRL 84806 (2000)
(2) Stroboscopic proposals.
(3) Immersions and others

References: A. Sørensen, et al PRL 94 p086803 (2005), A. Klein and D. Jaksch EPL, 8513001 (2009)

Our approach

(4) Raman techniques.

Reference: G. Juzeliñuas et al PRA 73 p025602 (2006)

Today's outline

A synthetic vector potential, created
Generate a synthetic vector potential

$$
\hat{H}=\frac{\hbar^{2}}{2 m}\left[\left(k_{x}-\frac{q A_{x}}{\hbar}\right)^{2}+\left(k_{y}-\frac{q A_{y}}{\hbar}\right)^{2}\right]+V(\mathbf{x})
$$

A electric and magnetic fields, revealed Spatial variation of A gives rise to a magnetic field

Rubidium 87

Rubidium 87: Level structure

Rubidium 87: $5 \mathrm{~S}_{1 / 2}$ ground state

All the atomic physics you need to know

Schematic

Two levels coupled together

Graphic result
Avoided crossings

Atom light interaction: pictures

Atom light interaction

Given the following geometry and levels

Dimensions

$$
\begin{aligned}
k_{R} & =\frac{2 \pi}{\lambda}, E_{R}=\frac{\hbar^{2} k_{R}^{2}}{2 m} \\
E_{R} & \approx h \times 3 \mathrm{kHz}=k_{\mathrm{B}} \times 140 \mathrm{nK}
\end{aligned}
$$

Coupled States

References
[1] Juzeliūnas, et al., PRA 02560273 (2006), + earlier pubs [2] S.-L. Zhu, et al., PRL 24040197 (2006)
[3] Günter et al, PRA 79011604 (2009)
[4] IBS, PRA 06361379 (2009)

Atom light interaction: pictures

Atom light interaction

Given the following geometry and levels

Dimensions

$$
\begin{aligned}
k_{R} & =\frac{2 \pi}{\lambda}, E_{R}=\frac{\hbar^{2} k_{R}^{2}}{2 m} \\
E_{R} & \approx h \times 3 \mathrm{kHz}=k_{\mathrm{B}} \times 140 \mathrm{nK}
\end{aligned}
$$

Coupled States

References
[1] Juzeliūnas, et al., PRA 02560273 (2006), + earlier pubs [2] S.-L. Zhu, et al., PRL 24040197 (2006)
[3] Günter et al, PRA 79011604 (2009)
[4] IBS, PRA 06361379 (2009)

Atom light interaction: pictures

Atom light interaction

Given the following geometry and levels

Dimensions

$$
\begin{aligned}
k_{R} & =\frac{2 \pi}{\lambda}, E_{R}=\frac{\hbar^{2} k_{R}^{2}}{2 m} \\
E_{R} & \approx h \times 3 \mathrm{kHz}=k_{\mathrm{B}} \times 140 \mathrm{nK}
\end{aligned}
$$

Coupled States

References
[1] Juzeliūnas, et al., PRA 02560273 (2006), + earlier pubs [2] S.-L. Zhu, et al., PRL 24040197 (2006)
[3] Günter et al, PRA 79011604 (2009)
[4] IBS, PRA 06361379 (2009)

Atom light interaction: pictures

Atom light interaction

Given the following geometry and levels

Dimensions

$$
\begin{aligned}
k_{R} & =\frac{2 \pi}{\lambda}, E_{R}=\frac{\hbar^{2} k_{R}^{2}}{2 m} \\
E_{R} & \approx h \times 3 \mathrm{kHz}=k_{\mathrm{B}} \times 140 \mathrm{nK}
\end{aligned}
$$

Coupled States

References
[1] Juzeliūnas, et al., PRA 02560273 (2006), + earlier pubs [2] S.-L. Zhu, et al., PRL 24040197 (2006)
[3] Günter et al, PRA 79011604 (2009)
[4] IBS, PRA 06361379 (2009)

Atom light interaction: pictures

Atom light interaction

Given the following geometry and levels

Dimensions

$$
\begin{aligned}
k_{R} & =\frac{2 \pi}{\lambda}, E_{R}=\frac{\hbar^{2} k_{R}^{2}}{2 m} \\
E_{R} & \approx h \times 3 \mathrm{kHz}=k_{\mathrm{B}} \times 140 \mathrm{nK}
\end{aligned}
$$

Coupled States

References
[1] Juzeliūnas, et al., PRA 02560273 (2006), + earlier pubs [2] S.-L. Zhu, et al., PRL 24040197 (2006)
[3] Günter et al, PRA 79011604 (2009)
[4] IBS, PRA 06361379 (2009)

Atom light interaction: pictures

Atom light interaction

Given the following geometry and levels

Coupled States

States will be labeled by:
(1) the "band index" and by
(2) a quasi-momentum k

References
[1] Juzeliūnas, et al., PRA 02560273 (2006), + earlier pubs
[2] S.-L. Zhu, et al., PRL 24040197 (2006)
[3] Günter et al, PRA 79011604 (2009)
[4] IBS, PRA 06361379 (2009)

Atom light interaction: pictures

Time evolution

In the sudden limit (Raman-Nath)
Population oscillations yield coupling

Coupled States

States will be labeled by:
(1) a "band index" and by
(2) a momentum k

Atom light interaction: vector potential

Atom light interaction

Given the following geometry and levels

$$
\begin{aligned}
& |-1\rangle \quad|0\rangle \quad|+1\rangle
\end{aligned}
$$

Dimensions

$$
\begin{aligned}
k_{R} & =\frac{2 \pi}{\lambda}, E_{R}=\frac{\hbar^{2} k_{R}^{2}}{2 m} \\
E_{R} & \approx h \times 3 \mathrm{kHz}=k_{\mathrm{B}} \times 140 \mathrm{nK}
\end{aligned}
$$

Atom light interaction: vector potential

Coupling Hamiltonian

$H(k)=|\Psi(k)\rangle\left(\begin{array}{ccc}\left(\tilde{k_{x}}-2\right)^{2}+\delta & \Omega / 2 & 0 \\ \Omega / 2 & \left(\tilde{k_{x}}\right)^{2} & \Omega / 2 \\ 0 & \Omega / 2 & \left(\tilde{k_{x}}+2\right)^{2}-\delta\end{array}\right)\langle\Psi(k)|$

Engineered vector potential

$$
\hat{H}=\frac{\hbar^{2}}{2 m}\left[\left(k_{x}-\frac{q A_{x}}{\hbar}\right)^{2}+\left(k_{y}-\frac{q 4 / y}{n}\right)^{2}\right]+V(\mathbf{x})
$$

Measurement: Time-of-flight and Stern-Gerlach

Before TOF

After TOF

Measurement: Time-of-flight and Stern-Gerlach

Camera's point of view

Before TOF

After TOF

Field gradient along the y direction

In the lab

Adiabatic manipulation of atoms

Initial state $\left|F=1, m_{F}=-1\right\rangle$
Suddenly turn off dipole trap, then TOF

Zeeman shift

$$
\begin{array}{llll}
g \mu_{B} B & {\left[\left.\begin{array}{ll}
---- & - \\
& \\
& \\
& \\
& |-1\rangle
\end{array} \right\rvert\,\right.} & & \\
& & - \\
\hline
\end{array}
$$

Loading: momentum

Adiabatic manipulation of atoms

Initial state $\left|F=1, m_{F}=-1\right\rangle$
RF dressed state (RF on, ramp B to resonance)
Raman + RF dressed state (Ramp Raman on)
Raman only dressed state (Ramp RF off)
Suddenly turn off Raman + dipole trap, TOF

Raman Dressed

$|-1\rangle \quad|0\rangle \quad|+1\rangle$

Displaced momentum distribution

Conserved

Abrupt turnoff conserves mechanical velocity
Mechanical velocity is averaged over all orders and is zero in equilibrium (of course).

Raman Dressed

1. Junior mechanics

Canonical variables and vector potential

$$
\begin{gathered}
H=\frac{(\mathbf{p}-q \mathbf{A})^{2}}{2 m} \\
\dot{p}_{j}=-\frac{\partial}{\partial x_{i}} H, \dot{x}_{j}=\frac{\partial}{\partial p_{i}} H \\
\dot{x}_{j}=v_{j}=\frac{p-q A_{j}}{m}
\end{gathered}
$$

A laboratory tunable vector potential

Idea

We can control the engineered vector potential in time and space giving synthetic \boldsymbol{E} and \boldsymbol{B} fields.

Bias and quadrupole \boldsymbol{B} fields = offset and gradient in detuning.

Transfer function

$$
\begin{aligned}
\hat{H}= & \frac{\hbar^{2}}{2 m}\left\{\left[k_{x}-\frac{q A_{x}(\delta, \Omega)}{\hbar}\right]^{2}+k_{y}^{2}\right\}+V(\mathbf{x}) \\
& \text { where } \delta(x, y, t) \text { and } \Omega(x, y, t)
\end{aligned}
$$

The detuning and coupling specify the local synthetic vector potential

Detuning δ, in units of E_{L}

References
[1] Y.-J. Lin et al, PRA 79063631 (2009)

Electric fields: time dependence

Complete disclosure

Our beams now intersect at 90
Not for physics reasons.

Transfer function

$$
\begin{aligned}
\hat{H}= & \frac{\hbar^{2}}{2 m}\left\{\left[k_{x}-\frac{q A_{x}(\delta, \Omega)}{\hbar}\right]^{2}+k_{y}^{2}\right\}+V(\mathbf{x}) \\
& \text { where } \delta(x, y, t) \text { and } \Omega(x, y, t)
\end{aligned}
$$

The detuning and coupling specify the local synthetic vector potential

Detuning δ, in units of E_{L}

Synthetic Electric Field

A uniform vector potential: forces

Time dependence gives electric fields and forces
Usual "quasi-static assumptions"

$$
\begin{aligned}
& \text { 1. Freshman version } \\
& \mathbf{E}=-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t} \\
& \frac{m \Delta \dot{\mathbf{x}}}{\hbar}=\frac{e}{\hbar} \int \mathbf{E} d t=-\frac{e}{\hbar} \Delta \mathbf{A}
\end{aligned}
$$

2. Junior version

$$
\frac{m \dot{x}_{j}}{\hbar}=k_{j}-\frac{q A_{j}}{\hbar}, \dot{k}_{j}=-\frac{1}{\hbar} \frac{\partial}{\partial x_{i}} H=0
$$

Geometric example

Realization with dressed states

Yes! Atoms acquire expected $-2 k_{\mathrm{R}}$ mechanical momentum kick.

Our synthetic vector potential behaves just like the real thing

Synthetic magnetic field

Loading procedure

Initial state
RF dressed state (RF on, $\operatorname{ramp} B$ to resonance) Raman + RF dressed state (Ramp Raman on) Raman only dressed state (Ramp RF off)

Ramp field gradient on (from 0 to $500 \mathrm{~Hz} / \mu \mathrm{m}$)
Equilibrate for 500 ms
TOF imaging

Outcome

But that not what happened...

Vortex number

Spatial dependence gives magnetic fields and forces

References

Large magnetic fields in synthetic dimensions

 JOI:B. Stuhl and Hsin-I Lu, et al. Science (2015)

Florence
M. Mancini et al. Science (2015)

THEORY PROPOSAL:
Geli, A. et al. Phys. Rev. Lett. (2014)

Large magnetic fields in a 2D lattice

References

B. Stuhl, et al. Science (2015); Celi, A. et al. Phys. Rev. Lett. (2014);

Light assisted hopping I: Munich

References

M. Aidelsburger et al PRL (2011), M. Aidelsburger et al PRL (2013)

Light assisted hopping II: MIT

References

C. J. Kennedy, et al Nat. Phys (2015), H. Miyake et al PRL (2013)

Modulation I: Hamburg

References

J. Struck et at N. Physics (2013)

Modulation II: Zurich

References

J. Gotzu at al Nature (2014)

Basic idea: laser induced hopping

$$
H=-\sum_{j}\left[t^{(x)} e^{-i 2 \pi \Phi j_{y}}\left|\mathbf{j}+\mathbf{e}_{x}\right\rangle\langle\boldsymbol{j}|+t^{(y)}\left|\mathbf{j}+\mathbf{e}_{y}\right\rangle\langle\boldsymbol{j}|+\text { h.C. }\right]
$$

References

D. Jaksch and P. Zoller; New Journal of Physics (2003).

Lattice laser geometry

BEC

$$
\bigodot^{\overbrace{}^{\mathbf{e}_{z}} \quad \bigodot^{\mathbf{e}_{y}}{ }^{\mathbf{e}_{x}=1064 \mathrm{~nm}}}
$$

Lattice potential

Tight binding model

Usual level diagram

Lattice picture

$$
\begin{aligned}
& m=+1 \\
& m=0 \\
& m=-1
\end{aligned} \quad \oint^{m} t^{(s)}
$$

Reference

Celi, A. et al. Phys. Rev. Lett. (2014).

Lattice laser geometry

BEC
Lattice potential

Tight binding model

Synthetic hopping

$$
\begin{aligned}
t^{(s)} & =\frac{\Omega_{R}}{\sqrt{2}} e^{i 2 k_{R} x} \\
& =\frac{\Omega_{R}}{\sqrt{2}} e^{i(2 \pi \Phi) \ell} \\
\text { with } \Phi & =\frac{\lambda_{L}}{\lambda_{R}} \approx 1.32
\end{aligned}
$$

References

Celi, A. et al. Phys. Rev. Lett. (2014); 3-site dual to: M. Atala et al. Nat. Phys. (2014)

$$
H=-\sum_{j, m}\left[t_{j}|j+1, m\rangle\langle j, m|+t_{s} e^{i(\Phi j+\varphi)}|j, m+1\rangle\langle j, m|+c . c\right]
$$

References

Celi, A. et al. Phys. Rev. Lett. (2014); 3-site dual to: M. Atala et al. Nat. Phys. (2014)

Single-particle eigenstate structure: Landau gauge

$$
H=\frac{\hbar^{2}}{2 m}\left[\left(k_{x}+\frac{q B y}{\hbar}\right)^{2}+k_{y}^{2}\right], \quad \text { from } \quad \mathbf{A}=-B y \mathbf{e}_{x} \quad \text { with } \quad \ell_{B}=\sqrt{\frac{\hbar}{q B}}
$$

Edge currents

References

Figure From: A. Cili and L. Tarruell, Science Perspective (2015)

Edge states in QHE systems

(a) Energies

(b) Edge States

References

I. B. Spielman Ann. der Phy. (2013).

Center

-1 edge state

Center

+1 edge state
$m=+1$
$m=0$
$m=-1$

-1 edge state

Center
$m=+1$
$m=0$
$m=-1$

+1 edge state
$m=+1$
$m=0$
$m=-1$

Edge excitations in QHE systems

References

R. Ashoori, et al., Phys. Rev. B 45, 3894-3897 (1992).

References
B. Stuhl and H.-I Lu, et al., Science (2015); M. Mancini, et al., Science (2015)

Other recent work

A. Valdés-Curiel et al Nat. Comm. (2021)

Super-stripes

A. Putra et al.; PRL (2020)

Fancy image processing
Recover images from imperfect data

E. Altuntas and IBS (2021 in preparation)

Sub-wavelength lattice
Ring coupling w/o added lattice

R. Anderson et al PR Research (2020)

Theory: effective interactions

Weak measurement + classical feedback in spinor systems

H. M. Hurst, and IBS; PRR (2020)

