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Theoretical neuroscience in the disciplinary landscape 
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Neuroscience 
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with Baccus lab:  inferring  
hidden circuits in the retina 
w/ Niru Maheswaranathan and Lane McIntosh 
 
with Clandinin lab: unraveling the  
computations underlying fly motion  
vision from whole brain optical imaging 
w/ Jonathan Leong, Ben Poole and Jennifer Esch 
 
with the Giocomo lab: understanding 
the internal representations of space  
in the mouse entorhinal cortex  
w/ Kiah Hardcastle and Sam Ocko 
 
with the Shenoy lab: a theory of neural 
dimensionality, dynamics and measurement 
w/ Peiran Gao, Eric Trautmann 
 
with the Raymond lab: theories of how 
enhanced plasticity can either enhance 
or impair learning depending on experience  
w/ Subhaniel Lahiri, Barbara Vu, Grace Zhao 

      Neural circuits and behavior: theory, computation and experiment 



A palpable technology driven excitement in neuroscience 

Measuring Dynamics 
 
 
Multielectrode Recordings 
 
Calcium imaging 
 
Novel voltage sensors 
 
EEG / fMRI 
 
Quantification of Behavior 

Measuring Connectivity 
 
 
High throughput EM 
 
Viral tracing 
 
RNA barcodes 

Circuit Perturbations 
 
 
Optogenetics 
 
TMS 
 
Genetic Knockouts 
 
Crispr / CAS 

Question:   How do we go from this explosion of data to a conceptual understanding? 
 
Issue 1:   We will not soon record from the entire brain at single cell single spike-time                
                resolution during any behavior.  
 
Issue 2:   Even if we could, what would we do with all the data?  
 
 



Broader theoretical challenges in neuroscience

How can we understand neural circuits
such a high subsampled measurement 
regime? 
 

Even if we had all the data, what would we do 
with it?  Lets look to our colleagues in 
computer science for interesting challenges.  

High dimensional 
statistics

Deep Learning

Issue 1: Discovering
structure with 
limited data.

Issue 2: Examples of  
complete neural circuit 
models



Low dimensional manifolds

Independence

Clusters

No strong loops

Sparsity

Low rank matrix structure

At the core of every data analysis algorithm lies an 
implied hypothesis about underlying simplicity in data 

Assumed simplicity

Dimensionality reduction

ICA

Various clustering algorithms

Message passing

Compressed sensing

Nuclear norm minimization

Associated algorithm

If any of these simplicities exist in a system, then we can 
often accurately characterize the structure/function of that 
system using many fewer measurements than the total 
dimensionality of the system!  



•  What does it mean to understand the brain (or a neural 
circuit?) 

•  We understand how the connectivity and dynamics of a neural 
circuit gives rise to behavior. 

•  And also how neural activity and synaptic learning rules 
conspire to self-organize useful connectivity that subserves 
behavior. 

 
•  The field of machine learning has generated a plethora of 

learned neural networks that accomplish interesting functions. 

•  We know their connectivity, dynamics, learning rule, and 
developmental experience, *yet*, we do not have a 
meaningful understanding of how they learn and work! 

 Motivations for an alliance between theoretical neuroscience and                           
                                  theoretical machine learning 

On simplicity and complexity in the brave new world of large scale 
neuroscience, Peiran Gao and S. Ganguli, Curr. Op. in Neurobiology, 2015.



Outline of talks I, II and III

1.  Oldies but goodies 

1.  Models of single neurons:  Hodgkin Huxley to Hopfield 
2.  The Hopfield model 
3.  The perceptron learning algorithm: memorization and generalization 
4.  Unsupervised learning:  PCA, ICA, Sparse Coding 

2.  High dimensional statistics: theory and experiment 

1.  The best way to do regression in high dimensions (Replica theory) 
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob ) 
3.  Figuring out how neural circuits learn (Tensor decompositions) 

3.  Deep learning: theory and practice 

1.  Speeding up deep learning (Dynamic criticality) 
2.  Error landscape of deep networks (Stat mech of random Gaussian fields) 
3.  Deep generative models   (Non-equilbrium thermodynamics) 
4.  Expressive power of deep networks (Riemannian geometry and chaos theory) 
5.  Application: deep models of the retina: the first step in seeing  





Canonical models in theoretical neuroscience

Model Neurons:  From Hodgkin Huxley to Hopfield, Abbott and Kepler 1990 
 
 
Neural networks and physical systems with emergent collective computational  
Abilities, Hopfield, PNAS 1984. 
 
 
Statistical mechanics of neural networks near saturation, Amit, Gutfreund,  
Sompolinsky, Annals of Physics, 1987. 
 
 
The space of interactions in neural network models, 
J. Phys. A: Math. Gen, Gardner E 1988 
 
 
 
 
 



What does it take to get distributed modes?

Goal: solve optimization problem:

Expansion: Neural implementation of L1 Minimization

Neural circuit solution:

N neurons

T neurons
ai  = i’th column of N by T matrix A
     = i’th dictionary element of rep of x
     = approximate RF of i’th layer 2 neuron

Lij = ai . aj  = lateral inhibition

si = F(vi)  = single neuron nonlinearity

Rozell C, et. al. 2008. Sparse coding via thresholding and local competitionin neural circuits. Neural Comp 2010 

For each choice of sparsity penalty V, there is a neuronal nonlinearity F such that neural 
circuit dynamics ~ gradient descent solution of optimization 



What does it take to get distributed modes?Expansion: Neural implementation of L1 Minimization

 Olshausen and Field, Nature 1996 
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Finding optimal algorithms for nonlinear regressions in high dimensional data analysis

Madhu Advani:   Stanford -> Harvard



A revolution in the way we collect and analyze data: 
          The need to think in high dimensions 

P = dimensionality of data  N = number of data points α = N / P

Classical Data Modern Data 

P  ~ O(1)
N -> ∞
 α -> 0

P -> ∞ 
N -> ∞
 α ~ 0(1)

N = 2 (current and voltage)                                          N=O(100) spike rates  
M = O(100)                                                                   M=O(100) trials



Statistical mechanics of high dimensional data analysis 
P = dimensionality of data  N = number of data points α = N / P

Classical Statistics Modern Statistics 

P  ~ O(1)
N -> ∞
 α -> 0

P -> ∞ 
N -> ∞
 α ~ 0(1)

Machine Learning and Data Analysis
Learn statistical parameters by maximizing log      
likelihood of data given parameters. 

Statistical Physics of Quenched Disorder
Energy  = - log Prob ( data | parameters)
Data = quenched disorder
Parameters = thermal degrees of freedom

Statistical mechanics of compressed sensing, S. Ganguli and H. Sompolinsky, PRL 2010.

Short-term memory in neuronal networks through dynamical compressed sensing, NIPS 2010.

Compressed sensing, sparsity and dimensionality in neuronal information processing and data analysis, S. 
Ganguli and H. Sompolinsky,  Annual Reviews of Neuroscience, 2012

Statistical mechanics of optimal convex inference, M. Advani and S. Ganguli, Physical Review X, 2016.

An equivalence between high dimensional Bayes optimal inference and M-estimation, NIPS 2016. 

Random projections of random manifolds, S. Lahiri, P. Gao, S. Ganguli, http://arxiv.org/abs/1607.04331, under 
review at JMLR. 



Optimal inference in high dimensions

Generative model and measurements

 P dim signal   s0  ~  Ps
 N measurements with noise  ε  ~  Pε
 α = N/P = measurement density 

Estimation algorithm

ρ = loss function
σ = regularizer
qs = L2 estimation error

Example algorithms



Optimal inference in high dimensions

Generative model and measurements

 P dim signal   s0  ~  Ps
 N measurements with noise  ε  ~  Pε
 α = N/P = measurement density 

Estimation algorithm

ρ = loss function
σ = regularizer
qs = L2 estimation error

Question:

For a given signal distribution Ps , noise distribution Pε , and measurement density α,

what is the best loss function ρ and regularizer σ? 



Optimal inference in high dimensions



Fundamental limits on convex inference in high dimensions



Optimal inference in high dimensions
Question: For a given signal distribution Ps , noise distribution Pε , and measurement density 
α,  what is the best loss function ρ and regularizer σ? 

For log-concave signal and noise:  the optimal loss and regularizer are nonlinearly smoothed 
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!



Optimal inference in high dimensions
Question: For a given signal distribution Ps , noise distribution Pε , and measurement density 
α,  what is the best loss function ρ and regularizer σ? 

For log-concave signal and noise:  the optimal loss and regularizer are nonlinearly smoothed 
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!

M. Advani and S. Ganguli, An equivalence 
between high dimensional Bayes optimal 
inference and M-estimation, NIPS 2016.
 
M. Advani and S. Ganguli, Statistical mechanics of 
optimal convex inference in high dimensions, 
Physical Review X, 6, 031034, 2016.

Related work by El Karoui,  and Montanari.
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A theory of recovering neural state space 
dynamics

Surya Ganguli

Dept of Applied Physics
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How can we record O(100) neurons in regions deep within the 
brain and obtain scientifically interpretable results that relate 
neural activity to behavior and cognition?

This is remarkable, considering these brain regions can contain 
O(106-109) neurons – 5 orders of magnitude more than we record! 

A major conceptual elephant

How has systems neuroscience been as successful as it has in 
such an undersampled measurement regime?  

Or are we completely misleading ourselves?



An exponential Moore’s Law for the number of recorded neurons

Multielectrode recordings allow us to record from 102 to 103 neurons.

Stevenson & 
Kording, 2011

Mammalian circuits controlling complex behaviors contain > 106 to 109 
neurons.
122 years to get 5 orders of magnitude more neurons

We need a theory of neural data analysis that tells us how and when statistical 
analyses applied to a small subset of neurons reflect the collective dynamics of 
the much larger, unobserved circuit they are embedded in. 



                  An example dataset: the single neuron view

Trial averaged firing rates from 3 neurons while a monkey is reaching to 
targets
at 7 directions, two lengths and two speeds (red/green)

There are about 100 more neurons like these.

How are such datasets analyzed?

Churchland and Shenoy,  J. 
Neurophys. 2007



Analyzing neural data with dimensionality reduction

A widespread practice:  simultaneously measure the dynamics of N 
neurons during a task  (N ~ 100 to 200)

We often find that all neural activity patterns found during the task can be 
obtained from a from a small number of basis patterns, or modes

c1(t)
c2(t)

c3(t)

Mode 1           Mode 2          Mode 3                

Neural pattern at time t

c1

c2

c3

Low dimensional neural 
trajectory



Ahrens et al., 2012

zebra fish, whole brain

Machens et al., 2010

monkey, PFC

Mazor & Laurent, 2005

locust, antenna lobe

Mante al., 2013

Monkey pre-frontal cortex

Dynamical portraits of circuit computation via dim reduction



Can we trust such dynamical portraits of circuit computation despite 
recording so few neurons?

How would the shape of these portraits change if we recorded more 
neurons? 

Would their dimensionality increase if we recorded more neurons?

What (if anything) can we learn about large dynamical 
networks at such an overwhelming level of under sampling?

Can we obtain a predictive theory of experimental design that can
tell us how many more neurons we should record?  

How should this number depend on the properties of neural activity and 
the behavioral task?

Fundamental conceptual questions



Center hold Target Appears Go Cue Reach

~400ms 400 - 1000ms ~250ms

Acquire

~300ms Adopted from
Yu et al, 2007

Dataset 2 (Monkey A)
7 directions, 2 speeds and 2 distances

28 task conditions
single electrode, 64 preparatory recordings

M1 PMd

Churchland et al. 2007

Extra-cellular recordings from PMd and M1:

Dataset 1 (Monkey H)
8 directions

8 task conditions
multi-electrode array, 109 single units

M1 PMd

Yu et al. 2007

Example dataset:

    



     In primate motor cortex there are 
     O(100 million) neurons controlling O(650) skeletal muscles.

     In these experiments, O(100) neurons were recorded.

     The PCA dimensionality  (~ 70% variance explained) across all
     8 reaches is 7.

     The PCA dimensionality  (~ 70% variance explained) for one    
     reach is 3.3.

    
         
     

Dimensionality in motor cortex



Measuring the Dynamic Portrait under Sub-sampling !

When are portraits from relatively few neurons = those from all neurons?!

When patterns of neural activity are 
distributed across neurons, we can 

accurately recover dynamic 
portraits despite subsampling!

neuron 1 !

ne
ur

on
 2
!

neuron 1!

ne
ur

on
 2
! good

recovery!

poor
recovery!



The act of neuronal measurement as a random projection!

An experiment we can do: measure 
a random subset of M neurons

                                              is equivalent to

An experiment we cannot yet do: measure  
M random linear combinations 
(i.e. random projections) of all neurons !

If neural manifold is randomly oriented: !

0.1! 0.3!
0.05!
0.2! 0.4! 0.1! 0.01! 0.2!

random subset!

random projection!



     A larger context: random projections 

x = As   is a random projection from a N dim space down to an M dim space 

Data / interesting signals live on a K-dim submanifold in N-dim space 

When will the geometry of this manifold be preserved under a random proj. ? 

Distortion:  Dab = ( || Asa – Asb ||2 - || sa – sb ||2  ) / || sa – sb ||2    



     A larger context: random projections 

Manifold of K-sparse signals = Union of N choose K    K-dim hyperplanes 

As long as M > O (1/ε2 * K log N/K), then maxab  |Dab| = O(ε) with high prob over 
random choice of projection A                                        Baraniuk et. al. 2008 

K-dim manifold 
N-dim space 

Random proj 
To M-dim space 

Deterministic result: for any projection A with small distortion, one can  
reconstruct sparse signal from its projection (i.e. compute its pre-image) 

Tao,  
Candes 



     A larger context: random projections 

Point cloud = Union of P points in N-dim space 

As long as M > O (1/ε2 * log P), then maxab  |Dab| = O(ε) with high prob over 
random choice of projection A                                        Johnson-Lindenstrauss Lemma 

P points in 
N-dim space 

Random proj 
To M-dim space 

Compressed computation:  with so few measurements, one cannot recover  
high-dim points, but any algorithm which depends on pairwise distances  
can be applied in low dim space  



     A larger context: random projections 

Arbitrary K-dim manifold in N dim space 

As long as M > O (1/ε2 * K log [C*Vol]), where C is related to curvature, then  
maxab  |Dab| = O(ε) with high prob over random choice of projection A 
                                                                                              Baraniuk and Wakin 2007 

(K-dim) manifold 
N-dim space 

Random proj 
To M-dim space 



A consequence of  neuronal measurement as a random projection!

To keep the same level of desired distortion, # of neurons need only 
scale logarithmically with task complexity (good news!)!

By adapting random projection theory:!
# neurons
   needed ! =

1
distortion
2 !

(c1 log( task complexity) + c2) !

N!

M!

Log T!

# 
ne

ur
on

s 

Log (Task complexity)!

#s
ub

sa
m

pl
ed

 n
eu

ro
ns

 

high distortion!

low distortion!
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To maintain accuracy of the recovered portraits,!
# of neurons required ~ log(task complexity)!

Neural task complexity!

# of recorded
neurons !

5 0!
2 5!

10
1 ! 10

2 !

distortion:
fractional 
error
in pairwise 
distances !

distortion contours of motor cortical data!



Conclusions!

Neural measurements (optimistic messages):!

To recover dynamic portraits from more complex 
experiments, no need for many more neurons.!

Neural dimensionality:!

compare measured 
dimensionality to our 

upper bounds!

dimensionality 
constrained by task 

complexity and 
smoothness!

=!

additional intrinsic 
dynamic constraint in 
the data beyond task 

complexity and 
smoothness!

<!

Subsampling can recover accurate dynamic portraits 
when neural activities are highly distributed!

Task Complexity (T / 𝝉)!

D
im

en
si

on
al

ity
!

N=109
N=70
N=30 !

0 51

4



Towards a single trial theory

Given limited experimental resources, like

M        = number of neurons we can record
P or T  = number of training stimuli or amount of time we can record
SNR    = signal-to-noise ratio, or trial to trial reproducibility of our data

And a measure of the complexity of our experiment:

K        = some measure of the complexity of our 
              stimuli/behavior/latent variables/manifold of visited neural states 

How well can we:  Decode behavior on single trials?

                            Learn the structure of unobserved latent cognitive 
                            variables contributing to trial-to-trial variability?

Such a theory should help us design experiments before they are done!



Towards a single trial theory

  Recovering latent cognitive subspaces: towards a theory of
  gaussian process factor analysis. 

  

  Towards a Rosetta stone between dynamics and statistics:  how do
  statistical latent variable models fit to a subset of neurons, reflect the
  dynamical properties of a much larger neural circuit? 



Low K-dimensional 
stimulus space

Embedding in the N-
dimensional space

Subsampled in the M-
dimensional space

•  Consider a high dimensional neural circuit with N neurons. 

•  We can only record M of them for a finite number of stimuli P.

•  Suppose the stimuli are encoded simply in a K dimensional 
subspace ( or nonlinear curved manifold in which case K -> 
NTC ) 

•  For what regimes of M, N, P and K and the SNR, can we correctly 
recover both the subspace and its dimensionality?

Inferring latent cognitive subspaces



Data = 
K by P

K-dimensional 
stimulus

X

# sampled activity 
patterns

Inferring latent cognitive subspaces



Data = 
K by P

Orthogonal 
Embedding

X

N by K

K-dimensional 
stimulus

X

U

# of behavioral 
relevant neurons

# sampled activity 
patterns

Inferring latent cognitive subspaces



Data = 
K by P

Orthogonal 
Embedding

XX

Subsampling

# recorded neurons

N by K

M by N

X

U

S

# of behavioral 
relevant neurons

# sampled activity 
patterns

K-dimensional 
stimulus

Inferring latent cognitive subspaces



+

Observation Noise

M by P

Data = 

N by K

Orthogonal 
Embedding

XX

Subsampling

M by N

U

S K by P

X

Z

K-dimensional 
stimulus

Inferring latent cognitive subspaces



R = 
K by P

N by K

x

M by N

+

M by P

Dimensions:

US X Zx

Signal and Noise Models:

Neuronal Signal-to-Noise ratio:

N (# nrns) > P (# trials) > M (# record nrns) > K (stim dim)

Inferring latent cognitive subspaces
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R = UX + Z

With completion observation (i.e. M = N):
Low-rank Matrix Perturbation Theory

Singular value transfer function Subspace overlap

low-rank signal high-dim noise

N=1000, P=800, 
K=2

N=1000, P=800, 
K=2
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Input Singular Value

1

Su
bs

pa
ce

 O
ve

rla
p



R = SUX

With partial observation (i.e. M < N):
Subsampling

low-rank signal high-dim noise

 + Z

•  K(=2)-dimensional stimulus space
•  Embedded in N(=3)-dimensional 

neural space
•  Subsampled to M(=2)-dimensional 

subspace
•  Distance between sampled activity 

patterns are compressed
•  Compressions are different 

depending on orientations
•  Compression determined by the K 

singular values of SU



Singular Value Spectrum of SU

N by K 
random 
orthogonal 
embedding 
matrix

x

M by N random 
sampling matrix

US

SU’s singular value squared are the eigenvalues of STSUTU

Free probability theory: STS and UTU are two independent projection 
matrices, their S-transforms obey:

Singular value spectrum:

distribution of all possible signal 
distortions by the SU matrix

Distribution of distortions:

upper/lower bounds 
of distortion

Nica & Speicher, 
1996



Singular Value Spectrum of SU

N by K 
random 
orthogonal 
embedding 
matrix

x

M by N random 
sampling matrix

US

Singular value spectrum:

distribution of all possible signal 
distortions by the SU matrix

Distribution of distortions:

upper/lower bounds 
of distortion

M = 120 ~ K M = 300 > K M = 900 >> K

Simulations (N = 1000, K = 100):



R = 
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling 
Compression
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+
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Subsampling 
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Subsampling 
Compression Signal Strength Input-referred 

Noise Floor* >
(worst-case) (worst-case)
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R = 
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling Compression Signal Strength Input-referred 
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R = 
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling Compression Signal Strength Input-referred 
Noise Floor* >

(worst-case) (worst-case)



R = 
K by P

N by K

x

M by N

+

M by P

US X Z

Static Decoding - Recovering Dimensionality

x

Subsampling 
Compression Signal Strength Input-referred 

Noise Floor* >
(worst-case) (worst-case)

neuronal gain

recording/trial 
gains

M > K
P > K



Prediction: hyperbolic phase transition in the M-by-P 
plane:

Simulated recovery of random smooth trajectories with SNR = 0.02, 
D=4

Recovered Dim

# 
ne

ur
on

s 
(M

)

# samples (P)0 1000

10
00

0

Subspace Overlap

# 
ne

ur
on

s 
(M

)

# samples (P)0 1000

10
00

0

Latent State Recovery: Simulations



•  Motor cortical data from Shenoy lab, center-out reaching tasks
•  GPFA to extract latent trajectories in 147 trials for reaches to a single target

Latent State Recovery: Monkey Data

Qualitatively similar tradeoff between 
M and P

•  Different algorithm: D inferred using cross-validated Gaussian Process Factor 
Analysis 

•  Different noise in the data: pink and temporally correlated

Inferred D Subspace Overlap

Yu et al. 2009!



Towards a single trial theory

  Recovering latent cognitive subspaces: towards a theory of
  gaussian process factor analysis. 

  Towards a Rosetta stone between dynamics and statistics:  how do
  statistical latent variable models fit to a subset of neurons, reflect the
  dynamical properties of a much larger neural circuit? 



Discovering structure in subsampled neural dynamics
•  Consider a high dimensional neural circuit with N neurons. 

•  We can only record M of them for a finite amount of time T.

•  What can we correctly infer about the circuit dynamics 
when M << N and T is not too large?

•  In general - nothing! 

•  However if we might assume an underlying simplicity, for 
example low dimensional dynamics of dimension K.

•  For what regimes of M, N, T and K can we correctly recover 
dynamical properties of the circuit?

Model Linear Neural Network

N-dimensional state

neuronal 
property

rank-K 
connectivity

input

random 
sampling

M-dimensional 
observation



Data often modeled using latent linear dynamical systems

nonlinear and 
stochastic transforms 
of y may be used to 
model spikes directly

SSID used to find the slow mode eigenvalues of the generative model

Hankel Matrix:

=

=

approximated 
using data

factorization

H = 

theoretical values 
with infinite data

Linear regression to find A’s eigenvalues



Data often modeled using latent linear dynamical systems

nonlinear and 
stochastic transforms 
of y may be used to 
model spikes directly

When are the eigenvalues of fitted (SSID) latent dynamics A 
close to those of slowest modes of the generative model?

A gap is required in the eigenvalue spectrum of the observation 
Y’s covariance matrix.

gap

Accurate recovery, M = 200, T = 2000

no gap

Poor recovery, M = 50, T = 200

N = 1000, K = 4, 𝛕 = 0.4, 𝛕slow = 9.5 = 0.4, 𝛕slow = 9.5



Data = 

DynamicsEmbeddingSubsampling **

M by N
N by T

K 
slow
mode
s
N - K 
fast
mode
s

K

N

N - K

N

To understand the spectrum of the covariance matrix, 
we factorize the data

# recorded neurons N by N
# of behavioral 

relevant neurons # of time points 
recorded

X = sampling * (Xslow + Xfast)

**

Signal Noise
Similar setup to factor 
analysis, but the noise 
is correlated across 
time



Xslow + Xfast

Data can be thought of as a low-rank perturbation of 
a random noise matrix

Benaych-Georges & Nadakuditi, 2012

Eigenvalue spectrum of correlated noise deviates from the 
Marchenko-Pastur law

Marchenko & Pastur, 1967
Bai et al., 2008, Yao, 2014

Theoretical eigenvalue spectrum for N = 1000, T = 2000 noise matrix

b(N, T, 𝛕) ) 
noise floor



Discovering structure in subsampled neural dynamics

Model Linear Neural Network

N-dimensional state

neuronal 
property

rank-K 
connectivity

input

random 
sampling

M-dimensional 
observation

N  = 5000  K  = 6 
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Model	  Nonlinear	  Neural	  Network	  

rank-‐D	  recurrent	  
connec3vity	  

N-‐dimensional	  state:	  

neuronal	  
3me	  constant	  

random	  input	  

compressive	  
nonlinearity	  

M-‐dimensional	  observa3on:	  
Random	  sampling	  operator	  

Nonlinearity	  scaling	  parameter	  s:	  smooth	  transi3on	  between	  linear	  neuronal	  
responses	  (large	  s)	  and	  binary	  responses	  (small	  s)	  



Compressive	  nonlinearity’s	  effect	  on	  data’s	  eigenvalue	  spectrum:	  

S=0.1	   S=1.0	   S=10.0	  

Simulated	  datasets	  with	  N=500,	  D=4,	  M=250,	  T=500	  samples,	  
3me	  constant	  for	  neuronal	  noise	  =	  2.0;	  for	  network	  dynamics	  =	  10.0	  
Random	  input’s	  strength	  (standard	  devia3on):	  into	  signal	  subspace	  =	  3.0,	  into	  the	  rest	  =	  1.0	  

A	  preferen(al	  squashing	  of	  the	  signal	  eigenvalues	  



Compressive	  nonlinearity’s	  effect	  on	  the	  recovery	  of	  latent	  subspace	  

Simulated	  datasets	  with	  N=500,	  D=4,	  M	  varied	  from	  20	  to	  200,	  T	  varied	  from	  200	  to	  2000	  
3mes	  constant	  of	  neuronal	  noise	  =	  2.0,	  of	  network	  dynamics	  =	  10.0	  
Random	  input’s	  standard	  devia3on:	  into	  signal	  subspace	  =	  3.0,	  into	  the	  rest	  =	  1.0	  

S=0.1	   S=1.0	   S=10.0	  

True	  signal	  subspace	  obtained	  empirically	  aPer	  simula3ng	  nonlinear	  networks	  for	  20,000	  
3me	  steps;	  
For	  each	  M,	  the	  true	  signal	  subspace	  is	  sub-‐sampled	  and	  re-‐orthogonalized	  to	  compute	  
its	  overlap	  with	  the	  recovered	  subspace	  from	  only	  T	  steps	  of	  simula3on;	  
The	  resul3ng	  overlaps	  are	  rescaled	  so	  that	  0	  =>	  overlap	  between	  two	  random	  D-‐
dimensional	  subspaces	  in	  M	  dimension,	  and	  1	  =>	  complete	  overlap	  



Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons:  Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning:  PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob )
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models   (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing 



Tensor components analysis

Alex Williams



Tensor components analysis

a

time tria
ls

ne
ur

on
s ≈

CP tensor decomposition
temporal factors

trial endtrial start

X =

neuron factors

cell #6cell #1

trial factors

last trialfirst trial

≈
+

. . . . . .

trial k trial Ktrial 1

ne
ur

on
s

b

trial-average PSTH

. . . . . .

trial k trial Ktrial 1

ne
ur

on
s

time

ne
ur

on
s +

concatenated and smoothed data matrix

. . . . . .

trial k trial Ktrial 1

ne
ur

on
s

time

ne
ur

on
s

. . . . . .

time time

. . .

≈
+

+
...

+ +. . .+

different temporal 
factors for each trial

c

trial-averaged PCA trial-concatenated PCA



Tensor components analysis

trial 1 25 50 75 100
input signals across trials

trial 1 25 50 75 100

CP Decomposition

simulated rasters

time

ne
ur
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s

PCA on unfoldings ICA on unfoldings

a b

neurons time trials neurons time trials neurons time trials

synaptic
weights

input
waveforms

input
magnitude

model estimateground truth

c d e

#1
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#3
fa

ct
or

s

activity

time time time time

f
organize data fit models choose # of components visualize factors

scree plot similarity plot

time tria
lsne

ur
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s

Smooth spiking data with 
Gaussian filter.
Normalize activity traces so 
that high-firing-rate neurons 
do not dominate analysis.

CP decomposition is nonconvex 
and optimization might get 
caught in local minima
Unlike PCA, the best-fit factors 
depend on the # of components
Thus, models with different # of 
components multiple times from 
different random initializations.
In practice, optimization is 
tractable.

Scree and similarity plots can help determine this. 
Always visualize multiple models and ensure they 
produce similar results. 

We typically visualize the neuron factors as 
a bar plot, the temporal factors as line 
plots, and the trial factors as color-coded 
scatter plots.
Since the ordering of the neurons is often 
arbitrary, it can help to reorder them by the 
neuron factor loadings in creative ways.

(1) (2)



Tensor components analysis



Tensor components analysis

e time to acquire target (s)
corrective trial factor

a

c

dinitial perturbation recovery

b “early”
(first active)

“corrective”
(last active)

“learned”
(middle)

preferred cursor angles across all reach angles

example 45° reaches

early
component

corrective
component

learned
component

* p < 0.05 ** p < 0.01 p > 0.05
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2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning:  PCA, ICA, Sparse Coding
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1.  The best way to do regression in high dimensions (Replica theory)
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1.  Speeding up deep learning (Dynamic criticality)
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5.  Application: deep models of the retina: the first step in seeing 



          An interesting artificial neural circuit for image classification 

Alex 
Krizhevsky 
Ilya 
Sutskever 
Geoffrey E. 
Hinton 
NIPS 2012 



Towards	  a	  theory	  of	  deep	  learning	  dynamics	  
	  

– The	  dynamics	  of	  learning	  in	  deep	  networks	  is	  non-‐
trivial	  –	  i.e.	  plateaus	  and	  sudden	  transitions	  to	  
better	  performance	  

– How	  does	  training	  time	  scale	  with	  depth?	  

– How	  should	  the	  learning	  rate	  scale	  with	  depth?	  

– How	  do	  different	  weight	  initializations	  impact	  
learning	  speed?	  

– We	  will	  @ind	  that	  weight	  initializations	  with	  critical	  
dynamics	  can	  aid	  deep	  learning	  and	  generalization.	  

	  



Deep	  network	  
•  Little	  hope	  for	  a	  complete	  theory	  with	  arbitrary	  
nonlinearities	  

	   x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)



Deep	  linear	  network	  
•  Use	  a	  deep	  linear	  network	  as	  a	  starting	  point	  

x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)



Deep	  linear	  network	  
•  Input-‐output	  map:	  Always	  linear	  

•  Gradient	  descent	  dynamics:	  Nonlinear;	  coupled;	  nonconvex	  

•  Useful	  for	  studying	  learning	  dynamics,	  not	  representation	  power.	  
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Final Report: Convergence properties of deep linear

networks

Andrew Saxe

asaxe@stanford.edu

Christopher Baldassano

chrisb33@stanford.edu

1 Introduction

Deep learning approaches have realized remarkable performance across a range of application areas
in machine learning, from computer vision [1, 2] to speech recognition [3] and natural language
processing [4], but the complexity of deep nonlinear networks has made it difficult to develop a
comprehensive theoretical understanding of deep learning. For example, the necessary conditions
for convergence, the speed of convergence, and optimal methods for initialization are based pri-
marily on empirical results without much theoretical support. As a first step in understanding the
learning dynamics of deep nonlinear networks, we can analyze deep linear networks which compute
y = W

D

W

D�1 · · ·W 2
W

1
x, where x, y are input and output vectors respectively, and the W

i are
D weight matrices in this D + 1 layer deep network. Although these networks are no more expres-
sive than a single linear map y = Wx (and therefore unlikely to yield high accuracy in practice),
we have previously shown [5] that they do exhibit nonlinear learning dynamics similar to those ob-
served in nonlinear networks. By precisely characterizing how the weight matrices evolve in linear
networks, we may gain insight into the properties of nonlinear networks with simple nonlinearities
(such as rectified linear units).

In this progress report, we show preliminary results for continuous batch gradient descent, in which
the gradient step size is assumed to be small enough to take a continuous time limit. By the end of
the project, we hope to obtain similar results for discrete batch gradient descent (with a discrete step
size) and stochastic (online) gradient descent.

2 Preliminaries and Previous Work

A deep linear network maps input vectors x to output vectors y =

⇣Q
D

i=1 W
i

⌘
x ⌘ Wx. We wish

to minimize the squared error on the training set {xµ

, y

µ}P
µ=1, l(W ) =

P
P

µ=1 kyµ �Wx

µk2.

The batch gradient descent update for a layer l is
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(b�1) · · ·W (a�1)
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a with the caveat that
Q

b
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W

i

= I if a > b.

The minimizing W can be found analytically, by setting the derivative of the loss to zero:
PX

µ=1

(y

µ �Wx

µ

)x

µT

= 0 (2)

Let ⌃xx ⌘
P

P

µ=1 x
µ

x

µT be the input correlation matrix, and ⌃

yx ⌘
P

P

µ=1 y
µ

x

µT be the input-
output correlation matrix. The optimal W is
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⇤
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)

�1 (3)
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Nontrivial	  learning	  dynamics	  
Plateaus	  and	  sudden	  

transitions	  
Faster	  convergence	  from	  

pretrained	  initial	  conditions	  
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•  Build	  intui3ons	  for	  nonlinear	  case	  by	  analyzing	  linear	  case	  



Three	  layer	  dynamics	  

	  

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3



Problem	  formulation	  
•  Network	  trained	  on	  patterns	  
	  

•  Batch	  gradient	  descent	  on	  squared	  error	  
	  

•  Dynamics	  
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Input	  correla3ons:	  
Input-‐output	  correla3ons:	  

and the network’s feature output. This gradient descent procedure yields the learning rule

�W 21 = �W 32T
�
yµxµT �W 32W 21xµxµT

�
(1)

�W 32 = �
�
yµxµT �W 32W 21xµxµT

�
W 21T , (2)

for each example µ, where � is a small learning rate. We imagine that training is divided into a
sequence of learning epochs, and in each epoch, the above rules are followed for all P examples in
random order. As long as � is su�ciently small so that the weights change by only a small amount
per learning epoch, we can average (1)-(2) over all P examples and take a continuous time limit to
obtain the mean change in weights per learning epoch. Let X = [x1x2 · · ·xP ] be a matrix consisting
of all input examples, and Y = [y1y2 · · · yP ] be a matrix consisting of the corresponding output
vectors. Over the course of an epoch, the averaged system performs gradient descent on the sum
of the squared error (SSE) of all patterns, defined as

SSE(W 21,W 32) =
��Y �W 32W 21X

��2
F

(3)

where kAkF =
qP

i,j A
2
ij is the Frobenius norm of a matrix. Gradient descent on the SSE is

controlled purely by the second order statistics of the training set, and gives rise to the di↵erential
equations

⌧
d

dt
W 21 = W 32T

�
⌃31 �W 32W 21⌃11

�
(4)

⌧
d

dt
W 32 =

�
⌃31 �W 32W 21⌃11

�
W 21T , (5)

where
⌃11 ⌘ XXT (6)

is an N1 ⇥N1 input correlation matrix,

⌃31 ⌘ Y XT (7)

is an N3 ⇥N1 input-output correlation matrix, and

⌧ ⌘ P

�
. (8)

Here t measures time in units of learning epochs; as t varies from 0 to 1, the network has seen P
examples corresponding to one learning epoch. We note that, although the network we analyze is
completely linear with the simple input-output map y = W 32W 21x, the gradient descent learning
dynamics given in Eqns. (4)-(5) are nonlinear.

1.1 Learning dynamics with orthogonal inputs

Our fundamental goal is to understand the dynamics of learning in (4)-(5) as a function of the
input statistics ⌃11 and ⌃31. In general, the outcome of learning will reflect an interplay between
the perceptual correlations in the examples, described by ⌃11, and the input-output correlations
described by ⌃31. To begin, though, we further simplify the analysis by focusing on the case
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

(see	  paper	  for	  	  
more	  general	  	  
input	  correla3ons)	  
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Epochs	  Saxe,	  McCelland,	  Ganguli,	  ICLR,	  2014	  



Deeper	  network	  learning	  dynamics	  
•  Jacobian	  that	  back-‐propagates	  gradients	  can	  explode	  or	  
decay	  

	   x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)



Deeper	  networks	  
•  Can	  generalize	  to	  arbitrary	  depth	  network	  

•  Each	  effective	  singular	  value	  a	  evolves	  
independently	  

	  
•  In	  deep	  networks,	  combined	  gradient	  is	  

τ
d
dt
a = (Nl −1)a

2−2 (Nl−1)(s− a)
τ	   1/Learning	  rate	  

s	   Singular	  value	  

Nl	   #	  layers	  

O Nl τ( )

w1	  w2	  wNl-‐1	  

a =
Nl�1Y

i=1

Wi



Deep	  linear	  learning	  speed	  
•  Intuition	  (see	  paper	  for	  details):	  
	  

– Gradient	  norm	  

– Learning	  rate	  

– Learning	  time	  

•  Deep	  learning	  can	  be	  fast	  with	  the	  right	  ICs.	  

O Nl( )

O 1 Nl( )

O 1( )

(Nl	  =	  #	  layers)	  

Saxe,	  McClelland,	  Ganguli	  ICLR	  2014	  



MNIST	  learning	  speeds	  

•  Trained	  deep	  linear	  nets	  on	  MNIST	  

•  Depths	  ranging	  from	  3	  to	  100	  
•  1000	  hidden	  units/layer	  (overcomplete)	  
•  Decoupled	  initial	  conditions	  with	  @ixed	  initial	  mode	  
strength	  

•  Batch	  gradient	  descent	  on	  squared	  error	  
•  Optimized	  learning	  rates	  for	  each	  depth	  

•  Calculated	  epoch	  at	  which	  error	  falls	  below	  @ixed	  
threshold	  



MNIST	  depth	  dependence	  
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Deep	  linear	  networks	  

•  Deep	  learning	  can	  be	  fast	  with	  decoupled	  ICs	  and	  O(1)	  initial	  mode	  
strength.	  How	  to	  7ind	  these?	  

•  Answer:	  	  Pre-‐training	  and	  random	  orthogonal	  initializations	  can	  @ind	  these	  
special	  initial	  conditions	  that	  allow	  depth	  independent	  training	  times!!	  

•  But	  scaled	  random	  Gaussian	  initial	  conditions	  on	  weights	  cannot.	  	  



Depth-‐independent	  training	  time	  

Time	  to	  criterion	   Op(mal	  learning	  rate	  

•  Deep	  linear	  networks	  on	  MNIST	  
•  Scaled	  random	  Gaussian	  ini3aliza3on	  (Glorot	  &	  Bengio,	  2010)	  

•  Pretrained	  and	  orthogonal	  have	  fast	  depth-‐independent	  
training	  3mes!	  



Random	  vs	  orthogonal	  
•  Gaussian	  preserves	  norm	  of	  random	  vector	  on	  average	  

•  Attenuates	  on	  subspace	  of	  high	  dimension	  
•  Ampli6ies	  on	  subspace	  of	  low	  dimension	  

1	  layer	  net	   5	  layer	  net	   100	  layer	  net	  

Singular	  values	  of	  

Fr
eq

ue
nc
y	  

Wtot = Wi

i=1

Nl−1

∏



Random	  vs	  orthogonal	  

1	  layer	  net	   5	  layer	  net	   100	  layer	  net	  

Singular	  values	  of	  

Fr
eq

ue
nc
y	  

Wtot = Wi

i=1

Nl−1

∏

All	  singular	  values	  of	  Wtot =1

•  Glorot	  preserves	  norm	  of	  random	  vector	  on	  average	  

•  Orthogonal	  preserves	  norm	  of	  all	  vectors	  exactly	  



Deeper	  network	  learning	  dynamics	  
•  Jacobian	  that	  back-‐propagates	  gradients	  can	  explode	  or	  
decay	  

	   x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)



Extensive	  Criticality	  yields	  	  
Dynamical	  Isometry	  in	  nonlinear	  nets	  
Suggests	  initialization	  for	  nonlinear	  nets	  
•  near-‐isometry	  on	  subspace	  of	  large	  dimension	  
•  Singular	  values	  of	  end-‐to-‐end	  Jacobian	  
	  	  	  	  	  concentrated	  around	  1.	  	  
Scale	  orthogonal	  matrices	  by	  gain	  g	  to	  counteract	  contractive	  
nonlinearity	  
	  
	  
	  
	  
Just	  beyond	  edge	  of	  chaos	  (g>1)	  may	  be	  good	  initialization	  
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have shown that for linear networks, orthogonal initializations achieve exact dynamical isometry with all
singular values at 1, while greedy pre-training achieves it approximately.

We note that the discrepancy in learning times between the scaled Gaussian initialization and the orthogonal
or pre-training initializations is modest for the depths of around 6 used in large scale applications, but is
magnified at larger depths (Fig. 6A left). This may explain the modest improvement in learning times with
greedy pre-training versus random scaled Gaussian initializations observed in applications (see discussion in
Supplementary Appendix D). We predict that this modest improvement will be magnified at higher depths,
even in nonlinear networks. Finally, we note that in recurrent networks, which can be thought of as infinitely
deep feed-forward networks with tied weights, a very promising approach is a modification to the training
objective that partially promotes dynamical isometry for the set of gradients currently being back-propagated
[24].

4 Achieving approximate dynamical isometry in nonlinear networks

We have shown above that deep random orthogonal linear networks achieve perfect dynamical isometry.
Here we show that nonlinear versions of these networks can also achieve good dynamical isometry proper-
ties. Consider the nonlinear feedforward dynamics

xl+1
i

=

X

j

gW (l+1,l)
ij

�(xl

j

), (20)

where xl

i

denotes the activity of neuron i in layer l, W (l+1,l)
ij

is a random orthogonal connectivity matrix from
layer l to l + 1, g is a scalar gain factor, and �(x) is any nonlinearity that saturates as x ! ±1. We show
in Supplementary appendix G that there exists a critical value g

c

of the gain g such that if g < g
c

, activity
will decay away to zero as it propagates through the layers, while if g > g

c

, the strong linear positive gain
will combat the damping due to the saturating nonlinearity, and activity will propagate indefinitely without
decay, no matter how deep the network is. When the nonlinearity is odd (�(x) = ��(�x)), so that the mean
activity in each layer is approximately 0, these dynamical properties can be quantitatively captured by the
neural population variance in layer l,

ql ⌘ 1

N

NX

i=1

(xl

i

)

2. (21)

Thus lim

l!1 ql ! 0 for g < g
c

and lim

l!1 ql ! q1(g) > 0 for g > g
c

. When �(x) = tanh(x), we
compute g

c

= 1 and numerically compute q1(g) in Fig. 8 in Supplementary appendix G. Thus these non-
linear feedforward networks exhibit a phase-transition at the critical gain; above the critical gain, infinitely
deep networks exhibit chaotic percolating activity propagation, so we call the critical gain g

c

the edge of
chaos, in analogy with terminology for recurrent networks.

Now we are interested in how errors at the final layer N
l

backpropagate back to earlier layers, and whether
or not these gradients explode or decay with depth. To quantify this, for simplicity we consider the end to
end Jacobian

JNl,1
ij

(xNl
) ⌘ @xNl

i

@x1
j

����
x

Nl

, (22)

which captures how input perturbations propagate to the output. If the singular value distribution of this
Jacobian is well-behaved, with few extremely large or small singular values, then the backpropagation of
gradients will also be well-behaved, and exhibit little explosion or decay. The Jacobian is evaluated at a
particular point xNl in the space of output layer activations, and this point is in turn obtained by iterating
(20) starting from an initial input layer activation vector x1. Thus the singular value distribution of the
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•  g>1	  speeds	  up	  30	  layer	  nonlinear	  nets	  

•  Dynamic	  isometry	  reduces	  test	  error	  by	  1.4%	  pts	  

Dynamic	  Isometry	  Initialization	  

MNIST	  Classifica3on	  error,	  epoch	  1500	   Train	  	  
Error	  (%)	  

Test	  	  
Error	  (%)	  

Gaussian	  (g=1,	  random)	   2.3	   3.4	  
g=1.1,	  random	   1.5	   3.0	  
g=1,	  orthogonal	   2.8	   3.5	  
Dynamic	  Isometry	  (g=1.1,	  orthogonal)	   0.095	   2.1	  

•  Tanh	  network,	  soPmax	  output,	  500	  units/layer	  
•  No	  regulariza3on	  (weight	  decay,	  sparsity,	  dropout,	  etc)	  



Summary	  
•  Deep	  linear	  nets	  have	  nontrivial	  nonlinear	  learning	  dynamics.	  

•  Learning	  time	  inversely	  proportional	  to	  strength	  of	  input-‐output	  
correlations.	  

•  With	  the	  right	  initial	  weight	  conditions,	  number	  of	  training	  
epochs	  can	  remain	  @inite	  as	  depth	  increases.	  	  

•  Dynamically	  critical	  networks	  just	  beyond	  the	  edge	  of	  chaos	  enjoy	  
depth-‐independent	  learning	  times.	  



Beyond	  learning:	  criticality	  and	  
generalization	  

•  Deep	  networks	  +	  large	  gain	  factor	  g	  train	  exceptionally	  quickly	  	  
•  But	  large	  g	  incurs	  heavy	  cost	  in	  generalization	  performance	  

	  
•  Suggests	  small	  initial	  weights	  regularize	  towards	  smoother	  functions	  
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Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons:  Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning:  PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob )
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models   (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing 



High dimensional nonconvex optimization

It is often thought that local minima at high error stand as 
as a major impediment to non-convex optimization.

In random non-convex error surfaces over
high dimensional spaces, local minima at high
error are exponentially rare in the dimensionality.  

Instead saddle points proliferate.

We developed an algorithm that rapidly escapes saddle points 
in high dimensional spaces.   

Identifying and attacking the saddle point problem in high dimensional non-convex optimization.
Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio.  NIPS 2014.

The loss surfaces of multilayer networks. A. Chormanska, M. Henaff, M. Mathieu, G. Ben Arous, 
Y. LecCun, AISTATS 2015. 



General properties of error landscapes in 
high dimensions 

From statistical physics:

Consider a random Gaussian error 
landscape over N variables.

Let x be a critical point.
Let E be its error level.
Let f be the fraction of negative curvature 
directions. 

Bray and Dean, Physical Review Letters, 2007  
E

f



Properties of Error Landscapes on the!
Synaptic Weight Space of a Deep Neural Net

Qualitatively consistent with the 
statistical physics theory of random error landscapes



How to descend saddle points

Newton’s Method

Saddle Free Newton’s Method

Intuition: saddle points attract Newton’s method, but  
                                  repel saddle free Newton’s method.

Derivation:  minimize a linear approximation to f(x) within a trust region
                  in which the linear and quadratic approximations agree

�x = �H�1 rf(x)

�x = �|H|�1 rf(x)



Performance of saddle free Newton in 
learning deep neural networks.

SFN out-performs 
       (1) minibatch stochastic gradient descent and
       (2) damped Newton’s method

The performance advantage increases with the problem dimensionality.



Performance of saddle free Newton in 
learning deep neural networks.

When stochastic gradient descent appears to plateau, switching to saddle 
Free newton escapes the plateau.
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  Modeling Complex Data by      
ReversingTime!

with Jascha Sohl-Dickstein!
Eric Weiss, Niru Maheswaranathan!



Jascha Sohl-Dickstein Modeling Complex Data

Flexibility-Tractability Tradeoff 
in Probabilistic Models!

Goal



Jascha Sohl-Dickstein Modeling Complex Data

Achieving Flexibility!
and Tractability!

•  Physical motivation!

•  Destroy structure in data through a diffusive process.!

•  Carefully record  the destruction.!

•   Use deep networks to reverse time and create structure from noise.!

•  Inspired by recent results in non-equilibrium statistical 
mechanics which show that entropy can transiently 
decrease for short time scales (violations of second law)!



Jascha Sohl-Dickstein Modeling Complex Data

Physical Intuition: Destruction 
of Structure through Diffusion!

•  Dye density represents probability density!

•  Goal: Learn structure of probability density!

•  Observation: Diffusion destroys structure!

Data distribution! Uniform distribution!



Jascha Sohl-Dickstein Modeling Complex Data

Physical Intuition: Recover 
Structure by Reversing Time!

•  What if we could reverse this process?!

•  Recover data distribution by starting from 
uniform distribution and running a new type of 
reverse dynamics (using a trained deep 
network)!

Data distribution! Uniform distribution!



Jascha Sohl-Dickstein Modeling Complex Data

•  What if we could reverse time?!

•  Recover data distribution by starting from 
uniform distribution and running dynamics 
backwards (using a trained deep network)!

Data distribution! Uniform distribution!

Physical Intuition: Recover 
Structure by Reversing Time!



Jascha Sohl-Dickstein Modeling Complex Data

Swiss Roll!

•  Forward diffusion process!

•  Start at data!

•  Run Gaussian diffusion until samples become Gaussian blob!



Jascha Sohl-Dickstein Modeling Complex Data

Swiss Roll!

•  Reverse diffusion process!

•  Start at Gaussian blob!

•  Run Gaussian diffusion until samples become data distribution!



Jascha Sohl-Dickstein Modeling Complex Data

Swiss Roll!

Diffusion!

Data distribution!

Diffusion with neural network!
determining mean and covariance!

of each step!



Jascha Sohl-Dickstein Modeling Complex Data

Dead Leaf Model!

•  Training data!



Jascha Sohl-Dickstein Modeling Complex Data

Diffusion Probabilistic Model 
on Dead Leaves!

Training Data! Sample from!
[Theis et al, 2012]!

Sample from!
diffusion model!

Log likelihood!
1.24 bits/pixel!

Log likelihood!
1.49 bits/pixel!



Jascha Sohl-Dickstein Modeling Complex Data

Natural Images!

•  Training data!



Jascha Sohl-Dickstein Modeling Complex Data

Diffusion Probabilistic Model 
Inpainting!



Jascha Sohl-Dickstein Modeling Complex Data

Flexible and Tractable Learning 
of Probabilistic Models!

•  Flexible!

•  Every distribution has a diffusion process (ongoing work applying to 
binary spike trains, and full color natural images from diverse 
scenes)!

•  Tractable!

•  Training: Estimate mean and covariance of Gaussian!

•  Sampling: Exact - model defined by sampling chain!

•  Inference: Via sampling!

•  Evaluation: Cheap - compute probability of sequence of Gaussians!
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        A theory of deep neural expressivity  
                    through transient chaos 
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                     Seminal works on the expressive power of depth 

Overall idea: there exist certain (special?) functions that can be 
computed: 
  
    a) efficiently using a deep network (poly # of neurons in input 
dimension) 
 
    b) but not by a shallow network (requires exponential # of neurons) 
 
Intellectual traditions in boolean circuit theory: parity function is such a 
function for boolean circuits. 

Networks with one hidden layer are universal function approximators. 
 
So why do we need depth? 
 
Universal function approximation theorems yield no guarantees on the 
size  
of the hidden layer needed to approximate a function well.  
 
 



                     Seminal works on the expressive power of depth 

            Nonlinearity                       Measure of Functional Complexity  
 
  Rectified Linear Unit (ReLu)             Number of linear regions 
 
 
There exists a function computable by a deep network where the number 
of linear regions is exponential in the depth.  
 
To approximate this function with a shallow network, one would require 
exponentially many more neurons. 

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. 
On the number of linear regions of deep neural networks, NIPS 2014 



                     Seminal works on the expressive power of depth 

            Nonlinearity                       Measure of Functional Complexity  
 
      Sum-product network                         Number of monomials 
 
There exists a function computable by a deep network where the number 
of unique monomials is exponential in the depth.  
 
To approximate this function with a shallow network, one would require 
exponentially many more neurons. 

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks, NIPS 2011. 



                                                   Questions 

 
 
The particular functions exhibited by prior work do not seem natural? 
 
                                (see Tommy Poggio’s talk later today!) 
 
Are such functions rare curiosities? 
 
Or is this phenomenon much more generic than these specific examples? 
 
In some sense, is any function computed by a generic deep network 
not efficiently computable by a shallow network? 
 
 
If so we would like a theory of deep neural expressivity that demonstrates 
this for  
                    1)  Arbitrary nonlinearities 
 
                    2)  A natural, general measure of functional complexity.  
 
 
 
 



                                     Limitations of prior work 

Theoretical technique                 Nonlinearity              Measure of Functional                            
                                                                                             Complexity  
 
Combinatorics/                                ReLU                    Number of linear regions 
Hyperplane Arrangements  
 
Polynomial expansion                 Sum-product             Number of monomials 
 
Algebraic topology                          Pfaffian                   Sum of betti numbers 
 
 
 
 
Riemannian geometry +               Arbitrary                          Extrinsic  
Dynamical mean field theory                                                Curvature    
 
We will show that even in generic, random deep neural networks, measures 
of functional curvature grow exponentially with depth but not width!  
 
More over the origins of this exponential growth can be traced to chaos theory.    
 
 

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A comparison between 
shallow and deep architectures. Neural Networks and Learning Systems, IEEE Transactions on, 2014.  

ier 



   Another perspective on the advantage of depth: disentangling 

How can we mathematically formalize the notion of disentangling  
in deep networks? 
 
How do we use this mathematical formalization to quantitatively assess the 
disentangling power of deep versus shallow networks?  
 
We will show that deep networks can disentangle manifolds whose 
curvature grows exponentially with depth! 



A maximum entropy ensemble of deep random networks 

Structure:              i.i.d. random Gaussian weights and biases: 

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)
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           Emergent, deterministic signal propagation  
                     in random neural networks 

Question:  how do simple input manifolds propagate through the layers?              
 
A single point:            When does its length grow or shrink and how fast? 
 
A pair of points:          Do they become more similar or more different, and 
                                   how fast? 
 
A smooth manifold:    How does its curvature and volume change?  

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)
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Propagation of a single point through a deep network  

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)
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A recursion relation for the length of a point as it propagates through the 
network 



Propagation of a single point through a deep network  

�b = 0.3



Propagation of a single point through a deep network  

�w < 1 �b = 0 : ql ! 0

�w > 1 �b = 0 or �b 6= 0 : ql ! q⇤



   Propagation of two points through a deep network  
 

qlab =
1

Nl

NlX

i=1

h

l
i(x

0,a)hl
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0,b) a, b 2 {1, 2}.

The geometry of two points in a hidden layer l is captured  
by the two by two matrix of inner products: 

cl12 =
ql12p

ql11
p
ql22

Of particular interest: the correlation 
coefficient or cosine of the angle  
between the two points:  
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 A theory of correlation propagation in a deep network 

qlab =
1
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0,b) a, b 2 {1, 2}.The geometry of two points: 

cl12 =
ql12p

ql11
p
ql22

Correlation coefficient between two points:  

ql12 = C(cl�1
12 , ql�1

11 , ql�1
22 |�ww,�b) ⌘ �2

w

Z
Dz1 Dz2 � (u1)� (u2) + �2

b ,

u1 =
q

ql�1
11 z1, u2 =

q
ql�1
22


cl�1
12 z1 +

q
1� (cl�1

12 )2z2

�
,

A recursion relation for the correlation coeff. between two points in a deep net! 

x

0,1

x

0,2



   Propagation of correlations through a deep network  
 

�b = 0.3

cl12 =
1

q⇤
C(cl�1

12 , q⇤, q⇤ |�w,�b)

�1 ⌘ @cl12
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�⇤2 Interpretation: χ1 is a 
multiplicative stretch factor: 

 χ1 < 1 :  nearby points come closer together 
 χ1 > 1 :  nearby points are driven apart 



   Propagation of two points through a deep network  
 

Small �w relative to �b : �1 < 1 cl12 ! 1

Intermediate �w relative to �b : �1 > 1 cl12 ! c⇤

Large �w relative to �b : �1 > 1 cl12 ! 0



   Propagation of a manifold through a deep network  
 

The geometry of the manifold is captured by the similarity matrix - 
How similar two points are in internal representation space):  

Or autocorrelation function: 
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   Propagation of a manifold through a deep network  
 
h1

(✓) =
p

N1q⇤
⇥
u0

cos(✓) + u1
sin(✓)

⇤ A great circle  
input manifold 



   Propagation of a manifold through a deep network  
 



         Riemannian geometry I: Euclidean length 

✓

h(✓)

gE(✓) =
@h(✓)

@✓
· @h(✓)

@✓

Metric on manifold coordinate θ
induced by Euclidean metric in  
internal representation space h.  

@h(✓)

@✓

dLE =
q

gE(✓)d✓
Length element: if one moves from  
Θ  to Θ+ dΘ along the manifold, 
then one moves a distance dLE  

in internal representation space 



Riemannian geometry II: Extrinsic Gaussian Curvature 

h(✓)

v(✓) =
@h(✓)

@✓

a(✓) =
@v(✓)

@✓

Point on the curve 

Tangent or velocity 
vector 

Acceleration 
vector 

The velocity and acceleration vector span a 2 dimensional plane in N dim 
space. 
 
Within this plane, there is a unique circle that touches the curve at h(θ), with the 
same velocity and acceleration.  
 
The Gaussian curvature κ(θ) is the inverse of the radius of this circle.  
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s
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(v · v)3



                       Riemannian geometry III:   
       The Gauss map and Grassmannian length 

✓
v̂(✓) 2 SN�1

A point on  
the curve 

The unit 
tangent vector 
at that point  

Metric on manifold coordinate θ
induced by metric on the Grassmannian: 
how quickly unit tangent vector changes 

Length element: if one moves from  
Θ  to Θ+ dΘ along the manifold, 
then one moves a distance dLG  

Along the Grassmanian 
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dLG =
q

gG(✓)d✓

gG(✓) = (✓)2gE(✓) Grassmannian length, Gaussian curvature 
and Euclidean length 



                   An example: the great circle 

A great circle  
input manifold 
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 χ1 < 1 
 
 χ1 > 1 

Contraction                     Increase                           Constant 

Expansion                      Decrease                          Constant 



  Theory of curvature propagation in deep networks 
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 Modification of existing curvature due to stretch 
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     Curvature propagation: theory and experiment 

Unlike linear expansion, deep neural signal propagation can: 
        
             1)  exponentially expand length,  
             2)  without diluting Gaussian curvature, 
             3) thereby yielding exponential growth of Grassmannian length.  
 
As a result, the circle will become space filling as it winds around at  
a constant rate of curvature to explore many dimensions! 



  Exponential expressivity is not achievable by shallow nets 
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                    Boundary disentangling: theory 

How can we mathematically formalize the notion of disentangling  
in deep networks? 
 
How do we use this mathematical formalization to quantitatively assess the 
disentangling power of deep versus shallow networks?  



                    Boundary disentangling: theory 

y = sgn(� · xD � �0) A linear classifier in the top layer 

(� · xD � �0) = 0 Implements a hyperplane decision  
boundary in final layer 

G(x0) = (� · xD(x0)� �0) = 0
Yielding a curved co-dimension 1 
decision boundary in the input layer 
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Its curvature at a point is characterized by N-1 
principal curvatures:  
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They are the eigenvalues of:  



               Boundary disentangling: experiment 

The principal curvatures of decision boundaries in the chaotic regime  
grow exponentially with depth! 
 
Thus exponentially curved manifolds in input space can be flattened to  
hyperplanes even by deep random networks! 



                                 Summary 
We have combined Riemannian geometry with dynamical mean field theory 
to study the emergent deterministic properties of signal propagation in deep 
nonlinear nets. 
 
We derived analytic recursion relations for Euclidean length, correlations, 
curvature, and Grassmannian length as simple input manifolds propagate 
forward through the network. 
 
We obtain an excellent quantitative match between theory and simulations. 
 
Our results reveal the existence of a transient chaotic phase in which the 
network expands input manifolds without straightening them out, leading to 
“space filling” curves that explore many dimensions while turning at a  
constant rate.  The number of turns grows exponentially with depth.  
 
Such exponential growth does not happen with width in a shallow net. 
 
Chaotic deep random networks can also take exponentially curved N-1 
Dimensional decision boundaries in the input and flatten them into  
Hyperplane decision boundaries in the final layer: exponential disentangling! 
 
 
 
 
 
 
                                (see Poggio’s talk later today!) 
 
Are such functions rare curiosities? 
 
Or is in some sense any function computed by a generic deep network 
not efficiently computable by a shallow network? 
 
 
If so we would like a theory of deep neural expressivity that demonstrates 
this for  
                    1)  Arbitrary nonlinearities 
 
                    2)  A natural, general measure of functional complexity.  
 
 
 
 



Outline of talks I, II and III

1.  Oldies but goodies

1.  Models of single neurons:  Hodgkin Huxley to Hopfield
2.  The Hopfield model
3.  The perceptron learning algorithm: memorization and generalization
4.  Unsupervised learning:  PCA, ICA, Sparse Coding

2.  High dimensional statistics: theory and experiment

1.  The best way to do regression in high dimensions (Replica theory)
2.  Recovering neural state space dynamics (Rand proj / Matrices / Free prob )
3.  Figuring out how neural circuits learn (Tensor decompositions)

3.  Deep learning: theory and practice

1.  Speeding up deep learning (Dynamic criticality)
2.  Error landscape of deep networks (Stat mech of random Gaussian fields)
3.  Deep generative models   (Non-equilbrium thermodynamics)
4.  Expressive power of deep networks (Riemannian geometry and chaos theory)
5.  Application: deep models of the retina: the first step in seeing 
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