
 Weaving together statistical mechanics,
 machine learning, and neuroscience

Surya Ganguli

Dept. of Applied Physics,
Neurobiology,

and Electrical Engineering

Stanford University

http://ganguli-gang.stanford.edu Twitter: @SuryaGanguli

Funding: Bio-X Neuroventures!
Burroughs Wellcome!

Genentech Foundation!
James S. McDonnell Foundation!

McKnight Foundation!
National Science Foundation!

 !
NIH!

Office of Naval Research!
Simons Foundation!
Sloan Foundation!

Swartz Foundation!
Stanford Terman Award!

Theoretical neuroscience in the disciplinary landscape

 Theoretical
Neuroscience

The physical / mathematical sciences
The experimental
 foundations

 The engineering sciences

Multielectrode
recordings

EEG

fMRI

2-photon imaging

High-throughput EM

Optogenetics

Molecular

Perturbations

Quantification of
behavior

Statistical
Mechanics

Pattern
Formation

Stochastic
Processes Dynamical

Systems Theory

High Dimensional
Data Analysis

 Machine
Learning Optimization

Theory
Signal

Processing

Control
Theory

Information
 Theory

with Baccus lab: inferring
hidden circuits in the retina
w/ Niru Maheswaranathan and Lane McIntosh

with Clandinin lab: unraveling the
computations underlying fly motion
vision from whole brain optical imaging
w/ Jonathan Leong, Ben Poole and Jennifer Esch

with the Giocomo lab: understanding
the internal representations of space
in the mouse entorhinal cortex
w/ Kiah Hardcastle and Sam Ocko

with the Shenoy lab: a theory of neural
dimensionality, dynamics and measurement
w/ Peiran Gao, Eric Trautmann

with the Raymond lab: theories of how
enhanced plasticity can either enhance
or impair learning depending on experience
w/ Subhaniel Lahiri, Barbara Vu, Grace Zhao

 Neural circuits and behavior: theory, computation and experiment

A palpable technology driven excitement in neuroscience

Measuring Dynamics

Multielectrode Recordings

Calcium imaging

Novel voltage sensors

EEG / fMRI

Quantification of Behavior

Measuring Connectivity

High throughput EM

Viral tracing

RNA barcodes

Circuit Perturbations

Optogenetics

TMS

Genetic Knockouts

Crispr / CAS

Question: How do we go from this explosion of data to a conceptual understanding?

Issue 1: We will not soon record from the entire brain at single cell single spike-time
 resolution during any behavior.

Issue 2: Even if we could, what would we do with all the data?

Broader theoretical challenges in neuroscience

How can we understand neural circuits
such a high subsampled measurement
regime?

Even if we had all the data, what would we do
with it? Lets look to our colleagues in
computer science for interesting challenges.

High dimensional
statistics

Deep Learning

Issue 1: Discovering
structure with
limited data.

Issue 2: Examples of
complete neural circuit
models

Low dimensional manifolds

Independence

Clusters

No strong loops

Sparsity

Low rank matrix structure

At the core of every data analysis algorithm lies an
implied hypothesis about underlying simplicity in data

Assumed simplicity

Dimensionality reduction

ICA

Various clustering algorithms

Message passing

Compressed sensing

Nuclear norm minimization

Associated algorithm

If any of these simplicities exist in a system, then we can
often accurately characterize the structure/function of that
system using many fewer measurements than the total
dimensionality of the system!

•  What does it mean to understand the brain (or a neural
circuit?)

•  We understand how the connectivity and dynamics of a neural
circuit gives rise to behavior.

•  And also how neural activity and synaptic learning rules
conspire to self-organize useful connectivity that subserves
behavior.

•  The field of machine learning has generated a plethora of

learned neural networks that accomplish interesting functions.

•  We know their connectivity, dynamics, learning rule, and
developmental experience, *yet*, we do not have a
meaningful understanding of how they learn and work!

 Motivations for an alliance between theoretical neuroscience and
 theoretical machine learning

On simplicity and complexity in the brave new world of large scale
neuroscience, Peiran Gao and S. Ganguli, Curr. Op. in Neurobiology, 2015.

Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons: Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning: PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob)
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing

Canonical models in theoretical neuroscience

Model Neurons: From Hodgkin Huxley to Hopfield, Abbott and Kepler 1990

Neural networks and physical systems with emergent collective computational
Abilities, Hopfield, PNAS 1984.

Statistical mechanics of neural networks near saturation, Amit, Gutfreund,
Sompolinsky, Annals of Physics, 1987.

The space of interactions in neural network models,
J. Phys. A: Math. Gen, Gardner E 1988

What does it take to get distributed modes?

Goal: solve optimization problem:

Expansion: Neural implementation of L1 Minimization

Neural circuit solution:

N neurons

T neurons
ai = i’th column of N by T matrix A
 = i’th dictionary element of rep of x
 = approximate RF of i’th layer 2 neuron

Lij = ai . aj = lateral inhibition

si = F(vi) = single neuron nonlinearity

Rozell C, et. al. 2008. Sparse coding via thresholding and local competitionin neural circuits. Neural Comp 2010

For each choice of sparsity penalty V, there is a neuronal nonlinearity F such that neural
circuit dynamics ~ gradient descent solution of optimization

What does it take to get distributed modes?Expansion: Neural implementation of L1 Minimization

 Olshausen and Field, Nature 1996

Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons: Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning: PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob)
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing

Finding optimal algorithms for nonlinear regressions in high dimensional data analysis

Madhu Advani: Stanford -> Harvard

A revolution in the way we collect and analyze data:
 The need to think in high dimensions

P = dimensionality of data N = number of data points α = N / P

Classical Data Modern Data

P ~ O(1)
N -> ∞
 α -> 0

P -> ∞
N -> ∞
 α ~ 0(1)

N = 2 (current and voltage) N=O(100) spike rates
M = O(100) M=O(100) trials

Statistical mechanics of high dimensional data analysis
P = dimensionality of data N = number of data points α = N / P

Classical Statistics Modern Statistics

P ~ O(1)
N -> ∞
 α -> 0

P -> ∞
N -> ∞
 α ~ 0(1)

Machine Learning and Data Analysis
Learn statistical parameters by maximizing log
likelihood of data given parameters.

Statistical Physics of Quenched Disorder
Energy = - log Prob (data | parameters)
Data = quenched disorder
Parameters = thermal degrees of freedom

Statistical mechanics of compressed sensing, S. Ganguli and H. Sompolinsky, PRL 2010.

Short-term memory in neuronal networks through dynamical compressed sensing, NIPS 2010.

Compressed sensing, sparsity and dimensionality in neuronal information processing and data analysis, S.
Ganguli and H. Sompolinsky, Annual Reviews of Neuroscience, 2012

Statistical mechanics of optimal convex inference, M. Advani and S. Ganguli, Physical Review X, 2016.

An equivalence between high dimensional Bayes optimal inference and M-estimation, NIPS 2016.

Random projections of random manifolds, S. Lahiri, P. Gao, S. Ganguli, http://arxiv.org/abs/1607.04331, under
review at JMLR.

Optimal inference in high dimensions

Generative model and measurements

 P dim signal s0 ~ Ps
 N measurements with noise ε ~ Pε
 α = N/P = measurement density

Estimation algorithm

ρ = loss function
σ = regularizer
qs = L2 estimation error

Example algorithms

Optimal inference in high dimensions

Generative model and measurements

 P dim signal s0 ~ Ps
 N measurements with noise ε ~ Pε
 α = N/P = measurement density

Estimation algorithm

ρ = loss function
σ = regularizer
qs = L2 estimation error

Question:

For a given signal distribution Ps , noise distribution Pε , and measurement density α,

what is the best loss function ρ and regularizer σ?

Optimal inference in high dimensions

Fundamental limits on convex inference in high dimensions

Optimal inference in high dimensions
Question: For a given signal distribution Ps , noise distribution Pε , and measurement density
α, what is the best loss function ρ and regularizer σ?

For log-concave signal and noise: the optimal loss and regularizer are nonlinearly smoothed
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!

Optimal inference in high dimensions
Question: For a given signal distribution Ps , noise distribution Pε , and measurement density
α, what is the best loss function ρ and regularizer σ?

For log-concave signal and noise: the optimal loss and regularizer are nonlinearly smoothed
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!

M. Advani and S. Ganguli, An equivalence
between high dimensional Bayes optimal
inference and M-estimation, NIPS 2016.

M. Advani and S. Ganguli, Statistical mechanics of
optimal convex inference in high dimensions,
Physical Review X, 6, 031034, 2016.

Related work by El Karoui, and Montanari.

Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons: Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning: PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob)
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing

A theory of recovering neural state space
dynamics

Surya Ganguli

Dept of Applied Physics

And, by courtesy,

Neurobiology
Electrical Engineering

collaboration with Shenoy Lab

Stanford University
Peiran Gao Eric

Trautmann

How can we record O(100) neurons in regions deep within the
brain and obtain scientifically interpretable results that relate
neural activity to behavior and cognition?

This is remarkable, considering these brain regions can contain
O(106-109) neurons – 5 orders of magnitude more than we record!

A major conceptual elephant

How has systems neuroscience been as successful as it has in
such an undersampled measurement regime?

Or are we completely misleading ourselves?

An exponential Moore’s Law for the number of recorded neurons

Multielectrode recordings allow us to record from 102 to 103 neurons.

Stevenson &
Kording, 2011

Mammalian circuits controlling complex behaviors contain > 106 to 109
neurons.
122 years to get 5 orders of magnitude more neurons

We need a theory of neural data analysis that tells us how and when statistical
analyses applied to a small subset of neurons reflect the collective dynamics of
the much larger, unobserved circuit they are embedded in.

 An example dataset: the single neuron view

Trial averaged firing rates from 3 neurons while a monkey is reaching to
targets
at 7 directions, two lengths and two speeds (red/green)

There are about 100 more neurons like these.

How are such datasets analyzed?

Churchland and Shenoy, J.
Neurophys. 2007

Analyzing neural data with dimensionality reduction

A widespread practice: simultaneously measure the dynamics of N
neurons during a task (N ~ 100 to 200)

We often find that all neural activity patterns found during the task can be
obtained from a from a small number of basis patterns, or modes

c1(t)
c2(t)

c3(t)

Mode 1 Mode 2 Mode 3

Neural pattern at time t

c1

c2

c3

Low dimensional neural
trajectory

Ahrens et al., 2012

zebra fish, whole brain

Machens et al., 2010

monkey, PFC

Mazor & Laurent, 2005

locust, antenna lobe

Mante al., 2013

Monkey pre-frontal cortex

Dynamical portraits of circuit computation via dim reduction

Can we trust such dynamical portraits of circuit computation despite
recording so few neurons?

How would the shape of these portraits change if we recorded more
neurons?

Would their dimensionality increase if we recorded more neurons?

What (if anything) can we learn about large dynamical
networks at such an overwhelming level of under sampling?

Can we obtain a predictive theory of experimental design that can
tell us how many more neurons we should record?

How should this number depend on the properties of neural activity and
the behavioral task?

Fundamental conceptual questions

Center hold Target Appears Go Cue Reach

~400ms 400 - 1000ms ~250ms

Acquire

~300ms Adopted from
Yu et al, 2007

Dataset 2 (Monkey A)
7 directions, 2 speeds and 2 distances

28 task conditions
single electrode, 64 preparatory recordings

M1 PMd

Churchland et al. 2007

Extra-cellular recordings from PMd and M1:

Dataset 1 (Monkey H)
8 directions

8 task conditions
multi-electrode array, 109 single units

M1 PMd

Yu et al. 2007

Example dataset:

 In primate motor cortex there are
 O(100 million) neurons controlling O(650) skeletal muscles.

 In these experiments, O(100) neurons were recorded.

 The PCA dimensionality (~ 70% variance explained) across all
 8 reaches is 7.

 The PCA dimensionality (~ 70% variance explained) for one
 reach is 3.3.

Dimensionality in motor cortex

Measuring the Dynamic Portrait under Sub-sampling !

When are portraits from relatively few neurons = those from all neurons?!

When patterns of neural activity are
distributed across neurons, we can

accurately recover dynamic
portraits despite subsampling!

neuron 1 !

ne
ur

on
 2
!

neuron 1!

ne
ur

on
 2
! good

recovery!

poor
recovery!

The act of neuronal measurement as a random projection!

An experiment we can do: measure
a random subset of M neurons

 is equivalent to

An experiment we cannot yet do: measure
M random linear combinations
(i.e. random projections) of all neurons !

If neural manifold is randomly oriented: !

0.1! 0.3!
0.05!
0.2! 0.4! 0.1! 0.01! 0.2!

random subset!

random projection!

 A larger context: random projections

x = As is a random projection from a N dim space down to an M dim space

Data / interesting signals live on a K-dim submanifold in N-dim space

When will the geometry of this manifold be preserved under a random proj. ?

Distortion: Dab = (|| Asa – Asb ||2 - || sa – sb ||2) / || sa – sb ||2

 A larger context: random projections

Manifold of K-sparse signals = Union of N choose K K-dim hyperplanes

As long as M > O (1/ε2 * K log N/K), then maxab |Dab| = O(ε) with high prob over
random choice of projection A Baraniuk et. al. 2008

K-dim manifold
N-dim space

Random proj
To M-dim space

Deterministic result: for any projection A with small distortion, one can
reconstruct sparse signal from its projection (i.e. compute its pre-image)

Tao,
Candes

 A larger context: random projections

Point cloud = Union of P points in N-dim space

As long as M > O (1/ε2 * log P), then maxab |Dab| = O(ε) with high prob over
random choice of projection A Johnson-Lindenstrauss Lemma

P points in
N-dim space

Random proj
To M-dim space

Compressed computation: with so few measurements, one cannot recover
high-dim points, but any algorithm which depends on pairwise distances
can be applied in low dim space

 A larger context: random projections

Arbitrary K-dim manifold in N dim space

As long as M > O (1/ε2 * K log [C*Vol]), where C is related to curvature, then
maxab |Dab| = O(ε) with high prob over random choice of projection A
 Baraniuk and Wakin 2007

(K-dim) manifold
N-dim space

Random proj
To M-dim space

A consequence of neuronal measurement as a random projection!

To keep the same level of desired distortion, # of neurons need only
scale logarithmically with task complexity (good news!)!

By adapting random projection theory:!
neurons
 needed ! =

1
distortion
2 !

(c1 log(task complexity) + c2) !

N!

M!

Log T!

ne

ur
on

s

Log (Task complexity)!

#s
ub

sa
m

pl
ed

 n
eu

ro
ns

high distortion!

low distortion!

A consequence of neuronal measurement as a random projection!

To keep the same level of desired distortion, # of neurons need only
scale logarithmically with task complexity (good news!)!

By adapting random projection theory:!
neurons
 needed ! =

1
distortion
2 !

(c1 log(task complexity) + c2) !

N!

M!

Log T!

ne

ur
on

s

Log (Task complexity)!

#s
ub

sa
m

pl
ed

 n
eu

ro
ns

high distortion!

low distortion!

To maintain accuracy of the recovered portraits,!
of neurons required ~ log(task complexity)!

Neural task complexity!

of recorded
neurons !

5 0!
2 5!

10
1 ! 10

2 !

distortion:
fractional
error
in pairwise
distances !

distortion contours of motor cortical data!

Conclusions!

Neural measurements (optimistic messages):!

To recover dynamic portraits from more complex
experiments, no need for many more neurons.!

Neural dimensionality:!

compare measured
dimensionality to our

upper bounds!

dimensionality
constrained by task

complexity and
smoothness!

=!

additional intrinsic
dynamic constraint in
the data beyond task

complexity and
smoothness!

<!

Subsampling can recover accurate dynamic portraits
when neural activities are highly distributed!

Task Complexity (T / 𝝉)!

D
im

en
si

on
al

ity
!

N=109
N=70
N=30 !

0 51

4

Towards a single trial theory

Given limited experimental resources, like

M = number of neurons we can record
P or T = number of training stimuli or amount of time we can record
SNR = signal-to-noise ratio, or trial to trial reproducibility of our data

And a measure of the complexity of our experiment:

K = some measure of the complexity of our
 stimuli/behavior/latent variables/manifold of visited neural states

How well can we: Decode behavior on single trials?

 Learn the structure of unobserved latent cognitive
 variables contributing to trial-to-trial variability?

Such a theory should help us design experiments before they are done!

Towards a single trial theory

 Recovering latent cognitive subspaces: towards a theory of
 gaussian process factor analysis.

 Towards a Rosetta stone between dynamics and statistics: how do
 statistical latent variable models fit to a subset of neurons, reflect the
 dynamical properties of a much larger neural circuit?

Low K-dimensional
stimulus space

Embedding in the N-
dimensional space

Subsampled in the M-
dimensional space

•  Consider a high dimensional neural circuit with N neurons.

•  We can only record M of them for a finite number of stimuli P.

•  Suppose the stimuli are encoded simply in a K dimensional
subspace (or nonlinear curved manifold in which case K ->
NTC)

•  For what regimes of M, N, P and K and the SNR, can we correctly
recover both the subspace and its dimensionality?

Inferring latent cognitive subspaces

Data =
K by P

K-dimensional
stimulus

X

sampled activity
patterns

Inferring latent cognitive subspaces

Data =
K by P

Orthogonal
Embedding

X

N by K

K-dimensional
stimulus

X

U

of behavioral
relevant neurons

sampled activity
patterns

Inferring latent cognitive subspaces

Data =
K by P

Orthogonal
Embedding

XX

Subsampling

recorded neurons

N by K

M by N

X

U

S

of behavioral
relevant neurons

sampled activity
patterns

K-dimensional
stimulus

Inferring latent cognitive subspaces

+

Observation Noise

M by P

Data =

N by K

Orthogonal
Embedding

XX

Subsampling

M by N

U

S K by P

X

Z

K-dimensional
stimulus

Inferring latent cognitive subspaces

R =
K by P

N by K

x

M by N

+

M by P

Dimensions:

US X Zx

Signal and Noise Models:

Neuronal Signal-to-Noise ratio:

N (# nrns) > P (# trials) > M (# record nrns) > K (stim dim)

Inferring latent cognitive subspaces

0 120

120

0
Input Singular Value

O
ut

pu
t S

in
gu

la
r V

al
ue

unit
y

input-referred
noise floor

noise floor

input-referred
noise floor

R = UX + Z

With completion observation (i.e. M = N):
Low-rank Matrix Perturbation Theory

Singular value transfer function Subspace overlap

low-rank signal high-dim noise

N=1000, P=800,
K=2

N=1000, P=800,
K=2

0 1200
Input Singular Value

1

Su
bs

pa
ce

 O
ve

rla
p

R = SUX

With partial observation (i.e. M < N):
Subsampling

low-rank signal high-dim noise

 + Z

•  K(=2)-dimensional stimulus space
•  Embedded in N(=3)-dimensional

neural space
•  Subsampled to M(=2)-dimensional

subspace
•  Distance between sampled activity

patterns are compressed
•  Compressions are different

depending on orientations
•  Compression determined by the K

singular values of SU

Singular Value Spectrum of SU

N by K
random
orthogonal
embedding
matrix

x

M by N random
sampling matrix

US

SU’s singular value squared are the eigenvalues of STSUTU

Free probability theory: STS and UTU are two independent projection
matrices, their S-transforms obey:

Singular value spectrum:

distribution of all possible signal
distortions by the SU matrix

Distribution of distortions:

upper/lower bounds
of distortion

Nica & Speicher,
1996

Singular Value Spectrum of SU

N by K
random
orthogonal
embedding
matrix

x

M by N random
sampling matrix

US

Singular value spectrum:

distribution of all possible signal
distortions by the SU matrix

Distribution of distortions:

upper/lower bounds
of distortion

M = 120 ~ K M = 300 > K M = 900 >> K

Simulations (N = 1000, K = 100):

R =
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling
Compression

R =
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling
Compression Signal Strength

R =
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling
Compression Signal Strength Input-referred

Noise Floor

R =
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling
Compression Signal Strength Input-referred

Noise Floor* >
(worst-case) (worst-case)

R =
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling
Compression Signal Strength Input-referred

Noise Floor* >
(worst-case) (worst-case)

R =
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling Compression Signal Strength Input-referred
Noise Floor* >

(worst-case) (worst-case)

R =
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling Compression Signal Strength Input-referred
Noise Floor* >

(worst-case) (worst-case)

R =
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling
Compression Signal Strength Input-referred

Noise Floor* >
(worst-case) (worst-case)

neuronal gain

recording/trial
gains

M > K
P > K

Prediction: hyperbolic phase transition in the M-by-P
plane:

Simulated recovery of random smooth trajectories with SNR = 0.02,
D=4

Recovered Dim

ne

ur
on

s
(M

)

samples (P)0 1000

10
00

0

Subspace Overlap

ne

ur
on

s
(M

)

samples (P)0 1000

10
00

0

Latent State Recovery: Simulations

•  Motor cortical data from Shenoy lab, center-out reaching tasks
•  GPFA to extract latent trajectories in 147 trials for reaches to a single target

Latent State Recovery: Monkey Data

Qualitatively similar tradeoff between
M and P

•  Different algorithm: D inferred using cross-validated Gaussian Process Factor
Analysis

•  Different noise in the data: pink and temporally correlated

Inferred D Subspace Overlap

Yu et al. 2009!

Towards a single trial theory

 Recovering latent cognitive subspaces: towards a theory of
 gaussian process factor analysis.

 Towards a Rosetta stone between dynamics and statistics: how do
 statistical latent variable models fit to a subset of neurons, reflect the
 dynamical properties of a much larger neural circuit?

Discovering structure in subsampled neural dynamics
•  Consider a high dimensional neural circuit with N neurons.

•  We can only record M of them for a finite amount of time T.

•  What can we correctly infer about the circuit dynamics
when M << N and T is not too large?

•  In general - nothing!

•  However if we might assume an underlying simplicity, for
example low dimensional dynamics of dimension K.

•  For what regimes of M, N, T and K can we correctly recover
dynamical properties of the circuit?

Model Linear Neural Network

N-dimensional state

neuronal
property

rank-K
connectivity

input

random
sampling

M-dimensional
observation

Data often modeled using latent linear dynamical systems

nonlinear and
stochastic transforms
of y may be used to
model spikes directly

SSID used to find the slow mode eigenvalues of the generative model

Hankel Matrix:

=

=

approximated
using data

factorization

H =

theoretical values
with infinite data

Linear regression to find A’s eigenvalues

Data often modeled using latent linear dynamical systems

nonlinear and
stochastic transforms
of y may be used to
model spikes directly

When are the eigenvalues of fitted (SSID) latent dynamics A
close to those of slowest modes of the generative model?

A gap is required in the eigenvalue spectrum of the observation
Y’s covariance matrix.

gap

Accurate recovery, M = 200, T = 2000

no gap

Poor recovery, M = 50, T = 200

N = 1000, K = 4, 𝛕 = 0.4, 𝛕slow = 9.5 = 0.4, 𝛕slow = 9.5

Data =

DynamicsEmbeddingSubsampling **

M by N
N by T

K
slow
mode
s
N - K
fast
mode
s

K

N

N - K

N

To understand the spectrum of the covariance matrix,
we factorize the data

recorded neurons N by N
of behavioral

relevant neurons # of time points
recorded

X = sampling * (Xslow + Xfast)

**

Signal Noise
Similar setup to factor
analysis, but the noise
is correlated across
time

Xslow + Xfast

Data can be thought of as a low-rank perturbation of
a random noise matrix

Benaych-Georges & Nadakuditi, 2012

Eigenvalue spectrum of correlated noise deviates from the
Marchenko-Pastur law

Marchenko & Pastur, 1967
Bai et al., 2008, Yao, 2014

Theoretical eigenvalue spectrum for N = 1000, T = 2000 noise matrix

b(N, T, 𝛕))
noise floor

Discovering structure in subsampled neural dynamics

Model Linear Neural Network

N-dimensional state

neuronal
property

rank-K
connectivity

input

random
sampling

M-dimensional
observation

N = 5000 K = 6

rt+1 = e�1/⌧✏rt +W


s tanh

✓
1

s
rt
◆�

+ ⌘⌘⌘t

rtM = Srt

Model	
 Nonlinear	
 Neural	
 Network	

rank-­‐D	
 recurrent	

connec3vity	

N-­‐dimensional	
 state:	

neuronal	

3me	
 constant	

random	
 input	

compressive	

nonlinearity	

M-­‐dimensional	
 observa3on:	

Random	
 sampling	
 operator	

Nonlinearity	
 scaling	
 parameter	
 s:	
 smooth	
 transi3on	
 between	
 linear	
 neuronal	

responses	
 (large	
 s)	
 and	
 binary	
 responses	
 (small	
 s)	

Compressive	
 nonlinearity’s	
 effect	
 on	
 data’s	
 eigenvalue	
 spectrum:	

S=0.1	
 S=1.0	
 S=10.0	

Simulated	
 datasets	
 with	
 N=500,	
 D=4,	
 M=250,	
 T=500	
 samples,	

3me	
 constant	
 for	
 neuronal	
 noise	
 =	
 2.0;	
 for	
 network	
 dynamics	
 =	
 10.0	

Random	
 input’s	
 strength	
 (standard	
 devia3on):	
 into	
 signal	
 subspace	
 =	
 3.0,	
 into	
 the	
 rest	
 =	
 1.0	

A	
 preferen(al	
 squashing	
 of	
 the	
 signal	
 eigenvalues	

Compressive	
 nonlinearity’s	
 effect	
 on	
 the	
 recovery	
 of	
 latent	
 subspace	

Simulated	
 datasets	
 with	
 N=500,	
 D=4,	
 M	
 varied	
 from	
 20	
 to	
 200,	
 T	
 varied	
 from	
 200	
 to	
 2000	

3mes	
 constant	
 of	
 neuronal	
 noise	
 =	
 2.0,	
 of	
 network	
 dynamics	
 =	
 10.0	

Random	
 input’s	
 standard	
 devia3on:	
 into	
 signal	
 subspace	
 =	
 3.0,	
 into	
 the	
 rest	
 =	
 1.0	

S=0.1	
 S=1.0	
 S=10.0	

True	
 signal	
 subspace	
 obtained	
 empirically	
 aPer	
 simula3ng	
 nonlinear	
 networks	
 for	
 20,000	

3me	
 steps;	

For	
 each	
 M,	
 the	
 true	
 signal	
 subspace	
 is	
 sub-­‐sampled	
 and	
 re-­‐orthogonalized	
 to	
 compute	

its	
 overlap	
 with	
 the	
 recovered	
 subspace	
 from	
 only	
 T	
 steps	
 of	
 simula3on;	

The	
 resul3ng	
 overlaps	
 are	
 rescaled	
 so	
 that	
 0	
 =>	
 overlap	
 between	
 two	
 random	
 D-­‐
dimensional	
 subspaces	
 in	
 M	
 dimension,	
 and	
 1	
 =>	
 complete	
 overlap	

Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons: Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning: PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob)
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing

Tensor components analysis

Alex Williams

Tensor components analysis

a

time tria
ls

ne
ur

on
s ≈

CP tensor decomposition
temporal factors

trial endtrial start

X =

neuron factors

cell #6cell #1

trial factors

last trialfirst trial

≈
+

.

trial k trial Ktrial 1

ne
ur

on
s

b

trial-average PSTH

.

trial k trial Ktrial 1

ne
ur

on
s

time

ne
ur

on
s +

concatenated and smoothed data matrix

.

trial k trial Ktrial 1

ne
ur

on
s

time

ne
ur

on
s

.

time time

. . .

≈
+

+
...

+ +. . .+

different temporal
factors for each trial

c

trial-averaged PCA trial-concatenated PCA

Tensor components analysis

trial 1 25 50 75 100
input signals across trials

trial 1 25 50 75 100

CP Decomposition

simulated rasters

time

ne
ur

on
s

PCA on unfoldings ICA on unfoldings

a b

neurons time trials neurons time trials neurons time trials

synaptic
weights

input
waveforms

input
magnitude

model estimateground truth

c d e

#1
#2

#3
fa

ct
or

s

activity

time time time time

f
organize data fit models choose # of components visualize factors

scree plot similarity plot

time tria
lsne

ur
on

s

Smooth spiking data with
Gaussian filter.
Normalize activity traces so
that high-firing-rate neurons
do not dominate analysis.

CP decomposition is nonconvex
and optimization might get
caught in local minima
Unlike PCA, the best-fit factors
depend on the # of components
Thus, models with different # of
components multiple times from
different random initializations.
In practice, optimization is
tractable.

Scree and similarity plots can help determine this.
Always visualize multiple models and ensure they
produce similar results.

We typically visualize the neuron factors as
a bar plot, the temporal factors as line
plots, and the trial factors as color-coded
scatter plots.
Since the ordering of the neurons is often
arbitrary, it can help to reorder them by the
neuron factor loadings in creative ways.

(1) (2)

Tensor components analysis

Tensor components analysis

e time to acquire target (s)
corrective trial factor

a

c

dinitial perturbation recovery

b “early”
(first active)

“corrective”
(last active)

“learned”
(middle)

preferred cursor angles across all reach angles

example 45° reaches

early
component

corrective
component

learned
component

* p < 0.05 ** p < 0.01 p > 0.05

Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons: Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning: PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob)
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing

 An interesting artificial neural circuit for image classification

Alex
Krizhevsky
Ilya
Sutskever
Geoffrey E.
Hinton
NIPS 2012

Towards	
 a	
 theory	
 of	
 deep	
 learning	
 dynamics	

	

– The	
 dynamics	
 of	
 learning	
 in	
 deep	
 networks	
 is	
 non-­‐
trivial	
 –	
 i.e.	
 plateaus	
 and	
 sudden	
 transitions	
 to	

better	
 performance	

– How	
 does	
 training	
 time	
 scale	
 with	
 depth?	

– How	
 should	
 the	
 learning	
 rate	
 scale	
 with	
 depth?	

– How	
 do	
 different	
 weight	
 initializations	
 impact	

learning	
 speed?	

– We	
 will	
 @ind	
 that	
 weight	
 initializations	
 with	
 critical	

dynamics	
 can	
 aid	
 deep	
 learning	
 and	
 generalization.	

	

Deep	
 network	

•  Little	
 hope	
 for	
 a	
 complete	
 theory	
 with	
 arbitrary	

nonlinearities	

	
 x ∈ RN1y ∈ RND+1

.	
 .	
 .	

h2 ∈ RN3
x	

W 1W 2WD

f (W 1x)f (WDhD)

f (x)

f (W 2h1)f (WD−1hD−1)

Deep	
 linear	
 network	

•  Use	
 a	
 deep	
 linear	
 network	
 as	
 a	
 starting	
 point	

x ∈ RN1y ∈ RND+1

.	
 .	
 .	

h2 ∈ RN3
x	

W 1W 2WD

f (W 1x)f (WDhD)

f (x)

f (W 2h1)f (WD−1hD−1)

Deep	
 linear	
 network	

•  Input-­‐output	
 map:	
 Always	
 linear	

•  Gradient	
 descent	
 dynamics:	
 Nonlinear;	
 coupled;	
 nonconvex	

•  Useful	
 for	
 studying	
 learning	
 dynamics,	
 not	
 representation	
 power.	

y = Wi

i=1

D

∏
"

#
$

%

&
'x ≡Wtot x

Final Report: Convergence properties of deep linear

networks

Andrew Saxe

asaxe@stanford.edu

Christopher Baldassano

chrisb33@stanford.edu

1 Introduction

Deep learning approaches have realized remarkable performance across a range of application areas
in machine learning, from computer vision [1, 2] to speech recognition [3] and natural language
processing [4], but the complexity of deep nonlinear networks has made it difficult to develop a
comprehensive theoretical understanding of deep learning. For example, the necessary conditions
for convergence, the speed of convergence, and optimal methods for initialization are based pri-
marily on empirical results without much theoretical support. As a first step in understanding the
learning dynamics of deep nonlinear networks, we can analyze deep linear networks which compute
y = W

D

W

D�1 · · ·W 2
W

1
x, where x, y are input and output vectors respectively, and the W

i are
D weight matrices in this D + 1 layer deep network. Although these networks are no more expres-
sive than a single linear map y = Wx (and therefore unlikely to yield high accuracy in practice),
we have previously shown [5] that they do exhibit nonlinear learning dynamics similar to those ob-
served in nonlinear networks. By precisely characterizing how the weight matrices evolve in linear
networks, we may gain insight into the properties of nonlinear networks with simple nonlinearities
(such as rectified linear units).

In this progress report, we show preliminary results for continuous batch gradient descent, in which
the gradient step size is assumed to be small enough to take a continuous time limit. By the end of
the project, we hope to obtain similar results for discrete batch gradient descent (with a discrete step
size) and stochastic (online) gradient descent.

2 Preliminaries and Previous Work

A deep linear network maps input vectors x to output vectors y =

⇣Q
D

i=1 W
i

⌘
x ⌘ Wx. We wish

to minimize the squared error on the training set {xµ

, y

µ}P
µ=1, l(W) =

P
P

µ=1 kyµ �Wx

µk2.

The batch gradient descent update for a layer l is

�W

l

= �

PX

µ=1

DY

i=l+1

W

i

!
T

"
y

µ

x

µT �

DY

i=1

W

i

!
x

µ

x

µT

l�1Y

i=1

W

i

!
T

, (1)

where
Q

b

i=a

W

i

= W

b

W

(b�1) · · ·W (a�1)
W

a with the caveat that
Q

b

i=a

W

i

= I if a > b.

The minimizing W can be found analytically, by setting the derivative of the loss to zero:
PX

µ=1

(y

µ �Wx

µ

)x

µT

= 0 (2)

Let ⌃xx ⌘
P

P

µ=1 x
µ

x

µT be the input correlation matrix, and ⌃

yx ⌘
P

P

µ=1 y
µ

x

µT be the input-
output correlation matrix. The optimal W is

W

⇤
= ⌃

yx

(⌃

xx

)

�1 (3)

1

l =1,,D

Nontrivial	
 learning	
 dynamics	

Plateaus	
 and	
 sudden	

transitions	

Faster	
 convergence	
 from	

pretrained	
 initial	
 conditions	

0 50 100 150 200 250 300 350 400 450 500
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 104

Epochs
Tr

ai
ni

ng
 e

rro
r

Student Version of MATLAB

Random	
 ICs	

Pretrained	

Tr
ai
ni
ng
	
 e
rr
or
	

Epochs	

0 50 100 150 200 250 300 350 400 450 500
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 104

Epochs

Tr
ai

ni
ng

 e
rro

r

Student Version of MATLAB

Tr
ai
ni
ng
	
 e
rr
or
	

Epochs	

•  Build	
 intui3ons	
 for	
 nonlinear	
 case	
 by	
 analyzing	
 linear	
 case	

Three	
 layer	
 dynamics	

	

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

Problem	
 formulation	

•  Network	
 trained	
 on	
 patterns	

	

•  Batch	
 gradient	
 descent	
 on	
 squared	
 error	

	

•  Dynamics	

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Input	
 correla3ons:	

Input-­‐output	
 correla3ons:	

and the network’s feature output. This gradient descent procedure yields the learning rule

�W 21 = �W 32T
�
yµxµT �W 32W 21xµxµT

�
(1)

�W 32 = �
�
yµxµT �W 32W 21xµxµT

�
W 21T , (2)

for each example µ, where � is a small learning rate. We imagine that training is divided into a
sequence of learning epochs, and in each epoch, the above rules are followed for all P examples in
random order. As long as � is su�ciently small so that the weights change by only a small amount
per learning epoch, we can average (1)-(2) over all P examples and take a continuous time limit to
obtain the mean change in weights per learning epoch. Let X = [x1x2 · · ·xP] be a matrix consisting
of all input examples, and Y = [y1y2 · · · yP] be a matrix consisting of the corresponding output
vectors. Over the course of an epoch, the averaged system performs gradient descent on the sum
of the squared error (SSE) of all patterns, defined as

SSE(W 21,W 32) =
��Y �W 32W 21X

��2
F

(3)

where kAkF =
qP

i,j A
2
ij is the Frobenius norm of a matrix. Gradient descent on the SSE is

controlled purely by the second order statistics of the training set, and gives rise to the di↵erential
equations

⌧
d

dt
W 21 = W 32T

�
⌃31 �W 32W 21⌃11

�
(4)

⌧
d

dt
W 32 =

�
⌃31 �W 32W 21⌃11

�
W 21T , (5)

where
⌃11 ⌘ XXT (6)

is an N1 ⇥N1 input correlation matrix,

⌃31 ⌘ Y XT (7)

is an N3 ⇥N1 input-output correlation matrix, and

⌧ ⌘ P

�
. (8)

Here t measures time in units of learning epochs; as t varies from 0 to 1, the network has seen P
examples corresponding to one learning epoch. We note that, although the network we analyze is
completely linear with the simple input-output map y = W 32W 21x, the gradient descent learning
dynamics given in Eqns. (4)-(5) are nonlinear.

1.1 Learning dynamics with orthogonal inputs

Our fundamental goal is to understand the dynamics of learning in (4)-(5) as a function of the
input statistics ⌃11 and ⌃31. In general, the outcome of learning will reflect an interplay between
the perceptual correlations in the examples, described by ⌃11, and the input-output correlations
described by ⌃31. To begin, though, we further simplify the analysis by focusing on the case

3

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

(see	
 paper	
 for	
 	

more	
 general	
 	

input	
 correla3ons)	

Analytic	
 learning	
 trajectory	

	

SVD	
 of	
 input-­‐output	
 correla3ons: 	
 	

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

	

Network	
 input-­‐output	
 map:	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 where	

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

τ	
 1/Learning	
 rate	

s	
 Singular	
 value	

a0	
 Ini3al	
 mode	
 strength	

•  Star3ng	
 from	
 decoupled	
 ini3al	

condi3ons.	

	

•  Each	
 ‘connec3vity	
 mode’	
 evolves	

independently	

•  Singular	
 value	
 s	
 learned	
 at	
 3me	
 O(1/s)	

0 200 400 600

0

50

100

150

200

t (Epochs)

In
pu

t−
ou

tp
ut

 m
od

e
st

re
ng

th

Simulation
Theory

Ite
m

s

Properties

Ite
m

s

Σ
31

=

U
S

V
T

M
od

es

Modes

+ 0 -

C

S
O

R

1
2

3

3 2 1

P B S F M

C

S
O

R

M
od

es

1
2

3

In
pu

t-
ou

tp
ut

co

rr
el

at
io

n
m

at
ri

x
O

ut
pu

t
si

ng
ul

ar
 v

ec
to

rs

Si
ng

ul
ar

 v
al

ue
s

In
pu

t
si

ng
ul

ar
 v

ec
to

rs

Modes

=

Properties
P B S F M

Fi
gu

re
2:

Ex
am

pl
e

si
ng

ul
ar

va
lu

e
de

co
m

po
si

tio
n

fo
r

a
to

y
da

ta
se

t.
Le

ft:
Th

e
le

ar
ni

ng
en

vi
ro

nm
en

t
is

sp
ec

ifi
ed

by
an

in
pu

t-o
ut

pu
t

co
rr

el
at

io
n

m
at

rix
.

Th
is

ex
am

pl
e

da
ta

se
t

ha
s

fo
ur

ite
m

s:
C

an
ar

y,
Sa

lm
on

,O
ak

,a
nd

Ro
se

.T
he

tw
o

an
im

al
s

sh
ar

e
th

e
pr

op
er

ty
th

at
th

ey
ca

n
M

ov
e,

w
hi

le
th

e
tw

o
pl

an
ts

ca
nn

ot
.I

n
ad

di
tio

n
ea

ch
ite

m
ha

sa
un

iq
ue

pr
op

er
ty

:c
an

Fl
y,

ca
n

Sw
im

,h
as

Ba
rk

,a
nd

ha
s

Pe
ta

ls
,r

es
pe

ct
iv

el
y.

R
ig

ht
:T

he
SV

D
de

co
m

po
se

s
S31

in
to

in
pu

t-o
ut

pu
tm

od
es

th
at

lin
k

a
se

t
of

co
he

re
nt

ly
co

va
ry

in
g

pr
op

er
tie

s(
ou

tp
ut

si
ng

ul
ar

ve
ct

or
si

n
th

e
co

lu
m

ns
of

U
)t

o
a

se
to

fc
oh

er
en

tly
co

va
ry

in
g

ite
m

s
(in

-
pu

ts
in

gu
la

r
ve

ct
or

s
in

th
e

ro
w

s
of

V
T

).
Th

e
ov

er
al

ls
tre

ng
th

of
th

is
lin

k
is

gi
ve

n
by

th
e

si
ng

ul
ar

va
lu

es
ly

in
g

al
on

g
th

e
di

-
ag

on
al

of
S.

In
th

is
to

y
ex

am
pl

e,
m

od
e

1
di

st
in

gu
is

he
s

pl
an

ts
fr

om
an

im
al

s;
m

od
e

2
bi

rd
s

fr
om

fis
h;

an
d

m
od

e
3

flo
w

er
s

fr
om

tre
es

.

W
e

w
is

h
to

tra
in

th
e

ne
tw

or
k

to
le

ar
n

a
pa

rti
cu

la
r

in
pu

t-
ou

tp
ut

m
ap

fr
om

a
se

to
f

P
tra

in
in

g
ex

am
pl

es
{ x

µ ,
yµ }

,µ
=

1,
..
.,

P.
Th

e
in

pu
tv

ec
to

rx
µ ,

id
en

tifi
es

ite
m

µ
w

hi
le

ea
ch

yµ

is
a

se
to

f
at

tri
bu

te
s

to
be

as
so

ci
at

ed
to

th
is

ite
m

.
Tr

ai
ni

ng
is

ac
co

m
pl

is
he

d
in

an
on

lin
e

fa
sh

io
n

vi
a

st
oc

ha
st

ic
gr

ad
ie

nt
de

sc
en

t;
ea

ch
tim

e
an

ex
am

pl
e

µ
is

pr
es

en
te

d,
th

e
w

ei
gh

ts
W

32
an

d
W

21
ar

e
ad

ju
st

ed
by

a
sm

al
la

m
ou

nt
in

th
e

di
re

ct
io

n
th

at
m

in
im

iz
es

th
e

sq
ua

re
d

er
ro

r� � y
µ
�

W
32

W
21

xµ� �
2

be
tw

ee
n

th
e

de
si

re
d

fe
at

ur
e

ou
tp

ut
,a

nd
th

e
ne

tw
or

k’
s

fe
at

ur
e

ou
tp

ut
.

Th
is

gr
ad

ie
nt

de
sc

en
tp

ro
ce

du
re

yi
el

ds
th

e
le

ar
ni

ng
ru

le

DW
21

=
lW

32
T
� yµ xµT

�
W

32
W

21
xµ xµT

�
(1

)

DW
32

=
l� yµ xµT

�
W

32
W

21
xµ xµT

� W
21

T
,

(2
)

fo
r

ea
ch

ex
am

pl
e

µ,
w

he
re

l
is

a
sm

al
l

le
ar

ni
ng

ra
te

.
W

e
im

ag
in

e
th

at
tra

in
in

g
is

di
vi

de
d

in
to

a
se

qu
en

ce
of

le
ar

ni
ng

ep
oc

hs
,a

nd
in

ea
ch

ep
oc

h,
th

e
ab

ov
e

ru
le

s
ar

e
fo

llo
w

ed
fo

r
al

lP
ex

am
pl

es
in

ra
nd

om
or

de
r.

A
s

lo
ng

as
l

is
su

ffi
ci

en
tly

sm
al

ls
o

th
at

th
e

w
ei

gh
ts

ch
an

ge
by

on
ly

a
sm

al
la

m
ou

nt
pe

r
le

ar
ni

ng
ep

oc
h,

w
e

ca
n

av
er

ag
e

(1
)-

(2
)

ov
er

al
lP

ex
am

pl
es

an
d

ta
ke

a
co

nt
in

uo
us

tim
e

lim
it

to
ob

ta
in

th
e

m
ea

n
ch

an
ge

in
w

ei
gh

ts
pe

rl
ea

rn
in

g
ep

oc
h,

t
d dt

W
21

=
W

32
T
� S31

�
W

32
W

21
S11

�
(3

)

t
d dt

W
32

=
� S31

�
W

32
W

21
S11

� W
21

T
,

(4
)

w
he

re
S11

⌘
E
[x

xT
]i

sa
n

N
1
⇥

N
1

in
pu

tc
or

re
la

tio
n

m
at

rix
,

S31
⌘

E
[y

xT
]

(5
)

is
an

N
3
⇥

N
1

in
pu

t-o
ut

pu
tc

or
re

la
tio

n
m

at
rix

,a
nd

t⌘
P l

.H
er

e
t

m
ea

su
re

s
tim

e
in

un
its

of
le

ar
ni

ng
ep

oc
hs

;a
s

t
va

rie
s

fr
om

0
to

1,
th

e
ne

tw
or

k
ha

s
se

en
P

ex
am

pl
es

co
rr

es
po

nd
in

g
to

on
e

le
ar

ni
ng

ep
oc

h.
W

e
no

te
th

at
,a

lth
ou

gh
th

e
ne

tw
or

k
w

e
an

al
yz

e
is

co
m

pl
et

el
y

lin
ea

rw
ith

th
e

si
m

pl
e

in
pu

t-o
ut

pu
tm

ap
y
=

W
32

W
21

x,
th

e
gr

ad
ie

nt
de

sc
en

tl
ea

rn
in

g
dy

na
m

ic
s

gi
ve

n
in

Eq
ns

.(
3)

-(
4)

ar
e

hi
gh

ly
no

nl
in

ea
r.

D
ec

om
po

si
ng

th
e

in
pu

t-
ou

tp
ut

co
rr

el
at

io
ns

O
ur

fu
nd

a-
m

en
ta

lg
oa

li
s

to
un

de
rs

ta
nd

th
e

dy
na

m
ic

s
of

le
ar

ni
ng

in
(3

)-
(4

)a
sa

fu
nc

tio
n

of
th

e
in

pu
ts

ta
tis

tic
sS

11
an

d
S31

.I
n

ge
ne

ra
l,

th
e

ou
tc

om
e

of
le

ar
ni

ng
w

ill
re

fle
ct

an
in

te
rp

la
y

be
tw

ee
n

th
e

pe
rc

ep
tu

al
co

rr
el

at
io

ns
in

th
ei

np
ut

pa
tte

rn
s,

de
sc

rib
ed

by
S11

,
an

d
th

e
in

pu
t-o

ut
pu

tc
or

re
la

tio
ns

de
sc

rib
ed

by
S31

.T
o

be
gi

n,
th

ou
gh

,w
e

co
ns

id
er

th
e

ca
se

of
or

th
og

on
al

in
pu

tr
ep

re
se

nt
a-

tio
ns

w
he

re
ea

ch
ite

m
is

de
si

gn
at

ed
by

a
si

ng
le

ac
tiv

e
in

pu
t

un
it,

as
us

ed
by

(R
um

el
ha

rt
&

To
dd

,1
99

3)
an

d
(R

og
er

s
&

M
cC

le
lla

nd
,2

00
4)

.I
n

th
is

ca
se

,S
11

co
rr

es
po

nd
s

to
th

e
id

en
-

tit
y

m
at

rix
.

U
nd

er
th

is
sc

en
ar

io
,t

he
on

ly
as

pe
ct

of
th

e
tra

in
-

in
g

ex
am

pl
es

th
at

dr
iv

es
le

ar
ni

ng
is

th
e

se
co

nd
or

de
r

in
pu

t-
ou

tp
ut

co
rr

el
at

io
n

m
at

rix
S31

.W
e

co
ns

id
er

its
si

ng
ul

ar
va

lu
e

de
co

m
po

si
tio

n
(S

V
D

)

S31
=

U
33

S31
V

11
T
=

N
1 Â a=
1
s a

ua
vaT

,
(6

)

w
hi

ch
w

ill
pl

ay
a

ce
nt

ra
lr

ol
e

in
un

de
rs

ta
nd

in
g

ho
w

th
e

ex
-

am
pl

es
dr

iv
e

le
ar

ni
ng

.
Th

e
SV

D
de

co
m

po
se

s
an

y
re

ct
an

gu
-

la
r

m
at

rix
in

to
th

e
pr

od
uc

t
of

th
re

e
m

at
ric

es
.

H
er

e
V

11
is

an
N

1
⇥

N
1

or
th

og
on

al
m

at
rix

w
ho

se
co

lu
m

ns
co

nt
ai

n
in

pu
t-

an
al

yz
in

g
si

ng
ul

ar
ve

ct
or

s
va

th
at

re
fle

ct
in

de
pe

nd
en

tm
od

es
of

va
ria

tio
n

in
th

e
in

pu
t,

U
33

is
an

N
3
⇥

N
3

or
th

og
on

al
m

a-
tri

x
w

ho
se

co
lu

m
ns

co
nt

ai
n

ou
tp

ut
-a

na
ly

zi
ng

si
ng

ul
ar

ve
ct

or
s

ua
th

at
re

fle
ct

in
de

pe
nd

en
tm

od
es

of
va

ria
tio

n
in

th
e

ou
tp

ut
,

an
d

S31
is

an
N

3
⇥

N
1

m
at

rix
w

ho
se

on
ly

no
nz

er
o

el
em

en
ts

ar
e

on
th

e
di

ag
on

al
;

th
es

e
el

em
en

ts
ar

e
th

e
si

ng
ul

ar
va

lu
es

s a
,a

=
1,
..
.,

N
1

or
de

re
d

so
th

at
s 1

�
s 2

�
··
·�

s N
1
.

A
n

ex
-

am
pl

e
SV

D
of

a
to

y
da

ta
se

ti
s

gi
ve

n
in

Fi
g.

2.
A

s
ca

n
be

se
en

,t
he

SV
D

ex
tra

ct
s

co
he

re
nt

ly
co

va
ry

in
g

ite
m

s
an

d
pr

op
-

er
tie

s
fr

om
th

is
da

ta
se

t,
w

ith
va

rio
us

m
od

es
pi

ck
in

g
ou

tt
he

un
de

rly
in

g
hi

er
ar

ch
y

pr
es

en
ti

n
th

e
to

y
en

vi
ro

nm
en

t.

T
he

te
m

po
ra

l
dy

na
m

ic
s

of
le

ar
ni

ng
A

ce
nt

ra
l

re
su

lt
of

th
is

w
or

k
is

th
at

w
e

ha
ve

de
sc

rib
ed

th
e

fu
ll

tim
e

co
ur

se
of

le
ar

ni
ng

by
so

lv
in

g
th

e
no

nl
in

ea
rd

yn
am

ic
al

eq
ua

tio
ns

(3
)-

(4
)

fo
r

or
th

og
on

al
in

pu
tr

ep
re

se
nt

at
io

ns
(S

11
=

I)
,a

nd
ar

bi
tra

ry
in

pu
t-o

ut
pu

t
co

rr
el

at
io

n
S31

.
In

pa
rti

cu
la

r,
w

e
fin

d
a

cl
as

s
of

ex
ac

ts
ol

ut
io

ns
(w

ho
se

de
riv

at
io

n
w

ill
be

pr
es

en
te

d
el

se
-

w
he

re
)f

or
W

21
(t
)

an
d

W
32
(t
)

su
ch

th
at

th
e

co
m

po
si

te
m

ap
-

pi
ng

at
an

y
tim

e
ti

sg
iv

en
by

W
32
(t
)W

21
(t
)
=

N
2 Â a=
1
a(

t,
s a
,a

0 a
)u

a
vaT

,
(7

)

w
he

re
th

e
fu

nc
tio

n
a(

t,
s,

a0)
go

ve
rn

in
g

th
e

st
re

ng
th

of
ea

ch
in

pu
t-o

ut
pu

tm
od

e
is

gi
ve

n
by

a(
t,

s,
a 0
)
=

se
2s

t/
t

e2s
t/

t
�

1+
s/

a 0
.

(8
)

Epochs	
 Saxe,	
 McCelland,	
 Ganguli,	
 ICLR,	
 2014	

Deeper	
 network	
 learning	
 dynamics	

•  Jacobian	
 that	
 back-­‐propagates	
 gradients	
 can	
 explode	
 or	

decay	

	
 x ∈ RN1y ∈ RND+1

.	
 .	
 .	

h2 ∈ RN3
x	

W 1W 2WD

f (W 1x)f (WDhD)

f (x)

f (W 2h1)f (WD−1hD−1)

Deeper	
 networks	

•  Can	
 generalize	
 to	
 arbitrary	
 depth	
 network	

•  Each	
 effective	
 singular	
 value	
 a	
 evolves	

independently	

	

•  In	
 deep	
 networks,	
 combined	
 gradient	
 is	

τ
d
dt
a = (Nl −1)a

2−2 (Nl−1)(s− a)
τ	
 1/Learning	
 rate	

s	
 Singular	
 value	

Nl	
 #	
 layers	

O Nl τ()

w1	
 w2	
 wNl-­‐1	

a =
Nl�1Y

i=1

Wi

Deep	
 linear	
 learning	
 speed	

•  Intuition	
 (see	
 paper	
 for	
 details):	

	

– Gradient	
 norm	

– Learning	
 rate	

– Learning	
 time	

•  Deep	
 learning	
 can	
 be	
 fast	
 with	
 the	
 right	
 ICs.	

O Nl()

O 1 Nl()

O 1()

(Nl	
 =	
 #	
 layers)	

Saxe,	
 McClelland,	
 Ganguli	
 ICLR	
 2014	

MNIST	
 learning	
 speeds	

•  Trained	
 deep	
 linear	
 nets	
 on	
 MNIST	

•  Depths	
 ranging	
 from	
 3	
 to	
 100	

•  1000	
 hidden	
 units/layer	
 (overcomplete)	

•  Decoupled	
 initial	
 conditions	
 with	
 @ixed	
 initial	
 mode	

strength	

•  Batch	
 gradient	
 descent	
 on	
 squared	
 error	

•  Optimized	
 learning	
 rates	
 for	
 each	
 depth	

•  Calculated	
 epoch	
 at	
 which	
 error	
 falls	
 below	
 @ixed	

threshold	

MNIST	
 depth	
 dependence	

0 50 100
0

50

100

150

200

250

Nl (Number of layers)

Le
ar

ni
ng

 ti
m

e
(E

po
ch

s)

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2
x 10−4

O
pt

im
al

 le
ar

ni
ng

 ra
te

Nl (Number of layers)

Time	
 to	
 criterion	
 Op(mal	
 learning	
 rate	

Depth	
 Depth	

Deep	
 linear	
 networks	

•  Deep	
 learning	
 can	
 be	
 fast	
 with	
 decoupled	
 ICs	
 and	
 O(1)	
 initial	
 mode	

strength.	
 How	
 to	
 7ind	
 these?	

•  Answer:	
 	
 Pre-­‐training	
 and	
 random	
 orthogonal	
 initializations	
 can	
 @ind	
 these	

special	
 initial	
 conditions	
 that	
 allow	
 depth	
 independent	
 training	
 times!!	

•  But	
 scaled	
 random	
 Gaussian	
 initial	
 conditions	
 on	
 weights	
 cannot.	
 	

Depth-­‐independent	
 training	
 time	

Time	
 to	
 criterion	
 Op(mal	
 learning	
 rate	

•  Deep	
 linear	
 networks	
 on	
 MNIST	

•  Scaled	
 random	
 Gaussian	
 ini3aliza3on	
 (Glorot	
 &	
 Bengio,	
 2010)	

•  Pretrained	
 and	
 orthogonal	
 have	
 fast	
 depth-­‐independent	

training	
 3mes!	

Random	
 vs	
 orthogonal	

•  Gaussian	
 preserves	
 norm	
 of	
 random	
 vector	
 on	
 average	

•  Attenuates	
 on	
 subspace	
 of	
 high	
 dimension	

•  Ampli6ies	
 on	
 subspace	
 of	
 low	
 dimension	

1	
 layer	
 net	
 5	
 layer	
 net	
 100	
 layer	
 net	

Singular	
 values	
 of	

Fr
eq

ue
nc
y	

Wtot = Wi

i=1

Nl−1

∏

Random	
 vs	
 orthogonal	

1	
 layer	
 net	
 5	
 layer	
 net	
 100	
 layer	
 net	

Singular	
 values	
 of	

Fr
eq

ue
nc
y	

Wtot = Wi

i=1

Nl−1

∏

All	
 singular	
 values	
 of	
 Wtot =1

•  Glorot	
 preserves	
 norm	
 of	
 random	
 vector	
 on	
 average	

•  Orthogonal	
 preserves	
 norm	
 of	
 all	
 vectors	
 exactly	

Deeper	
 network	
 learning	
 dynamics	

•  Jacobian	
 that	
 back-­‐propagates	
 gradients	
 can	
 explode	
 or	

decay	

	
 x ∈ RN1y ∈ RND+1

.	
 .	
 .	

h2 ∈ RN3
x	

W 1W 2WD

f (W 1x)f (WDhD)

f (x)

f (W 2h1)f (WD−1hD−1)

Extensive	
 Criticality	
 yields	
 	

Dynamical	
 Isometry	
 in	
 nonlinear	
 nets	

Suggests	
 initialization	
 for	
 nonlinear	
 nets	

•  near-­‐isometry	
 on	
 subspace	
 of	
 large	
 dimension	

•  Singular	
 values	
 of	
 end-­‐to-­‐end	
 Jacobian	

	
 	
 	
 	
 	
 concentrated	
 around	
 1.	
 	

Scale	
 orthogonal	
 matrices	
 by	
 gain	
 g	
 to	
 counteract	
 contractive	

nonlinearity	

	

	

	

	

Just	
 beyond	
 edge	
 of	
 chaos	
 (g>1)	
 may	
 be	
 good	
 initialization	

	

0 1 2 3
x 10−5

0

50

100
q = 0.2

g
=

0.
9

0 2 4 6
x 10−3

0

20

40

60

g
=

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g
=

1

0 0.5 1 1.5 2
0

50

100

g
=

1.
05

0 2 4 6
0

100

200

300

400

g
=

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

have shown that for linear networks, orthogonal initializations achieve exact dynamical isometry with all
singular values at 1, while greedy pre-training achieves it approximately.

We note that the discrepancy in learning times between the scaled Gaussian initialization and the orthogonal
or pre-training initializations is modest for the depths of around 6 used in large scale applications, but is
magnified at larger depths (Fig. 6A left). This may explain the modest improvement in learning times with
greedy pre-training versus random scaled Gaussian initializations observed in applications (see discussion in
Supplementary Appendix D). We predict that this modest improvement will be magnified at higher depths,
even in nonlinear networks. Finally, we note that in recurrent networks, which can be thought of as infinitely
deep feed-forward networks with tied weights, a very promising approach is a modification to the training
objective that partially promotes dynamical isometry for the set of gradients currently being back-propagated
[24].

4 Achieving approximate dynamical isometry in nonlinear networks

We have shown above that deep random orthogonal linear networks achieve perfect dynamical isometry.
Here we show that nonlinear versions of these networks can also achieve good dynamical isometry proper-
ties. Consider the nonlinear feedforward dynamics

xl+1
i

=

X

j

gW (l+1,l)
ij

�(xl

j

), (20)

where xl

i

denotes the activity of neuron i in layer l, W (l+1,l)
ij

is a random orthogonal connectivity matrix from
layer l to l + 1, g is a scalar gain factor, and �(x) is any nonlinearity that saturates as x ! ±1. We show
in Supplementary appendix G that there exists a critical value g

c

of the gain g such that if g < g
c

, activity
will decay away to zero as it propagates through the layers, while if g > g

c

, the strong linear positive gain
will combat the damping due to the saturating nonlinearity, and activity will propagate indefinitely without
decay, no matter how deep the network is. When the nonlinearity is odd (�(x) = ��(�x)), so that the mean
activity in each layer is approximately 0, these dynamical properties can be quantitatively captured by the
neural population variance in layer l,

ql ⌘ 1

N

NX

i=1

(xl

i

)

2. (21)

Thus lim

l!1 ql ! 0 for g < g
c

and lim

l!1 ql ! q1(g) > 0 for g > g
c

. When �(x) = tanh(x), we
compute g

c

= 1 and numerically compute q1(g) in Fig. 8 in Supplementary appendix G. Thus these non-
linear feedforward networks exhibit a phase-transition at the critical gain; above the critical gain, infinitely
deep networks exhibit chaotic percolating activity propagation, so we call the critical gain g

c

the edge of
chaos, in analogy with terminology for recurrent networks.

Now we are interested in how errors at the final layer N
l

backpropagate back to earlier layers, and whether
or not these gradients explode or decay with depth. To quantify this, for simplicity we consider the end to
end Jacobian

JNl,1
ij

(xNl
) ⌘ @xNl

i

@x1
j

����
x

Nl

, (22)

which captures how input perturbations propagate to the output. If the singular value distribution of this
Jacobian is well-behaved, with few extremely large or small singular values, then the backpropagation of
gradients will also be well-behaved, and exhibit little explosion or decay. The Jacobian is evaluated at a
particular point xNl in the space of output layer activations, and this point is in turn obtained by iterating
(20) starting from an initial input layer activation vector x1. Thus the singular value distribution of the

12

0 1 2 3
x 10−5

0

50

100
q = 0.2

g
=

0.
9

0 2 4 6
x 10−3

0

20

40

60

g
=

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g
=

1

0 0.5 1 1.5 2
0

50

100

g
=

1.
05

0 2 4 6
0

100

200

300

400

g
=

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

0 1 2 3
x 10−5

0

50

100
q = 0.2

g
=

0.
9

0 2 4 6
x 10−3

0

20

40

60

g
=

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g
=

1

0 0.5 1 1.5 2
0

50

100

g
=

1.
05

0 2 4 6
0

100

200

300

400

g
=

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

0 1 2 3
x 10−5

0

50

100
q = 0.2

g
=

0.
9

0 2 4 6
x 10−3

0

20

40

60

g
=

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g
=

1

0 0.5 1 1.5 2
0

50

100

g
=

1.
05

0 2 4 6
0

100

200

300

400

g
=

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

0 1 2 3
x 10−5

0

50

100
q = 0.2

g
=

0.
9

0 2 4 6
x 10−3

0

20

40

60

g
=

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g
=

1

0 0.5 1 1.5 2
0

50

100

g
=

1.
05

0 2 4 6
0

100

200

300

400

g
=

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

g=0.9	
 g=0.95	
 g=1	
 g=1.05	
 g=1.1	

0	
 3e-­‐5	
 0	
 6e-­‐5	
 0	
 0.4	
 0	
 2	
 0	
 6	

Fr
eq

ue
nc
y	

Gain	

Singular	
 values	

of	
 J	

•  g>1	
 speeds	
 up	
 30	
 layer	
 nonlinear	
 nets	

•  Dynamic	
 isometry	
 reduces	
 test	
 error	
 by	
 1.4%	
 pts	

Dynamic	
 Isometry	
 Initialization	

MNIST	
 Classifica3on	
 error,	
 epoch	
 1500	
 Train	
 	

Error	
 (%)	

Test	
 	

Error	
 (%)	

Gaussian	
 (g=1,	
 random)	
 2.3	
 3.4	

g=1.1,	
 random	
 1.5	
 3.0	

g=1,	
 orthogonal	
 2.8	
 3.5	

Dynamic	
 Isometry	
 (g=1.1,	
 orthogonal)	
 0.095	
 2.1	

•  Tanh	
 network,	
 soPmax	
 output,	
 500	
 units/layer	

•  No	
 regulariza3on	
 (weight	
 decay,	
 sparsity,	
 dropout,	
 etc)	

Summary	

•  Deep	
 linear	
 nets	
 have	
 nontrivial	
 nonlinear	
 learning	
 dynamics.	

•  Learning	
 time	
 inversely	
 proportional	
 to	
 strength	
 of	
 input-­‐output	

correlations.	

•  With	
 the	
 right	
 initial	
 weight	
 conditions,	
 number	
 of	
 training	

epochs	
 can	
 remain	
 @inite	
 as	
 depth	
 increases.	
 	

•  Dynamically	
 critical	
 networks	
 just	
 beyond	
 the	
 edge	
 of	
 chaos	
 enjoy	

depth-­‐independent	
 learning	
 times.	

Beyond	
 learning:	
 criticality	
 and	

generalization	

•  Deep	
 networks	
 +	
 large	
 gain	
 factor	
 g	
 train	
 exceptionally	
 quickly	
 	

•  But	
 large	
 g	
 incurs	
 heavy	
 cost	
 in	
 generalization	
 performance	

	

•  Suggests	
 small	
 initial	
 weights	
 regularize	
 towards	
 smoother	
 functions	

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

g

er
ro

r

train
test

Student Version of MATLAB

M
N
IS
T	

Er
ro
r	

Gain	
 g	

Test	
 error	

Train	
 error	

1	
 1.4	
 1.8	

Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons: Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning: PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob)
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing

High dimensional nonconvex optimization

It is often thought that local minima at high error stand as
as a major impediment to non-convex optimization.

In random non-convex error surfaces over
high dimensional spaces, local minima at high
error are exponentially rare in the dimensionality.

Instead saddle points proliferate.

We developed an algorithm that rapidly escapes saddle points
in high dimensional spaces.

Identifying and attacking the saddle point problem in high dimensional non-convex optimization.
Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio. NIPS 2014.

The loss surfaces of multilayer networks. A. Chormanska, M. Henaff, M. Mathieu, G. Ben Arous,
Y. LecCun, AISTATS 2015.

General properties of error landscapes in
high dimensions

From statistical physics:

Consider a random Gaussian error
landscape over N variables.

Let x be a critical point.
Let E be its error level.
Let f be the fraction of negative curvature
directions.

Bray and Dean, Physical Review Letters, 2007
E

f

Properties of Error Landscapes on the!
Synaptic Weight Space of a Deep Neural Net

Qualitatively consistent with the
statistical physics theory of random error landscapes

How to descend saddle points

Newton’s Method

Saddle Free Newton’s Method

Intuition: saddle points attract Newton’s method, but
 repel saddle free Newton’s method.

Derivation: minimize a linear approximation to f(x) within a trust region
 in which the linear and quadratic approximations agree

�x = �H�1 rf(x)

�x = �|H|�1 rf(x)

Performance of saddle free Newton in
learning deep neural networks.

SFN out-performs
 (1) minibatch stochastic gradient descent and
 (2) damped Newton’s method

The performance advantage increases with the problem dimensionality.

Performance of saddle free Newton in
learning deep neural networks.

When stochastic gradient descent appears to plateau, switching to saddle
Free newton escapes the plateau.

Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons: Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning: PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob)
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing

 Modeling Complex Data by
ReversingTime!

with Jascha Sohl-Dickstein!
Eric Weiss, Niru Maheswaranathan!

Jascha Sohl-Dickstein Modeling Complex Data

Flexibility-Tractability Tradeoff
in Probabilistic Models!

Goal

Jascha Sohl-Dickstein Modeling Complex Data

Achieving Flexibility!
and Tractability!

•  Physical motivation!

•  Destroy structure in data through a diffusive process.!

•  Carefully record the destruction.!

•  Use deep networks to reverse time and create structure from noise.!

•  Inspired by recent results in non-equilibrium statistical
mechanics which show that entropy can transiently
decrease for short time scales (violations of second law)!

Jascha Sohl-Dickstein Modeling Complex Data

Physical Intuition: Destruction
of Structure through Diffusion!

•  Dye density represents probability density!

•  Goal: Learn structure of probability density!

•  Observation: Diffusion destroys structure!

Data distribution! Uniform distribution!

Jascha Sohl-Dickstein Modeling Complex Data

Physical Intuition: Recover
Structure by Reversing Time!

•  What if we could reverse this process?!

•  Recover data distribution by starting from
uniform distribution and running a new type of
reverse dynamics (using a trained deep
network)!

Data distribution! Uniform distribution!

Jascha Sohl-Dickstein Modeling Complex Data

•  What if we could reverse time?!

•  Recover data distribution by starting from
uniform distribution and running dynamics
backwards (using a trained deep network)!

Data distribution! Uniform distribution!

Physical Intuition: Recover
Structure by Reversing Time!

Jascha Sohl-Dickstein Modeling Complex Data

Swiss Roll!

•  Forward diffusion process!

•  Start at data!

•  Run Gaussian diffusion until samples become Gaussian blob!

Jascha Sohl-Dickstein Modeling Complex Data

Swiss Roll!

•  Reverse diffusion process!

•  Start at Gaussian blob!

•  Run Gaussian diffusion until samples become data distribution!

Jascha Sohl-Dickstein Modeling Complex Data

Swiss Roll!

Diffusion!

Data distribution!

Diffusion with neural network!
determining mean and covariance!

of each step!

Jascha Sohl-Dickstein Modeling Complex Data

Dead Leaf Model!

•  Training data!

Jascha Sohl-Dickstein Modeling Complex Data

Diffusion Probabilistic Model
on Dead Leaves!

Training Data! Sample from!
[Theis et al, 2012]!

Sample from!
diffusion model!

Log likelihood!
1.24 bits/pixel!

Log likelihood!
1.49 bits/pixel!

Jascha Sohl-Dickstein Modeling Complex Data

Natural Images!

•  Training data!

Jascha Sohl-Dickstein Modeling Complex Data

Diffusion Probabilistic Model
Inpainting!

Jascha Sohl-Dickstein Modeling Complex Data

Flexible and Tractable Learning
of Probabilistic Models!

•  Flexible!

•  Every distribution has a diffusion process (ongoing work applying to
binary spike trains, and full color natural images from diverse
scenes)!

•  Tractable!

•  Training: Estimate mean and covariance of Gaussian!

•  Sampling: Exact - model defined by sampling chain!

•  Inference: Via sampling!

•  Evaluation: Cheap - compute probability of sequence of Gaussians!

Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons: Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning: PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob)
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing

 A theory of deep neural expressivity
 through transient chaos

Stanford Google

Ben Poole
 Jascha
Sohl-
Dickstein

 Subhaneil
 Lahiri

 Maithra
 Raghu

 http://ganguli-gang.stanford.edu Twitter: @SuryaGanguli

Funding: Bio-X Neuroventures!
Burroughs Wellcome!

Genentech Foundation!
James S. McDonnell Foundation!

McKnight Foundation!
National Science Foundation!

 !
NIH!

Office of Naval Research!
Simons Foundation!
Sloan Foundation!

Swartz Foundation!
Stanford Terman Award!

References
Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural

networks, Cog Sci. 2013.

Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks, ICLR 2014.

Identifying and attacking the saddle point problem in high dimensional non-convex
optimization, Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya

Ganguli, Yoshua Bengio, NIPS 2014.

Modelling arbitrary probability distributions using non-equilibrium thermodynamics, J. Sohl-
Dickstein, E. Weiss, N. Maheswaranathan, S. Ganguli, ICML 2015.

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S.
Lahiri,M. Raghu, J. Sohl-Dickstein, S. Ganguli, under review, arxiv/1606.05340

On the expressive power of deep neural networks, M.Raghu, B. Poole,J. Kleinberg, J. Sohl-
Dickstein, S. Ganguli, under review, arxiv/1606.05336

Deep Knowledge Tracing, C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. Guibas, J.
Sohl-Dickstein, NIPS 2015.

http://ganguli-gang.stanford.edu

 Seminal works on the expressive power of depth

Overall idea: there exist certain (special?) functions that can be
computed:

 a) efficiently using a deep network (poly # of neurons in input
dimension)

 b) but not by a shallow network (requires exponential # of neurons)

Intellectual traditions in boolean circuit theory: parity function is such a
function for boolean circuits.

Networks with one hidden layer are universal function approximators.

So why do we need depth?

Universal function approximation theorems yield no guarantees on the
size
of the hidden layer needed to approximate a function well.

 Seminal works on the expressive power of depth

 Nonlinearity Measure of Functional Complexity

 Rectified Linear Unit (ReLu) Number of linear regions

There exists a function computable by a deep network where the number
of linear regions is exponential in the depth.

To approximate this function with a shallow network, one would require
exponentially many more neurons.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.
On the number of linear regions of deep neural networks, NIPS 2014

 Seminal works on the expressive power of depth

 Nonlinearity Measure of Functional Complexity

 Sum-product network Number of monomials

There exists a function computable by a deep network where the number
of unique monomials is exponential in the depth.

To approximate this function with a shallow network, one would require
exponentially many more neurons.

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks, NIPS 2011.

 Questions

The particular functions exhibited by prior work do not seem natural?

 (see Tommy Poggio’s talk later today!)

Are such functions rare curiosities?

Or is this phenomenon much more generic than these specific examples?

In some sense, is any function computed by a generic deep network
not efficiently computable by a shallow network?

If so we would like a theory of deep neural expressivity that demonstrates
this for
 1) Arbitrary nonlinearities

 2) A natural, general measure of functional complexity.

 Limitations of prior work

Theoretical technique Nonlinearity Measure of Functional
 Complexity

Combinatorics/ ReLU Number of linear regions
Hyperplane Arrangements

Polynomial expansion Sum-product Number of monomials

Algebraic topology Pfaffian Sum of betti numbers

Riemannian geometry + Arbitrary Extrinsic
Dynamical mean field theory Curvature

We will show that even in generic, random deep neural networks, measures
of functional curvature grow exponentially with depth but not width!

More over the origins of this exponential growth can be traced to chaos theory.

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A comparison between
shallow and deep architectures. Neural Networks and Learning Systems, IEEE Transactions on, 2014.

ier

 Another perspective on the advantage of depth: disentangling

How can we mathematically formalize the notion of disentangling
in deep networks?

How do we use this mathematical formalization to quantitatively assess the
disentangling power of deep versus shallow networks?

We will show that deep networks can disentangle manifolds whose
curvature grows exponentially with depth!

A maximum entropy ensemble of deep random networks

Structure: i.i.d. random Gaussian weights and biases:

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)

x

l
= �(hl

)

h

l
= W

l
x

l�1
+ b

l

Wl
ij N

✓
0,

�2
w

N l�1

◆

bl
i N (0,�2

b)

 Emergent, deterministic signal propagation
 in random neural networks

Question: how do simple input manifolds propagate through the layers?

A single point: When does its length grow or shrink and how fast?

A pair of points: Do they become more similar or more different, and
 how fast?

A smooth manifold: How does its curvature and volume change?

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)

x

l
= �(hl

)

h

l
= W

l
x

l�1
+ b

l

Propagation of a single point through a deep network

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)

x

l
= �(hl

)

h

l
= W

l
x

l�1
+ b

l

hl = Wl �(hl�1) + bl ql =
1

Nl

NlX

i=1

(hl
i)

2

ql = V(ql�1 |�w,�b) ⌘ �2
w

Z
Dz �

⇣p
ql�1z

⌘2
+ �2

b

A recursion relation for the length of a point as it propagates through the
network

Propagation of a single point through a deep network

�b = 0.3

Propagation of a single point through a deep network

�w < 1 �b = 0 : ql ! 0

�w > 1 �b = 0 or �b 6= 0 : ql ! q⇤

 Propagation of two points through a deep network

qlab =
1

Nl

NlX

i=1

h

l
i(x

0,a)hl
i(x

0,b) a, b 2 {1, 2}.

The geometry of two points in a hidden layer l is captured
by the two by two matrix of inner products:

cl12 =
ql12p

ql11
p
ql22

Of particular interest: the correlation
coefficient or cosine of the angle
between the two points:

x

0,1

x

0,2

 A theory of correlation propagation in a deep network

qlab =
1

Nl

NlX

i=1

h

l
i(x

0,a)hl
i(x

0,b) a, b 2 {1, 2}.The geometry of two points:

cl12 =
ql12p

ql11
p
ql22

Correlation coefficient between two points:

ql12 = C(cl�1
12 , ql�1

11 , ql�1
22 |�ww,�b) ⌘ �2

w

Z
Dz1 Dz2 � (u1)� (u2) + �2

b ,

u1 =
q

ql�1
11 z1, u2 =

q
ql�1
22


cl�1
12 z1 +

q
1� (cl�1

12)2z2

�
,

A recursion relation for the correlation coeff. between two points in a deep net!

x

0,1

x

0,2

 Propagation of correlations through a deep network

�b = 0.3

cl12 =
1

q⇤
C(cl�1

12 , q⇤, q⇤ |�w,�b)

�1 ⌘ @cl12
@cl�1

12

�����
c=1

= �2
w

Z
Dz

⇥
�0 �pq⇤z

�⇤2 Interpretation: χ1 is a
multiplicative stretch factor:

 χ1 < 1 : nearby points come closer together
 χ1 > 1 : nearby points are driven apart

 Propagation of two points through a deep network

Small �w relative to �b : �1 < 1 cl12 ! 1

Intermediate �w relative to �b : �1 > 1 cl12 ! c⇤

Large �w relative to �b : �1 > 1 cl12 ! 0

 Propagation of a manifold through a deep network

The geometry of the manifold is captured by the similarity matrix -
How similar two points are in internal representation space):

Or autocorrelation function:

x

0(✓)

ql(✓1, ✓2) =
1

Nl

NlX

i=1

h

l
i[x

0(✓1)]h
l
i[x

0(✓2)]

ql(�✓) =

Z
d✓ ql(✓, ✓ +�✓)

 Propagation of a manifold through a deep network

h1

(✓) =
p

N1q⇤
⇥
u0

cos(✓) + u1
sin(✓)

⇤ A great circle
input manifold

 Propagation of a manifold through a deep network

 Riemannian geometry I: Euclidean length

✓

h(✓)

gE(✓) =
@h(✓)

@✓
· @h(✓)

@✓

Metric on manifold coordinate θ
induced by Euclidean metric in
internal representation space h.

@h(✓)

@✓

dLE =
q

gE(✓)d✓
Length element: if one moves from
Θ  to Θ+ dΘ along the manifold,
then one moves a distance dLE

in internal representation space

Riemannian geometry II: Extrinsic Gaussian Curvature

h(✓)

v(✓) =
@h(✓)

@✓

a(✓) =
@v(✓)

@✓

Point on the curve

Tangent or velocity
vector

Acceleration
vector

The velocity and acceleration vector span a 2 dimensional plane in N dim
space.

Within this plane, there is a unique circle that touches the curve at h(θ), with the
same velocity and acceleration.

The Gaussian curvature κ(θ) is the inverse of the radius of this circle.

(✓) =

s
(v · v)(a · a)� (v · a)2

(v · v)3

 Riemannian geometry III:
 The Gauss map and Grassmannian length

✓
v̂(✓) 2 SN�1

A point on
the curve

The unit
tangent vector
at that point

Metric on manifold coordinate θ
induced by metric on the Grassmannian:
how quickly unit tangent vector changes

Length element: if one moves from
Θ  to Θ+ dΘ along the manifold,
then one moves a distance dLG

Along the Grassmanian

gG(✓) =
@v̂(✓)

@✓
· @v̂(✓)

@✓

dLG =
q

gG(✓)d✓

gG(✓) = (✓)2gE(✓) Grassmannian length, Gaussian curvature
and Euclidean length

 An example: the great circle

A great circle
input manifold

gE(✓) = Nq

LE = 2⇡
p

Nq

(✓) = 1/
p

Nq gG(✓) = 1

LG = 2⇡

Euclidean
 length

Gaussian
Curvature

Grassmannian
 Length

Behavior under isotropic linear expansion via multiplicative stretch χ1:

h1
(✓) =

p
Nq

⇥
u0

cos(✓) + u1
sin(✓)

⇤

LG ! LG

Increase
 length

 Decrease
Curvature

Remain
Invariant

LE ! p
�1 LE  ! 1

p
�1



 χ1 < 1

 χ1 > 1

Contraction Increase Constant

Expansion Decrease Constant

 Theory of curvature propagation in deep networks

�2 = �2
w

Z
Dz

⇥
�00 �pq⇤z

�⇤2

�1 = �2
w

Z
Dz

⇥
�0 �pq⇤z

�⇤2ḡE,l = �1 ḡ
E,l�1

(̄l)2 = 3
�2

�2
1

+
1

�1
(̄l�1)2

ḡE,1 = q⇤

(̄1)2 =
1

q⇤

Ordered: χ1 < 1

Chaotic: χ1 > 1

Local
Stretc
h

Gaussian
Curvatur
e

Grassmannian
 Length

Contraction Explosion Constant

Expansion Attentuation + Exponential
 Addition Growth

 Modification of existing curvature due to stretch

 Addition of new curvature due to nonlinearity

 Curvature propagation: theory and experiment

Unlike linear expansion, deep neural signal propagation can:

 1) exponentially expand length,
 2) without diluting Gaussian curvature,
 3) thereby yielding exponential growth of Grassmannian length.

As a result, the circle will become space filling as it winds around at
a constant rate of curvature to explore many dimensions!

 Exponential expressivity is not achievable by shallow nets

 N1

x

0(✓)

 Boundary disentangling: theory

How can we mathematically formalize the notion of disentangling
in deep networks?

How do we use this mathematical formalization to quantitatively assess the
disentangling power of deep versus shallow networks?

 Boundary disentangling: theory

y = sgn(� · xD � �0) A linear classifier in the top layer

(� · xD � �0) = 0 Implements a hyperplane decision
boundary in final layer

G(x0) = (� · xD(x0)� �0) = 0
Yielding a curved co-dimension 1
decision boundary in the input layer

1(x
⇤) � 2(x

⇤) � · · · � N�1(x
⇤)

Its curvature at a point is characterized by N-1
principal curvatures:

H = ||~rG||�1
2 P

@2G

@x@xT
P

P = I� drGdrG
T

They are the eigenvalues of:

 Boundary disentangling: experiment

The principal curvatures of decision boundaries in the chaotic regime
grow exponentially with depth!

Thus exponentially curved manifolds in input space can be flattened to
hyperplanes even by deep random networks!

 Summary
We have combined Riemannian geometry with dynamical mean field theory
to study the emergent deterministic properties of signal propagation in deep
nonlinear nets.

We derived analytic recursion relations for Euclidean length, correlations,
curvature, and Grassmannian length as simple input manifolds propagate
forward through the network.

We obtain an excellent quantitative match between theory and simulations.

Our results reveal the existence of a transient chaotic phase in which the
network expands input manifolds without straightening them out, leading to
“space filling” curves that explore many dimensions while turning at a
constant rate. The number of turns grows exponentially with depth.

Such exponential growth does not happen with width in a shallow net.

Chaotic deep random networks can also take exponentially curved N-1
Dimensional decision boundaries in the input and flatten them into
Hyperplane decision boundaries in the final layer: exponential disentangling!

 (see Poggio’s talk later today!)

Are such functions rare curiosities?

Or is in some sense any function computed by a generic deep network
not efficiently computable by a shallow network?

If so we would like a theory of deep neural expressivity that demonstrates
this for
 1) Arbitrary nonlinearities

 2) A natural, general measure of functional complexity.

Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons: Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning: PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob)
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing

References
•  M. Advani and S. Ganguli, An equivalence between high dimensional Bayes optimal inference and M-estimation,

NIPS 2016.
•  M. Advani and S. Ganguli, Statistical mechanics of optimal convex inference in high dimensions, Physical Review X,

6, 031034, 2016.
•  A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks, Proc. of the

35th Cognitive Science Society, pp. 1271-1276, 2013.
•  A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep neural networks,

ICLR 2014.
•  M. Advani and S. Ganguli, An equivalence between high dimensional Bayes optimal inference and M-estimation,

NIPS 2016.
•  Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking the saddle point

problem in high-dimensional non-convex optimization, NIPS 2014.
•  B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli, Exponential expressivity in deep neural networks

through transient chaos, NIPS 2016.
•  S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein, Deep information propagation, https://arxiv.org/abs/

1611.01232, under review at ICLR 2017.
•  S. Lahiri, J. Sohl-Dickstein and S. Ganguli, A universal tradeoff between energy speed and accuracy in physical

communication. https://arxiv.org/abs/1603.07758
•  A memory frontier for complex synapses, S. Lahiri and S. Ganguli, NIPS 2013.
•  Modelling arbitrary probability distributions using non-equilibrium thermodynamics, J. Sohl-Dickstein, E. Weiss, N.

Maheswaranathan, S. Ganguli, ICML 2015.
•  Deep Knowledge Tracing, C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. Guibas, J. Sohl-Dickstein, NIPS

2015.
•  Deep learning models of the retinal response to natural scenes, L. McIntosh, N. Maheswaranathan, S. Ganguli, S.

Baccus, NIPS 2016.
•  http://ganguli-gang.stanford.edu

