Synthetic electromagnetism with neutral atoms

I. B. Spielman

Floquet topology

G. H. Reid, A. Pineiro, A. Fritsch, and M. Lu, with Justyna Zwolak

Synthetic Hall cylinder M. Zhao, J. Tao, and Q. Liang

SOC, disorder, and weak measurement:

E. Altuntas

Support

NSF PFC@JQI, AFOSR Quantum Phases MURI, and NIST

Ultracold neutral atoms as a material system

<u>Cold atoms are good "materials"</u>

Numerous properties can be controlled and measured on all relevant timescales and in any lab

Very simple Hamiltonians

<u>Cold atoms are bad "materials"</u> Short lived, and do so in vacuum

Interesting features **all** added by hand (complex experiments).

<u>Starts like this</u>

400 K

Ends here every 15 s

50 nK

Anatomy of an experiment

Total cycle time is about 15 seconds

We make a new BEC, measure it, destroy it, and repeat.

How to engineer atomic quantum (and photonic) systems

Bottom-up engineering (Micromanaging quantum systems)

Build the system up from well controlled quantum building blocks, e.g., qbits.

Martinis group / google; Science (2017)

Monroe group; Nature (2017)

Hamiltonian engineering (Coaching quantum systems)

Build the Hamiltonian up with well calibrated control techniques

Bloch group; Nature (2002)

Pridse Separateg

Jin group; Nature (2003)

Lin et al; Nature (2011)

Our tools

Optical lattices

e.g., adding potentials

$$H = \frac{\hbar^2 \mathbf{k}^2}{2m} + \frac{V}{2} \cos(2k_r x) + \dots$$

e.g., Feshbach resonances

 $H = \ldots + g_{3D}\delta(\mathbf{r}_i - \mathbf{r}_j) + \ldots$

(really a regularized delta function...)

Gauge fields / SOC

e.g., laser induced motion

$$H = \frac{\left[\mathbf{k} - \hat{\mathcal{A}}(\mathbf{x})\right]^2}{2m} + \dots$$

Lattice and gauge fields: why?

Fundamental physics of novel matter

Quantum Hall (bosons or fermions, magnetic field), Quantum magnets (spin-spin interactions, non-zero range) *p*-wave superconductors (fermions, spin polarized **p**-wave interactions) Topological insulators (generally with spin-orbit coupling) (almost!) chaos

R. B. Laughlin. PRL (1983); A. Y. Kitaev, Ann. Phys. (2006); Hassan and Kane, RMP (2010)

Outline

Fields in synthetic dimensions

B. Stuhl and Hsin-I Lu, et al. Science (2015)

Synthetic electromagnetism with neutral atoms

In this talk we will study the behavior of quantum matter in the presence of *static* magnetic fields

What do magnetic fields do?

What we want to create for neutral atoms

Single particle hamiltonian

$$\hat{H} = \frac{\hbar^2}{2m} \left[\left(k_x - \frac{qA_x}{\hbar} \right)^2 + \left(k_y - \frac{qA_y}{\hbar} \right)^2 \right] + V(\mathbf{x})$$

How to control the *kinetic* energy term coupling between internal, spin, degrees of freedom.

Here I will be interested in a synthetic field normal to a 2D plane. Some common gauge choices are:

$$A = \left\{ -\frac{By}{2}, \frac{Bx}{2}, 0 \right\}$$

 $A = \{0, Bx, 0\}$ Landau gauge: relevant here

Symmetric gauge: natural for rotating systems

Expect the usual relations for fields

$$\mathbf{E} = -\nabla\Phi - \frac{\partial \mathbf{A}}{\partial t} \qquad B = \nabla \times A$$

<u>References</u> J. C. Maxwell (1873) Synthetic electromagnetism with neutral atoms

But wait our *neutral* atoms are *charge neutral*!

How to "charge" neutral particles

How to simulate magnetic fields

(1) Rotation: the Hamiltonian in the rotating frame has an effective field. For high fields fine tuning is required.

References: V. Schweikhard et al PRL **92** 040404 (2004), J. R. Abo-Shaeer, C. Raman, and W. Ketterle PRL **88** 070409 (2002), K.W. Madison et al PRL **84** 806 (2000)

(2) Stroboscopic proposals.

(3) Immersions and others

References: A. Sørensen, et al PRL **94** p086803 (2005), A. Klein and D. Jaksch EPL, **85** 13001 (2009)

Reference: G. Juzeliñuas et al PRA 73 p025602 (2006)

Today's outline

<u>A electric and magnetic fields, revealed</u> Spatial variation of *A* gives rise to a magnetic field

Rubidium 87

[†]Based upon ¹²C. () indicates the mass number of the most stable isotope.

For a description of the data, visit physics.nist.gov/data

NIST SP 966 (September 2003)

Rubidium 87: Level structure

Rubidium 87: 5S_{1/2} ground state

All the atomic physics you need to know

Atom light interaction

Coupled States

Given the following geometry and levels

$\frac{\text{Dimensions}}{k_R = \frac{2\pi}{\lambda}, \ E_R = \frac{\hbar^2 k_R^2}{2m}}$ $E_R \approx h \times 3 \text{ kHz} = k_B \times 140 \text{ nK}$

Atom light interaction

Coupled States

Given the following geometry and levels

Atom light interaction

Coupled States

Given the following geometry and levels

$\frac{\text{Dimensions}}{k_R = \frac{2\pi}{\lambda}, \ E_R = \frac{\hbar^2 k_R^2}{2m}}$ $E_R \approx h \times 3 \text{ kHz} = k_B \times 140 \text{ nK}}$

Atom light interaction

Coupled States

Given the following geometry and levels

Atom light interaction

Coupled States

Given the following geometry and levels

$\frac{\text{Dimensions}}{k_R = \frac{2\pi}{\lambda}, \ E_R = \frac{\hbar^2 k_R^2}{2m}}$ $E_R \approx h \times 3 \text{ kHz} = k_B \times 140 \text{ nK}$

Atom light interaction

Given the following geometry and levels

$\frac{\text{Dimensions}}{k_R = \frac{2\pi}{\lambda}, \ E_R = \frac{\hbar^2 k_R^2}{2m}}$ $E_R \approx h \times 3 \text{ kHz} = k_B \times 140 \text{ nK}$

Coupled States

States will be labeled by: (1) the "band index" and by (2) a quasi-momentum *k*

<u>Time evolution</u> In the sudden limit (Raman-Nath) Population oscillations yield coupling

Coupled States

States will be labeled by: (1) a "band index" and by (2) a momentum *k*

Atom light interaction: vector potential

Atom light interaction

Given the following geometry and levels

Atom light interaction: vector potential

$\underbrace{\text{Coupling Hamiltonian}}_{H(k) = |\Psi(k)\rangle \begin{pmatrix} (\tilde{k_x} - 2)^2 + \delta & \Omega/2 & 0\\ \Omega/2 & (\tilde{k_x})^2 & \Omega/2\\ 0 & \Omega/2 & (\tilde{k_x} + 2)^2 - \delta \end{pmatrix} \langle \Psi(k)| \\ \underbrace{\text{Engineered vector potential}}_{\hat{H} = \frac{\hbar^2}{2m} \left[\underbrace{\left(k_x - \frac{qA_x}{\hbar}\right)^2}_{2} + \left(k_y - \frac{\Delta y}{\hbar}\right)^2 \right] + V(\mathbf{x})$

Measurement: Time-of-flight and Stern-Gerlach

Camera's point of view

Field gradient along the y direction

Before TOF

Measurement: Time-of-flight and Stern-Gerlach

Camera's point of view

Field gradient along the y direction

Before TOF

In the lab

Loading: momentum

Displaced momentum distribution

<u>Conserved</u>

Abrupt turnoff conserves mechanical velocity

Mechanical velocity is averaged over all orders and is zero in equilibrium (of course).

A laboratory tunable vector potential

<u>Idea</u>

We can control the *engineered* vector potential in time and space giving *synthetic* E and B fields.

Bias and quadrupole B fields = offset and gradient in detuning.

Transfer function

$$\hat{H} = \frac{\hbar^2}{2m} \left\{ \left[k_x - \frac{q A_x(\delta, \Omega)}{\hbar} \right]^2 + k_y^2 \right\} + V(\mathbf{x})$$

where $\delta(x, y, t)$ and $\Omega(x, y, t)$

The detuning and coupling specify the local synthetic vector potential

<u>References</u> [1] Y.-J. Lin et al, PRA **79** 063631 (2009)

Electric fields: time dependence

<u>Complete disclosure</u>

Our beams now intersect at 90° Not for physics reasons.

Transfer function

$$\hat{H} = \frac{\hbar^2}{2m} \left\{ \left[k_x - \frac{qA_x(\delta, \Omega)}{\hbar} \right]^2 + k_y^2 \right\} + V(\mathbf{x})$$

where $\delta(x, y, t)$ and $\Omega(x, y, t)$

The detuning and coupling specify the local synthetic vector potential

Synthetic Electric Field

A uniform vector potential: forces

Time dependence gives electric fields and forces Usual "quasi-static assumptions"

Realization with dressed states

Yes! Atoms acquire expected $-2 k_R$ mechanical momentum kick.

Our synthetic vector potential behaves just like the real thing

<u>References</u> Y.-J. Lin et al Nat. Phys. (2011)

Synthetic magnetic field

But that not what happened...

<u>Vortex number</u>

Critical field for vortex formation

Spatial dependence gives magnetic fields and forces

<u>References</u> Extensive review: A.L. Fetter, RMP **81** 647 (2009)

Large magnetic fields in synthetic dimensions

<u>JQI:</u> B. Stuhl and Hsin-I Lu, et al. Science (2015)

<u>Florence</u> M. Mancini et al. Science (2015)

<u>THEORY PROPOSAL:</u> Celi, A. et al. Phys. Rev. Lett. (2014)

<u>Where we are going:</u>

Large magnetic fields in a 2D lattice

References

B. Stuhl, et al. Science (2015); Celi, A. et al. Phys. Rev. Lett. (2014);

AMO: fields in lattices

Light assisted hopping I: Munich

References

M. Aidelsburger et al PRL (2011), M. Aidelsburger et al PRL (2013)

Light assisted hopping II: MIT

References

C. J. Kennedy, et al Nat. Phys (2015), H. Miyake et al PRL (2013)

AMO: exotic lattices

Modulation I: Hamburg

References

J. Struck et at N. Physics (2013)

Modulation II: Zurich

References

J. Gotzu at al Nature (2014)

Backdrop

Basic idea: laser induced hopping

References

D. Jaksch and P. Zoller; New Journal of Physics (2003).

<u>Building a magnetic lattice</u>

<u>Building a magnetic lattice</u>

Usual level diagram

Lattice picture

$$m = +1 \qquad \bigcirc t^{(s)}$$
$$m = 0 \qquad \bigcirc t^{(s)}$$
$$m = -1 \qquad \bigcirc$$

Reference Celi, A. et al. Phys. Rev. Lett. (2014).

<u>All together: Full lattice</u>

Synthetic hopping

$$t^{(s)} = \frac{\Omega_R}{\sqrt{2}} e^{i2k_R x}$$
$$= \frac{\Omega_R}{\sqrt{2}} e^{i(2\pi\Phi)\ell}$$
with $\Phi = \frac{\lambda_L}{\lambda_R} \approx 1.32$

<u>References</u>

Celi, A. et al. Phys. Rev. Lett. (2014); 3-site dual to: M. Atala et al. Nat. Phys. (2014)

Itogether

References

Celi, A. et al. Phys. Rev. Lett. (2014); 3-site dual to: M. Atala et al. Nat. Phys. (2014)

Interpreting data

Continuum magnetic fields

Single-particle eigenstate structure: Landau gauge

$$H = \frac{\hbar^2}{2m} \left[\left(k_x + \frac{qBy}{\hbar} \right)^2 + k_y^2 \right], \quad \text{from} \quad \mathbf{A} = -By\mathbf{e}_x \quad \text{with} \quad \ell_B = \sqrt{\frac{\hbar}{qB}}$$

References Figure From: A. Cili and L. Tarruell, Science Perspective (2015)

QHE systems: Edge states

Edge states in QHE systems

References

I. B. Spielman Ann. der Phy. (2013).

Interpreting data: zero flux

Lattice site along *m*

-2 -1 0

т

1 2

<u>Interpreting data: +1/3 flux quantum</u>

Interpreting data: +1/3 flux quantum

2

1

т

+1 edge state

Interpreting data: -1/3 flux quantum

Center

2

1

0

т

+1 edge state

<u>QHE systems: edge states, skipping?</u>

References

R. Ashoori, et al., Phys. Rev. B 45, 3894–3897 (1992).

<u>Dynamics: edge magnetoplasmons</u>

B. Stuhl and H.-I Lu, et al., Science (2015); M. Mancini, et al., Science (2015)

