Boulder School, July 28,29, 2016

Spin liquid in organic materilas

K. Kanoda, UTokyo

References

(review article)

Yi Zhou, K. Kanoda and Ng Tai Kai Spin liquid states

arXiv. 1607.03228

Physics of condensed matter Understanding *low-energy state* of nucleus and electron assembly

More is *differently* different.

Without interaction, electrons are free waves with Fermi surface.

Fermi gas

With interaction, Fermi surfaceunstable

Singlet, triplet

Contents

1. Fundamentals of organic materials

complex in real space, but simple in *k*-space

2. Electron correlation in organic materials

all-in-one systems for Mott physics

3. Spin liquid in quasi-triangular lattice

controlled frustration, correlation, disorder, doping

(Optional)

4. Massless Dirac Fermions in orhanic materials Dirac cone reshaping and ferromagnetism

1. Molecular materials and electronic structures

Keywords; a variety of lattice structures concept of molecular orbital simple band structure highly compressible system

Inorganic solid

Organic (molecular) solid

Simple metals, oxides,....

 π electron systems

Organic molecules giving (super)conductors

Me Se Se Me Me Se Se Me

TMTSF

BEDT-TSF (BETS)

BEDT-TTF (ET)

DMET

BEDO-TTF (BO)

MDT-TTF

Molecular arrangement degrees of freedom

Molecular arrangement degrees of freedom

superconductivity

Electronic crystals

Organic conductors

complex in real space, but simple band structure

Electronic structure

Molecular orbital is a minimum entity for electrons

No need to look into atomic orbitals in a low energy scale

Molecular material; structure is complicated in real space, but electronic structure is surprisingly simple in *k-space* It's because of the hierarchy; atomic orbital \rightarrow molecular orbital \rightarrow electronic band 1) The simplest non-degenarate case; hydrogen molecule Key concept Molecular orbital Linear combination of atomic orbitals $\varphi = c_a \phi_a + c_b \phi_b \qquad H = -\frac{\hbar^2}{2m} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r_a} - \frac{e^2}{4\pi\varepsilon_0 r_b} + \frac{e^2}{4\pi\varepsilon_0 R}$ $\varphi_1 = \frac{1}{\sqrt{2(1+S)}} (\phi_a + \phi_b)$ bonding orbital $S = \int \phi_a * \phi_b d\tau$ 図 4.1 H⁺の陽子 a, b と電子 1 $\varphi_2 = \frac{1}{\sqrt{2(1-S)}}(\phi_a - \phi_b)$ antibonding orbital Overlapping integral $\mathcal{E}_2 = \frac{H_{aa} - H_{ab}}{1 - S}$ 0.5 1.0 1.5 05 1.0 .5-1.0-0.5 $\mathbf{z}_{\mathbf{S}}$ H_{aa} /Å−3 $\mathbf{\epsilon}_{1} = \frac{H_{aa} + H_{ab}}{1 + S}$ / Å-3 2.0 Ø1 2 1.5 $H_{aa} = \int \phi_a * H \phi_a d \tau$ 1.5 1.0 1.0 $H_{ab} = \int \phi_b * H \phi_a d\tau$ Transfer integral 図 4.2 (a) H_2^+ の対称分子軌道 φ_1 と電子密度 $|\varphi_1|^2$, (b) H_2^+ の非対称分子軌道 φ_2 と電子密度 $|\varphi_2|^{216}$

2) The degenarate case: carbon atom

Atomic *p*-orbital \rightarrow molecular orbital

Atomic *p*-orbital \rightarrow molecular orbital

- Imagine alien atoms are approaching carbon \rightarrow intra-atomic hybridization
- When the alien atoms get close to carbon \rightarrow inter-atomic hybridization like hydrogen molecule) Finally, construct the overall molecular orbitals
 - i) Uniaxial 2-way coordination; sp hybridization

Tetrahedral 4-way coordination molecular orbital; the case of CH_4 (sp3)

Molecular orbital in molecular conductors

Band-structure calculations I; π electronic system κ -(ET)₂X well described by tight-binding model of MO

FIG. 2. Calculated Fermi surface of the κ -(BEDT-TTF)₂Cu(NCS)₂. The two orbits α and β arc marked. The dashed lines indicate the path of electron in the magnetic breakdown. DOS into atomic and orbital components, we find that the DOS at E_F are exclusively derived from the C and S atoms in the ET molecules, and their orbital components are almost entirely of p character (45% of C-2p, 52% of S-3p, and 3%

Notion of molecular orbital

BEDT-TTF (ET)

Cu

HOMO

d orbital

3

Molecular conductors

Seemingly complicated structure in real space but Simple electronic structure in *k* space (MO is a minimum electronic entity)

In many cases, no orbital degeneracy negligible spin-orbit interaction

Highly compressible

Model systems to look into correlation effect in simple electronic systems

Contents

1. Fundamentals of organic materials

compex in real space, but simple in *k*-space

2. Electron correlation in organic materials all-in-one systems for Mott physics

3. Spin liquid in quasi-triangular lattice

controlled frustration, correlation, disorder, doping

(Optional)

4. Massless Dirac Fermions in orhanic materials Dirac cone reshaping and ferromagnetism

Correlation-induced insulating phases everywhere in organics

3. Mott transition

N. Mott (1949)

Mott transition

Competition between kinetic energy and Coulomb

molecule

Coulomb interaction

w > UW < U</th>metalinsulatorWave-likeparticle-like

Mott transition

Competition between kinetic energy and Coulomb energy

(W:bandwidth)

(*U* : Coulomb repulsion)

Hubbard model

In the weak correlation regime, $W \sim 2zt \gg U$

Hubbard Hamiltonian

Calculate life time of Bloch electron

$$H = \sum_{\mathbf{k},\sigma} \mathcal{E}_{\mathbf{k}} c_{\mathbf{k},\sigma}^{+} c_{\mathbf{k},\sigma} + \frac{U}{N} \sum_{k_{1},k_{2},k_{3},k_{4}} c_{k_{1},\uparrow}^{+} c_{k_{2},\downarrow}^{+} c_{k_{3},\uparrow}^{+} c_{k_{4},\downarrow}^{+} \delta_{k_{1}+k_{2},k_{3}+k_{4}}$$

 H_0 H' (perturbation) Scattering term

Scattering rate

$$\frac{1}{\tau(k_{1})} = \sum_{k_{2},k_{1},k_{2}} \frac{2\pi}{\hbar} \left\langle k_{1},k_{2}\right| H' \left| k_{1},k_{2} \right\rangle^{2} \delta(\varepsilon_{k_{1}} + \varepsilon_{k_{2}} - \varepsilon_{k_{1}} - \varepsilon_{k_{2}}) f_{k_{2}}(1 - f_{k_{1}})(1 - f_{k_{2}})$$
$$= \frac{2\pi}{\hbar} \frac{1}{N^{2}} \sum_{k_{2},k_{1},k_{2}} U^{2} \delta(\varepsilon_{k_{1}} + \varepsilon_{k_{2}} - \varepsilon_{k_{1}} - \varepsilon_{k_{2}}) \delta_{k_{1} + k_{2},k_{1} + k_{2}} f_{k_{2}}(1 - f_{k_{1}})(1 - f_{k_{2}})$$

3D,
$$\frac{1}{\tau(k_1)} \propto T^2$$

2D, $\frac{1}{\tau(k_1)} \propto T^2 \log \frac{\varepsilon_F}{k_B T}$ At low-Temperatures $\frac{\hbar}{\tau} << k_B T$
Fermi liquid
1D, $\frac{1}{\tau(k_1)} = \frac{2\pi}{\hbar} U^2 \frac{1}{8\pi^2} \frac{a^2}{(\hbar v_F)^2} k_B T$ X Non-Fermi liquid

In the strong correration regime, $W \sim 2zt \ll U$

Hubbard Hamiltonian

$$H = \sum_{(i,j)\sigma} (tc_{i,\sigma}^{+}c_{j,\sigma} + h.c.) + U\sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

H' (perturbation) H_{0}
Heisenberg Hamiltonian $H = \sum_{(i,j)} J\mathbf{S}_{i}\mathbf{S}_{j}$ $J = 4t^{2}/U$

Antiferromagnetic insulator

Mott transition occurs at *W~U*, *but depends on dimension and lattice geometry*

1-D Hubbard models are always Mott insulators.

2D ¹/₂-filled Hubbard model on anisotropic triangular lattice

PIRG

Cluster-DMFT

Tremblay et al. PRL (2006)

Layered molecular conductors, (BEDT-TTF)₂X

A variety of in-plane structures

κ -(ET)₂X family are on the verge of Mott transition

in-plane structure

dimer model

Kino & Fukuyama

Triangular lattice Half-filled band

t : inter-dimer transfer integral *U* : on-site Coulomb

	X -	Gorund state	U/t	t'/t	
TH TH	$Cu_2(CN)_3$	Mott insulator	8.2	1.06	e ⁻
	Cu[N(CN) ₂]Cl	Mott insulator	7.5	0.75	\land
CHCM C	Cu[N(CN) ₂]Br	Metal (SC)	7.2	0.68	
1999 1999 1999 1999 1999 1999 1999 199	Cu(NCS) ₂	Metal (SC)	6.8	0.84	e e
	Cu(CN)[N(CN) ₂]	Metal (SC)	6.8	0.68	e-
Mana	$Ag(CN)_2 H_2O$	Metal (SC)	6.6	0.60	
	I ₃	Metal (SC)	6.5	0.58	

Resistivity of κ -(BEDT-TTF)₂X

温度 (K)

SIT by fine pressure tuning or isotope substitution

 κ -(deuterated ET)₂Cu[N(CN)₂]Br

e e e

κ -(ET)₂X family are on the verge of Mott transition

2 electrons/dimer with on-site Coulomb energy \rightarrow Hubbard model of a hydrogen molecule

Mott physics in 2D organics

Interacting spins \rightarrow Order or not ?

Landau

Anderson

Triangle-based lattices

Anderson' idea of spin liquids: Resonating Valence Bond (RVB) state

In analogy with benzene

No spin liquid material in 20th centuryth

......the end?

Q2D organics *k*-(ET)₂X; *spin-1/2 on triangular lattice*

Magnetism

Nuclear Magnetic Resonance

Mott insulators κ-(ET)₂X Spin ordering or not ?

 $Cu_2(CN)_3$ 1.06 (0.8) $Cu[N(CN)_2]Cl$ 0.75 (0.44)

Also see Zheng et al. PRB 71 (2005) 134422

¹H NMR spectrum

Spin anomaly around 5-6K in κ - $(ET)_2Cu_2(CN)_3$

Shimizu *et al.*, PRB 70 (2006) 060510 NMR relaxation rate

Why a spin liquid realized instead of

→near Mott transition

"Hubbard spin liquid"

Spin liq. emerges Hubbard model ?

PIRG; Morita, Mizusaki, Imada (2002), (2006)

Cellular DMFT; Kyung, Tremblay (2006)

Tocchio et al. PRB (2013)

VCA + LDFA Laubach et al. PRB (2015)

\rightarrow near the Mott transition

Thermodynamics

Specific heat

by Yamashita and Nakazawa (Osaka Univ.)

Wilson ratio

Degenerate Fermionic objects in Mott insulator

~ 1.6

 $R_{W} = \frac{\{\chi / (2\mu_{B}^{2})\}}{\{\gamma / (2\pi^{2}k_{B}^{2}/3)\}}$

 $\gamma = 13 \text{ mJ/K}^2 \text{mol}$

 $\gamma = (2\pi^2 k_B^2/3) D(\epsilon_F)$

Spin liquid in κ -(ET)₂Cu₂(CN)₃; Gapless or gapped

Thermal conductivity → *gapped*; 0.46 K

M. Yamashita et a., Nature Phys. 5 (2009) 44

A[Pd(dmit)₂]₂; quasi-triangular lattice systems

Spin liquid in EtMe₃Sb[Pd(dmit)₂]₂

Specific heat

S. Yamashita et al., Nat. Commun. 2, 275 (2011)

Thermal conductivity

M. Yamashita et al, Science 328, 1246 (2010)

Wilson ratio

 $R_{\rm W} = 1.6$

$\chi_{spin} = 4.5 \text{ emu/mol}$

R. Kato, Bull. Chem. Soc. Jpn. 87, 355 (2014)

$\gamma = 20 \text{ mJ/mol } \text{K}^2$

S. Yamashita et al., Nat. Commun. 2, 275 (2011)

Charge excitation in antiferromagnet and spin liquid Charge gap is clearly opened on AF ordering, but remains undeveloped in spin liquid.

Kornelsen et al., SSC 81 (1992)343

18 16 14 Temperature [K Paramagnetic 12 Insulator Spin liquid Metal Field-induced inhomogeneous state SC 80 100 120 140 160 180 Pressure [MPa]

Optical conductivity

Kezsmarki et al. PRB 74(2006)201101

Thermodynamic anomaly at 6K in κ -(ET)₂Cu₂(CN)₃

Specific heat

S. Yamashita *et al.*, *Nature Phys.* 4 (2008) 459

Thermal conductivity

M. Yamashita *et al.*, *Nature Phys.* **5** (2009) 44

NMR Relaxation rate

Shimizu et al., *PRB* **70** (2006) 060510

Thermal expansion coefficient Manna et al., *PRL* **104** (2010) 016403

Ultrasound velocity Poirier et al.,

Can you distinguish SL and SC ?

NMR spectra B // a axis

Thermal conductivity

Y. Matsuda et al.,

J. Phys: Condens. Matter 5 (2006) R705

Pressurize AFI and spin liquid

¹/₂-filled Hubbard model (Cluster DMFT) Kyung, Tremblay PRL (2006)

Material parameters

Kandpal et al. PRL 103 (2009) 067004 Thermodynamics of Mott transition

Entropy balance known from phase diagram *Clausius Clapeyron* $dT/dP = (V_A - V_B)/(S_A - S_B)$ >0

κ -(ET)₂Cu[N(CN)₂]Cl $t'/t \sim 0.44-0.75$

Kagawa et al., Nature 2005, PRL 2004; PRB 2004,

Kurosaki et a., PRL 2005, Furukawa et al.unpublished

Thermodynamics of Mott transition

Clausius Clapeyron >0 $dT/dP = \Delta V/\Delta S = (V_A - V_B)/(S_A - S_B)$

Entropy of spin liquid

 $\Delta S = S_{SL} - S_{metal} = (dP/dT) \Delta V$

 γ_{metal} =27.5 mJ/mol K²

parameter

Mott transition of SL; drastic change in charge transport but not in spin

Phase diagram

Experimental test of scaling

Furukawa et al., Nat. Phys 11 (2015) 221

QC scaling --- nearly material -independent

Furukawa et al., Nat. Phys 11 (2015) 221

Critical exponents, zv, in metal-insulator transitions

Q2D Mott

(2011)

Single-site DMFT of Hubbard model

H.Terletska, V.Dobrosavljevic et al., Phys. Rev. Lett 107, 026401(2011)

Possible quantum critical behavior in an intermediate energy range

Quantum criticality ($T_c < T << t, U$)

Why eager for spin liquid ?

Electron correlation in massless Dirac fermions

Ferrimagnetism

M. Hirata *et al.*, Nat. Commun. (2016) in press D. Liu *et al.*, PRL (2016) K. Miyagawa *et al.*, JPSJ (2016) K. Ishikawa *et al.*, PRB (2016)

NMR

Michihiro Hirata

NMR

Kyohei Ishikawa

NMR

Kazuya Miyagawa

Sample preparation

Masafumi Tamura

Mean-field calculation (lattice model)

Akito Kobayashi

Genki Matsuno

NMR

Claude Berthier

Denis Basko

Organic Conductor α -(**BEDT-TTF**)₂I₃

D. Liu *et al.,* PRL, in press H. Schwenk *et al., Mol. Cryst. Liq. Cryst.* **119** (1985)

Charge order is suppressed by pressure and a Dirac semimetal emerges !

1. Dirac Cones Everywhere

◆ Vertical cone in Graphene ← <u>Atomic</u> Orbs. (A & B sublat.)

General cones exist in various systems: d-wave SC, ³He, Topological Ins., Organic Solids

K. Asano et al., PRB (2011), T. O. Wehling et al., Adv. Phys. (2014)

2. Short-ranged or Long-ranged?

T. O. Wehling et al., Adv. Phys. 63, 1-76 (2014)

Unscreened Long-range Coulomb Interaction

SOVIET PHYSICS JETP

VOLUME 32, NUMBER 4

APRIL, 1971

POSSIBLE EXISTENCE OF SUBSTANCES INTERMEDIATE BETWEEN METALS AND

DIELEC TRICS

A. A. ABRIKOSOV and S. D. BENESLAVSKII

L. D. Landau Institute of Theoretical Physics

Submitted April 13, 1970

Zh. Eksp. Teor. Fiz. 59, 1280-1298 (October, 1970)

The question of the possible existence of substances having an electron spectrum without any energy gap and, at the same time, not possessing a Fermi surface is investigated. First of all the question of the possibility of contact of the conduction band and the valence band at a single point is investigated etd within the framework of the one-electron problem. It is shown that the symmetry conditions for the crystal admit of such a possibility. A complete investigation is carried out for points in recipro-cal lattice space with a little group which is equivalent to a point group, and an example of a more complicated little group is considered. It is shown that in the neighborhood of the point of contact the spectrum may be linear as well as quadratic.

The role of the Coulomb interaction is considered for both types of spectra. In the case of a linear dispersion law a slowly varying (logarithmic) factor appears in the spectrum. In the case of a quadratic spectrum the effective interaction becomes strong for small momenta, and the concept of the one-particle spectrum turns out to be inapplicable. The behavior of the Green's functions is determined by similarity laws analogous to those obtained in field theory with strong coupling and in the neighborhood of a phase transition point of the second kind (scaling). Hence follow power laws for the electronic heat capacity and for the momentum distribution of the electrons. ✓ Long-range part preserved

✓ Logarithmic *divergence* of $v_{\rm F}$

$$\bigvee \quad v(k) = v \left(1 + \frac{\alpha}{4} \ln(\Lambda/k) \right), \ \Lambda/k \gg 1$$

A. A. Abrikosov

Reshaping of *vertical* axes cones in graphene

D. C. Elias *et al., Nat. Phys.* 7 (2011)
C. Faugeras *et al., PRL* 114 (2015)
V. N. Kotov *et al., Rev. Mod. Phys.* 84 (2012)

A. A. Abrikosov et al., JETP 32 (1971)

Molecular site to *k*-space correspondence

J-sublattice Electron Spin Susceptibility

0.012 9/ (r.1.u.) -0.012

j = C

A Non-uniform v_F Renormalization

Renormalization Group (RG) Calculation

Negative Susceptibility on the B Sublattice

Anomaly observed uniquely on B

Ferrimagnetic spin Polarization exist on top of the $v_{\rm F}$ renormalization

Hubbard model; Mean-field calculation

Hubbard model (nearest neighbor)

$$H = \sum_{(i\alpha:j\beta),\sigma} \left(t_{i\alpha:j\beta} a^{\dagger}_{i\alpha\sigma} a_{j\beta\sigma} + \text{h.c.} \right) + \sum_{j\alpha} U a^{\dagger}_{j\alpha\uparrow} a^{\dagger}_{j\alpha\downarrow} a_{j\alpha\downarrow} a_{j\alpha\uparrow}$$

RPA spin susceptibility (Q = 0)

$$\chi_{ij, \text{RPA}}(\boldsymbol{Q}, \omega) = (\hat{\chi}_{\text{RPA}})_{ij}(\boldsymbol{Q}, \omega) = \left[\left(\hat{I} - \hat{\chi}^{(0)} U \hat{I} \right)^{-1} \hat{\chi}^{(0)} \right]_{ij}(\boldsymbol{Q}, \omega),$$

$$\chi_{\text{RPA}}^{j} = \sum_{i=1}^{4} \chi_{ij, \text{RPA}}(\boldsymbol{0}, 0)$$

A. Kobayashi et al., J. Phys. Soc. Jpn. 82 (2013)

$$\sum_{j=1}^{4} \tilde{\epsilon}_{ij\sigma}(\mathbf{k}) d_{j\eta\sigma}(\mathbf{k}) = E_{\eta\sigma}(\mathbf{k}) d_{i\eta\sigma}(\mathbf{k}),$$
$$\tilde{\epsilon}_{ij\sigma}(\mathbf{k}) = \epsilon_{ij}(\mathbf{k}) + U \langle N_{i\sigma} \rangle \delta_{ij},$$
$$\langle N_{j\sigma} \rangle = \frac{1}{N_{\text{u.c.}}} \sum_{\mathbf{k}} \sum_{\eta=1}^{4} d_{j\eta,-\sigma}^{*}(\mathbf{k}) d_{j\eta,-\sigma}(\mathbf{k}) f(E_{\eta,-\sigma}(\mathbf{k}) - \mu),$$

$$\chi_{ij}^{(0)}(\boldsymbol{Q},\omega) = -\frac{1}{N_{\rm u.c.}} \sum_{\boldsymbol{k}} \sum_{\eta,\eta'=1}^{4} \mathcal{F}_{ij}^{\eta\eta'}(\boldsymbol{k},\boldsymbol{Q}) \frac{f\left(E_{\eta}(\boldsymbol{k}+\boldsymbol{Q})\right) - f\left(E_{\eta'}(\boldsymbol{k})\right)}{E_{\eta}(\boldsymbol{k}+\boldsymbol{Q}) - E_{\eta'}(\boldsymbol{k}) - \hbar\omega - i\delta},$$

Hubbard model; Mean-field calculation

Hubbard model (nearest neighbor)

$$H = \sum_{(i\alpha:j\beta),\sigma} \left(t_{i\alpha:j\beta} a^{\dagger}_{i\alpha\sigma} a_{j\beta\sigma} + \text{h.c.} \right) + \sum_{j\alpha} U a^{\dagger}_{j\alpha\uparrow} a^{\dagger}_{j\alpha\downarrow} a_{j\alpha\downarrow} a_{j\alpha\uparrow}$$

RPA spin susceptibility (Q = 0)

 $\sum_{j=1}^{4} \tilde{\epsilon}_{ij\sigma}(\mathbf{k}) \ d_{j\eta\sigma}(\mathbf{k}) = E_{\eta\sigma}(\mathbf{k}) \ d_{i\eta\sigma}(\mathbf{k}),$

 $(\mathbf{I}) = - (\mathbf{I}) + U(\mathbf{N})$

A. Kobayashi et al., J. Phys. Soc. Jpn. 82 (2013)

$$\langle N_{j\sigma} \rangle = \frac{1}{N_{\text{u.c.}}} \sum_{\boldsymbol{k}} \sum_{\eta=1}^{4} d^*_{j\eta,-\sigma}(\boldsymbol{k}) \, d_{j\eta,-\sigma}(\boldsymbol{k}) \, f(E_{\eta,-\sigma}(\boldsymbol{k})-\mu),$$

$\chi_{ij, \text{RPA}}(\boldsymbol{Q}, \omega) = (\hat{\chi}_{\text{RPA}})_{ij}(\boldsymbol{Q}, \omega) = \left[\left(\hat{l} - \hat{\chi}^{(0)} U \hat{l} \right)^{-1} \hat{\chi}^{(0)} \right]_{\cdots} (\boldsymbol{Q}, \omega),$

Ferrimagnetic Polarization due to SR Coulomb Int.

Conclusions

Short-range Coulomb, U, V

Long-range Coulomb, 1/r

