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Theoretical neuroscience in the disciplinary landscape
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Neural circuits and behavior: theory, computation and experiment
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A palpable technology driven excitement in neuroscience

Measuring Dynamics Measuring Connectivity Circuit Perturbations
Multielectrode Recordings High throughput EM Optogenetics

Calcium imaging Viral tracing TMS

Novel voltage sensors RNA barcodes Genetic Knockouts
EEG / fMRI Crispr / CAS

Quantification of Behavior

Question: How do we go from this explosion of data to a conceptual understanding?

Issue 1: We will not soon record from the entire brain at single cell single spike-time
resolution during any behavior.

Issue 2: Even if we could, what would we do with all the data?



l Broader theoretical challenges in neuroscience l

Issue |: Discovering
structure with

limited data.
High dimensional X How can we understand neural circuits
statistics such a high subsampled measurement
regime!
Deep Learning > Even if we had all the data, what would we do

with it! Lets look to our colleagues in
T computer science for interesting challenges.
Issue 2: Examples of
complete neural circuit
models



At the core of every data analysis algorithm lies an

implied hypothesis about underlying simplicity in data

Assumed simplicity Associated algorithm
Low dimensional manifolds Dimensionality reduction
Independence ICA
Clusters Various clustering algorithms
No strong loops Message passing
Sparsity Compressed sensing
Low rank matrix structure Nuclear norm minimization

If any of these simplicities exist in a system, then we can
often accurately characterize the structure/function of that
system using many fewer measurements than the total
dimensionality of the system!



Motivations for an alliance between theoretical neuroscience and

theoretical machine learning

« What does it mean to understand the brain (or a neural
circuit?)

« We understand how the connectivity and dynamics of a neural
circuit gives rise to behavior.

« And also how neural activity and synaptic learning rules
conspire to self-organize useful connectivity that subserves
behavior.

* The field of machine learning has generated a plethora of
learned neural networks that accomplish interesting functions.

« We know their connectivity, dynamics, learning rule, and
developmental experience, *yet*, we do not have a
meaningful understanding of how they learn and work!

On simplicity and complexity in the brave new world of large scale
neuroscience, Peiran Gao and S. Ganguli, Curr. Op. in Neurobiology, 201 5.



Outline of talks I, IT and III

1. Oldies but goodies

BN~

Models of single neurons: Hodgkin Huxley to Hopfield

The Hopfield model
The perceptron learning algorithm: memorization and generalization

Unsupervised learning: PCA, ICA, Sparse Coding

2. High dimensional statistics: theory and experiment

1.
2.

3.

The best way to do regression in high dimensions (Replica theory)
Recovering neural state space dynamics (Rand proj / Matrices / Free prob )
Figuring out how neural circuits learn (Tensor decompositions)

3. Deep learning: theory and practice

ok~

Speeding up deep learning (Dynamic criticality)
Error landscape of deep networks (Stat mech of random Gaussian fields)

Deep generative models (Non-equilbrium thermodynamics)
Expressive power of deep networks (Riemannian geometry and chaos theory)

Application: deep models of the retina: the first step in seeing



Statistical mechanics of complex neural systems and high dimensional data
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Canonical models in theoretical neuroscience

Model Neurons: From Hodgkin Huxley to Hopfield, Abbott and Kepler 1990

Neural networks and physical systems with emergent collective computational
Abilities, Hopfield, PNAS 1984.

Statistical mechanics of neural networks near saturation, Amit, Gutfreund,
Sompolinsky, Annals of Physics, 1987.

The space of interactions in neural network models,
J. Phys. A: Math. Gen, Gardner E 1988



Goal: solve optimization problem:

T
§ = arg min { [|x — As|> + 1) " V(s)
1=l

Neural circuit solution:

dv; . S
y td_liz—”‘+a""‘ZLij~‘j
o LEART pur
Tneurons s® ®© ®© ®© ®© ® 0 0 0
\ ATT / a! =1i'th column of N by T matrix A
N neurons x o000 e0 =1i'th dlcFlonary elem.en’c of rep of x
= approximate RF of i'th layer 2 neuron
b

L;=a' a =lateral inhibition

s; = F(v;) = single neuron nonlinearity

For each choice of sparsity penalty V, there is a neuronal nonlinearity F such that neural
circuit dynamics ~ gradient descent solution of optimization

Rozell C, et. al. 2008. Sparse coding via thresholding and local competitionin neural circuits. Neural Comp 2010



Expansion: Neural implementation of L1 Minimization

Olshausen and Field, Nature 1996
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Finding optimal algorithms for nonlinear regressions in high dimensional data analysis

Madhu Advani: Stanford -> Harvard



A revolution in the way we collect and analyze data:

The need to think in high dimensions

P = dimensionality of data N = number of data points a=N/P

Classical Data

Modern Data

A

o0
o0 P ~O(1) P -> o >. @
O N -> o N -> o <
° o->0 a~0(1) °
... .0 @)
00
N = 2 (current and voltage) N=0(100) spike rates

M = O(100)

M=0(100) trials



l Statistical mechanics of high dimensional data analysis l

P = dimensionality of data N = number of data points

Classical Statistics

%0 A

x

P ~0O(1)
N -> o
o->0

a=N/P

Modern Statistics

A

P->o o °

N -> o
o~ 0(1)

i

Machine Learning and Data Analysis
Learn statistical parameters by maximizing log

likelihood of data given parameters.

Statistical Physics of Quenched Disorder
Energy = -log Prob ( data | parameters)

Data = quenched disorder
Parameters = thermal degrees of

Statistical mechanics of compressed sensing, S. Ganguli and H. Sompolinsky, PRL 2010.

Short-term memory in neuronal networks through dynamical compressed sensing, NIPS 2010.

freedom

Compressed sensing, sparsity and dimensionality in neuronal information processing and data analysis, S.
Ganguli and H. Sompolinsky, Annual Reviews of Neuroscience, 2012

Statistical mechanics of optimal convex inference, M. Advani and S. Ganguli, Physical Review X, 2016.

An equivalence between high dimensional Bayes optimal inference and M-estimation, NIPS 2016.

Random projections of random manifolds, S. Lahiri, P. Gao, S. Ganguli, http:/ /arxiv.org/abs/1607.04331, under

review at JMLR.




I Optimal inference in high dimensions l

gV Xy —> Yy = Xy - gV + € Generative model and measurements

| . -

I P dim signal s° ~ P,
N N measurements with noise ¢ ~ P,
S o = N/P = measurement density

8 — : % . : Estimation algorithm
§ = argmin Z (Y — X, - S) + Z o(sj)

% J :
P = loss function

O = regularizer

1 . - L . .
5 Z (§ — 002 = qs(a p, 0, P, Py) q. = L, estimation error
J
Least squares: p(e) = € o(s) =
Maximum likelihood: p(€) = — log Pc(¢) a(s) =0
Ridge regression: p(e) = € o(s) = s
LASSO: p(e) = € o(s) = A1]s]
Elastic Net: p(e) = €2 o(s) = Ap|s| + Aps?
Example algorithms MAP: p(e) = —log Pe(e) o(s) = —log Ps(s)



l Optimal inference in high dimensions l

g0 s Xy —> Yy = Xy - gV + € Generative model and measurements

I P dim signal s° ~ P,
N N measurements with noise ¢ ~ P,
S o = N/P = measurement density
a : oy . , Estimation algorithm
S =arg ms'”;f)(h X, - S) —I—ZO'(SJ)
J

P = loss function
O = regularizer
q, = L, estimation error

1 R
F Z(SJ o 5:/0)2 — qs(a7p7 g, P€7 PS)
J

Question:

For a given signal distribution P, , noise distribution P, , and measurement density a,

what is the best loss function p and regularizer o?



l OEtimal inference in high dimensions '
E(s)=) plyu—xu-s)+ Y ofs))
p J

Statistical physics analogy

s (parameters) Thermal degrees of freedom (e.g spins)

X,y (data) Quenched disorder (e.g. connectivity J;;)

Ground state (zero temp)

S (estimates . C _BE(s
( ) Gibbs distribution: Pg = £ /325()




l Fundamental limits on convex inference in high dimensions '

Classical inference bound

The Cramer Rao bound for any unbiased estimator

T Jle] = ( (1og' P(€))* ).

High dim. without prior information

For any p:
1 1

%2 ilea] = (@—DJ[el

High dim. with prior information

For any convex p, o:




l Optimal inference in high dimensions l

Question: For a given signal distribution P, , noise distribution P, ,and measurement density
o, what is the best loss function p and regularizer o?

Optimal Loss Function: p°P*

1
05
0
-2 0 2 Optimal Regularizer: o°P
€ a1 a>1
P, x eIl
1
05
0
0 S
-2 0 2

Larger Measurement Density

For log-concave signal and noise: the optimal loss and regularizer are nonlinearly smoothed
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!



l Optimal inference in high dimensions l

Question: For a given signal distribution P, , noise distribution P, ,and measurement density
o, what is the best loss function p and regularizer o?

A. Normalized MSE
oy M.Advani and S. Ganguli,An equivalence

______ MAP | o : )
1 ey Quadratic | between high dimensional Bayes optimal
Optimal |- inference and M-estimation, NIPS 2016.

08l - L AN ...... ...... o o o
(78 N o | | | | M.Advani and S. Ganguli, Statistical mechanics of
06 BN 2 S R R optimal convex inference in high dimensions,
; : Ny Physical Review X, 6,031034,2016.
04 ....... ...... ...... ..... ‘. =
S Related work by El Karoui, and Montanari.
0.2

0 05 1 1.5 2 25 3 35

For log-concave signal and noise: the optimal loss and regularizer are nonlinearly smoothed
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!
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A theory of recovering neural state space
dynamics
Surya Ganguli
Dept of Applied Physics
And, by courtesy,
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A major conceptual elephant

How can we record O(100) neurons in regions deep within the
brain and obtain scientifically interpretable results that relate
neural activity to behavior and cognition?

This is remarkable, considering these brain regions can contain
0O(10°-10%) neurons — 5 orders of magnitude more than we record!

How has systems neuroscience been as successful as it has in
such an undersampled measurement regime?

Or are we completely misleading ourselves?



An exponential Moore’s Law for the number of recorded neurons
d

3=
10 n=s6

10°F Doubling time, .
- 7.4 £ 0.4 years

10'F
Stevenson &
Kording, 2011

Simultaneously recorded neurons

1 0 1
?950 1960 1970 1980 1990 2000 2010
Publication date

Multielectrode recordings allow us to record from 10* to 10° neurons.
Mammalian circuits controlling complex behaviors contain > 10°to 10”
neurons.

122 years to get 5 orders of magnitude more neurons

We need a theory of neural data analysis that tells us how and when statistical
analyses applied to a small subset of neurons reflect the collective dynamics of
the much larger, unobserved circuit they are embedded in.



An example dataset: the single neuron view

.~ M e T
1 -/&-\Q: f ) - % /At
.ﬁd?& -&‘)&: % : ‘ .A&» ':% ﬂ % | w/ A\ % % % % b

o b Al

Churchland and Shenoy, ]J.
Neurophys. 2007

Trial averaged firing rates from 3 neurons while a monkey is reaching to
targets
at 7 directions, two lengths and two speeds (red / green)

There are about 100 more neurons like these.

How are such datasets analyzed?



Analyzing neural data with dimensionality reduction

A widespread practice: simultaneously measure the dynamics of N
neurons during a task (N ~ 100 to 200)

We often find that all neural activity patterns found during the task can be
obtained from a from a small number of basis patterns, or modes

Neural pattern at time t
3

A

:C

2

C (t)/' 4 " (t)\c3(t)

|.| i ”J [l i l ‘ I C
Low dimensional neural

Mode | Mode 2 Mode 3

trajectory



Mazor & Laurent, 2005

Monkey pre-frontal cortex

- .
rotate / choice
) b axis_
dots
dots e doftfs
off o
S
15 18
choice 1 5 choice 2
choice

Mante al., 2013

monkey, PFC
200 57.3%

100
0 P
-100

relative rate (Hz)

0 1 2 30 1 2 3
time (sec) time (sec)
Machens et al., 2010

a zebra fish, whole brain

50
§ 0 ‘; ¥ Gain
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-50 q* ¥
Vs
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\\//0‘
PC2 0 PC1

200 40

Ahrens et al., 2012




Fundamental conceptual questions

Can we trust such dynamical portraits of circuit computation despite
recording so few neurons?

How would the shape of these portraits change if we recorded more
neurons?

Would their dimensionality increase if we recorded more neurons?

What (if anything) can we learn about large dynamical
networks at such an overwhelming level of under sampling?

Can we obtain a predictive theory of experimental design that can
tell us how many more neurons we should record?

How should this number depend on the properties of neural activity and
the behavioral task?



Example dataset:

ECenter hold ETarget Appears EGO Cue EReach EAcquire

~400ms 400 - 1000ms ~250ms ~300ms b 200

—

Extra-cellular recordings from PMd and M1:

Midline

&
\
Yu et al. 2007 Churchland et al. 2007
Dataset 1 (Monkey H) Dataset 2 (Monkey A)
8 directions 7 directions, 2 speeds and 2 distances
8 task conditions 28 task conditions

multi-electrode array, 109 single units single electrode, 64 preparatory recordings



Dimensionality in motor cortex

In primate motor cortex there are
O(100 million) neurons controlling O(650) skeletal muscles.

In these experiments, O(100) neurons were recorded.

The PCA dimensionality (~ 70% variance explained) across all
8 reaches is 7.

The PCA dimensionality (~ 70% variance explained) for one
reach is 3.3.



Measuring the Dynamic Portrait under Sub-sampling
When are portraits from relatively few neurons = those from all neurons?
P
[ = = —
I

jgood |
jrecovery

& oor
K p
4 77 recovery

neuron 1

neuron 2
neuron 2

neuron 1

When patterns of neural activity are
distributed across neurons, we can
accurately recover dynamic
portraits despite subsampling



The act of neuronal measurement as a random projection

If neural manifold is randomly oriented:

random subset
An experiment we can do: measure

a random subset of M neurons \g $ g \$ ¥

Is equivalent to

random projection

An experiment we cannot yet do: measure
M random linear combinations
(i.e. random projections) of all neurons




A larger context: random projections

a b c
< ¢ o
o
: 2
. h—
e © ® y hﬁ;&%&{«\\ |

x = As 1is a random projection from a N dim space down to an M dim space
Data / interesting signals live on a K-dim submanifold in N-dim space

When will the geometry of this manifold be preserved under a random proj. ?

Distortion: D, = (|| As? — AsP ||>-||s2—sP||> ) /]| s*—sP|]?



A larger context: random projections

6 \ b c
K-dim manifold R ~ |
N-dim space >,< R k
Random proj AN "
To M-dim space .

\ j ® ®
Manifold of K-sparse signals = Union of N choose K K-dim hyperplanes

As long as M > O (1/¢2*K log N/K), then max,, |D,,| = O(e) with high prob ov
random choice of projection A Baraniuk et. al. 2008

Deterministic result: for any projection A with small distortion, one can

reconstruct sparse signal from its projection (i.e. compute its pre-image) -

Candes



A larger context: random projections

a /b N\ e
P points in S . ~ |
N-dim space >,< R k
Random proj o N\ ..
To M-dim space .

Uk

Point cloud = Union of P points in N-dim space

As long as M > O (1/¢? * log P), then max_, |D,,| = O(¢) with high prob over
random choice of projection A Johnson-Lindenstrauss Lemr

. with so few measurements, one cannot recover
high-dim points, but any algorithm which depends on pairwise distances
can be applied in low dim space



A Iarger context: random projections

[ )
(K-dim) manifold
N-dim space >

Random proj
To M-dim space

Arbitrary K-dim manifold in N dim space

As long as M > O (1/e2" K log [C*Vol]), where C is related to curvature, then
max,, |D,,|= O(¢) with high prob over random choice of projection A
Baraniuk and Wakin 2007



A consequence of neuronal measurement as a random projection

By adapting random projection theory:

# neurons _

(c1 log( task complexity) + c2)

needed glstoruon

high distortion @

>

low distortion @

N 2
O
D)
. :
< ©
5 M °
; e .
o O
H 3
S o
w
# =
Log T Log (Task complexity)

To keep the same level of desired distortion, # of neurons need only
scale logarithmically with task complexity (good news!)



A consequence of neuronal measurement as a random projection

By adapting random projection theory:

# neurons _

(c1 log( task complexity) + c2)

needed glstoruon

high distortion @

>

low distortion @

N 2
O
D)
- :
O ge ¢
5 M = e
0 c | ® ¢
o O
H 3
S o
w
+H* S
Log T Log (Task complexity)

To keep the same level of desired distortion, # of neurons need only
scale logarithmically with task complexity (good news!)



To maintain accuracy of the recovered portraits,
# of neurons required ~ log(task complexity)

0 C

# of recorded

neurons '_—

Neural taskzcomplexity

0.8

0.7

10.

(o]

10.5

10.4

I )
0.2

distortion:
fractional
error

in pairwise
distances

distortion contours of motor cortical data



Neural dimensionality:

Conclusions

compare measured
dimensionality to our
upper bounds

dimensionality
constrained by task
complexity and
smoothness

-
N

additional intrinsic
dynamic constraint in
the data beyond task
complexity and
smoothness

Neural measurements (optimistic messages):

Subsampling can recover accurate dynamic portraits
when neural activities are highly distributed

To recover dynamic portraits from more complex
experiments, no need for many more neurons.

Dimensionality

neuron 2

neuron 1



Towards a single trial theory

Given limited experimental resources, like

M = number of neurons we can record
P or T = number of training stimuli or amount of time we can record
SNR = signal-to-noise ratio, or trial to trial reproducibility of our data

And a measure of the complexity of our experiment:

K = some measure of the complexity of our
stimuli/behavior/latent variables/manifold of visited neural states

How well can we: Decode behavior on single trials?

Learn the structure of unobserved latent cognitive
variables contributing to trial-to-trial variability?

Such a theory should help us design experiments before they are done!



l Towards a single trial theory l

Recovering latent cognitive subspaces: towards a theory of
gaussian process factor analysis.

Towards a Rosetta stone between dynamics and statistics: how do
statistical latent variable models fit to a subset of neurons, reflect the
dynamical properties of a much larger neural circuit?



Inferring latent cognitive subspaces

Low K-dimensional Embedding in the N- Subsampled in the M-
stimulus space dimensional space dimensional space
x\
\\‘:"‘.'
.
24
24
:’-'V’\
3 ¢ s
"4t
0'-'
.l

Consider a high dimensional neural circuit with N neurons.
We can only record M of them for a finite nhumber of stimuli P.

Suppose the stimuli are encoded simply in a K dimensional

subspace ( or nonlinear curved manifold in which case K ->
NTC)

For what regimes of M, N, P and K and the SNR, can we correctly
recover both the subspace and its dimensionality?



l Inferring latent cognitive subspaces l

K-dimensional
stimulus

Data = X
K by P

/

# sampled activity
patterns




l Inferring latent cognitive subspaces l

Orthogonal K-dimensional
Embedding stimulus
Data = e X X

iy K by P
A # sampled activity
patterns
N by K

/

# of behavioral
relevant neurons



l Inferring latent cognitive subspaces l

Orthogonal K-dimensional
Subsampling Embedding stimulus
O o T
Data= | _ X| X X
= 5 . i
i - A KbyP
M by N XA G # sampled activity
patterns
# recorded neurons G ¢ B
N by K

# of behavioral
relevant neurons



l Inferring latent cognitive subspaces l

Orthogonal K-dimensional
Subsampling Embedding stimulus
[ AR TR
Data= | _ X X X
- S o g
MbyN :
Observation Noise
+ Z
M by P

N by K



l Inferring latent cognitive subspaces l

|| :
R= s "™ x || x X + 7
S K by P
Mby N M by P
N by K
Dimensions:

N (# nrns) > P (# trials) > M (# record nrns) > K (stim dim)
Signal and Noise Models:
Xij ~ N(0, %03) Zij ~ N(0,07)
Neuronal Signal-to-Noise ratio:

SNR =

2
Is
2

On



Singular value transfer function

Output Singular Value

—
N
o

Low-rank Matrix Perturbation Theory
With completion observation (i.e. M = N):

R=UX+Z

/

low-rank signal

input-referred
| noise:floor

SNR ~

________________________

7

N=1000, P=800,
K=2

o

'
7

0 | 120

Input Singular Value

N

high-dim noise

Subspace overlap

input-referred

I noise floor

o :

®

)

>

@)

O

&

o
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a N=1000, P=800,
O.!...“o K=2 |
0 120

Input Singular Value



Subsampling
With partial observation (i.e. M < N):

R=SUX+Z

/

low-rank signal

N

high-dim noise

- K(=2)-dimensional stimulus space
- Embedded in N(=3)-dimensional

neural space

- Subsampled to M(=2)-dimensional

subspace

- Distance between sampled activity

patterns are compressed

- Compressions are different

depending on orientations

- Compression determined by the K

singular values of SU



Singular Value Spectrum of SU

M by N random Singular value spectrum:
sampling matrix | Nby K
= | random nsu (o)

S ™ x U] orthogonal
embedding distribution of all possible signal

| matrix distortions by the SU matrix

SU’s singular value squared are the eigenvalues of STSUTU
ar [SU)° = eig, [SUUTST] = eigy, [STSUUT]

Free probability theory: STS and UTU are two independent projection

matrices, their S-transforms obey: L
Sa(z) = , M3 (z)
S 60
stsuTu(?) = Sgrg (&z)SSg Hei?) Ma(z) = Y Tr [(AAT)™] 2m
Distribution of distortions: /776 i
M K KN-M
_N\/(a2_02_)(01—02) "iz\/ﬁ\/l_ﬁ(li MN—K)
usu(0) = M mo(l — o2?) \ upper/lower bounds

of distortion




Singular Value Spectrum of SU

M by N random Singular value spectrum:
sampling matrix | Nby K
= | random nsu (o)

S ™ x U] orthogonal
embedding distribution of all possible signal

| matrix distortions by the SU matrix
Distribution of distortions:

\/M\/l__ (u KN—M)
N \/ — 02) MN-K

upper/lower bounds
of distortion

usu (o) = 7r0(1 = 02)

Simulations (N = 1000, K = 100):
M=120~K M=300>K M=900>>K




Static Decoding - Recovering Dimensionality

= § o ¢ Ul x X + 7
K by P

M by N | M by P

k L1

Subsal)nfpling
Compression



Static Decoding - Recovering Dimensionality

: Kby P
Wby N M by P
N by K
\ J \ — )

Subsal)nfpling

Compression Signal Strength



Static Decoding - Recovering Dimensionality

= § o D ¢ Ul x X + 7
- Kby P
MbyN ‘ M by P
\ NOYE R S
Y . Y
Subsampling Sianal Strenath Input-referred
Compression 9 9 Noise Floor



Static Decoding - Recovering Dimensionality

= § " x U X X + Z
e Kby P
MbyN M by P

Y ..
(S:ubsampll_ng * Signal Strength > lanu_t-reli__‘Ierred
QIBRERREN (worst-case) oise rrloor



Static Decoding - Recovering Dimensionality

R= § -

N

X

Subsal)nfpling

CRiBRigsEgn

O min [SU]

U‘ X X + Z
S KbyP
M by P
s -y
_ Input-referred
+ Signal Strength > Noise Floor

(worst-case)

=3 (- 50)
M

/¥



Static Decoding - Recovering Dimensionality

e Kby P
MbyN ‘ M by P
) r Input-referred
Subsampling Compression * Signal Strength > Np ise EI

(worst-case) (worst-case) oise rloor

Omin [X]

N

Os \/;(\/E “+ \/1_3)
oot Y/P

K



Static Decoding - Recovering Dimensionality

e Kby P
MbyN ‘ M by P
) r Input-referred
Subsampling Compression * Signal Strength > Np ise Fl
(worst-case) (worst-case) oise Floor
F~! (Umax [Z])
on(MP)/4

on(MP)/4



Static Decoding - Recovering Dimensionality

§ " x |yl x X + y4
s K by P
Mby N s M by P
N 1.7, S UV R S
Subsampling « Signal Strength > Input-referred
C&&H&'E c%%le?n (worst-case) Noise Floor

{ . X I L T y AR
U min ’ 2\ | | 1.: ( /,A-' max | ys A.,

neuronal gain \

2
“SNRVMP = VMPZ 2 K M>K

recording/trial 2
gaing — — e P>K




Latent State Recovery: Simulations

D
vVMP> — M>D,P>D
— SNR

Prediction: hyperbolic phase transition in the M-by-P
plane:
Simulated recovery of random smooth trajectories with SNR = 0.02,
D=4
Recovered Dim cSubspace Overlap

‘[ Ln

# samples (P)1 000 # samples (P)1 000

# neurons (M) 1000
# neurons (M) 100




Latent State Recovery: Monkey Data

 Motor cortical data from Shenoy lab, center-out reaching tasks
- GPFA to extract latent trajectories in 147 trials for reaches to a single targety et al. 2009

- Different algorithm: D inferred using cross-validated Gaussian Process Factor
Analysis

- Different noise in the data: pink and temporally correlated

Inferred D Subspace Overlap
100 W 100 =
o
=
2 : -
< <
‘ P | Hu

) _ 140
¢ inals 1P ¢ inals 1)

Qualitatively similar tradeoff between
Mand P



l Towards a single trial theory l

Recovering latent cognitive subspaces: towards a theory of
gaussian process factor analysis.

Towards a Rosetta stone between dynamics and statistics: how do
statistical latent variable models fit to a subset of neurons, reflect the
dynamical properties of a much larger neural circuit?



Discovering structure in subsampled neural dynamics
Consider a high dimensional neural circuit with N neurons.
We can only record M of them for a finite amount of time T.

b‘/C) - What can we correctly infer about the circuit dynamics
when M << N and T is not too large?

In general - nothing!

However if we might assume an underlying simplicity, for
example low dimensional dynamics of dimension K.

For what regimes of M, N, T and K can we correctly recover
dynamical properties of the circuit?

Model Linear Neural Network

8_%3315 + inb‘t + My

M-dimensional Ys BCEt rank-K  jnput
observation »\ connectivity

N-dimensional state Tty q

random neuronal
sampling property



Data often modeled using latent linear dynamical systems

nonlinear and

Zt+4+1 — Azt + ‘Sta Wlth &t Y N(O, Q)

stochastic transforms _, Yt = Czs + 13, with ng ~ N (0, R =rI)

of y may be used to
model spikes directly

g1 n N(O, H)

SSID used to find the slow mode eigenvalues of the generative model

Hankel Matrix:
H

approximated

I gyt’yﬁlg éyt—lya]; <yt—2yg+1>
using data

?Jt’yﬁz yt—ly;{uz
i <yty$+3>

T CALIC CA?IC CAPIC | T = (ywl)

2 3
CA’IIC CA°TIC theoretical values

| CATIC : with infinite data
[ CA
2
o [ IC AIIC --- ] factorization

7

Linear regression to find A’s eigenvalues



Data often modeled using latent linear dynamical systems

] Zt+4+1 — Azt + &t) Wlth gt Y N(O, Q)
nonlinear and

stochastic transforms _, Yt = Cz + g, with n, ~ N (0, R =11)

of y may be used to ~
model spikes directly z1 ~ N(0,11)

When are the eigenvalues of fitted (SSID) latent dynamics A
close to those of slowest modes of the generative model?

N= 1000, K= 4, T= 0.4, Tslow = 9.5

Covariance eigenvalues A's eigenvalues Covariance eigenvalues A's eigenvalues
x O

g g "

S gap Z|e X g nogap | g, . e
(] = o g =
2 o
- x - Tﬁ}

Index 0 1 Index 0 1
Real Real

Accurate recovery, M =200, T = 2000 Poor recovery, M =50, T = 200

A gap is required in the eigenvalue spectrum of the observation
Y's covariance matrix.



To understand the spectrum of the covariance matrix,

Subsampling

Data= . -

M by N
/!

# recorded neurons

*

we factorize the data

Embedding *

- 'K -'IN:_ K --7_.::'3"5. -

zo Mg

NbyN

Dynamics slow -

Iy mode
W\”\MM\W S

Wl Wit OGS

A S ok, N = K
Wy o fgpapys - fast

S
Nby T

# of behavioral / / _
relevant neurons # Of time points

X = sampling * (Xsiow + Xtast)
T Similar setup to factor

—-Signal

—Noise

time

recorded

analysis, but the noise
IS correlated across



Data can be thought of as a low-rank perturbation of
a random noise matrix

Asiow + Xfast Benaych-Georges & Nadakuditi, 2012

Eigenvalue spectrum of correlated noise deviates from the
Marchenko-Pastur law

Theoretical eigenvalue spectrum for N = 1000, T = 2000 noise matrix

0.9 : - ' 1
0.8 | —— Correlated noise .

0.7 b —— Uncorrelated noise |1
0.6 +

0.5
0.4+
0.3+
0.2
0.1}
0.0
0

_1
Tiy1 =€ 7Ty + M
0.4

4 | Marchenko & Pastur, 1§
Bai et al., 2008, Yao, 20

Density

1 2 3 4 Q b(N, T, 1)

Eigenvalues - noise floor




Discovering structure in subsampled neural dynamics

b‘/CD Model Linear Neural Network

_ 1
N-dimensional state Tt 1 — € 7 Tt WCEt Mt
N
/ M-dimensio_nal Y = ngt rank-K input
observation connectivity

random neuronal
sampling property
N =5000 K =6

Dynamics Learning
(c¢) Inferred Dim (d) Subspace Overlap

fewn -

|
e

#neurons &
o

Bew

—_
o
o




Model Nonlinear Neural Network compressive
nonlinearity

B 1
N-dimensional state: r't! = e~/ 7ept 4 W [8 tanh (—I‘t + 7
7 g t
| neuronal rank-D r.egurrent random input
fime constant  connectivity

M-dimensional observation: I,?w — SI‘t
™~ Random sampling operator

Nonlinearity scaling parameter s: smooth transition between linear neuronal
responses (large s) and binary responses (small s)

1.5 : : - - :
— s=0.5
— s§=2

5 ! L 1
-15 -1.0 -0.5 0.0 0.5 1.0 1.5
input



Compressive nonlinearity’s effect on data’s eigenvalue spectrum:

Simulated datasets with N=500, D=4, M=250, T=500 samples,
time constant for neuronal noise = 2.0; for network dynamics = 10.0
Random input’s strength (standard deviation): into signal subspace = 3.0, into the rest = 1.0

- = noise theory - - noise floor [ linear [ nonlinear
., 0.30 : ., 0.30 — ., 0.30
S 0.25} 1 5 025¢f 4 5025¢f .
o o | o
O 0.20 1 © 0.20F | 1 © 0.20+ .
@ @ | @ 0.15
8 015} 1 & 015} 1 & 015} E
@ 0.10} {1 ® 0.10} {1 ® 0.10} .
S £ S
S 0.05F 1 8 0.05} 1 8 0.05} E
0.00 1 1 1 1 1 0.00 1 1 1 1 1 0.00 1 1 1 1 1
3 45 6 7 849 10 3 456 7 8 10 3 456 7 8 10
Eigenvalue Eigenvalue Eigenvalue

A preferential squashing of the signal eigenvalues



Compressive nonlinearity’s effect on the recovery of latent subspace

True signal subspace obtained empirically after simulating nonlinear networks for 20,000
time steps;

For each M, the true signal subspace is sub-sampled and re-orthogonalized to compute
its overlap with the recovered subspace from only T steps of simulation;

The resulting overlaps are rescaled so that 0 => overlap between two random D-

dimensional subspaces in M dimension, and 1 => complete overlap
=0.1 $=1.0 =10.0
1 200 1 200

(§®)
-
o

M (log scale)

- -
o] 0

2() - 320 n : 3_20 :
200 T (log scale) 2000 200 T (log scale) 2000 200 T (log scale) 2000

puelr

Simulated datasets with N=500, D=4, M varied from 20 to 200, T varied from 200 to 2000
times constant of neuronal noise = 2.0, of network dynamics = 10.0
Random input’s standard deviation: into signal subspace = 3.0, into the rest = 1.0




Outline of talks I, IT and III

|. Oldies but goodies

Models of single neurons: Hodgkin Huxley to Hopfield

The Hopfield model

The perceptron learning algorithm: memorization and generalization
Unsupervised learning: PCA, ICA, Sparse Coding

AW —

2. High dimensional statistics: theory and experiment

|. The best way to do regression in high dimensions (Replica theory)
2. Recovering neural state space dynamics (Rand proj / Matrices / Free prob)
3. Figuring out how neural circuits learn (Tensor decompositions)

3. Deep learning: theory and practice

Speeding up deep learning (Dynamic criticality)

Error landscape of deep networks (Stat mech of random Gaussian fields)
Deep generative models (Non-equilbrium thermodynamics)

Expressive power of deep networks (Riemannian geometry and chaos theory)
Application: deep models of the retina: the first step in seeing

i AW —



l Tensor components analysis l

Alex Williams




Tensor components analysis

d trial-averaged PCA b trial-concatenated PCA
trial 1 trial k trial K trial 1 trial k trial K
‘n II lI: " Il L} II lII " Il L} II IIII ma L} w lI lI: " II 1 lI lII " II 1 lI IIII mn II 1 ~
c " 1 1 LI | 1 c " L} 1 LI | 1 ~
o o 1 [ ] [} o 1 9 o 1 [ ] [} o 1
c 1 I: :: Il 1 1 I: :: Il 1 1 II II II 1 c 1} l: :: II 1 L} l: :: II 1 L} Il II II 1 different temporal
e — l l l + factors for each trial
trial-average PSTH concatenated and smoothed data matrix +
® m O + ... + == ol T S A—
S| o~~~ |™ S| AN AN A
8 —~—~ OCJ ——~ —~—~ A
e\ ~—\ o~ A~ N\~ AN~
time time time time
C CP tensor decomposition
tial 1 talk tal K- neuron factors temporal factors trial factors
2 ] ||II 1 ] ||I 1 , 1 ||I , [ , .... [
sl ... . cr ce ° °
=1 IR B N Y ]-.I-I-Ir \/\/ O o0
ol I AR A 1 1 1 1
cell #1 cell #6 trial start  trialend  firsttrial  last trial
~ + + ... +

neurons



Tensor components analysis

simulated rasters
a N b 25 50 75 100
input signals across trials - i ol il ! it
trial1 25 50 75 100 o ey e " [
") il ‘ i ™
@ : i ‘
— N _I\ _,\ o | - B i i 2y
h 3 | & . o W E:
L L e ————— < w ::le " 1
W ! = L s
— J\ —/\ _/\ — ! L i wa! [
! 008
time time time time time
C CP Decomposition e
synaptic /n;;ut input PCA on unfoldings ICA on unfoldings
0.4 Welghts 0.3 -Wave orms 0.3 -magnltUde 0.4 0.3 0.3 1 0.4 0.3 1 0.3 1
-0.4 + 0.1 T T +0.1 T T T 1 =04 T T 0.1 T T +0.1 T T T 1 =0.4+ T T 0.1 T T +—0.1 T T T 1
@ 0.4 0.3 1 0.3 1 0.4 0.3 1 0.3 1 0.4 0.3 1 0.3 1
O N
S My TN T N T v [N TS
O -04+ T —0.1 ——0.1 ——— -0.4+ T —0.1 —=—0.1 ——=—  -0.4+ T —0.1 ———0.1 ———
0.4 0.3 9 0.3 9 0.4 0.3 9 0.3 9 0.4 0.3 1 0.3 9
2 M |~ | —~ AN b~ W Lo L
_0'46 20 40 O'10 50 100 15()0'10 25 50 75 100 _0'46 20 40 0.10 50 100 153)'10 25 50 75100 '46 20 40 0'10 50 100 1§(§)'10 25 50 75 100
neurons time trials neurons time trials neurons time trials
= ground truth model estimate

f

organize data === fit models =3 choose # of components == visualize factors

Smooth spiking data with CP decomposition is nonconvex Scree and similarity plots can help determine this. We typically visualize the neuron factors as
Gaussian filter. and optimization might get Always visualize multiple models and ensure they a bar plot, the temporal factors as line
Normalize activity traces so caught in local minima produce similar results. plots, and the trial factors as color-coded
that high-firing-rate neurons Unlike PCA, the best-fit factors (1) screeplot (2) similarity plot scatter plots.
do not dominate analysis. depend on the # of components 1.0 Since the ordering of the neurons is often
Thus, models with different # of 0.6 - > arbitrary, it can hel_p to l_’eorder_them by the
o components multiple times from § : T 0.8 1 neuron factor loadings in creative ways.
g different random initializations. 5 . E 0.6 1 .
g In practice, optimization is ' " 0.4l ¢
tractable. ' . —>

1 2 3 45 1 2 3 45
# components # components



BMI b 30° visuomotor

nitial perturbation partial recovery
|
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Tensor components analysis

a example 45° reaches d early factor learned factor
initial perturbation recovery \ \
’ (’ oS °'125} Q01 A A0\ ] -
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: i i 0.050 . o,
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E o‘ E — 1 H
- {' - corrective trial factor
----- *----.--.-u. .--.--?---.--.-u. .--.--: sssssmEEEE 1800 1350
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An interesting artificial neural circuit for image classification

| ENS
———— 3 -]
o
: 204¢ 204
48 192 048 2048
55
13 \ 13
SN =N
224 g [ 3 H 3| [ X A
\ - - BRI A 13 dense dense
1IN\ ’
55
11 X 192 192 128 Max L L
i 2048 2048
224\liStride Max 128 Max pooling
“of 4 pooling pooling
3 48
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Towards a theory of deep learning dynamics

— The dynamics of learning in deep networks is non-
trivial - i.e. plateaus and sudden transitions to
better performance

— How does training time scale with depth?
— How should the learning rate scale with depth?

— How do different weight initializations impact
learning speed?

— We will find that weight initializations with critical
dynamics can aid deep learning and generalization.



Deep network

 Little hope for a complete theory with arbitrary
nonlinearities

f(WDhD) f(WD_l p1) f(W2h1) f(Wlx)

O o O
O O
O WD O O VV2 8 VV1 ®
Qf 84— e e—g < ©< O
- fo o 97
y E R h, ER" xER




Deep linear network

* Use a deep linear network as a starting point

><Wgz,)) ><WD-1 ) ><W2h1)><W1x)
O

8 wP O O W? 8 W
o Do O s

O © © O

O f(x) O

y = RND+1 h2 & RN3 X

X




Deep linear network

* [nput-output map: Always linear

D
y — ‘ | Wl X = Wl‘Ol‘x
i=1
* (Gradient descent dynamics: Nonlinear; coupled; nonconvex

sosf (1) i) )

p=1 \i=l+1 i=1

[=1,--,D

» Useful for studying learning dynamics, not representation power.



Nontrivial learning dynamics

Plateaus and sudden Faster convergence from
transitions pretrained initial conditions
L Random ICs |
2 s, Pretrained |
[Tl Pl
g G -
c C
é k E 1
- . ©
1 =
E O C h S 100 150 200 250 300
P Epochs

* Build intuitions for nonlinear case by analyzing linear case



Three layer dynamics




Problem formulation

« Network trained on patterns {x*,y*},u=1,...,P.
« Batch gradient descent on squared error ||Y - W?W2X|;

* Dynamics

T%WZI — w3l (231 . W32W21Z”)
T%Wﬂ _ (231 . W32W21Z”) w2t
Input correlations: Y =FE[xxT] =1  (seepaperfor

more general

Input-output correlations: y3l — E[yxT] input correlations)



Analytic learning trajectory

SVD of input-output correlations:

1/Learning rate

Ny
T T
231 . U33S31V11 _ Z SauocvocT
o=1

s Singular value

a, | Initial mode strength

Network input-output map:

2 . N> 0 SeZSl‘/’C
W=t ) W= (t) = a(t,sq,a uVv* where a(t,s,a0) =
() () ocgl ( o oc) (77 ) eZSt/T—l—I—S/a()
e Starting from decoupled initial 200 Simulaﬁon
conditions. — Theory
O 1507
S
* Each ‘connectivity mode’ evolves “2 400}
. A
independently —
G 50+
* Singular value s learned at time O(1/s) .

Saxe, McCelland, Ganguli, ICLR, 2014



Deeper network learning dynamics

* Jacobian that back-propagates gradients can explode or
decay

f(WDhD) f(WD_l p1) f(W2h1) f(Wlx)

O o O

O O

O WD O O W2 8 VV1 ®
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- fo o 97
y E R h, ER" xERY




Deeper networks

* Can generalize to arbitrary depth network

* Each effective singular value a evolves

independently
d o) 1 T | 1/Learning rate
t—a=(N,-1)a> 7" (s-a)
dl‘ s | Singular value
N, | # layers

» In deep networks, combined gradientis O(N,/7)

Wii-1 W,

O Qe Q——Q——Q  a= [[ Wi




Deep linear learning speed

* Intuition (see paper for details):

— Gradientnorm O (N | )
— Learning rate 0, (1/Nz ) (N,=# layers)
— Learning time O (1)

* Deep learning can be fast with the right ICs.

Saxe, McClelland, Ganguli ICLR 2014



MNIST learning speeds

Trained deep linear nets on MNIST

Depths ranging from 3 to 100
1000 hidden units/layer (overcomplete)

T T o C I S
L~ shArRONND
NN DV~
(RTINS TR WY
NN BN DN -
DN UL LWNNO
DN RRWN-O
~w~ovearhnwwN~O
waNeneWy ~0Q

Decoupled initial conditions with fixed initial mode

strength

Batch gradient descent on squared error
Optimized learning rates for each depth

Calculated epoch at which error falls below fixed

threshold



MNIST depth dependence

Time to criterion Optimal learning rate

x 107"

1.2

1 L

0.8

ptimal learning rate
o
(o))

0.4¢
O 0.2
0 . 0 .
0 50 100 0 50 100
NI (Number of layers) NI (Number of layers)

Depth Depth



Deep linear networks

Deep learning can be fast with decoupled ICs and O(1) initial mode
strength. How to find these?

Answer: Pre-training and random orthogonal initializations can find these
special initial conditions that allow depth independent training times!!

But scaled random Gaussian initial conditions on weights cannot.



Depth-independent training time

* Deep linear networks on MNIST
e Scaled random Gaussian initialization (Glorot & Bengio, 2010)

Time to criterion Optimal learning rate
S 5
o
£ 200 P
£ — Glorot B
5 150 /| — Pretrained 21.5]
£ — £
%100_ Orthogonal § 1
© —
S 50 £ 05/
" o
S 0 © 0 '
g2 0 50 100 0 50 100
Depth Depth

* Pretrained and orthogonal have fast depth-independent
training times!



Random vs orthogonal

* Gaussian preserves norm of random vector on average

1 layer net 5 layer net 100 layer net

N,-1=1 . N,-1=5 . N, - 1=100
10000 2X10 g X 10

5000

Frequency

3 0 2 4 6 0 5 10 15 20

N,-1
Singular values of W"' = HW’
i=1

» Attenuates on subspace of high dimension
» Amplifies on subspace of low dimension



Random vs orthogonal

* Glorot preserves norm of random vector on average

1 layer net 5 layer net 100 layer net

N,-1=1 . N,-1=5 . N, - 1=100
10000 2X10 g X 10

5000

Frequency

3 0 2 4 6 0 5 10 15 20

N,-1
Singular values of W"' = HW’
i=1

* Orthogonal preserves norm of all vectors exactly

All singular values of W =1



Deeper network learning dynamics

* Jacobian that back-propagates gradients can explode or
decay

f(WDhD) f(WD_l p1) f(W2h1) f(Wlx)

O o O

O O
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Extensive Criticality yields
Dynamical Isometry in nonlinear nets

Suggests initialization for nonlinear nets
* near-isometry on subspace of large dimension

Oz
1
8xj

 Singular values of end-to-end Jacobian J' (") =

N1

concentrated around 1.

Scale orthogonal matrices by gain g to counteract contractive
nonlinearity

Singular values
of J

Frequency

q=02
100 & 40 100 400
} 40 % 300
50 E’ 2 1 20 50 200
10

0 . 100

% 1 b " 0 2 4 ¢ - - % o5 1 15 2 ° 2 4

0 3e-5 0 6e-5 0 2

0 0.4 0 6

Gain g=0.9 g=0.95 g=1 g=1.05 g=1.1

Just beyond edge of chaos (g>1) may be good initialization



Dynamic Isometry Initialization

* g>1 speeds up 30 layer nonlinear nets

* Tanh network, softmax output, 500 units/layer
* No regularization (weight decay, sparsity, dropout, etc)

MNIST Classification error, epoch 1500 | Train Test
Error (%) | Error (%)
Gaussian (g=1, random) 2.3 3.4
g=1.1, random 1.5 3.0
g=1, orthogonal 2.8 3.5
Dynamic Isometry (g=1.1, orthogonal) | 0.095 2.1

* Dynamic isometry reduces test error by 1.4% pts



Summary

Deep linear nets have nontrivial nonlinear learning dynamics.

Learning time inversely proportional to strength of input-output
correlations.

With the right initial weight conditions, number of training
epochs can remain finite as depth increases.

Dynamically critical networks just beyond the edge of chaos enjoy
depth-independent learning times.



Beyond learning: criticality and
generalization

* Deep networks + large gain factor g train exceptionally quickly
* Butlarge g incurs heavy cost in generalization performance

L 0.0t

o

L 0.0!

S .-

i, T N ,

- " Testerror

n " e

Z 0.0:

= - Train error|
1 1.4 1.8

Gaing

* Suggests small initial weights regularize towards smoother functions
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High dimensional nonconvex optimization

It is often thought that local minima at high error stand as

as a major impediment to non-convex optimization.

In random non-convex error surfaces over
high dimensional spaces, local minima at high
error are exponentially rare in the dimensionality.

Instead saddle points proliferate.
We developed an algorithm that rapidly escapes saddle points

in high dimensional spaces.

Identifying and attacking the saddle point problem in high dimensional non-convex optimization.
Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio. NIPS 2014.

The loss surfaces of multilayer networks. A. Chormanska, M. Henaff, M. Mathieu, G. Ben Arous,
Y. LecCun, AISTATS 2015.



General properties of error landscapes in
high dimensions

From statistical physics:

Consider a random Gaussian error
landscape over N variables.

Let x be a critical point.

Let E be its error level.

Let f be the fraction of negative curvature
directions.

A

E
Bray and Dean, Physical Review Letters, 2007




Properties of Error Landscapes on the
Synaptic Weight Space of a Deep Neural Net

MNIST CIFAR-10

30 ° 10? 3 Error 0.32% gGO ) 10 3 Error 43.54%
g @ 10 Zos Error 23.49% w 100 Zoms Error 48.08%
= 20 ° _10° 11123 Error 28.23% 5 55 ' _ 100 F \vi Error 61.49%
= =107 }# = 50 '.; N 318-2 v .
@ 10 S1021: ) . 2 &10_3 thHE T
- .-P"‘ 103} fond B 4 H
E PY ORI L © 10
0 et 10 40 1075

0.00 0.12 0.25 0.0 0.5 1.0 1.5 2.0 0.05 0.10 0.15 0.20 0.0 0.5 1.0 1.5 2.0

Index of critical point « Eigenvalue ) Index of critical point « Eigenvalue A

Qualitatively consistent with the
statistical physics theory of random error landscapes



How to descend saddle points

Newton’s Method

Ar=—-H 'Vf(z)

Saddle Free Newton’s Method

Az = —[H|7 V()

Intuition: saddle points attract Newton’s method, but
repel saddle free Newton’s method.

Derivation: minimize a linear approximation to f(x) within a trust region
in which the linear and quadratic approximations agree



Performance of saddle free Newton in
learning deep neural networks.

@ 101 ;\3 102 i MSGD =< 100 - MSGD
°\, ~ TITS 111 Damped Newton ) 10-1 1y 111 Damped Newton
w w 1 ‘,’“ R — ; 2 % -— sFN‘
= ~ 10 "oy, © 10 o1 A g a7
H e 1 0 o gy, » (@) -3 ¥y 1 ,”,“’}'L“@mrmuu
7] |0_J 0 qt) 100 umnmmnumu\mm\mmmmmmmMM. qc’ ::8-4 ’"n
| @'® MSGD
z % 419 Damped Newton c [72] 10-5
— — - -
e 50 £10°0 102030 4050 £10°6 40 20 30 40 50
# hidden units # epochs # epochs
(a) (b) (c)
— ? - MSGD
o @!® MSGD o 2 1 1 D d Newt
3\/ 60 419 Damped Newton § 10 S, () 100 — Slfl:lnpe e
o Bl SFN . N U 'n’,,,""" = 10_1 O
o - T ““\\ j o e 4{.05 10 2
= g , “”Q’WW"'MHWUmmumm 8 o 10:3
MI (O] E - MSGD GC) 10_4
< (] c 111 Damped Newton - 10_5
oo ‘o = m SFN 0 ]_O_
H G832 T 1ol | ©10°
QO = 5 25 50 — 0 20 40 60 80100 & 0 2040 60 80100
# hidden units # epochs # epochs

SFN out-performs
(1) minibatch stochastic gradient descent and
(2) damped Newton’s method

The performance advantage increases with the problem dimensionality.



Performance of saddle free Newton in
learning deep neural networks.

Deep Autoencoder

10! (1 10t 102
m— MSGD 01,
||||| SFN 100
i
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||||||||||||||
100 Y 100 10—2 IIIII
ll'," - s
500 1300 3000 3150 10 0

3150

Recurrent Neural Network
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When stochastic gradient descent appears to plateau, switching to saddle
Free newton escapes the plateau.
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Modeling Complex Data by
Reversinglime

with Jascha Sohl-Dickstein
Eric Weiss, Niru Maheswaranathan




Flexibility-Tractability Tradeoff
INn Probabilistic Models

Nonparametric

Energy based
Variational Bayes

Product of experts

Mixture of Gaussians \

Ising

Flexibility

Goal
Generalized Gaussian
Student's t Latent factor analysis

Gaussian
Laplace

P
Tractability

stein Model




Achieving Flexibility
and [ractabllity

« Physical motivation
« Destroy structure in data through a diffusive process.
« Carefully record the destruction.

« Use deep networks to reverse time and create structure from noise.
e Inspired by recent results in non-equilibrium statistical

mechanics which show that entropy can transiently
decrease for short time scales (violations of second law)

stein Modeli



Physical Intuition: Destruction
of Structure through Ditfusion

« Dye density represents probability density
« Goal: Learn structure of probability density

« QObservation: Diffusion destroys structure

Data distribution

é Uniform distribution

stein Model




Physical Intuition: Recover
Structure by Reversing Time

« What if we could reverse this process?

« Recover data distribution by starting from
uniform distribution and running a new type of
reverse dynamics (using a trained deep
network)

Data distribution h Uniform distribution

stein Model




Physical Intuition: Recover
Structure by Reversing Time

« What if we could reverse time?

« Recover data distribution by starting from
uniform distribution and running dynamics
backwards (using a trained deep network)

Data distribution h Uniform distribution

stein Model




Swiss Roll

Forward diffusion process
« Start at data

« Run Gaussian diffusion until samples become Gaussian blob

3

stein Modeling Complex Data



Swiss Roll

Reverse diffusion process
o Start at Gaussian blob

« Run Gaussian diffusion until samples become data distribution

3

stein irlodeling Complex Data



stein

Swiss Roll

Diffusion

—

Diffusion with neural network
determining mean and covariance
of each step

—

Model




Dead Leaf Model

« Training data




Diffusion Probabilistic Model
on Dead Leaves

og likelihood
.49 bits/pixe

og likelihood
.24 bits/pixe

0 50 100 150 200 250

Sample from Sample from

Training Data [Theis et al, 2012] diffusion model

stein Modeling Complex Data



Natural Images

e Training data

stein Model




Diffusion Probabilistic Model
Inpainting

stein Modeling Complex Data



-lexible and Tractable Learning
of Probabillistic Models

« Flexible
« Every distribution has a diffusion process (ongoing work applying to
binary spike trains, and full color natural images from diverse
scenes)
e Tractable
e Training: Estimate mean and covariance of Gaussian
« Sampling: Exact - model defined by sampling chain

« Inference: Via sampling

« Evaluation: Cheap - compute probability of sequence of Gaussians

stein Model
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A theory of deep neural expressivity

through transient chaos
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Seminal works on the expressive power of depth

Networks with one hidden layer are universal function approximators.
So why do we need depth?

Universal function approximation theorems yield no guarantees on the
size
of the hidden layer needed to approximate a function well.

Overall idea: there exist certain (special?) functions that can be
computed:

a) efficiently using a deep network (poly # of neurons in input
dimension)

b) but not by a shallow network (requires exponential # of neurons)

Intellectual traditions in boolean circuit theory: parity function is such a
function for boolean circuits.



Seminal works on the expressive power of depth

Nonlinearity Measure of Functional Complexity
Rectified Linear Unit (RelLu) Number of linear regions
There exists a function computable by a deep network where the number
of linear regions is exponential in the depth.

To approximate this function with a shallow network, one would require
exponentially many more neurons.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.
On the number of linear regions of deep neural networks, NIPS 2014



Seminal works on the expressive power of depth

Nonlinearity Measure of Functional Complexity
Sum-product network Number of monomials

There exists a function computable by a deep network where the number
of unique monomials is exponential in the depth.

To approximate this function with a shallow network, one would require
exponentially many more neurons.

E% = )\115% + /461155 = T1T9 + 3Ty = f(l’l, 9,3, 5134)

i I I3 Ty

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks, NIPS 2011.



Questions

The particular functions exhibited by prior work do not seem natural?
(see Tommy Poggio’s talk later today!)

Are such functions rare curiosities?

Or is this phenomenon much more generic than these specific examples?

In some sense, is any function computed by a generic deep network

not efficiently computable by a shallow network?

If so we would like a theory of deep neural expressivity that demonstrates
this for

1) Arbitrary nonlinearities

2) A natural, general measure of functional complexity.



Limitations of prior work

Theoretical technique Nonlinearity Measure of Functional
Complexity
Combinatorics/ RelLU Number of linear regions

Hyperplane Arrangements
Polynomial expansion Sum-product Number of monomials

Algebraic topology Pfaffian Sum of betti numbers

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A comparison between
shallow and deep architectures. Neural Networks and Learning Systems, IEEE Transactions on, 2014.

ler

Riemannian geometry + Arbitrary Extrinsic
Dynamical mean field theory Curvature

We will show that even in generic, random deep neural networks, measures
of functional curvature grow exponentially with depth but not width!

More over the oriains of this exponential arowth can be traced to chaos theorv.



Another perspective on the advantage of depth: disentangling

(a) (b) IT space

e )
V1 space

‘h"‘

Slngle IT unit

———

Pose Pose

Slngle V1 unit

Response
Response

How can we mathematically formalize the notion of disentangling
in deep networks?

How do we use this mathematical formalization to quantitatively assess the
disentangling power of deep versus shallow networks?

We will show that deep networks can disentangle manifolds whose
curvature grows exponentially with depth!



A maximum entropy ensemble of deep random networks

. hidden layer 1 hidden layer 2 hidden layer 3
input layer
L)

— N\ ~ N; = number of neurons in layer 1
' R D =depth(l=1,...,D)
S O e > [ I
0 x' = ¢(h')
ZaN§ e h! = Wi x~! 1 pt
Structure: i.i.d. random Gaussian weights and biases:

T N1
b: « N(0,0?)

2
W N(o %>



Emergent, deterministic signal propagation
In random neural networks

hidden layer 1 hidden layer 2 hidden layer 3
input layer : - ’
{ ) - .
— NN N; = number of neurons in layer 1
o> > N SE74 output layer
= Z . 7 D : depth(l : 17 L] L] L] 7D)
= ‘o \ : S
0 oo o Lo
o O x' = ¢(h')

hl _ Wl Xl—l + bl

Question: how do simple input manifolds propagate through the layers?

A single point: When does its length grow or shrink and how fast?
A pair of points: Do they become more similar or more different, and
how fast?

A smooth manifold: How does its curvature and volume change?



Propagation of a single point through a deep network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

— IS AN ~ N;=number of neurons in layer ]
S D =depth(l=1,...,D)
Lo g o x' = ¢(h)
—~ \ / = h! = W'x'""' + b
L
[ [\2
[ [ [— [ = —
h! = W ¢(h'!) + b =5 ;(hz)

2

¢ = V(ql_1 | Ow,0p) = va/ ngb(\/ql_lz) —|—0§

A recursion relation for the length of a point as it propagates through the
network



Propagation of a single point through a deep network

A iterative length map B
1—1 :
. V (q ow, Ub) dynamics of q

o 5
-

Bo

c

Q2

4=

= o

o}

4=

2 — | |

0 5} 10 15 0 1 2 3 4 5 6
input length (¢!~ 1) iteration (1)
CE—— O',w = 1,3 s O',w = 2.5 CEE—— O',w = 4.0

Op — 0.3



Propagation of a single point through a deep network

C length at fixed point D average iterations

g (Ow,0p) to convergence
5) 38 5) 6

ow <1l op=0: ¢qg —0

ow>1 o0p=0 or o, #0: ¢ — ¢



Propagation of two points through a deep network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

Ve

—

)(O7 1 output layer

0,2

—

A

The geometry of two points in a hidden layer | is captured

by the two by two matrix of inner products:
N

1
dhy = 5 DB BIE)  abe 1.2,
1=1

Of particular interest: the correlation 1 ql12
coefficient or cosine of the angle C12 = \/ l \/ l
between the two points: 11V 422




A theory of correlation propagation in a deep network

X hidden layer 1 hidden layer 2 hidden layer 3
input layer

01— EAEAE AN\
XO72 — oS XN
=\ ==
Ny
The geometry of two points: ¢, = ~ Zh‘ 0.0y hl(x%%) @, b e {1,2}.
l
: . : l CI12
Correlation coefficient between two points: Cl2 =
\/C.I11 \/C]Qz

ql12 C(Cl1217 ql1117 QQ21 |wa Ob = Oy / Dzl DZQ Cb (ul) gb (u2) + O-ba

[—1 [—1
Uy = 1\/ 411 <1, U2 = \/ 4oy [012 21+ \/1 — 012 ] ;

A recursion relation for the correlation coeff. between two points in a deep net!



Propagation of Correlations through a deep network

>

X1

output corr. (c!)
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iterative correlation map
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B

dynamics of ¢

0 5 10 15 20 25 30
iteration (1)

Op — 0.3

G O'w = 4.0

Interpretation: x, is a
multiplicative stretch factor:

nearby points come closer together
nearby points are driven apart



Propagation of two points through a deep network

C correlation at fixed point D
c*(ow,0p)
5 1.0 5 3
4 4
2
g
< 3 0.5 ¢ 3
1
2 2
1 0.0 1 0
o 1 2 3 4 o 1 2 3 4
b b
: . l
Small o, relative to o, :  x1 <1 Cio — 1
Intermediate o, relative to o, :  y1 > 1 cl12 — "

Large o, relativetoop: x1 > 1 cl12 — 0



Propagation of a manifold through a deep network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

x"(6) (=

output layer

—

A

The geometry of the manifold is captured by the similarity matrix -
How similar two points are in internal representation space):

' (61.02) = 3 DB (0] WL (62)]

Or autocorrelation function: ¢ (Af) = /dé’ ¢' (6,0 + AG)



Propagation of a manifold through a deep network

h'(9) =

\/ qu*

u’ cos() + u' sin(6)]

A great circle
input manifold

—-04 -0.2 0.0 02 04
offset (Af)



Propagation of a manifold through a deep network




Riemannian geometry I: Euclidean length

Metric on manifold coordinate 6
induced by Euclidean metric in
internal representation space h.

Length element: if one moves from
® to ®+ dO along the manifold,
then one moves a distance dLF
In internal representation space



l Riemannian geometry Il: Extrinsic Gaussian Curvaturel

osculating circle

h(6) Point on the curve
8h(9) Tangent or velocity
V(e) - 00 vector
a(f) = v () Acceleration
00 vector

The velocity and acceleration vector span a 2 dimensional plane in N dim
space.

Within this plane, there is a unique circle that touches the curve at h(6), with the
same velocity and acceleration.

The Gaussian curvature k(0) is is circle.

k(0) =

Vv



Riemannian geometry llI:
The Gauss map and Grassmannian length

tangent vectors Grassmanian
The unit
A point on /\ tangent vector
the curve Gauss map at that point
>
0
v(0) e SN !
o (0 o (0 Metric on manifold coordinate 6
gG(Q) — ( ) . ( ) induced by metric on the Grassmannian:
o0 o0 how quickly unit tangent vector changes

Length element: if one moves from
G _ e © to ©+ dO along the manifold,
dL” =1/9g («9)d«9 then one moves a distance dL®
Along the Grassmanian

G 0) — 2 F Grassmannian length, Gaussian curvature
— k(6 0
g ( ) ( ) g ( ) and Euclidean length



An example: the great circle

h' (0) = /Ngq [U_O cos(d) + ut Sin(H)] A great circle

input manifold

Euclidean Gaussian Grassmannian
length Curvature Length

9" (0) = Nq 5(0) = 1/v/Ng g (0) =1

Lr = ZWm LY =27
Behavior under isotropic linear expansion via multiplicative stretch v :
LY — x1 LF K £C — L%
X1 VX1
¥ <1 Contraction Increase Constant

¥ > 1 Expansion Decrease Constant



Theory of curvature propagation in deep networks

—F.1 *\
§ =q |

x1 =0, [ Dz[¢' (Va72)]
== P S RO

Ordered:

Chaotic:

Modification of existing curvature due to stretch

X1 <1

X1 > 1

Addition of new curvature due to nonlinearity

Gaussian Grassmannian
Local Curvatur Length
Stretc eE _
Cpntraction xplosion Constant
Expansion Attentuation + Exponential

Addition Growth



Curvature propagation: theory and experiment

curvature k(06)

100 1016

1014 _lm
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layer layer layer

Unlike linear expansion, deep neural signal propagation can:

1) exponentially expand length,
2) without diluting Gaussian curvature,
3) thereby yielding exponential growth of Grassmannian length.

As a result, the circle will become space filling as it winds around at
a constant rate of curvature to explore many dimensions!



Exponential expressivity is not achievable by shallow nets

x"(6) /T

Z

Consider a shallow network with 1 hidden layer x!, one input layer x°, with x! = ¢(Wx0) + b,
and a linear readout layer. How complex can the hidden representation be as a function of its width
N1, relative to the results above for depth? We prove a general upper bound on £ (see SM):

Theorem 1. Suppose ¢(h) is monotonically non-decreasing with bounded dynamic range R, i.e.
maxy, ¢(h) — miny, ¢(h) = R. Further suppose that x°(0) is a curve in input space such that no 1D
projection of 9px(0) changes sign more than s times over the range of 0. Then for any choice of W'
and b the Euclidean length of x*(0), satisfies L£ < N1(1 + s)R.



Boundary disentangling: theory

(a) (b) IT space

e ®
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Single IT unit
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V1 space
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Single V1 unit
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How can we mathematically formalize the notion of disentangling
in deep networks?

How do we use this mathematical formalization to quantitatively assess the
disentangling power of deep versus shallow networks?



Boundary disentangling: theory

Yy = Sgn(ﬂ xP — ﬁo) A linear classifier in the top layer

D . Implements a hyperplane decision
(B-x Bo) =0 boundary in final layer

0\ D/ 0 B Yielding a curved co-dimension 1
G(x7) = (B-x7(x7) = Fo) =0 gecision boundary in the input layer

Its curvature at a point is characterized by N-1
principal curvatures:

K1(X7) > ka(x") >+ 2> Kv_1(X7)

They are the eigenvalues of:
= 0*G
H=||VG||;'P P
| | | |2 8X8XT

P_1_-Vave



l Boundary disentangling: experiment l

- R41 = K43

103
102
10t
109

principal curvature
-

I

et e e

o O O O
W N = O

0 2 4 6 8 10
layer

The principal curvatures of decision boundaries in the chaotic regime
grow exponentially with depth!

Thus exponentially curved manifolds in input space can be flattened to
hyperplanes even by deep random networks!



We have combined Riemannian geometry with dynamical mean field theory
to study the emergent deterministic properties of signal propagation in deep
nonlinear nets.

We derived analytic recursion relations for Euclidean length, correlations,
curvature, and Grassmannian length as simple input manifolds propagate
forward through the network.

We obtain an excellent quantitative match between theory and simulations.

Our results reveal the existence of a transient chaotic phase in which the
network expands input manifolds without straightening them out, leading to
“space filling” curves that explore many dimensions while turning at a
constant rate. The number of turns grows exponentially with depth.

Such exponential growth does not happen with width in a shallow net.
Chaotic deep random networks can also take exponentially curved N-1

Dimensional decision boundaries in the input and flatten them into
Hvpberplane decision boundaries in the final laver: exponential disentanalina!
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