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Cold atoms are good “materials”


Numerous properties can 

be controlled and measured


on all relevant timescales and

in any lab


Very simple Hamiltonians


Cold atoms are bad “materials”

Short lived, and do so in vacuum


Interesting features all added

by hand (complex experiments).
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Ultracold neutral atoms as a material system
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Anatomy of an experiment

Laser cooling

Evaporation

Experiment

Measurement

Total cycle time is about 15 seconds


We make a new BEC,

measure it,

destroy it,

and repeat.



How to engineer atomic quantum (and photonic) systems
Bottom-up engineering (Micromanaging quantum systems) 

Build the system up from well controlled quantum building blocks, e.g., qbits.

Martinis group / google; Science (2017) Monroe group; Nature (2017)
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1. DEVICE: THE SUPERCONDUCTING QUBITS WITH GMON ARCHITECTURE

Figure S1. An optical micrograph of the
device which consists of 9 qubits in a 1D
chain with adjustable coupling between ev-
ery pair of qubits. The qubits appear as
small vertical rectangles in the middle of
the chip. The couplers are the two square
loops that are between the qubits. The
wiring lines that are routed to the perime-
ter of the chip are used to control the
qubits and the interaction between them.
The meandering lines above the qubits
are the readout resonators. The qubits
are connected with an adjustable coupler.
Each qubit is a non-linear LC resonator,
and the two qubits are inductively coupled
through the mutual inductance to a cou-
pler loop. The coupler loop has a single
Josephson junction, which can be tuned
by applying magnetic flux into the coupler
loop, allowing variable coupling strength
between the two qubits in a few ns time
scales. For a detailed discussion of princi-
ple of operation and calibration routines,
see references [1–4].

ar
X

iv
:1

70
9.

07
10

8v
2 

 [q
ua

nt
-p

h]
  2

0 
D

ec
 2

01
7

4

(a) (b) Transverse field

0.0 0.5 1.0 1.5 2.0

12

14

16

18

20

m
ea

n
of

la
rg

es
td

om
ai

n 
si

ze

 Bz /J0

~

103 103 103  Bz /J0 = 1.6~
 Bz /J0 = 1.0~

 Bz /J0 = 0.1~

Figure 4: Domain statistics and reconstructed single shot images of 53 spins. (a) Top and bottom: reconstructed
images based on binary detection of spin state (see Appendix E).The top image shows a chain of 53 ions in bright spin states.
The other three images show 53 ions in combinations of bright and dark spin states. Center: statistics of the sizes of domains,
or blocks with spins pointing along the same direction. Histograms are plotted on a logarithmic scale, to visualize the rare
regions with large domains. Dashed lines are fits to exponential functions, which could be expected for infinite-temperature
thermal state. Long tails of deviations are clearly visible, and varies depending on B̃z/J0. (b) Mean of the largest domain sizes
in each single experimental shot. Error bars are the standard deviation of the mean (see Appendix F). Dashed lines represent
a piecewise linear fit, from which we extract the transition point (see text). The green, yellow, and red data points correspond
to the transverse fields shown in the domain statistics data on the left.

The occurrence of long domains of correlated spins in
the state |"ix (fluorescing spins) signifies the fully po-
larized initial state, where the correlations in the initial
state are largely preserved by the interactions. With an
increasing transverse field, the absence of spin-ordering
is reflected by exponentially small probabilities for ob-
serving long strings. We plot the domain length statis-
tics in Fig. 4a at late times (see Appendix F), for three
example transverse field strengths, B̃z/J0 = (0.1, 1.0,
1.6). The dashed lines in Fig. 4a are fits to exponen-
tials on the histogram of domain sizes. The rare occur-
rence of especially large domains (e.g. the red boxes in
Fig. 4a) shows the existence of many-body high-order
correlations, where the order is given by the length of
the domain. We plot the mean of the largest domain size
in Fig. 4b, as a function of the normalized transverse field
strength. The average longest domain size ranges from
12 to 20, and shows a sharp transition across the critical
point of the DPT. We fit this observable to a piecewise
linear function, and extract the critical point to be B̃z/J0

= 0.89(7). For more details, see Appendix F.
The DPT studied here, with up to 53 trapped ion

qubits, is the largest quantum simulation ever performed
with high-e�ciency single shot individual qubit measure-
ments. This gives access to arbitrary many-body corre-
lators that carry information that is di�cult or impossi-
ble to model classically. This experimental platform can
be extended to tackle provably hard quantum problems
such as Ising sampling [36]. Given an even higher level
of control over the interactions between spins, as already
demonstrated for smaller numbers of trapped ion qubits
[37], this same system can be upgraded to a universal
quantum computer.

APPENDIX A: CONFINEMENT OF LONG ION
CHAINS

The ion chain is confined in a 3-layer linear Paul trap
with ⌫cm = 4.85 MHz transverse center-of-mass motional
frequency [30]. The harmonic axial confinement is kept
low enough so that the lowest energy conformation of the
ions is linear; for 8� 16 ions the axial center-of-mass fre-
quency is ⇠ 400 kHz and for 53 ions it is ⇠ 200 kHz. The
ion spacing is anisotropic across the chain, with typical
spacings of 1.5 µm at the center of the chain and 3.5 µm
at either end [38].

The e↵ective lifetime of an ion chain is limited by
Langevin collisions with the residual background gas in
the UHV apparatus [39], which in general re-orders the
crystal but can also melt the crystal and even ultimately
eject the ions from rf-heating or other mechanisms. This
can be mitigated by quickly re-cooling the chain, and
we expect that occasionally the crystal returns without
notice. Rarely, such collisions with the background gas
are inelastic, either populating the 171Yb+ ion in the
metastable F7/2 state or forming a YbH+ molecule. The
355 nm Raman laser quickly returns the ions back to their
atomic ground state manifold, with a small probability
of creating doubly-charged ions. The mean time between
Langevin collisions is expected to be of order 1 collision
per hour per trapped ion, and we expect that the mean
lifetime for a chain of ions might therefore scale inversely
with the number of ions. For 53 ions we observe an av-
erage lifetime of about 5 minutes. However, we observe
rare events where a long ion chain survives for about 30
minutes. We speculate that either the chain is consis-
tently re-captured instantaneously, or the local pressure

Hamiltonian engineering (Coaching quantum systems) 
Build the Hamiltonian up with well calibrated control techniques

Bloch group; Nature (2002) Jin group; Nature (2003) Lin et al; Nature (2011)
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Optical lattices 
e.g., adding potentials

Interaction tuning 
e.g., Feshbach resonances


(really a regularized delta function…)

Gauge fields / SOC 
e.g., laser induced motion
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Our tools



Lattice and gauge fields: why?
Fundamental physics of novel matter 
Quantum Hall (bosons or fermions, magnetic field),

Quantum magnets (spin-spin interactions, non-zero range)

p-wave superconductors (fermions, spin polarized p-wave interactions) 

Topological insulators (generally with spin-orbit coupling) 

(almost!) chaos


R. B. Laughlin. PRL (1983); A. Y. Kitaev, Ann. Phys. (2006); Hassan and Kane, RMP (2010)
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FQHE Systems p-wave superconductivity

All key properties of topological states have been
demonstrated for Bi2Se3 which has the simplest Dirac
cone surface spectrum and the largest band gap. In
Bi2Te3 the surface states exhibit large deviations from a
simple Dirac cone !Fig. 14" due to a combination of
smaller band gap !0.15 eV" and a strong trigonal poten-
tial !Chen et al., 2009", which can be utilized to explore
some aspects of its surface properties !Fu, 2009; Hasan,
Lin, and Bansil, 2009". The hexagonal deformation of
the surface states is confirmed by scanning tunneling mi-
croscopy !STM" measurements !Alpichshev et al., 2010";
Fig. 14. Speaking of applications within this class of ma-
terials, Bi2Te3 is already well known to materials scien-
tists working on thermoelectricity. It is a commonly used
thermoelectric material in the crucial engineering re-
gime near room temperature.

Two defining properties of topological insulators—
spin-momentum locking of surface states and ! Berry
phase—can be clearly demonstrated in the Bi2Se3 series.
The surface states are expected to be protected by T
symmetry which implies that the surface Dirac node
should be robust in the presence of nonmagnetic disor-
der but open a gap in the presence of T breaking pertur-
bations. Magnetic impurities such as Fe or Mn on the
surface of Bi2Se3 open a gap at the Dirac point #Figs.
15!a" and 15!b"$ !Xia et al., 2008; Hsieh, Xia, Qian, Wray,
et al., 2009a; Hor, Roushan, et al., 2010; Wray et al.,
2010". The magnitude of the gap is likely set by the in-
teraction of Fe ions with the Se surface and the T break-

ing disorder potential introduced on the surface. Non-
magnetic disorder created via molecular absorbent NO2
or alkali atom adsorption !K or Na" on the surface
leaves the Dirac node intact #Figs. 15!c" and 15!d"$ in
both Bi2Se3 and Bi2Te3 !Hsieh, Xia, Qian, Wray, et al.,
2009a; Xia, Qian, Hsieh, Shankar, et al., 2009". These
results are consistent with the fact that the topological

FIG. 12. !Color online" Helical fermions: Spin-momentum
locked helical surface Dirac fermions are hallmark signatures
of topological insulators. !a" ARPES data for Bi2Se3 reveal
surface electronic states with a single spin-polarized Dirac
cone. !b" The surface Fermi surface exhibits a chiral left-
handed spin texture. !c" Surface electronic structure of Bi2Se3
computed in the local-density approximation. The shaded re-
gions describe bulk states, and the lines are surface states. !d"
Schematic of the spin-polarized surface-state dispersion in
Bi2X3 !1;000" topological insulators. Adapted from Xia et al.,
2008, Hsieh, Xia, Qian, Wray, et al., 2009a, and Xia, Qian,
Hsieh, Wray, et al., 2009.
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FIG. 13. !Color online" Room temperature topological order
in Bi2Se3: !a" Crystal momentum integrated ARPES data near
Fermi level exhibit linear falloff of density of states, which
combined with the spin-resolved nature of the states suggest
that a half Fermi gas is realized on the topological surfaces. !b"
Spin-texture map based on spin-ARPES data suggest that the
spin chirality changes sign across the Dirac point. !c" The Dirac
node remains well defined up a temperature of 300 K suggest-
ing the stability of topological effects up to the room tempera-
ture. !d" The Dirac cone measured at a temperature of 10 K.
!e" Full Dirac cone. Adapted from Hsieh, Xia, Qian, Wray, et
al., 2009a.

FIG. 14. !Color online" Hexagonal warping of surface states in
Bi2Te3: ARPES and STM studies of Bi2Te3 reveal a hexagonal
deformation of surface states. Fermi-surface evolution with in-
creasing n-type doping as observed in ARPES measurements.
Adapted from Alpichshev et al., 2010.

3059M. Z. Hasan and C. L. Kane: Colloquium: Topological insulators

Rev. Mod. Phys., Vol. 82, No. 4, October–December 2010

Topological insulators



Outline
Fields in synthetic dimensions 

B. Stuhl and Hsin-I Lu, et al. Science (2015)
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Synthetic electromagnetism with neutral atoms

Sept.  2010

In this talk we will study the 
behavior of quantum matter in the 
presence of static magnetic fields



Energy in dimensions of Hz

What do magnetic fields do?

To spins


Zeeman effect, example of 87Rb

To charges


2. Junior mechanics

Canonical variables and vector potential

1. Freshman mechanics

Mechanical variables and forces

B



What we want to create for neutral atoms

Single particle hamiltonian

How to control the kinetic energy term coupling 

between internal, spin, degrees of freedom.

Expect the usual relations for fields

Here I will be interested in a synthetic field normal to a 2D plane.

Some common gauge choices are:

Symmetric gauge: natural for rotating 
systems

Landau gauge: relevant here

References
J. C. Maxwell (1873)



Synthetic electromagnetism with neutral atoms

Nov.  2010

But wait our neutral atoms are 

charge neutral!  



How to “charge” neutral particles

How to simulate magnetic fields


(1) Rotation: the Hamiltonian in the rotating frame has 
an effective field. For high fields fine tuning is required.


References: V. Schweikhard et al PRL 92 040404 (2004), 

J. R. Abo-Shaeer, C. Raman, and W. Ketterle PRL 88 070409 
(2002), K.W. Madison et al PRL 84 806 (2000)


(2) Stroboscopic proposals.


(3) Immersions and others


References: A. Sørensen, et al PRL 94 p086803 (2005), A. 
Klein and D. Jaksch EPL, 85 13001 (2009)

Our approach

(4) Raman techniques.

Bsyn

Reference: G. Juzeliñuas et al PRA 73 p025602 (2006)

Rotation

JILA MIT

Raman Dressing



Today’s outline

A synthetic vector potential, created
Generate a synthetic vector potential
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A electric and magnetic fields, revealed

Spatial variation of A gives rise to a magnetic field 



Rubidium 87

Solids

Artificially
Prepared

Liquids
Gases

 58
Ce
Cerium

140.116

5.5387

°

Atomic
Number

Symbol

Name

Ground-state
Configuration

Ground-state
Level

Ionization
Energy (eV)

†Based upon 12C.  () indicates the mass number of the most stable isotope. 
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Weight†
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Atomic Properties of the Elements

 29
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Copper
63.546
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 11
Na
Sodium

22.989770
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 12
Mg

Magnesium
24.3050

7.6462

 13
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Aluminum
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Silicon
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P

Phosphorus
30.973761

10.4867
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S
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32.065
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 17
Cl

Chlorine
35.453

12.9676

 18
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Argon
39.948

15.7596

 1 2S1/2

H
Hydrogen
1.00794

13.5984

 4
Be
Beryllium
9.012182

9.3227

 37
Rb
Rubidium
85.4678

4.1771

 55
Cs
Cesium

132.90545

3.8939

 42
Mo

Molybdenum
95.94

7.0924

 41
Nb
Niobium

92.90638

6.7589

 86
Rn
Radon
(222)

10.7485

 74
W

Tungsten
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 43
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Technetium
(98)

7.28

 75
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 60
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144.24
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6.1498
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Tb
Terbium

158.92534
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 61
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Promethium
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 66
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Dysprosium
162.500

5.9389

 67
Ho
Holmium
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6.0215

 68
Er
Erbium
167.259

6.1077

 69
Tm
Thulium

168.93421

6.1843
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Indium
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Sn
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 81
Tl
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Lead
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7.4167

 83
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 84
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Polonium
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 85
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Astatine
(210)

 58
Ce
Cerium
140.116

5.5387

 59
Pr
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140.90765

5.473

 70
Yb

Ytterbium
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6.2542
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Th
Thorium
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U
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6.2657
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Curium
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Dubnium
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Sg
Seaborgium

(266)
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Hassium

(277)
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Bohrium
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Meitnerium
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Li
Lithium
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Ne

Neon
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He
Helium
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O

Oxygen
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F
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N

Nitrogen
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138.9055
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(262)
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Ra
Radium
(226)
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 104  ?
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Rutherfordium
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6.6339
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Y

Yttrium
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Sr

Strontium
87.62

5.6949
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Barium
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Tantalum
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7.5496
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Xe
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K

Potassium
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4.3407
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Ca
Calcium
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6.1132

 21
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Ti
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 31
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Gallium
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 34
Se
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 35
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Bromine
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 26
Fe

Iron
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 28
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Ununbium
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Ununquadium
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Uuh
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For a description of the data, visit physics.nist.gov/data 
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Frequently used fundamental physical constants

1 second = 9 192 631 770 periods of radiation corresponding to the transition

speed of light in vacuum 299 792 458  m s1

Planck constant 6.6261 × 1034 J s 
elementary charge
electron mass

proton mass
fine-structure constant 1/137.036
Rydberg constant 10 973 732  m1

Boltzmann constant 1.3807 × 1023 J K 1

c
h
e
me

k

For the most accurate values of these and other constants, visit physics.nist.gov/constants
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Rubidium 87: Level structure
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All the atomic physics you need to know
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Atom light interaction: pictures

Atom light interaction


Given the following geometry and levels
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Atom light interaction: pictures
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Atom light interaction: pictures

Time evolution

In the sudden limit (Raman-Nath)


Population oscillations yield coupling

Coupled States


States will be labeled by:

(1) a “band index” and by


(2) a momentum k

8

6

4

2

0

-2

-4

E
n

er
g
y

 [
E
R
]

-3 -2 -1 0 1 2 3

Wavenumber [kR]

8

6

4

2

0

-2

-4

E
n

er
g
y

 [
E
R
]

-3 -2 -1 0 1 2 3

Wavenumber [kR]

1.0

0.8

0.6

0.4

0.2

0.0

F
ra

ct
io

n

100806040200

Raman Pulse Time [µs]

Y.-J. Lin et al, PRL 102 130401 (2009)



Atom light interaction: vector potential
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Engineered vector potential
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Measurement: Time-of-flight and Stern-Gerlach

Camera’s point of view

Before TOF

After TOF

Field gradient along the y direction
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 y Einführung in die Quantenphysik, 12 . Übung, 09.07.2007

Abbildung 2: Stern-Gerlach Kette

b) Berechnen Sie die Wahrscheinlichkeiten für die drei Messwerte von lx.

Der Absorber A2 bewirkt nun eine Präparation des Zustandes | ��� ⇥ = | u+x ⇥ (| u+x ⇥ ist
ein Eigenzustand von L̂x).

c) Berechnen Sie die Wahrscheinlichkeit für die drei Messwerte von lz bei der dritten
Messung und interpretieren Sie das Ergebnis.

Aufgabe 4

Es soll ein gebundenes Teilchen in einer Dimension mit dem Hamilton-Operator

Ĥ =
p̂ 2

2m
+ V (x̂)

betrachtet werden. Die Energieeigenwerte und -eigenvektoren seien En und | �n ⇥, so dass
Ĥ | �n ⇥ = En | �n ⇥ gilt.

a) Zeigen Sie, dass für einen Energieeigenzustand der Mittelwert des Impulses p̂ stets
� p ⇥ = 0 ist. Interpretieren Sie das Ergebnis.

Hinweis: Betrachten Sie den Erwartungswert des Kommutators ��n |
�
x̂, Ĥ

⇥
| �n ⇥.

b) Es sei nun V (x̂) = a x̂n. Zeigen Sie, dass für einen Energieeigenzustand die Mit-
telwerte der kinetischen Energie T und der potentiellen Energie V die Relation
�T ⇥ = n �V ⇥ /2 erfüllen. Dies wird als Virialtheorem bezeichnet.

Hinweis: Betrachten Sie den Kommutator
�
x̂ p̂, Ĥ

⇥
.

c) Berechnen Sie die Erwartungswerte der kinetischen Energie �T ⇥ und der potentiellen
Energie �V ⇥ für ein Wassersto⇥atom im Grundzustand. Zeigen Sie, dass diese Werte
das Virialtheorem erfüllen.
Hinweis: Verwenden Sie Kugelkoordinaten.

– 3 –

W. Gerlach and O. Stern Zeitschrift für Physik A (1922)



Measurement: Time-of-flight and Stern-Gerlach
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In the lab

Zeeman shift 

B field gradient

Adiabatic manipulation of atoms
Initial state


Suddenly turn off dipole trap, then TOF



Loading: momentum

Raman DressedAdiabatic manipulation of atoms
Initial state


RF dressed state (RF on, ramp B to resonance)


Raman + RF dressed state (Ramp Raman on)


Raman only dressed state (Ramp RF off)


Suddenly turn off Raman + dipole trap, TOF



Displaced momentum distribution

Raman Dressed
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Conserved

Abrupt turnoff conserves mechanical velocity


Mechanical velocity is averaged over all orders and is 
zero in equilibrium (of course).

1. Junior mechanics

Canonical variables and vector potential



A laboratory tunable vector potential
Idea Transfer function

We can control the engineered vector potential

in time and space giving synthetic E and B fields.


Bias and quadrupole B fields = offset and gradient

in detuning.
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Electric fields: time dependence
Complete disclosure

Our beams now intersect at 90o


Not for physics reasons.

Transfer function
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Realization with dressed states

Synthetic Electric Field

Yes! Atoms acquire expected -2 kR  mechanical 
momentum kick.
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Figure 3: Change in momentum from synthetic electric field kick. This figure shows three
distinct sets of data shown by red and blue circles and black crosses. The data were obtained
by applying a synthetic electric field by rapidly changing the vector potential from Ai (between
+2 and �2kr) to Af and studying the resulting dynamics. Circles indicate data where the
external trap was removed concurrently with the change in vector potential: for red symbols
Af = �2kr and for blue symbols Af = +2kr. The black crosses, more visible in the inset,
show the magnitude of momentum oscillations when the trapping potential was left on after the
field-kick. The typical uncertainties are also visible in the inset. The grey line is a linear fit to
the data (circles) yielding slope �0.996± 0.008, where the expected slope is �1.

11

Our synthetic vector potential behaves just like the real thing

A uniform vector potential: forces
Time dependence gives electric fields and forces


Usual “quasi-static assumptions”

Geometric example

1. Freshman version 

2. Junior version 

References
Y.-J. Lin et al Nat. Phys. (2011)



Synthetic magnetic field
Outcome

=0.31 kHz/ m
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Loading procedure

Initial state


RF dressed state (RF on, ramp B to resonance)

Raman + RF dressed state (Ramp Raman on)


Raman only dressed state (Ramp RF off)


Ramp field gradient on (from 0 to 500 Hz/µm)


Equilibrate for 500 ms


TOF imaging

Bsyn
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But that not what happened...
Critical field for vortex formation

Spatial dependence gives magnetic fields and forces
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Large magnetic fields in 

synthetic dimensions
JQI:

B. Stuhl and Hsin-I Lu, et al. Science (2015)


Florence

M. Mancini et al. Science (2015) 


THEORY PROPOSAL:

Celi, A. et al.  Phys. Rev. Lett. (2014)



Where we are going:
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Large magnetic fields in a 2D lattice

t(s)

t(x)

Φ

Φ ≈ 1/3

· · ·· · ·

Tunneling also gives 
phases such that the 
acquired phase gives 
an effective Aharonov-
Bohm phase
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AMO: fields in lattices 

Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice

M. Aidelsburger,1,2 M. Atala,1,2 S. Nascimbène,1,2,3 S. Trotzky,1,2 Y.-A. Chen,1,2,* and I. Bloch1,2,†
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3Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
(Received 26 September 2011; published 12 December 2011)

We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic

fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is

equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of

large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system

and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for

noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced

tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore,

the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.

DOI: 10.1103/PhysRevLett.107.255301 PACS numbers: 67.85.!d, 03.65.Vf, 03.75.Lm, 73.20.!r

The application of strong magnetic fields to two-
dimensional electron gases has led to the discovery of
seminal quantum many-body phenomena, such as the in-
teger and fractional quantum Hall effect [1]. Ultracold
atoms constitute a unique experimental system for study-
ing such systems in a clean and well-controlled environ-
ment and for exploring new physical regimes, not
attainable in typical condensed matter systems [2,3].
However, charge neutrality of atoms prevents direct appli-
cation of the Lorentz force with a magnetic field. An
equivalent effect can be provided by the Coriolis force in
a rotating atomic gas, which led to the observation of
quantized vortices in a Bose-Einstein condensate [4]. The
regime of fast rotation, in which the atomic gas occupies
the lowest Landau level, was achieved in Refs. [5] but the
amplitude of the effective gauge field remained too small
to enter the strongly correlated regime that requires a
number of vortices on the order of the particle number
[2,6]. An alternative route consists in applying Raman
lasers to the gas in order to realize a Berry’s phase for a
moving particle [7,8]. The effective gauge fields generated
in such a setup resulted in the observation of a few vortices,
but were still far from the strong-field regime.

In this Letter, we demonstrate the creation of strong
effective magnetic fields for ultracold atoms in a two-
dimensional optical lattice. Inspired by the proposal of
Jaksch and Zoller [9] and subsequent work [10–12], our
technique is based on atom tunneling assisted by Raman
transitions [see Fig. 1(a)]. Because of the spatial variation
of the Raman coupling, the wave function of an atom
tunneling from one lattice site to another acquires a non-
trivial phase, which can be interpreted as an effective
Aharonov-Bohm phase. In our setup, the magnetic flux
per four-site plaquette is staggered with a zero mean,
alternating between !=2 and !!=2 [see Fig. 1(b)] [13].
We study the nature of the ground state in this optical

lattice from its momentum distribution and show, in par-
ticular, that the frustration associated with the effective
magnetic field can lead to a degenerate ground state for
single particles, similar to the prediction of Ref. [14]. We
also study the quantum cyclotron dynamics of single atoms
restricted to a four-site plaquette and obtain direct evidence
for time-reversal symmetry breaking of the Hamiltonian.
Our experimental setup consists of an ultracold gas of

87Rb atoms held in a two-dimensional square lattice, form-
ing an array of 1D Bose gases. The lattice was created by
two standing waves of laser light at "s ¼ 767 nm (‘‘short’’
lattices) and a third one with twice the wavelength

FIG. 1 (color). Experimental setup. (a) The experiment con-
sists of a 2D array of 1D potential tubes with spacing jdxj ¼
jdyj ¼ "s=2. While bare tunneling occurs along the y direction
with amplitude J, it is inhibited along x owing to a staggered
potential offset !. A pair of Raman lasers with wave vectors k1;2

and frequency difference !1 !!2 ¼ !=@, induces a resonant
tunnel coupling of magnitude K whose phase depends on posi-
tion. This realizes an effective flux ## per plaquette with
alternating sign along x. (b) Spatial distribution of the phase of
the Raman-induced tunnel coupling realized in the experiment.
The gray shaded area highlights the magnetic unit cell.

PRL 107, 255301 (2011)
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FIG. 1. (a) Raman-assisted tunneling in the lowest band of
a tilted lattice with an energy offset � between neighboring
sites. The two-photon Rabi frequency ⌦ determines the cou-
pling between adjacent wells. (b) Experimental geometry to
generate uniform magnetic fields using a pair of far-detuned
laser beams and a uniform potential energy gradient. Tunnel-
ing along the x-direction with amplitude K imprints a com-
plex, spatially-varying phase �m,n – with site indices (m,n)
– into the system due to the momentum transfer in the y-
direction. (c) A schematic depicting the position-dependent
phases of the tunneling process. The equivalent number of
flux quanta per unit cell is ↵ = �y/2⇡.

as shown in Figure 1a. Note that the two Raman beams
couple different sites, but do not change the internal state
of the atoms. For resonant tunneling, �! = �/h̄, time-
averaging over rapidly oscillating terms [20] yields an
effective Hamiltonian which is time-independent. As a
result, the tilt has disappeared because, in the dressed
atom picture, site (m,n) with j and k photons in the
two Raman beams is degenerate with site (m+1, n) and
j +1 and k� 1 photons in the two beams. This effective
Hamiltonian describes the system well assuming that �
is larger than the bandwidth, ⇠J , and smaller than the
bandgap, EGap. The resulting Hamiltonian is equivalent
to one that describes charged particles on a lattice in
a magnetic field under the tight-binding approximation
[11, 26] – the single-band Harper Hamiltonian:

H = �
X

hm,ni

�
Ke

�i�m,n â
†
m+1,nâm,n+Jâ

†
m,n+1âm,n+h.c.

�

(2)
with spatially-varying phase, �m,n = �k ·Rm,n = m�x +
n�y. Solutions in this model are periodic with respect
to the number of flux quanta per unit cell, ↵. If the fre-
quency of the Raman beams are similar to those used
for the optical lattice, one can tune ↵ over the full range
between zero and one by adjusting the angle between the

Raman beams, and consequently ky. A similar Hamilto-
nian can be realized for the tunneling of phonons between
ion microtraps [31].

The spatially-dependent phase imprinted by the Ra-
man lasers, given by �m,n, can be intuitively understood
in a pertubative regime where, J = Jy and:

K =
⌦

2

Z
d
2r w⇤(r�Rm,n)e

�i�k·r
w(r�Rm,n � ax̂)

= Ke
�i�k·Rm,n (3)

where Rm,n denotes the position of each lattice site.
Adding up the accumulated phases around a closed path,
one sees that this method leads to an enclosed phase of
�y = �kya per lattice unit cell of area a

2, thus realizing
the Harper Hamiltonian with ↵ = �y/2⇡.

In a cubic lattice, the Wannier function w(r) factor-
izes into w(x)w(y) which are the localized Wannier-Stark
and Wannier wavefunctions, respectively. The result-
ing expression for K = ⌦

2

R
dxw

⇤(x)e�ikxxw(x � a) ⇥R
dy w

⇤(y)e�ikyyw(y) shows that the momentum trans-
fer in the x-direction is necessary to have a non-vanishing
tunneling matrix element K. The x momentum transfer
does not contribute to the enclosed flux (or the value of
the synthetic magnetic field B), but to the vector po-
tential A = h̄(kyy + kxx)/a x̂. Therefore, our scheme
does not realize the simple Landau gauge for the mag-
netic field. Note that it is this momentum transfer along
the x-direction that distinguishes our scheme from Refs.
[20, 22, 27], and is responsible for connecting the two
orthogonal Wannier states in the x-direction without
changing the internal state.

For a more comprehensive description, we add the
moving lattice – VRM = ⌦ sin(�k ·r�!t) – of the two Ra-
man lasers along with a linear tilt to the Hamiltonian in
Eq. 1. In addition to the off-diagonal laser-assisted tun-
neling term, this moving lattice causes a diagonal term,
which is a temporal modulation of the on-site energies.
A unitary transformation as in [29, 32] leads to a frame
rotating non-uniformly in time and position that elimi-
nates the diagonal time-dependence. For resonant drive,
� = h̄�!, the onsite energies are all equal and vanish
while the remaining off-diagonal coupling has a time-
independent part leading to the Harper Hamiltonian as
in Eq. 2. The resulting expressions for K and J due
to the temporal modulation of the lattice and one-site
wavefunction are (see supplemental information):

K = ⌦�y0e
�i�m,n


�x1

J1(�x)

�x
+ i�0

x1
dJ1(�x)

d�x

�

J = JyJ0(�y), �i =
2⌦�y0�x0

�
sin

✓
kia

2

◆
(4)

where �i0 = h0| cos(kixi)|0i is the on-site matrix ele-
ment, and �x1 = h0| sin(kx(x � a/2))|1i and �0

x1 =
h0| cos(kx(x � a/2))|1i are the off-diagonal matrix ele-
ments. This result is more general than the case of phase

3

modulation [32] and the tight-binding limit in [30, 33],
where K is proportional to J1(x).

We implement the Harper Hamiltonian with each Ra-
man laser aligned along one of the two lattice directions,
x and y, corresponding to momentum transfer in both
directions of h̄kL – the single photon recoil of the lat-
tice laser. The magnetic flux per unit cell resulting from
ky = kL is ↵ = 1/2. In the tight-binding limit for this
momentum transfer, �i0 ⇡ 1 and �x1 ⇡ �2Jx/� � �0

x1,
so the resonant tunneling amplitudes resulting from kx =
kL simplify to:

K = JxJ1

✓
2⌦

�

◆
, and: J = JyJ0

✓
2⌦

�

◆
(5)

Experimentally, the system is prepared by starting
with a Bose-Einstein condensate of ⇠ 5⇥105 87Rb atoms
in the |2,�2i state in a crossed dipole trap. The Raman
lasers are ramped up to their final intensities in 30 ms at a
large detuning of 200 kHz, far away from any excitations
of the system, and are switched to their final detuning
after the tilt is applied to the system (see below). To
avoid interference between the lattice and Raman lasers,
they are perpendicularly polarized and frequency offset
by >50 MHz using acousto-optic modulators. Next, we
adiabatically load the condensate in 100 ms into a two-
dimensional cubic optical lattice of spacing �latt/2 = 532
nm. For longer hold times, a weak 2 Er lattice beam
along the third direction is simultaneously ramped up to
provide additional confinement. Here, Er = h̄

2
k
2
L

�
2m ⇡

h⇥2 kHz is the single photon recoil. Lattice depths are
calibrated using Kapitza-Dirac scattering, and the two
photon Rabi frequency of the Raman lasers is determined
using free-space Rabi oscillations.

After loading the condensate into the lattice, a uni-
form potential energy gradient is applied by turning off
the confining crossed dipole traps in 20 ms. This ex-
poses the cloud to a linear gravitational potential (which
was compensated until then by the trapping beams). Al-
ternatively, we have successfully used a magnetic field
gradient to access a broader range of tilts. The data pre-
sented here were obtained with the gravitational force
which provides an offset of mga/h ⇡ 1.1 kHz between
adjacent lattice sites. This has the advantage over the
magnetic gradient of a much faster switching time. The
cloud widths, �x and �y are obtained by standard absorp-
tion imaging along the direction perpendicular to the 2D
lattice.

The essential feature of our implementation of the
Harper Hamiltonian is that tunneling in the x-direction
is suppressed by a potential tilt, and reestablished by
laser-assisted tunneling. This is demonstrated in Figure
2 which shows the resonance for the laser-assisted pro-
cess. For this, tunneling is characterized by looking at
the expansion of the cloud within the lattice. Expan-
sion occurs since the confinement by the optical dipole
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FIG. 2. In situ cloud width as a function of Raman detuning,
�!, after an expansion of 500 ms, with a Raman lattice depth
of ⌦ = �/4. The solid line is a Lorentzian fit to the experi-
mental data (dots) centered at 1133 Hz – consistent with the
gravitational offset between sites. Pictures (of size 135⇥116
µm) show typical column densities on/off resonance. (Inset)
Dependence of the laser-assisted tunneling on optical lattice
depth. For deeper lattices, the expansion occurs more slowly.

trap has been switched off, and due to some heating dur-
ing the 500 ms hold time. Note that for fully coherent
time evolution, charged particles in a magnetic field will
undergo cyclotron motion which would suppress the ex-
pansion. The resonance width of 60 Hz may have contri-
butions from laser frequency jitter, inhomogeneous lat-
tice potential and atomic interactions. The Lorentzian
fit suggests a homogenous broadening mechanism. Fig.
2 demonstrates how the laser-assisted tunneling rate can
be controlled by the lattice depth.

The dependence of K and J on the intensity of the Ra-
man lasers (described by Bessel functions) allows tuning
of the ratio of the two. For low intensities, K increases
linearly with the intensity, and J decreases quadratically.
The latter reflects the depletion of the unperturbed Wan-
nier function by the modulation due to the moving Ra-
man lattice. Fig. 3a shows experimental results in qual-
itative agreement with these predictions.

For a quantitative interpretation of the expansion of
the cloud, we assume an incoherent diffusion process,
where the square of the width � of the expanded cloud is
proportional to the tunneling rate times expansion time.
For finite time, we correct for the initial size �0 by assum-
ing that the expansion and initial size add in quadrature,
and plot the corrected squared width �

2
corr = �

2��
2
0 ver-

sus time. The slope is proportional to the laser-assisted
tunneling rate. Absolute tunneling rates are obtained by
comparing this result to the expansion of the cloud in
the y-direction with the Raman beams far off resonance,
when normal tunneling occurs. The ratio of the slopes
is then K/Jy, with Jy calculated from the calibrated lat-
tice depth to be ⇠ h ⇥ 48Hz. Figure 3b shows the time
evolution of the square of the corrected size for various
Raman intensities. The linear fits supports the assump-

3

and [22]]. The final lattice depths, Vx = 5.0(1)Erx and
Vy = 40(1)Ery, were chosen to yield a negligible tun-
neling along y and a bare tunnel coupling along x of
Jx/h = 0.26(1) kHz. Due to the magnetic field gra-
dient, tunneling was inhibited along x and all atoms
stayed in even sites. The running-wave beams were then
switched on for 4 ms with strength V

0
K = 9.9(2)ErK ,

where ErK = h
2
/(2m�

2
K). Afterwards we measured the

fraction of atoms transferred to odd sites nodd as a func-
tion of the frequency di↵erence ! for a fixed value of the
magnetic field gradient. Even-odd resolved detection was
achieved by transferring atoms in odd sites to a higher
Bloch band and applying a subsequent band-mapping
sequence [22, 25]. As shown in the inset of Fig. 2(b)
atoms are transferred resonantly to odd sites when the
frequency of the running-wave beams matches the energy
o↵set � between neighboring sites. We measured the res-
onance frequency !res for various values of the magnetic
field gradient and observed a large tunability up to about
�/h ⇠ 10 kHz [Fig. 2(b)].

The spatial distribution of the local fluxes induced by
the running-wave beams was revealed by a series of mea-
surements in isolated four-site square plaquettes using
optical superlattices. This was achieved by superimpos-
ing two additional standing waves along x and y with
wavelength �li = 2�i, i 2 {x, y}. The resulting potential
along x is V (x) = Vlx sin

2(kxx/2+'x/2) + Vx sin
2(kxx),

where Vlx is the depth of the “long” lattice. The su-
perlattice potential along y is given by an analogous
expression. The depths of the lattices and the relative
phases, 'x and 'y, can be controlled independently. For
'x = 'y = 0 we realize symmetric double well po-
tentials along x and y to isolate individual plaquettes
[Fig. 3]. Due to the presence of the magnetic field gra-
dient, the plaquettes are tilted along x, with an energy
o↵set � for |"i atoms and �� for |#i atoms. The four
sites of the plaquette are denoted as A,B,C,D [Fig. 3].
The experiment started by loading spin-polarized sin-
gle atoms into the ground state of the tilted plaquettes:��� 0

"

E
= (|Ai + |Di)/

p
2 and

��� 0
#

E
= (|Bi + |Ci)/

p
2,

for |"i and |#i, respectively [Fig. 3(a) and [22]]. After
switching on the running-wave beams the atoms cou-
ple to the B and C sites (|"i atoms) and A and D

sites (|#i atoms). Without the artificial magnetic field,
the atoms would oscillate periodically between left and
right, but due to the phase imprinted by the running-
wave beams the atoms experience a force perpendicular
to their velocity similar to the Lorentz force acting on a
charged particle in a magnetic field. We measured the
time evolution of the atom population on di↵erent bonds
(Nleft = NA +ND, Nright = NB +NC , Nup = NC +ND,
and Ndown = NA +NB), with Nq being the atom popu-
lation per site (q = A,B,C,D), by applying the even-
odd resolved detection along both directions indepen-
dently [22]. From this we obtained the mean atom po-
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FIG. 3. Quantum cyclotron orbits obtained from the mean
atom positions along x and y, hXi /dx and hY i /dy for
J/K ⇡ 2 [22]. Every data point is an average over three
individual measurements. The solid gray lines show the fit
of the theoretically expected evolution to the data, which
was obtained from a numerical calculation solving the time-
dependent Schrödinger equation of the 4⇥4 Hamiltonian. The
oscillation amplitudes and o↵sets were fitted independently
along x and y, whereas the time o↵set ⌧ = 0.12(5)ms and
flux � = 0.73(5) ⇥ ⇡/2 were fixed (see main text and Sup-
plementary Information [22]). The schematics illustrate the
superlattice potentials used to partition the lattice into pla-
quettes together with the initial state for |"i atoms (green)
and |#i atoms (blue) and the direction of the flux. The su-
perlattice potential along x is shifted by one lattice constant
for the experimental results in (b) with respect to the ones in
(a) to demonstrate the uniformity of the artificial magnetic
field.

sitions along x and y, hXi = (Nright � Nleft)dx/2N and
hY i = (Nup�Ndown)dy/2N , with N being the total atom
number. As shown in Fig. 3(a), the mean atom position
follows a small-scale quantum analog of the classical cy-
clotron orbit for charged particles. Starting with equally
populated sites A and D, spin-up atoms experience a
force along y, which is perpendicular to the initial veloc-
ity and points towards the lower bond in the plaquette
(A and B sites). Spin-down atoms, initially with oppo-
site velocity, also move towards the lower bond. There-
fore the chirality of the cyclotron orbit is reversed, re-
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sample, an electron will not have sufficient 

space to complete the orbit; it bounces off 

the edge and starts a new one. As this pro-

cess continues, the electron moves along the 

edge, always in the same direction, which 

leads to chiral edge currents with a direction 

imposed by the magnetic field (see the figure, 

panel A). Because the orbits are quantized, 

the edge currents are also quantized and 

are extremely robust against small perturba-

tions. These properties lead to the universal 

quantum of conductance at the heart of the 

integer quantum Hall effect.

These effects are clearly observed in solid-

state systems, which are ideal for measuring 

transport properties. However, visualizing 

the electrons’ trajectories is more challeng-

ing. The task is much easier using instead 

synthetic solids made of ultracold atoms in 

optical lattices ( 4). Because these systems 

are extremely dilute, with lattice spacing 

thousands of times larger than in conven-

tional materials, they are excellent candi-

dates for the direct imaging of the particle 

trajectories. However, observation of the 

skipping orbits presents several challenges: 

Atoms are neutral and so do not couple to 

magnetic fields as electrons do, but their ef-

fect on the atom motion can be mimicked 

using laser beams ( 5); to observe the edge 

states, a system with sharp boundaries is 

desirable, but ultracold atoms are usually 

confined in soft traps; and single-site re-

solved imaging is required to visualize the 

atomic trajectories at the boundaries. The 

last two challenges have been overcome by 

using an elegant experimental trick—the 

use of a synthetic dimension ( 6).

What is a synthetic dimension? Or rather, 

what is a dimension? In lattice systems like 

the ones used in these experiments, “dimen-

sion” relates to the connectivity—the num-

ber of independent directions, or states, the 

atoms can move in. Thus, in addition to real 

dimensions where motion corresponds to a 

displacement in space, one can consider a 

synthetic dimension where motion corre-

sponds to a change of spin states (see the 

figure, panel B). This simple but innovative 

concept has key experimental advantages: 

Changes of spin states can be induced us-

ing the same laser beams that generate the 

appropriate synthetic magnetic field; the 

system has intrinsically sharp boundaries 

because the number of spin states is finite; 

and single-site detection in the synthetic 

dimension is obtained through spin-depen-

dent measurements, which gives excellent 

access to the particle trajectories along the 

edges ( 7).

The two papers consider complementary 

situations: Stuhl et al. use a rubidium Bose-

Einstein condensate; Mancini et al. use an 

ultracold Fermi gas of ytterbium atoms. Both 

exploit the synthetic dimension trick to cre-

ate narrow ribbons made of three synthetic 

sites and subjected to a synthetic magnetic 

field. By preparing the atoms on the system 

edges, and suddenly allowing them to move, 

they directly observe the edge currents and 

can reconstruct the skipping orbits.

This synthetic dimension approach opens 

up a wealth of new possibilities for future ex-

periments. One of the most intriguing is the 

realization of interacting systems display-

ing exotic fractional quantum Hall physics, 

in which effective particles with fractional 

charge emerge ( 8). Their fingerprint in 

solids is the existence of fractional Hall 

conductance. In cold atom experiments, it 

may be possible to observe these particles 

directly and even make use of their braid-

ing to perform quantum computations. In 

addition, by wrapping the synthetic dimen-

sion in a circle, the system acquires a cylin-

drical shape and becomes periodic. In such 

conditions, the elusive Hofstadter fractal 

energy spectrum, a manifestation of topol-

ogy complementary to edge states, could be 

directly observed. A number of exotic lattice 

topologies could be implemented, includ-

ing, for instance, Möbius strips. Finally, by 

considering the three spatial dimensions, 

synthetic lattices offer the opportunity to 

simulate four-dimensional phenomena.      ■
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FIG. 1. (a) Ground-state density (black dashed curve) and spin
density (solid curve) for (a.i) u2 < 0 and (a.ii) u2 > 0. (b) Steady-
state density (black dashed curve) and spin density (solid curve) for
(b.i) ueff

2 ! 0 and (b.ii) ueff
2 " 0, averaged over 100 ms. Semitranspar-

ent curves indicate Sz without time averaging. (c) Steady-state phase
diagram as a function of u2/u0 and g2/u0 (defined in text), showing
magnetically ordered, easy-axis ferromagnet (red/lower left) or spin-
disordered paramagnet (blue/upper right) phases. The black dashed
line indicates the expected phase boundary at ueff

2 = 0, and the
hatched region indicates bistability depending on the initial phase.
The system enters an easy-axis ferromagnet if the initial condition
is (a.i), and a spin-disordered paramagnet if the initial condition
is (a.ii).

give an effective interaction strength ueff
2 ≈ u2 + g2. Exam-

ples of the two steady-state phases are shown in Fig. 1(b).
Both phases have uniform density, but with very different spin
character. For ueff ! 0, the system is an easy-axis ferromag-
net with well-defined, spin-polarized domains. For ueff

2 " 0,
the system enters a spin-disordered paramagnetic phase, with
large spin fluctuations. Figure 1(b) shows the spin density
averaged over 100 ms (darker solid curve) and 10 individ-
ual time traces (semitransparent curves). The individual time

traces show that the spin is essentially static in the ferromag-
netic phase, but has large spatiotemporal fluctuations in the
paramagnetic phase.

Figure 1(c) shows the steady-state phase diagram as a
function of u2/u0 and g2/u0. As expected, the phase diagram
is divided into two regimes delineated by ueff

2 = 0 (black
dashed curve). We quantify the steady-state phase using a
time-separated correlation function of magnetization,

η = 1
A

∫
dτ

∫
dt dx

Sz(t + τ, x)Sz(t, x)
n(t + τ, x)n(t, x)

, (17)

where A is an overall normalization factor. A condensate
with well-defined domains gives η " 0.5; for the ground state
with a single domain wall, η ≈ 1. The disordered paramagnet
phase with fluctuating magnetization has η ≈ 0 because the
local magnetization at any point x fluctuates strongly in time.

Like many magnetic systems, this system exhibits hys-
teretic behavior. When g2 < 0, the easy-axis phase is robust to
the initial condition of the system and over many different rep-
etitions of the simulation with different noise realizations. The
phase in the region where ueff ! 0 with u2 < 0 and g2 > 0
is sensitive to the initial state, denoted by the hatched region
in Fig. 1(c). In this region, the steady state of the system
is an easy-axis ferromagnet only if it was initially in the
ferromagnetic ground state with u2 < 0, as in [Fig. 1(a.i)]. For
the easy-plane ground state, as in Fig. 1(a.ii), domains do not
form. We discuss this steady-state behavior for the easy-plane
initial condition in Appendix B.

In the following sections, we examine the robustness of
the feedback induced magnetic phases and feedback cool-
ing. We show that despite repeated weak measurements and
feedback, the condensate remains largely intact over the ∼4 s
time period of the simulation. Furthermore, by changing the
effective interaction via feedback, we demonstrate tunabil-
ity between different steady-state phases. Spatially resolved,
time-dependent feedback therefore provides a tool to dynam-
ically change effective interactions in cold-atom systems.

III. FEEDBACK COOLING

Measurement backaction adds excitations to the conden-
sate. The aim of feedback cooling is to apply feedback using
information from the measurement signal to suppress the
excitations, thereby stabilizing the condensate and prevent-
ing runaway heating. In this section, we develop a feedback
cooling protocol for single and multicomponent condensates,
which ensures the stability of the condensate during measure-
ment and feedback. We connect the continuous measurement
limit presented in Sec. II A to the experimental reality of
discrete measurements. We then develop a feedback cooling
protocol using a single discrete measurement as a building
block. Finally, we show that during this protocol, the conden-
sate fraction and entropy reach a steady state, but the GPE
energy functional continues to slowly increase.

A. Single-measurement protocol

The continuous measurement limit is typically assumed
a priori by taking dt → 0. Since the variance of the mea-
surement signal in Eq. (1) is ∝1/dt , the variance in the

043325-4
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