Lectures on topological order: Long range entanglement and topological excitations

Xiao-Gang Wen, Boulder summer school

2016/8

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and

Landau symmetry breaking theory does not describe all quantum phases.

Why? What do the phases beyond Landau symmetry breaking theory look like?

伺 と く き と く き と

Local quantum systems and gapped quantum systems

- A local quantum system is described by $(\mathcal{V}_N, \mathcal{H}_N)$
 - \mathcal{V}_N : a Hilbert space with a tensor structure $\mathcal{V}_N = \bigotimes_{i=1}^N \mathcal{V}_i$ \mathcal{H}_N : a local Hamiltonian acting on \mathcal{V}_N :
 - $H_N = \sum \hat{O}_{ij}$

向下 イヨト イヨト

- A ground state is not a single state in \mathcal{V}_N , but a subspace $\Psi_{grnd \ space} \subset \mathcal{V}_N$.

Local quantum systems and gapped quantum systems

- A local quantum system is described by $(\mathcal{V}_N, \mathcal{H}_N)$
 - \mathcal{V}_N : a Hilbert space with a tensor structure $\mathcal{V}_N = \bigotimes_{i=1}^N \mathcal{V}_i$ H_N : a local Hamiltonian acting on \mathcal{V}_N : $H_N = \sum \hat{O}_{ij}$

・吊り イヨト イヨト 一日

- A ground state is not a single state in \mathcal{V}_N , but a subspace $\Psi_{grnd \ space} \subset \mathcal{V}_N$.

- A gapped quantum system (a concept for $N \to \infty$ limit): $\{(\mathcal{V}_{N_1}, \mathcal{H}_{N_1}); (\mathcal{V}_{N_2}, \mathcal{H}_{N_2}); (\mathcal{V}_{N_3}, \mathcal{H}_{N_3}); \cdots \}$ with gapped spectrum.
- A gapped quantum system is not a single Hamiltonian, but a sequence of Hamiltonian with larger and larger sizes.

A gapped (ie short-range correlated) quantum phase

- A gapped state is a sequence of ground subspaces: $\Psi_{N_1}, \Psi_{N_2}, \cdots$
- A gapped quantum phase is an equivalent class of local unitary (LU) transformation of gapped states $|\Psi(1)\rangle = P\left(e^{-iT\int_{0}^{1}dg \ H(g)}\right)|\Psi(0)\rangle$

$$= \frac{1}{1} |\Psi(0)\rangle$$

where $H(g) = \sum_i O_i$ is local.

Hastings-Wen cond-mat/0503554; Bravyi-Hastings-Michalakis arXiv:1001.0344 Chen-Gu-Wen arXiv:1004.3835

• OK definition with translation symmetry, since there is natural way $N_i \rightarrow N_{i+1}$. Not OK without translation symmetry

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and

A gapped (short-range correlated) quantum liquid phase

- A gapped quantum liquid phase: $\Psi_{N_1}, \Psi_{N_2}, \Psi_{N_3}, \Psi_{N_4}, \cdots$
 - $\begin{aligned} \Psi_{N_1}', \Psi_{N_2}', \Psi_{N_3}', \Psi_{N_4}', \cdots \\ N_{k+1} &= sN_k, \ s \sim 2 \end{aligned}$

• $\Psi_{N_{i+1}} \stackrel{LA}{\sim} \Psi_{N_i} \otimes \Psi_{N_{i+1}-N_i}^{dp}$. Generalized local unitary (gLU) trans. where $\Psi_N^{dp} = \bigotimes_{i=1}^N |\uparrow\rangle$

Zeng-Wen arXiv:1406.5090

A gapped (short-range correlated) quantum liquid phase

- A gapped quantum liquid phase: $\Psi_{N_1}, \Psi_{N_2}, \Psi_{N_3}, \Psi_{N_4}, \cdots$ $\Psi'_{N_1}, \Psi'_{N_2}, \Psi'_{N_3}, \Psi'_{N_4}, \cdots$
 - $\Psi_{N_1}, \Psi_{N_2}, \Psi_{N_3}, \Psi_{N_4}, \cdots$ $N_{k+1} = sN_k, \ s \sim 2$

• $\Psi_{N_{i+1}} \stackrel{LA}{\sim} \Psi_{N_i} \otimes \Psi_{N_{i+1}-N_i}^{dp}$. Generalized local unitary (gLU) trans. where $\Psi_N^{dp} = \bigotimes_{i=1}^N |\uparrow\rangle$

Zeng-Wen arXiv:1406.5090

伺 と く き と く き と

• gLU transformations allow us to take the thermal dynamical limit $(N_k \rightarrow \infty \text{ limit})$ without translation symmetry.

Long range entanglement \rightarrow topological order

For gapped systems with no symmetry:

• According to Landau theory, no symm. to break

 \rightarrow all systems belong to one trivial phase

通 とう ほう うちょう

Long range entanglement \rightarrow topological order

For gapped systems with no symmetry:

 According to Landau theory, no symm. to break \rightarrow all systems belong to one trivial phase

- Thinking about entanglement: there are Chen-Gu-Wen arXiv:1004.3835
- long range entangled (LRE) states
- short range entangled (SRE) states

transformation RE SRE product state state

伺 ト イヨト イヨト

Long range entanglement \rightarrow topological order

For gapped systems with no symmetry:

- According to Landau theory, no symm. to break \rightarrow all systems belong to one trivial phase

・ロン ・回 ・ ・ 回 ・ ・ 日 ・

 g_1

- Thinking about entanglement: there are Chen-Gu-Wen arXiv:1004.3835
- long range entangled (LRE) states \rightarrow many phases
- short range entangled (SRE) states \rightarrow one phase $|LRE\rangle \neq |Product state\rangle = |SRE\rangle = \frac{g_2}{100}$

- All SRE states belong to the same trivial phase
- LRE states can belong to many different phases: different patterns of long-range entanglements defined by LU trans.
 - = different topological orders Wen PRB 40 7387 (89)

Examples of gapped quantum non-liquid states

- Stacking 2+1D FQH states → gapped quantum state, but not liquids.
- Layered $\nu = 1/m$ FQH state: Ground state degeneracy can be $GSD = m^{L_z}, m, m^2$

• Haah's cubic code on 3D cubic lattice:

イロト イポト イラト イラト 一日

Jeongwan Haah, Phys. Rev. A 83, 042330 (2011) arXiv:1101.1962

More exotic long-range entanglement

- Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14
 - \rightarrow gauge theory
 - \rightarrow Fermi statistics
 - \rightarrow quantum field theory
 - \rightarrow MERA rep. Vidal 06

→ Ξ →

More exotic long-range entanglement

- Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14
 - \rightarrow gauge theory
 - \rightarrow Fermi statistics
 - \rightarrow quantum field theory
 - \rightarrow MERA rep. Vidal 06
- s-source entanglement structure
- Quantum liquid has s = 1
- 3D layered FQH: s = 2
- d+1D Fermi liquid: $s = \frac{2^d}{2}$
- no MERA rep.

Swingle-McGreevy 14

向下 イヨト イヨト

 N_{k+1}

More exotic long-range entanglement

- Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14
 - \rightarrow gauge theory
 - \rightarrow Fermi statistics
 - \rightarrow quantum field theory
 - \rightarrow MERA rep. Vidal 06
- s-source entanglement structure
- Quantum liquid has s = 1
- 3D layered FQH: s = 2
- d+1D Fermi liquid: $s = \frac{2^d}{2}$
- no MERA rep.
- Haah's cubic code
- no MERA rep.
- No quantum field theory description

Many-body entanglement goes beyond quantum field theory.

LA

 N_k

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and t

Swingle-McGreevy 14

 N_{k+I}

 $2 N_k$

s=2

ĹŬ

Bosonic/fermionic gapped quantum liquid phases

Both local bosonic and fermionic systems have the following local property: $V_{tot} = \bigotimes_i V_i$ Gu-Wang-Wen arXiv:1010.1517

イロト 不得 とくき とくき とうき

Bosonic liquid phases are defined by gLU trans. U = [[U_{ijk}: (1) [U_{ijk}, U_{i'j'k'}] = 0

(2) U_{ijk} acts within $V_i \otimes V_j \otimes V_k$. e.g. $U_{ijk} = e^{i(b_i b_j b_k^{\dagger} + h.c.)}$

Fermionic liquid phases are defined by gLU trans. U^f = ∏ U^f_{ijk}:
(1) [U^f_{ijk}, U^f_{i'j'k'}] = 0, but U^f_{ijk} may not act within V_i ⊗ V_j ⊗ V_k.
e.g. U^f_{ijk} = e^{i(t_{ij}c_ic_j+h.c.)}, where c_i = σ^x_i ∏_{j < i} σ^z_j

Gapped quantum liquids for bosons and fermions have very different mathematical structures

• $\Psi(z_1, z_2, \dots) = 1 \rightarrow$ equal amplitude superposition of all particle configurations $\rightarrow A$ product state = superfluid state

$$|\Psi\rangle = \sum_{\text{all conf.}} \left| \underbrace{\bigotimes}_{z} \right\rangle = \otimes_{z} (|0\rangle_{z} + |1\rangle_{z} + \cdots)$$

伺い イヨト イヨト 三日

• $\Psi(z_1, z_2, \dots) = 1 \rightarrow$ equal amplitude superposition of all particle configurations \rightarrow A product state = superfluid state

• Examples: 1) scamble the phases

Laughlin 83

伺 と く ヨ と く ヨ と

 $\Psi_{FQH}^{\nu=1/2}(z_1, z_2 \cdots) = \left[\prod (z_i - z_j) e^{-\frac{1}{4}\sum |z_i|^2}\right]^2 = [\chi_1(z_i)]^2,$

• $\Psi(z_1, z_2, \dots) = 1 \rightarrow$ equal amplitude superposition of all particle configurations \rightarrow A product state = superfluid state

$$|\Psi
angle = \sum_{\text{all conf.}} \left| \overbrace{\qquad \qquad } \right\rangle = \otimes_z (|0
angle_z + |1
angle_z + \cdots)$$

• Examples: I) scamble the phases

Laughlin 83

伺い イヨン イヨン

 $\Psi_{FQH}^{\nu=1/2}(z_1, z_2 \cdots) = \left[\prod (z_i - z_j) e^{-\frac{1}{4} \sum |z_i|^2} \right]^2 = [\chi_1(z_i)]^2,$

• 11) Put $\nu = 1$ state of spin-up(down) electrons $\chi_1(z_i^{\uparrow})\chi_1(z_i^{\downarrow})$ on lattice, with one electron per site \rightarrow Chiral spin liquid

Kalmeyer-Laughlin PRL 59 2095 (87), Wen-Wilczek-Zee PRB 39 11413 (89)

• $\Psi(z_1, z_2, \dots) = 1 \rightarrow$ equal amplitude superposition of all particle configurations \rightarrow A product state = superfluid state

$$|\Psi
angle = \sum_{\text{all conf.}} \left| \boxed{\qquad} \right\rangle = \otimes_z (|0
angle_z + |1
angle_z + \cdots)$$

• Examples: 1) scamble the phases

Laughlin 83

 $\Psi_{FQH}^{\nu=1/2}(z_1, z_2 \cdots) = \left[\prod (z_i - z_j) e^{-\frac{1}{4}\sum |z_i|^2}\right]^2 = [\chi_1(z_i)]^2,$

II) Put ν = 1 state of spin-up(down) electrons χ₁(z[↑]_i)χ₁(z[↓]_i) on lattice, with one electron per site → Chiral spin liquid

Kalmeyer-Laughlin PRL 59 2095 (87), Wen-Wilczek-Zee PRB 39 11413 (89)

• III) The square of $\nu = 2$ IHQ wavefunction $[\chi_2(z_i)]^2 \rightarrow \text{bosonic}$ $\nu = 1 SU(2)_2^f$ non-abelian state. $\chi_1[\chi_2]^2$ fermionnic $\nu = \frac{1}{2}$ state Wen PRL **66** 802 (91). CFT construction: Moore-Read NPB **360** 362 (91)

• $\Psi(z_1, z_2, \dots) = 1 \rightarrow$ equal amplitude superposition of all particle configurations \rightarrow A product state = superfluid state

$$|\Psi
angle = \sum_{\text{all conf.}} \left| \boxed{\qquad} \right\rangle = \otimes_z (|0
angle_z + |1
angle_z + \cdots)$$

• Examples: 1) scamble the phases

Laughlin 83

 $\Psi_{FQH}^{\nu=1/2}(z_1, z_2 \cdots) = \left[\prod (z_i - z_j) e^{-\frac{1}{4} \sum |z_i|^2} \right]^2 = [\chi_1(z_i)]^2,$

• 11) Put $\nu = 1$ state of spin-up(down) electrons $\chi_1(z_i^{\uparrow})\chi_1(z_i^{\downarrow})$ on lattice, with one electron per site \rightarrow Chiral spin liquid

Kalmeyer-Laughlin PRL 59 2095 (87), Wen-Wilczek-Zee PRB 39 11413 (89)

• III) The square of $\nu = 2$ IHQ wavefunction $[\chi_2(z_i)]^2 \rightarrow \text{bosonic}$ $\nu = 1 SU(2)_2^f$ non-abelian state. $\chi_1[\chi_2]^2$ fermionnic $\nu = \frac{1}{2}$ state Wen PRL 66 802 (91). CFT construction: Moore-Read NPB 360 362 (91)

• IV) Put an electrons superconducting state on lattice, with one electron per site $\rightarrow Z_2$ topological order $\rightarrow Z_2$ spin liquid

Read-Sachdev PRL 66 1773 (91), Wen PRB 44 2664 (91)

Why Laughlin states have topological order?

K-matrix states (generalize Laughlin states):

$$\Psi_{K} = \prod_{i < j; I} (z_{i}^{I} - z_{j}^{I})^{K_{II}} \prod_{i, j; I < J} (z_{i}^{I} - z_{j}^{J})^{K_{IJ}} e^{-\frac{1}{4} \sum |z_{i}^{I}|^{2}}$$

• Quasiparticle excitations are labeled by integer vectors \boldsymbol{m}

$$\Psi_{\xi} = \prod_{i;l} (\xi - z_i^l)^{\boldsymbol{m}_l} \Psi_K,$$

- If **m** is the I_0^{th} column of $K \to \Psi_{\xi}$ discribe a missing hole in the I_0^{th} layer, which is a local excitation (not fractionalized).
- Topological excitation is labeled by m mod columns of K. Number of topo. exc. = det(K).

周下 イヨト イヨト 二日

Why Laughlin states have topological order?

K-matrix states (generalize Laughlin states):

$$\Psi_{K} = \prod_{i < j; I} (z_{i}^{I} - z_{j}^{I})^{K_{II}} \prod_{i, j; I < J} (z_{i}^{I} - z_{j}^{J})^{K_{IJ}} e^{-\frac{1}{4} \sum |z_{i}^{I}|^{2}}$$

Quasiparticle excitations are labeled by integer vectors *m*

$$\Psi_{\xi} = \prod_{i;l} (\xi - z_i^l)^{\boldsymbol{m}_l} \Psi_{K}, \qquad \mathcal{L} = \frac{K_{lJ}}{4\pi} a_{l\mu} \partial_{\nu} a_{J\lambda} \epsilon^{\mu\nu\lambda} + \boldsymbol{m}_l \delta(\xi - x) a_{l0}$$

- If **m** is the I_0^{th} column of $K \to \Psi_{\xi}$ discribe a missing hole in the I_0^{th} layer, which is a local excitation (not fractionalized).
- Topological excitation is labeled by **m** mod columns of **K**. Number of topo. exc. = det(K). Statistics: $\theta_m = \pi m^T K^{-1} m$.

向下 イヨト イヨト

Why Laughlin states have topological order?

K-matrix states (generalize Laughlin states):

$$\Psi_{K} = \prod_{i < j; I} (z_{i}^{I} - z_{j}^{I})^{K_{II}} \prod_{i, j; I < J} (z_{i}^{I} - z_{j}^{J})^{K_{IJ}} e^{-\frac{1}{4} \sum |z_{i}^{I}|^{2}}$$

$$\Psi_{\xi} = \prod_{i;l} (\xi - z_i^l)^{\boldsymbol{m}_l} \Psi_{K}, \qquad \mathcal{L} = \frac{K_{lJ}}{4\pi} a_{l\mu} \partial_{\nu} a_{J\lambda} \epsilon^{\mu\nu\lambda} + \boldsymbol{m}_l \delta(\xi - x) a_{l0}$$

- If **m** is the l_0^{th} column of $K \to \Psi_{\xi}$ discribe a missing hole in the l_0^{th} layer, which is a local excitation (not fractionalized).
- Topological excitation is labeled by **m** mod columns of K. Number of topo. exc. = det(K). Statistics: $\theta_m = \pi m^T K^{-1} m$.

K-matrix classification of abelian topological order

- Even K-matrix (all K_{II} are even) classify all 2+1D Abelian topological orders (in a many-to-one way) in local bosonic systems.
- Odd K-matrix (one of the K_{II} is odd) classify all 2+1D Abelian topological orders (in a many-to-one way) in local fermionic systems.
 Wen-Zee PRB 46 2290 (92)

Why is the state $[\chi_k(z_i)]^2$ a non-Abelian QH state?

where $\chi_k(z_1, ..., z_N)$ is the IQH wave function of k filled Landau levels.

- What kind of non-Abelian state?
- What is its effective theory and edge excitations?

直 とう きょう うちょう

Why is the state $[\chi_k(z_i)]^2 = \chi_k(z_i^{(1)})\chi_k(z_i^{(2)})|_{z_i^{(1)}=z_i^{(2)}}$ a non-Abelian QH state?

where $\chi_k(z_1, ..., z_N)$ is the IQH wave function of k filled Landau levels.

- What kind of non-Abelian state?
- What is its effective theory and edge excitations?

Projective construction: Split an eletron into partons and glue them back together Baskaran-Zou-Anderson Solid State Comm. **63** 973 (87)

Lectures on topological order: Long range entanglement and t

$$\Phi(z_1,...,z_N) = [\chi_k(z_1,...,z_N)]^n = P[\chi_k(z_1^{(1)},...)\chi_k(z_1^{(2)},...)\cdots]$$

electron \rightarrow *n*-partons, *a*th-kind partons $z_i^{(a)}$ form $\nu = k$ IQH χ_k

• Effective theory of independent partons

$$H = \frac{1}{2m} \psi_I^{\dagger} (\partial - iA)^2 \psi_I, \quad I = 1, \cdots, n$$

- Many-body wave function $\Phi(z_i) = \langle 0 | \prod \psi_e(z_i) | \chi_k \cdots \chi_k \rangle$ The electron operator $\psi_e = \psi_1 \cdots \psi_n$ is SU(n) singlet, if ψ_l form an fundamental representation of SU(n).
- Introduce SU(n) gauge field to glue partons back to electrons:

$$H = \frac{1}{2m} \psi_I^{\dagger} (\partial - iA\delta_{IJ} - ia_{IJ})^2 \psi_J$$

• Effective theory is obtained by integrating out the gapped parton fields: $\mathcal{L} = \frac{k}{4\pi} \text{Tr}(a_{\mu}\partial_{\nu}a_{\lambda} + \frac{2}{3}a_{\mu}a_{\nu}a_{\lambda})\epsilon^{\mu\nu\lambda}$

 $SU(n)_k^f$ CS theory. (Level k = 1 $SU(n)_k^f$ CS theory is abelian.)

Quasiparticle excitations in $[\chi_k(z_i)]^2 = \chi_k(z_i^{\uparrow})\chi_k(z_i^{\downarrow})|_{z_i^{\uparrow}=z_i^{\downarrow}}$

Consider the $[\chi_k(z_i)]^2$ state: $SU(2)_k^f$ Chern-Simons theory • A charge q = 1 hole can be splited into two \rightarrow two charge q = 1/2 quasiparticles.

• The number of four-quasiparticle states: project to SU(2) singlet. $\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = (0 \oplus 1) \otimes (0 \oplus 1) = 0 \oplus 1 \oplus 1 \oplus (0 \oplus 1 \oplus 2)$

But $SU(2)_k^f$ state has no quasiparticle with spin $s > \frac{k}{2}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Quasiparticle excitations in $[\chi_k(z_i)]^2 = \chi_k(z_i^{\uparrow})\chi_k(z_i^{\downarrow})|_{z_i^{\uparrow}=z_i^{\downarrow}}$

Consider the $[\chi_k(z_i)]^2$ state: $SU(2)_k^f$ Chern-Simons theory • A charge q = 1 hole can be splited into two \rightarrow two charge q = 1/2 quasiparticles.

• The number of four-quasiparticle states: project to SU(2) singlet. $\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = (0 \oplus 1) \otimes (0 \oplus 1) = 0 \oplus 1 \oplus 1 \oplus (0 \oplus 1 \oplus 2)$

But $SU(2)_k^f$ state has no quasiparticle with spin $s > \frac{k}{2}$

Level-k fusion: $s_1 \otimes s_2 = |s_1 - s_2| \oplus \cdots \oplus \min(s_1 + s_2, k - s_1 - s_2)$

- Level-k = 1: $(\frac{1}{2} \otimes \frac{1}{2}) \otimes (\frac{1}{2} \otimes \frac{1}{2}) = (0) \otimes (0) = 0$
- Level-k = 2: $\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = (0 \oplus 1) \otimes (0 \oplus 1) = 0 \oplus 1 \oplus 1 \oplus (0)$

Lectures on topological order: Long range entanglement and t

Edge excitations in $[\chi_k(z_i)]^n$ state: $U(1) \times SU(k)_n$ CFT

 \bullet Edge state: Independent partons \rightarrow filled Landau levels

- Excitations are generated by $(a, a^{\dagger}$ generate exc. in an oscillator) $U(1): J = \psi^{\dagger}_{\alpha a}\psi_{\alpha a}, \rightarrow U(1)$ Kac-Moody algebra CFT $SU(k): J^{m} = \psi^{\dagger}_{\alpha a}T^{m}_{ab}\psi_{\alpha b}, \rightarrow SU(k)_{n}$ Kac-Moody algebra CFT $SU(n): j^{l} = \psi^{\dagger}_{\alpha a}S^{l}_{\alpha \beta}\psi_{\beta a}, \rightarrow SU(n)_{k}$ Kac-Moody algebra CFT
- Glue partons back to electrons = remove the SU(n) excitations.
- Edge excitations are generated by U(1): J = ψ[†]_{αa}ψ_{αa}, SU(k): J^m = ψ[†]_{αa}T^m_{ab}ψ_{αb} Edge CFT: U(1) × SU(k)_n Kac-Moody algebra c = 1 + n(k²-1)/(n+k).
 Bulk effective theory SU(n)^f_μ CS theory

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and

Another example $S[\prod (z_i - z_j)^2 \prod (w_i - w_j)^2]$

- Consider with two partons ψ_1 , ψ_2 , each fills the first Landau level. $\rightarrow \nu = 1/2$ Laughlin state $\prod (z_i - z_j)^2 = \langle 0 | \prod \psi_1(z_i) \psi_2(z_i) | \chi_1 \chi_1 \rangle$
- Now start with four partons ψ_1 , ψ_2 , ψ_3 , ψ_4 , each fills the first Landau level:

 $\prod (z_i - z_j)^2 \prod (w_i - w_j)^2 = \langle 0 | \prod \psi_1(z_i) \psi_2(z_i) \prod \psi_3(w_i) \psi_4(w_i) | \chi_1 \chi_1 \chi_1 \chi_1 \rangle$

- $\mathcal{S}[\prod (z_i z_j)^2 \prod (w_i w_j)^2] = \langle 0 | \prod \psi_e(Z_i) | \chi_1 \chi_1 \chi_1 \chi_1 \rangle$ where $\psi_e(Z_i) = \psi_1(Z_i) \psi_2(Z_i) + \psi_3(Z_i) \psi_4(Z_i)$.
- Under SO(8) trans. between $(\text{Re}\psi_i, \text{Im}\psi_i)$, ψ_e is an SO(5) singlet
- Effective theory $H = \psi_i^{\dagger} (\partial A \delta_{ij} a_{ij})^2 \psi_j \rightarrow SO(5)$ CS theory
- Edge states:

Wen cond-mat/9811111

Independent partons \rightarrow 4 Dirac fermions = 8 Majorana fermions After projection \rightarrow 8-5 chiral Majorana fermions.

• $S[\prod(z_i - z_j)^2 \prod(w_i - w_j)^2]$ is the bosonic Pfaffian state. $\Psi_{S(220)} = S[\prod(z_i - z_j)^2 \prod(w_i - w_j)^2] = \mathcal{A}[\frac{1}{z_1 - z_2} \frac{1}{z_3 - z_4} \cdots] \prod(z_i - z_j)$ Moore-Read NPB **360** 362 (91); Rezayi-Wen-Read arXiv:1004.2563

Lectures on topological order: Long range entanglement and t

How to realize non-Abelian QH states in experiments?

Wen cond-mat/9908394; Rezayi-Wen-Read arXiv:1004.2563

nnm bi-layer state with no interlayer tunneling

- (nnm) state $\Phi_{nnm} = \prod (z_i - z_j)^n (w_i - w_j)^n (z_i - w_i)^m e^{-\frac{1}{4} \sum |z_i|^2 + |w_i|^2}$ where n = odd for fermionic electron and n = even for bosonic "electron".
- (nnm) state \sim (n m, n m, 0) state: $\Phi_{nnm} = \chi_1^m \Phi_{n-m,n-m,0}$ Will consider only (n - m, n - m, 0) state, but results apply to (n, n, m) state as well: (220) \sim (331) state with $\nu = 1/2$ and (330) with $\nu = 2/3$
- Intralayer repulsion $V_{intra} = 1$, increase interlayer repulsion

Two possibilities

Interlayer-exciton = charge $-\frac{1}{n}$ quasiparticle in one layer + charge $\frac{1}{n}$ quasihole in the other layer

• Interlayer-exciton condensation at $\mathbf{k} \neq \mathbf{0}$

• Interlayer-exciton condensation at $\mathbf{k} = 0$

Why 2e-Laughlin state? - Hierarchical construction

• (*nn*0) is described by $U(1) \times U(1)$ CS theory

 $\mathcal{L} = \frac{1}{4\pi} a_{I\mu} \partial_{\nu} a_{J\lambda} K^{IJ} \epsilon^{\mu\nu\lambda}, \qquad I, J = 1, 2, \qquad K = \begin{pmatrix} n & 0 \\ 0 & n \end{pmatrix}$

• The interlayer exciton (with statistics $\theta = 2\pi/n$) is described by $\mathcal{L} = \frac{1}{4\pi} a_I \partial a_J K^{IJ} + \mathbf{m}^I a_{I\mu} j^{\mu}(x), \quad \mathbf{m} = \begin{pmatrix} 1 \\ -1 \end{pmatrix};$

• Exciton condensation $\mathcal{L} = (j^0)^2 - \mathbf{j}^2$ with $\partial_{\mu} j^{\mu} = 0$: $j^{\mu} = \frac{\partial_{\nu} \tilde{a}_{\lambda}}{2\pi} \epsilon^{\mu\nu\lambda}$ $\mathcal{L} = \frac{1}{4\pi} a_I \partial a_J K^{IJ} + \frac{1}{2\pi} \mathbf{m}^I a_I \partial \tilde{a} + \frac{1}{8\pi^2 \chi} (\tilde{B}^2 - \frac{1}{v_s^2} \tilde{\mathbf{E}}^2)$

• \rightarrow new FQH state: $K_{\text{new}} = \begin{pmatrix} K & \mathbf{m} \\ \mathbf{m}^T & 0 \end{pmatrix} = \begin{pmatrix} n & 0 & 1 \\ 0 & n & -1 \\ 1 & -1 & 0 \end{pmatrix} = W \begin{pmatrix} 2n & 0 & 0 \\ 0 & n\%2 & 1 \\ 0 & 1 & 0 \end{pmatrix} W^T \sim (2n)$ $K \text{ and } K' = WKW^T, W \in SL(\kappa, Z), \text{ describe the same FQH state.}$

• New state is $\nu^* = 1/2n$ Laughlin state of charge-2e electron pairs.

Critical theory for quantum phase transition

• Start with GL theory for excitons and anti-excitons:

 $\mathcal{L} = |\partial_{\mu}\phi|^2 + \alpha |\phi|^2 + \beta |\phi|^4$

 $\alpha = 0$ at the transition.

• GL-CS theory to reproduce statistics $\theta = 2\pi/n$

$$\mathcal{L} = |(\partial - ia_1 + ia_2)\phi|^2 + \alpha |\phi|^2 + \beta |\phi|^4 + \frac{1}{4\pi} a_I \partial a_J K^{IJ}.$$

- CS term does not destroy the critical point of GL theory, but changes the critical exponents (nn0) → 2e-Laughlin is a continuous transition between two states with the SAME symmetry
- When n = 2, critical theory is massless Dirac fermion

$$\mathcal{L} = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + m\bar{\psi}\psi$$

m = 0 at the transition.

Turn on interlayer tunneling

Effective theory near transition $\mathcal{L} = |(\partial - ia_1 + ia_2)\phi|^2 + \alpha |\phi|^2 + \beta |\phi|^4 + (t\phi^n \hat{M} + h.c) + \frac{1}{4\pi} a_I \partial a_J K^{IJ}.$ $\mathcal{L} = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + m\bar{\psi}\psi + (t\psi^T\psi + h.c.), \quad \text{for } n = 2$

• When n = 2, the $t\psi^T\psi$ term split the massless **Dirac critical** point into two massless **Majorana critical points**.

• Weak p + ip superconductor to strong p + ip superconductor is connected by massless Majorana fermion Read-Green cond-mat/9906453 $\Psi_{S(220)} = S[\prod(z_i - z_j)^2 \prod(w_i - w_j)^2] = \mathcal{A}[\frac{1}{z_1 - z_2} \frac{1}{z_3 - z_4} \cdot \frac{1}{z_1} \cdot \frac{1}{z_1}] \prod(z_i - z_j)_{q \in \mathbb{N}}$ Xiac-Ganz Wen, Boulder summer school

Recent numerical result

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and t
Consider a spin- $\frac{1}{2}$ system on lattice.

- View spin-1 as zero-boson state and spin-1 as one-boson state
- Split the boson ϕ_i into to fermionic partons $\phi_i = \psi_{i1}\psi_{i2}$, where $\psi_{i\alpha}$ form a 2-dim. rep. of SU(2) and ϕ_i is the SU(2) singlet.

向下 イヨト イヨト

Consider a spin- $\frac{1}{2}$ system on lattice.

- View spin- \downarrow as zero-boson state and spin- \uparrow as one-boson state
- Split the boson ϕ_i into to fermionic partons $\phi_i = \psi_{i1}\psi_{i2}$, where $\psi_{i\alpha}$ form a 2-dim. rep. of SU(2) and ϕ_i is the SU(2) singlet.
- Consider the mean-field ground state of a free parton Hamiltonian

 $H_{
m mean} = \sum_{\langle ij \rangle} \psi_i^{\dagger} u_{ij} \psi_j, \ u_{ij} = 2 imes 2 \
m matrix; \quad
ightarrow \quad |\Psi_{
m mean}^{u_{ij}}
angle$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Consider a spin- $\frac{1}{2}$ system on lattice.

- View spin- \downarrow as zero-boson state and spin- \uparrow as one-boson state
- Split the boson ϕ_i into to fermionic partons $\phi_i = \psi_{i1}\psi_{i2}$, where $\psi_{i\alpha}$ form a 2-dim. rep. of SU(2) and ϕ_i is the SU(2) singlet.
- Consider the mean-field ground state of a free parton Hamiltonian

 $H_{\text{mean}} = \sum_{\langle ij \rangle} \psi_i^{\dagger} u_{ij} \psi_j, \ u_{ij} = 2 \times 2 \text{ matrix}; \quad \rightarrow \quad |\Psi_{\text{mean}}^{u_{ij}}\rangle$ • Project to physical subspace on each site

 $|\downarrow\rangle = |0\rangle, |\uparrow\rangle = \psi_{i1}^{\dagger}\psi_{i2}^{\dagger}|0\rangle$, both *SU*(2) singlet.

Unphysical states $\psi_{i1}^{\dagger}|0\rangle$, $\psi_{i2}^{\dagger}|0\rangle$ form a *SU*(2) doublet.

- Project into SU(2)-singlet subspace on each site:

 $|\Psi_{\rm phy}^{u_{ij}}
angle = P_{SU(2)}|\Psi_{\rm mean}^{u_{ij}}
angle$

 $|\Psi_{\text{phy}}^{u_{ij}}\rangle$ is a trial wave function with variational parameter u_{ij} .

Consider a spin- $\frac{1}{2}$ system on lattice.

- \bullet View spin- \downarrow as zero-boson state and spin- \uparrow as one-boson state
- Split the boson ϕ_i into to fermionic partons $\phi_i = \psi_{i1}\psi_{i2}$, where $\psi_{i\alpha}$ form a 2-dim. rep. of SU(2) and ϕ_i is the SU(2) singlet.
- Consider the mean-field ground state of a free parton Hamiltonian

 $H_{\text{mean}} = \sum_{\langle ij \rangle} \psi_i^{\dagger} u_{ij} \psi_j, \ u_{ij} = 2 \times 2 \text{ matrix}; \quad \rightarrow \quad |\Psi_{\text{mean}}^{u_{ij}}\rangle$ • Project to physical subspace on each site

 $|\downarrow\rangle = |0\rangle, |\uparrow\rangle = \psi_{i1}^{\dagger}\psi_{i2}^{\dagger}|0\rangle$, both *SU*(2) singlet.

Unphysical states $\psi_{i1}^{\dagger}|0\rangle$, $\psi_{i2}^{\dagger}|0\rangle$ form a *SU*(2) doublet.

- Project into SU(2)-singlet subspace on each site:

 $|\Psi^{u_{ij}}_{
m phy}
angle=P_{SU(2)}|\Psi^{u_{ij}}_{
m mean}
angle$

 $|\Psi_{\rm phv}^{u_{ij}}\rangle$ is a trial wave function with variational parameter u_{ij} .

What is the low energy effective theory that describes the low energy excitations above the many-body state |Ψ_{phy}⟩?
 Lattice partons ψ_i couple to lattice SU(2) gauge field a_μ(x):

 $H_{\rm eff} = \sum_{\langle ij \rangle} \psi_i^{\dagger} u_{ij} e^{i a_{ij}} \psi_j + \sum_i \psi_i^{\dagger} a_0(i) \psi_i$

Z_2 topological order with time reversal symmetry

• Choose Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91) $u_{i,i+x} = u_{i,i+y} = -\chi\sigma^3, \quad a_0 = c\sigma^1,$ $u_{i,i+x+y} = \eta\sigma^1 + \lambda\sigma^2, \qquad u_{i,i+x+y} = \eta\sigma^1 - \lambda\sigma^2$

 $P_{SU(2)}|\Psi_{\text{mean}}^{u_{ij}}\rangle$ has all the symmetry: spin rotation+time reversal.

- $H_{\text{eff}} = \sum_{\langle ij \rangle} \psi_i^{\dagger} u_{ij} \psi_j + \sum_i \psi_i^{\dagger} a_0 \psi_i$ will be fully gapped. \rightarrow The fermions are all gapped. The potential gapless excitations may come from the SU(2) gauge fluctuations.
- a_0 and SU(2) flux $\Phi_i = u_{ij}u_{jk}u_{ki}$ behave like Higgs fields. $a_0 \rightarrow Ua_0U^{\dagger}, \quad \Phi_i \rightarrow U\Phi_iU^{\dagger}, \quad U \in SU(2).$
- If they are invariant under the SU(2) transformation \rightarrow The SU(2) is unbroken \rightarrow gapless gluon.
- If they are not invariant under the SU(2) transformation \rightarrow Break SU(2) to smaller gauge group.
- In our case, a_0 and Φ_i break the SU(2) down to Z_2

 \rightarrow Z_2 gauge theory is gapped \rightarrow Z_2 topological order. The set of the

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and t

Quasiparticle excitations in the Z_2 topological order

- The pure Z_2 gauge theory:
- Z₂ charge e: boson.
- Z₂ vortex *m*: boson.
 - e and m have mutual π statistics.
- e-m bound state f: fermion.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Our Z_2 topological order = dressed Z_2 gauge theory, which also has spin rotation, time reversal and all the lattice symmetry:
- Z_2 charge *e*: spin- $\frac{1}{2}$ fermion.
- Z₂ vortex *m*: spin-0 boson (fermion?).
- e-m bound state f: spin- $\frac{1}{2}$ boson (fermion?).
- We have two possibilities: (2 bosons 1 fermion) or (3 fermions).

Quasiparticle excitations in the Z_2 topological order

- The pure Z_2 gauge theory:
- Z₂ charge e: boson.
- Z₂ vortex *m*: boson.

e and m have mutual π statistics.

- e-m bound state f: fermion.

- Our Z_2 topological order = dressed Z_2 gauge theory, which also has spin rotation, time reversal and all the lattice symmetry:
- Z_2 charge e: spin- $\frac{1}{2}$ fermion.
- Z₂ vortex *m*: spin-0 boson (fermion?).
- e-m bound state f: spin- $\frac{1}{2}$ boson (fermion?).
- We have two possibilities: (2 bosons 1 fermion) or (3 fermions).

The above is the history before 2000

(3 fermions) has a time reversal anomaly, and is not possible 🕬 📱 🏾 २०००

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and t

Examples of topological orders (after 2000)

To make topological order, we need to sum over many different product states, but we should not sum over everything. $\sum_{\text{all spin config.}} |\uparrow\downarrow ..\rangle = |\rightarrow\rightarrow ..\rangle$

伺下 イヨト イヨト

Examples of topological orders (after 2000)

To make topological order, we need to sum over many different product states, but we should not sum over everything.

 $\sum_{\rm all \ spin \ config.} |\uparrow\downarrow ..\rangle = |\rightarrow\rightarrow ..\rangle$

• sum over a subset of spin config.:

 $|\Phi^{DS}_{\mathsf{loops}}
angle = \sum (-)^{\# \ \mathsf{of} \ \mathsf{loops}} \left| \widecheck{\heartsuit} \widecheck{\diamondsuit} \overleftarrow{\diamondsuit} \right\rangle$

Lectures on topological order: Long range entanglement and t

Sum over a subset: local rule \rightarrow global wave function

- Local rules of a string liquid: (1) Dance while holding hands (no open ends) (2) Φ_{str} (\square) = Φ_{str} (\square), Φ_{str} (\square) = Φ_{str} (\square) \rightarrow Global wave function Φ_{str} (\Im) = 1
- Local rules of another string liquid: (1) Dance while holding hands (no open ends) (2) $\Phi_{str} () = \Phi_{str} (), \Phi_{str} () = -\Phi_{str} ()$ \rightarrow Global wave function $\Phi_{str} () = (-)^{\# \text{ of loops}}$
- Two topo. orders: Z₂ topo. order Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91), Moessner-Sondhi PRL 86 1881 (01) and double-semion topo. order. Freedman etal cond-mat/0307511, Levin-Wen cond-mat/0404617

Emergence of fractional spin/statistics

- Why electron carry spin-1/2 and Fermi statistics?
- Ends of strings are point-like excitations, which can carry spin-1/2 and Fermi statistics?

Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583

•
$$\Phi_{\text{str}} \left(\bigotimes \bigotimes \right) = 1$$
 string liquid $\Phi_{\text{str}} \left(\square \bigcirc \bigotimes \right) = \Phi_{\text{str}} \left(\square \square \square \right)$
360° rotation: $\uparrow \rightarrow \bigcirc$ and $\bigcirc = \bigcirc \rightarrow \uparrow$: $R_{360°} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 $\uparrow + \bigcirc \equiv e$ spin 0 mod 1. $\uparrow - \heartsuit \equiv em$ spin 1/2 mod 1.

• $\Phi_{\text{str}}\left(\bigotimes \bigotimes \right) = (-)^{\# \text{ of loops}} \text{ string liquid } \Phi_{\text{str}}\left(\bigotimes \bigotimes \right) = -\Phi_{\text{str}}\left(\boxtimes \odot\right)$ $360^{\circ} \text{ rotation: } \stackrel{1}{\to} \stackrel{0}{\to} \text{ and } \stackrel{0}{\to} = -\stackrel{0}{\to} -\stackrel{1}{\coloneqq} R_{360^{\circ}} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $\stackrel{1}{\to} + i \stackrel{0}{\to} \equiv s_{-} \text{ spin } -\frac{1}{4} \mod 1.$

Lectures on topological order: Long range entanglement and t

Spin-statistics theorem

- (a) \rightarrow (b) = exchange two string-ends.
- (d) \rightarrow (e) = 360° rotation of a string-end.
- Amplitude (a) = Amplitude (e)
- Exchange two string-ends plus a 360° rotation of one of the string-end generate no phase.

\rightarrow Spin-statistics theorem

String operators in Z_2 topological order (Z_2 gauge theory)

- Toric code model: Kitaev quant-ph/9707021
- $H = -U \sum_{I} Q_{I} g \sum_{p} F_{p}$ $Q_{I} = \prod_{\text{legs of } I} \sigma_{I}^{z},$ $F_{p} = \prod_{\text{edges of } p} \sigma_{I}^{x}$ Topological excitations: $e\text{-type: } Q_{I} = 1 \rightarrow Q_{I} = -1$

m-type: $F_p = 1 \rightarrow F_p = -1$

伺 と く ヨ と く ヨ と

String operators in Z_2 topological order (Z_2 gauge theory)

- Toric code model: Kitaev quant-ph/9707021
 - $H = -U \sum_{I} Q_{I} g \sum_{p} F_{p}$ $Q_{I} = \prod_{\text{legs of } I} \sigma_{i}^{z},$ $F_{p} = \prod_{\text{edges of } p} \sigma_{i}^{x}$
- Topological excitations: e-type: $Q_I = 1 \rightarrow Q_I = -1$ m-type: $F_p = 1 \rightarrow F_p = -1$

- Type-*e* string operator $W_e = \prod_{str} \sigma_i^x$
- Type-*m* string operator $W_m = \prod_{str^*} \sigma_i^z$
- Type-*f* string op. $W_f = \prod_{\text{str}} \sigma_i^x \prod_{\text{legs}} \sigma_i^z$
- $[H, W_e^{clsd}] = [H, W_m^{clsd}] = 0. \rightarrow Closed strings cost no energy$
- $[Q_I, W_e^{\text{open}}] \neq 0$ flip $Q_I \rightarrow -Q_I$, $[F_p, W_m^{\text{open}}] \neq 0$ flip $F_p \rightarrow -F_p$
 - \rightarrow open-string create a pair of topo. excitations at their ends.

String operators in Z_2 topological order (Z_2 gauge theory)

- Toric code model: Kitaev quant-ph/9707021
 - $H = -U \sum_{I} Q_{I} g \sum_{p} F_{p}$ $Q_{I} = \prod_{\text{legs of } I} \sigma_{i}^{z},$ $F_{p} = \prod_{\text{edges of } p} \sigma_{i}^{x}$
- Topological excitations: e-type: $Q_I = 1 \rightarrow Q_I = -1$ m-type: $F_p = 1 \rightarrow F_p = -1$

- Type-*e* string operator $W_e = \prod_{str} \sigma_i^x \rightarrow e$ -type. $e \times e = 1$
- Type-*m* string operator $W_m = \prod_{str^*} \sigma_i^z \rightarrow m$ -type. $m \times m = 1$
- Type-*f* string op. $W_f = \prod_{str} \sigma_i^x \prod_{legs} \sigma_i^z \rightarrow f$ -type = $e \times m$
- $[H, W_e^{clsd}] = [H, W_m^{clsd}] = 0. \rightarrow Closed strings cost no energy$
- $[Q_I, W_e^{\text{open}}] \neq 0$ flip $Q_I \rightarrow -Q_I$, $[F_p, W_m^{\text{open}}] \neq 0$ flip $F_p \rightarrow -F_p$
 - \rightarrow open-string create a pair of topo. excitations at their ends.
- Fusion algebra of string operators \rightarrow fusion of topo. excitations: $W_e^2 = W_m^2 = W_f^2 = W_e W_m W_f = 1$ when strings are parallel.

Statistics of ends of strings

• The statistics is determined by particle hopping operators

- An open string operator is a hopping operator of the 'ends'. The algebra of the open string operator determine the statistics.
- For type-*e* string: $t_{ba} = \sigma_1^x$, $t_{cb} = \sigma_3^x$, $t_{bd} = \sigma_2^x$ We find $t_{bd}t_{cb}t_{ba} = t_{ba}t_{cb}t_{bd}$ **The ends of type**-*e* string are bosons

• For type-*f* strings: $t_{ba} = \sigma_1^x$, $t_{cb} = \frac{\sigma_3^x \sigma_4^z}{\sigma_4^z}$, $t_{bd} = \sigma_2^x \frac{\sigma_3^z}{\sigma_4^z}$ We find $t_{bd} t_{cb} t_{ba} = -t_{ba} t_{cb} t_{bd}$ The ends of type-*f* strings are fermions

Works for abelian anyons and non-abelian anyons.

Lectures on topological order: Long range entanglement and t

How to label all topological orders systematically?

What are the probes (topological invariants) that allow us to distingush all topological orders?

向下 イヨト イヨト

Systematic theory of topo. orders from topo. invariants

Topological order describes the order in gapped quantum liquds. We conjectured that 2+1D topological order can be completely defined via only two topological properties:

Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen IJMPB 7, 4227 (93)

• (1) Ψ_{grnd} = space of degenerate ground states, which is robust against any local perturbations.

Topological degeneracy:

 $D_g \equiv \dim \Psi_{\text{grnd}},$

depends on topology of space Wen PRB 40, 7387 (89), Wen-Niu PRB 41, 9377 (90)

g=0

Deg.=1 Deg.=D

向下 イヨト イヨト

Systematic theory of topo. orders from topo. invariants

Topological order describes the order in gapped quantum liquds. We conjectured that 2+1D topological order can be completely defined via only two topological properties:

Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen IJMPB 7, 4227 (93)

• (1) Ψ_{grnd} = space of degenerate ground states, which is robust against any local perturbations.

Topological degeneracy:

 $D_g \equiv \dim \Psi_{\text{grnd}},$ depends on topology of space Wen PRB 40, 7387 (89), Wen-Niu PRB 41, 9377 (90)

g=0 Deg.=1 Deg.=D

· < @ > < 문 > < 문 > · · 문

• (2) Vector bundle on the moduli space

i. Consider a torus Σ_1 w/ metrics g_{ij} . ii. Different metrics g_{ij} form the moduli space $\mathcal{M} = \{g_{ij}\}$. iii. The LI states depend on spacial metrics: $\Psi_{\alpha}(g_{ij}) \rightarrow$ a vector bundle over \mathcal{M} with fiber $\Psi_{\alpha}(g_{ij})$.

Topological invariants that define LRE and topo. orders

Vector bundle on the moduli space

- Local curvature detects grav. Chern-Simons term ${\rm e}^{i\frac{2\pi c}{24}\int_{M^2\times S^1}\omega_3}$

Tangent bundle on a 2-sphere

Topological invariants that define LRE and topo. orders

Vector bundle on the moduli space

- Local curvature detects grav. Chern-Simons term $e^{i\frac{2\pi c}{24}\int_{M^2\times S^1}\omega_3}$
- Loops $\pi_1(\mathcal{M}) = SL(2,\mathbb{Z})$: 90° rotation $|\Psi_{\alpha}\rangle \rightarrow |\Psi'_{\alpha}\rangle = S_{\alpha\beta}|\Psi_{\beta}\rangle$ Tangent bundle on a 2-sphere Dehn twist: $|\Psi_{\alpha}\rangle \rightarrow |\Psi'_{\alpha}\rangle = T_{\alpha\beta}|\Psi_{\beta}\rangle$ \Box \Box \Box \Box = \Box *S*, *T* generate a rep. of modular group: $S^2 = (ST)^3 = C, C^2 = 1$ Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen IJMPB 7, 4227 (93)

向下 イヨト イヨト

Topological invariants that define LRE and topo. orders

Vector bundle on the moduli space

90° rotation $|\Psi_{\alpha}\rangle \rightarrow |\Psi_{\alpha}'\rangle = S_{\alpha\beta}|\Psi_{\beta}\rangle$

- Local curvature detects grav. Chern-Simons term $e^{i\frac{2\pi c}{24}\int_{M^2\times S^1}\omega_3}$

- Loops $\pi_1(\mathcal{M}) = SL(2,\mathbb{Z})$:

Tangent bundle on a 2-sphere

Dehn twist: $|\Psi_{\alpha}\rangle \rightarrow |\Psi_{\alpha}'\rangle = T_{\alpha\beta}|\Psi_{\beta}\rangle$ \Box \Box \Box = \Box S, T generate a rep. of modular group: $S^2 = (ST)^3 = C, C^2 = 1$ Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen IJMPB 7, 4227 (93)

Conjecture: The vector bundles from all genus- $g \Sigma_g$ (*ie* the data (S, T, c), ...) completely characterize the topo. orders

Conjecture: The vector bundle for genus-1 Σ_1 (*ie* the data (S, T, c)) completely characterize the topo, orders as A = 0

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and t

Moradi-Wen arXiv:1401.0518, He-Moradi-Wen arXiv:1401.5557 • Ground states $|\Psi_{\alpha}\rangle$ on torus T^2 under \hat{S} and \hat{T} .

The non-Abelian geometric phases S, T via overlap

$$\begin{split} S_{\alpha\beta} e^{-f_{S}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{S} | \Psi_{\beta} \rangle \\ T_{\alpha\beta} e^{-f_{T}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{T} | \Psi_{\beta} \rangle \end{split}$$

Moradi-Wen arXiv:1401.0518, He-Moradi-Wen arXiv:1401.5557 • Ground states $|\Psi_{\alpha}\rangle$ on torus T^2 under \hat{S} and \hat{T} .

- The non-Abelian geometric phases S, T via overlap
 - $$\begin{split} S_{\alpha\beta} e^{-f_{S}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{S} | \Psi_{\beta} \rangle \\ T_{\alpha\beta} e^{-f_{T}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{T} | \Psi_{\beta} \rangle \end{split}$$
- For Z_2 topo. order: $\Psi_1(\boxtimes) = g^{\text{string-length}}$ $\Psi_2(\boxtimes) = (-)^{W_x} g^{\text{str-len}}$ $\Psi_3(\boxtimes) = (-)^{W_y} g^{\text{str-len}}$ $\Psi_4(\boxtimes) = (-)^{W_x+W_y} g^{\text{str-len}}$

向下 イヨト イヨト

Moradi-Wen arXiv:1401.0518, He-Moradi-Wen arXiv:1401.5557 • Ground states $|\Psi_{\alpha}\rangle$ on torus T^2 under \hat{S} and \hat{T} .

The non-Abelian geometric phases S, T via overlap

- $$\begin{split} S_{\alpha\beta} e^{-f_{S}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{S} | \Psi_{\beta} \rangle \\ T_{\alpha\beta} e^{-f_{T}L^{2} + o(L^{-1})} &= \langle \Psi_{\alpha} | \hat{T} | \Psi_{\beta} \rangle \end{split}$$
- For Z_2 topo. order: $\Psi_1(\boxtimes) = g^{\text{string-length}}$ $\Psi_2(\boxtimes) = (-)^{W_x} g^{\text{str-len}}$ $\Psi_3(\boxtimes) = (-)^{W_y} g^{\text{str-len}}$ $\Psi_4(\boxtimes) = (-)^{W_x + W_y} g^{\text{str-len}}$
- g < 0.8 small-loop phase $|\Psi_{lpha}
 angle$ are the same state
- g > 0.8 large-loop phase $|\Psi_{\alpha}\rangle$ are four diff. states

Lectures on topological order: Long range entanglement and t

・ 同 ト ・ ヨ ト ・ ヨ ト …

Moradi-Wen arXiv:1401.0518, He-Moradi-Wen arXiv:1401.5557 • Ground states $|\Psi_{\alpha}\rangle$ on torus T^2 under \hat{S} and \hat{T} .

The non-Abelian geometric phases S, T via overlap

- $S_{\alpha\beta}e^{-f_{S}L^{2}+o(L^{-1})}=\langle\Psi_{\alpha}|\hat{S}|\Psi_{\beta}\rangle$ $T_{\alpha\beta}e^{-f_{T}L^{2}+o(L^{-1})}=\langle\Psi_{\alpha}|\hat{T}|\Psi_{\beta}\rangle$
- For Z₂ topo. order: $\Psi_1(\boxtimes) = g^{\text{string-length}}$ $\Psi_2(\boxtimes) = (-)^{W_x} g^{\text{str-len}}$ $\Psi_3(\boxtimes) = (-)^{W_y} g^{\text{str-len}}$ $\Psi_4(\boxtimes) = (-)^{W_x + W_y} g^{\text{str-len}}$
- g < 0.8 small-loop phase $|\Psi_{\alpha}\rangle$ are the same state
- g > 0.8 large-loop phase $|\Psi_{\alpha}\rangle$ are four diff. states
- For double-semion topo. order: $\Psi(\mathbb{M}) = (-)^{\# \text{ of loop}}$

Lectures on topological order: Long range entanglement and

Using group theory, we can classify all 230 crystal structures.

How to classify all 2+1D topological orders?

伺 と く き と く き と

Classify 2+1D topo. orders (*ie* patterns of entanglement)

via the topological invariants (S, T, c)

- A 2+1D topological order \rightarrow a (S, T, c)
- An arbitary (S, T, c)
 earrow a 2+1D topological order
- (S, T, c)'s satisfying a set of conditions \leftrightarrow 2+1D topo. orders

伺い イヨン イヨン ニヨ

Classify 2+1D topo. orders (*ie* patterns of entanglement)

via the topological invariants (S, T, c)

- A 2+1D topological order \rightarrow a (S, T, c)
- An arbitary $(S, T, c) \not\rightarrow$ a 2+1D topological order
- (S, T, c)'s satisfying a set of conditions ↔ 2+1D topo. orders assuming each (S, T, c) → one topological order, otherwise (S, T, c)'s satisfying a set of conditions ↔ several topo. orders

・吊 トイヨト イヨト 二日

Classify 2+1D topo. orders (*ie* patterns of entanglement)

via the topological invariants (S, T, c)

- A 2+1D topological order \rightarrow a (S, T, c)
- An arbitary $(S, T, c) \not\rightarrow$ a 2+1D topological order
- (S, T, c)'s satisfying a set of conditions ↔ 2+1D topo. orders assuming each (S, T, c) → one topological order, otherwise (S, T, c)'s satisfying a set of conditions ↔ several topo. orders
- How to find the conditions, beyond $S^2 = (ST)^3$, $S^4 = 1$? Study topological excitations above the ground states. ie consider vector bundle from the degenerate ground states on Σ_g with punctures (quasiparticles).
- In particular, the vector bundles from the degenerate ground states on $\Sigma_0=S^2$ with punctures (quasiparticles)
 - \rightarrow unitary modular tensor category theory (UMTC)

Local and topological quasiparticle excitations

伺下 イヨト イヨト

Local and topological quasiparticle excitations

 $\Psi_{\mathsf{exc}}(\xi,\xi',\cdots) \neq O_{\xi}\Psi_{\mathsf{exc}}(\xi',\cdots)$ cannot be created by local O_{ξ}

- **Topological types**: Consider two exictations at ξ from different traps: $\delta H_{\xi}^{\text{trap}}$ and $\delta \tilde{H}_{\xi}^{\text{trap}}$: $\Psi_{\text{exc}}(\xi, \xi', \cdots)$ and $\tilde{\Psi}_{\text{exc}}(\xi, \xi', \cdots)$
- if $\Psi_{\mathsf{exc}}(\xi, \cdots) = O_{\xi} \tilde{\Psi}_{\mathsf{exc}}(\xi, \cdots) \to \text{they belong to the same type.}$
- if $\delta H_{\xi}^{\text{trap}}$ and $\delta \tilde{H}_{\xi}^{\text{trap}}$ can deform into each other without closing the gap, then the traped excitations at ξ belong to the same type.
- With symmetry $\rightarrow O_{\xi}, \delta H_{\xi}^{trap}$ to be symmetric local operators.

Simple/composite excitations and fusion ring

- simple excitation at ξ : The ground space $\Psi_{\text{exc}}^{\text{simple}}(\xi, \cdots)$ is robust against local perturbation near $\xi \to \text{type } i$.
- **composite excitation** at ξ : The ground space $\Psi_{\text{exc}}(\xi, \cdots)$ (the degeneracy) can be splitted by local perturbation near ξ , *ie* contain accidental degeneracy \rightarrow type $\alpha = i \oplus j$.

Fusion space = $\Psi_{\text{exc}}(\xi_1, \xi_2, \cdots) = \mathcal{V}_{\text{fus}}(i_1, i_2, \cdots)$

Fusion ring of (non-Abelian) topological excitations

• For simple *i*, *j*, if we view (*i*, *j*) as one particle, it may correspond to a composite particle:

 $\mathcal{V}_{\mathsf{fus}}(i, j, l_1, l_2, \cdots) = \bigoplus_n \mathcal{V}_{\mathsf{fus}}(k_n, l_1, l_2, \cdots)$ $i \otimes j = k_1 \oplus k_2 \oplus \cdots = \bigoplus_k N_k^{ij} k$

 \rightarrow the fusion ring (Grothendieck ring).

• Associativity:

 $(i \otimes j) \otimes k = i \otimes (j \otimes k) = \bigoplus_{l} N_{l}^{ijk} l, \quad N_{l}^{ijk} = \sum_{m} N_{m}^{ij} N_{l}^{mk} = \sum_{n} N_{n}^{jk} N_{k}^{in}$

α

Lectures on topological order: Long range entanglement and t

The *F*-symbol: $F_{l;m\gamma\lambda}^{ijk;m\alpha\beta}$

• Consider fusion space: $\mathcal{V}_{fus}(i, j, \cdots)$ – the ground space of $H + \delta H_{\xi_i}^{trap} + \delta H_{\xi_i}^{trap} + \cdots$

The fusion $i \otimes j = \otimes N_l^{ij} I$ give rise to a choice of basis of $\mathcal{V}_{fus}(i, j, \cdots)$: $|I, \alpha_l^{ij}; \cdots \rangle$, where $\alpha_l^{ij} = 1, 2, \cdots, N_l^{ij}$.

- Consider fusion space: V_{fus}(i, j, k; · · ·), two ways of fusion give rise to two choices of basis:
- $-|i,j,k;\cdots\rangle \rightarrow |m,\alpha_m^{ij};k;\cdots\rangle \rightarrow |m,\alpha_m^{ij};l,\alpha_l^{mk};\cdots\rangle$
- $-|i,j,k;\cdots\rangle \rightarrow |i;n,\alpha_n^{jk};\cdots\rangle' \rightarrow |I,\alpha_I^{in};n,\alpha_n^{jk};\cdots\rangle'$
- The F-symbol is unitary matrix that relate the two basis

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and

Consistent conditions for $F_{l;n\chi\delta}^{ijk;m\alpha\beta}$ and UFC

Lectures on topological order: Long range entanglement and

Theory of quasiparticles = fusion category theory

A simples example with symmetry *G*:

e.g.: Each site has 4 states: spin-0 and spin-1. Hamiltonian $H = \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i}$. Ground state = $\bigotimes_{i} |0\rangle$ is a product state.

- Type-*i* simple excitation defined by *G*-symmetric trap $= i^{\text{th}}$ irreducible representation of *G*.
- The fusion $i \otimes j = \bigoplus_k N_k^{ij} k$ is the fusion of representations. For G = SO(3): $i = 0, 1, 2, \cdots$ is the spin-s: $i \otimes j = |i - j| \oplus |i - j| + 1 \oplus \cdots \oplus i + j$
- The $F_{l;n\gamma\lambda}^{ijk;m\alpha\beta}$ is nothing but the well known 6j-symbol, that relate two different ways of fusing three representations.

(本間) (本語) (本語) (語)
Theory of quasiparticles = fusion category theory

A simples example with symmetry G:

e.g.: Each site has 4 states: spin-0 and spin-1. Hamiltonian $H = \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i}$. Ground state = $\bigotimes_{i} |0\rangle$ is a product state.

- Type-*i* simple excitation defined by *G*-symmetric trap = i^{th} irreducible representation of *G*.
- The fusion $i \otimes j = \bigoplus_k N_k^{ij} k$ is the fusion of representations. For G = SO(3): $i = 0, 1, 2, \cdots$ is the spin-s: $i \otimes j = |i - j| \oplus |i - j| + 1 \oplus \cdots \oplus i + j$
- The $F_{I;n\gamma\lambda}^{ijk;m\alpha\beta}$ is nothing but the well known 6j-symbol, that relate two different ways of fusing three representations.
- Braiding: all the particles are bosons with **trivial mutual statistics Theory of quasiparticles = braided fusion category theory**
- The above braided fusion category theory is called **symmetric** fusion category (SFC) (described by N_k^{ij} , $F_{l;m\lambda}^{ijk;m\alpha\beta}$).
- SFC is a way to described symmetry group without using symmetry breaking probe: SFC ↔ G.

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and t

Quantum dimension and "fractional" degree of freedom

Vector space fractionalization:

• In general, $\dim[\mathcal{V}_{fus}(i, i, i, \cdots)] \neq (integer)^n$. Quasiparticle *i* may carry fractional degree freedom.

通 とう ほう うちょう

Quantum dimension and "fractional" degree of freedom

Vector space fractionalization:

- In general, dim $[\mathcal{V}_{fus}(i, i, i, \cdots)] \neq (integer)^n$. Quasiparticle *i* may carry fractional degree freedom.
- dim $[\mathcal{V}_{fus}(i, i, \cdots, i)] = \sum_{m_i} N_{m_1}^{ii} N_{m_2}^{m_1 i} \cdots N_1^{m_{n-2}i} = (\mathbf{N}^i)_{i1}^{n-1} \sim d_i^n$ where the matrix $(\mathbf{N}^i)_{jk} = N_k^{ji}$, and d_i the largest eigenvalue of \mathbf{N}^i :

$$\begin{split} \dim[\mathcal{V}_{\mathsf{fus}}(i,i)] &= N_1^{ii}, \quad \dim[\mathcal{V}_{\mathsf{fus}}(i,i,i)] = N_{m_1}^{ii} N_1^{m_1 i}, \\ \dim[\mathcal{V}_{\mathsf{fus}}(i,i,i,i)] &= N_{m_1}^{ii} N_{m_2}^{m_1 i} N_1^{m_2 i}. \end{split}$$

• d_i is called the *quantum dimension* of the quasiparticle *i*. Abelian particle $\rightarrow d_i = 1$. Non-Abelian particle $\rightarrow d_i \neq 1$.

4 B K 4 B K B

Theory of topological excitations = braided fusion category

 In 1D, the set of particles → UFC All 1D topo. orders are described by UFC. All anomalous → boundary of 2D system.

Theory of topological excitations = braided fusion category

• In 1D, the set of particles \rightarrow UFC All 1D topo. orders are described by UFC. All anomalous \rightarrow boundary of 2D system.

• Braiding requires that $N_k^{ij} = N_k^{ji}$.

Theory of topological excitations = braided fusion category

- In 1D, the set of particles \rightarrow UFC All 1D topo. orders are described by UFC. All anomalous \rightarrow boundary of 2D system.
- \bullet Above 1D, particles can braid \rightarrow unitary braided fusion category
- Braiding requires that $N_k^{ij} = N_k^{ji}$.
- Braiding \rightarrow mutual statistics $e^{i\theta_{ij}^{lk}}$ and non-trivial fractional spin s_i

 $\begin{array}{l} 2\pi \text{ rotation of } (i,j) = 2\pi \text{ rotation of } k\\ 2\pi \text{ rotation of } (i,j) = 2\pi \text{ rotation}\\ \text{of } i \text{ and } j \text{ and exchange } i,j \text{ twice}\\ \mathrm{e}^{\mathrm{i}2\pi s_i} \mathrm{e}^{\mathrm{i}2\pi s_j} \mathrm{e}^{\mathrm{i}\theta_{ij}^{(k)}} = \mathrm{e}^{\mathrm{i}2\pi s_k} \end{array}$

A unitary braided fusion category (UBFC) is a set of topological types with fusion and braiding, which is described by data (N_k^{ij}, s_i)

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and t

Relation between (S, T, c) and (N_k^{ij}, s_i, c)

Conjecture: A bosonic topological order [*ie* a non-degenerate UBFC \equiv an unitary modular tensor category (UMTC)] is fully characterized by data (S, T, c) or by data (N_k^{ij}, s_i, c) .

• From (S, T, c) to (N_k^{ij}, s_i, c) : $N_k^{ij} = \sum_l \frac{S_{li}S_{lj}(S_{lk})^*}{S_{1l}},$ E. Verlinde NPB 300 360 (88) $N_k^{ij} = \sum_l \frac{S_{li}(S_{lj}(S_{lk}))^*}{S_{1l}},$ $e^{i2\pi s_i} e^{-i2\pi \frac{c}{24}} = T_{ii}.$ • From (N_k^{ij}, s_i, c) to (S, T, c):

・吊り ・ヨト ・ヨト ・ヨ

 $S_{ij} = \frac{1}{\sqrt{\sum_i d_i^2}} \sum_k N_k^{ij} e^{2\pi i (s_i + s_j - s_k)} d_k, \quad T_{ii.} = e^{i 2\pi s_i} e^{-i 2\pi \frac{c}{24}}$

Conditions on $(N_k^{ij}, s_i, c) \leftrightarrow$ Conditions on $(S, T, c) \rightarrow$ A theory of unitary modular tensor category (UMTC)

Relation between (S, T, c) and (N_k^{ij}, s_i, c)

Conjecture: A bosonic topological order [*ie* a non-degenerate UBFC \equiv an unitary modular tensor category (UMTC)] is fully characterized by data (S, T, c) or by data (N_k^{ij}, s_i, c) .

• From (S, T, c) to (N_k^{ij}, s_i, c) : $N_k^{ij} = \sum_l \frac{S_{li}S_{lj}(S_{lk})^*}{S_{1l}},$ E. Verlinde NPB **300** 360 (88) $e^{i2\pi s_i} e^{-i2\pi \frac{c}{24}} = T_{ii}.$ • From (N_k^{ij}, s_i, c) to (S, T, c):

 $S_{ij} = \frac{1}{\sqrt{\sum_i d_i^2}} \sum_k N_k^{ij} e^{2\pi i (s_i + s_j - s_k)} d_k, \quad T_{ii.} = e^{i 2\pi s_i} e^{-i 2\pi \frac{c}{24}}$

Conditions on $(N_k^{ij}, s_i, c) \leftrightarrow$ **Conditions on** (S, T, c)

→ A theory of unitary modular tensor category (UMTC) simplified theory of UMTC Rowell-Stong-Wang arXiv:0712.1377

 The standard point of view: UMTC's are fully characterized by (N^{ij}_k, F^{ijk;mαβ}_{l;nγλ}, R^{ij;α}_{k;β}) (but not one-to-one). Conditions on those data + the equivalent relations → a theory of UMTC.

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and t

d + 1D Topological quantum field theory

- *d*-dim. closed manifold M^d \rightarrow Hilbert space $\mathcal{V}_{M^d} = \{ |\alpha \rangle \}$. Subspace of ground states on M^d
- d + 1-dim. open manifold D^{d+1} \rightarrow a vector $|D^{d+1}\rangle$ in $\mathcal{V}_{\partial D^{d+1}}$.

• Partition function on closed space-time N^{d+1} = a vector $Z(N^{d+1}) \in \mathcal{V}_{\partial N^{d+1}=\emptyset} = \mathbb{C}$ (*ie* a complex number)

• Surgery formula:

$$\langle M_U | M_D \rangle = Z \left(\left(\underbrace{M_U \\ M_D}_{M_D} \right)^B \right)$$

Lectures on topological order: Long range entanglement and

向下 イヨト イヨト

The relations between (N_k^{ij}, s_i, c) and (S, T, c)

- Number of particle types (dimensions of N^y_k, s_i)
 = ground state degeneracy on torus (dimensions of S, T). Type-i particle is created as the end of type-i string operator, which also describe particle-anti-particle tunneling process.
- A particular ground state $|W_1\rangle$ on torus is obtained via the time evolution on space-time of a solid torus. Other ground state $|W_i\rangle$ is obtained by inserting a loop of type-*i* string operator W_i .

• S-matrix and link loops: $S_{ij} = \langle W_i | \hat{S} | W_j \rangle = Z \left(\left((\hat{J}_j)^{s'} \right)^{s'} \right)$

Lectures on topological order: Long range entanglement and

< ∃⇒

 $= S_{ji}$

Verlinde formula – The relations between N_k^{ij} and S

Witten CMP 121 351 (89); Wang-Wen-Yau arXiv:1602.05951

• A surjery formula $\langle M_U | M_D \rangle \langle N_U | N_D \rangle = \langle M_U | N_D \rangle \langle N_U | M_D \rangle$

$$Z\left(\begin{pmatrix}M_{U}\\M_{D}\end{pmatrix}^{B}\right)Z\left(\begin{pmatrix}N_{U}\\N_{D}\end{pmatrix}^{B}\right)=Z\left(\begin{pmatrix}M_{U}\\N_{D}\end{pmatrix}^{B}\right)Z\left(\begin{pmatrix}N_{U}\\M_{D}\end{pmatrix}^{B}\right)$$

provided that the ground state degeneracy on the space-*B* is one. • $\rightarrow \langle W_i | \hat{S} | 1 \rangle \langle W_i | \hat{S} | W_j \otimes k \rangle = \langle W_i | \hat{S} | W_j \rangle \langle W_i | \hat{S} | W_k \rangle$

where we have used the string operator algebra

$$\hat{W}_{j}^{\mathsf{str}}\hat{W}_{k}^{\mathsf{str}} = \sum_{i} N_{i}^{jk} \hat{W}_{i}^{\mathsf{str}} \rightarrow |W_{j}W_{k}\rangle = \sum_{i} N_{l}^{jk} |W_{l}\rangle.$$

• Verlinde formula: $\sum_{l} S_{i1} S_{il} N_{l}^{jk} = S_{ij} S_{ik}$

The relation between quantum dimension d_i and S

•
$$Z\left(\bigoplus^{s'}\right) = S_{1i} = \langle W_{i\to\overline{i}} | W_{i\to\overline{i}} \rangle > 0$$

• Let vector $\mathbf{v}_i = (S_{i1}, S_{i2}, \cdots)$. Verlinde formula can be rewritten as

$$\mathbf{N}^k \mathbf{v}_i = \lambda_i^k \mathbf{v}_i, \quad \lambda_i^k = \frac{S_{ik}}{S_{i1}}$$

Since \mathbf{v}_1 has positive components, λ_1^k is the largest eigenvalue of $\mathbf{N}^k \rightarrow \frac{S_{1k}}{S_{11}} = d_i$. Using $\sum_i S_{1i}^2 = 1$, we find

$$S_{1i} = S_{i1} = d_i/D, \qquad D^2 = \sum_i d_i^2.$$

回 と く ヨ と く ヨ と

The relation between quantum dimension d_i and S

•
$$Z\left(\bigoplus^{s'}\right) = S_{1i} = \langle W_{i\to\overline{i}} | W_{i\to\overline{i}} \rangle > 0$$

• Let vector $\mathbf{v}_i = (S_{i1}, S_{i2}, \cdots)$. Verlinde formula can be rewritten as

$$\mathbf{N}^k \mathbf{v}_i = \lambda_i^k \mathbf{v}_i, \quad \lambda_i^k = \frac{S_{ik}}{S_{i1}}$$

Since \mathbf{v}_1 has positive components, λ_1^k is the largest eigenvalue of $\mathbf{N}^k \rightarrow \frac{S_{1k}}{S_{11}} = d_i$. Using $\sum_i S_{1i}^2 = 1$, we find

$$S_{1i} = S_{i1} = d_i/D, \qquad D^2 = \sum_i d_i^2.$$

• We also find

$$Z\left(\bigcup_{i=1}^{s'}\right) = S_{1i} = \frac{S_{1i}}{S_{11}}Z(S^3) = d_iZ(S^3); \quad \bigcup_{i=1}^{s} = \frac{S_{ij}}{S_{11}} = S_{ij}D$$

Lectures on topological order: Long range entanglement and

通 とう ほう とう マン・

The relation between fractional spin s_i and T

- A particle is not an ideal point. It has internal structure. We can use the framing to represent the internal structure.
- (a) $e^{i2\pi s_i}$ (b) $e^{-i2\pi s_i}$

The relation between fractional spin s_i and T

- A particle is not an ideal point. It has internal structure. We can use the framing to represent the internal structure.
- (a) e^{i2πs_i}
 (b) e^{-i2πs_i}
- \hat{T} is a 2π twist of the particle world line: $\hat{T}|W_i\rangle = e^{i2\pi s_i}|W_i\rangle$

 $e^{ia_{ij}} = 1$ $e^{ia_{ij}} = -1$

m

伺 ト イヨト イヨト

• But \hat{T} also change the metrics of the solid tours $\rightarrow i$ independent phase from the gravitational CS term $e^{i\frac{2\pi c}{24}\int_{M^2\times S^1}\omega_3}$

 $C_{j} = 0$

$$\hat{T}|W_i\rangle = e^{i2\pi s_i} e^{-i2\pi c/24}|W_i\rangle$$

From (N_k^{ij}, s_i, c) to (S, T, c) – Graphic calculus

•
$$\bigcirc_{i} = e^{i 2\pi S_{i}} (i) = e^{i 2\pi S_{i}} d_{i}$$
•
$$\bigcirc_{j} = \frac{S_{ij}}{S_{11}} = S_{ij}D$$

The above can be rewritten as

$$S_{ij} = \frac{1}{D} \sum_{k} N_k^{ij} \mathrm{e}^{2\pi \mathrm{i}(s_i+s_j-s_k)} d_k,$$

回 と く ヨ と く ヨ と …

3

A relation between N_k^{ij} and s_i

Anderson-Moore CMP 117 441 (88); Vafa PLB 206, 421 (88) Wi,jk $\det(W_{i,ik}) = \det(W_{i,i}) \det(W_{i,k})$ Wi.k Wi.i k $\det(W_{i,j}) = \prod \left(\frac{\mathrm{e}^{\mathrm{i} 2\pi s_r}}{\mathrm{e}^{\mathrm{i} 2\pi s_i} \mathrm{e}^{\mathrm{i} 2\pi s_j}} \right)^{N_r^y N_l^{rk}},$ $\det(W_{i,k}) = \prod \left(\frac{\mathrm{e}^{\mathrm{i} 2\pi s_r}}{\mathrm{e}^{\mathrm{i} 2\pi s_i} \mathrm{e}^{\mathrm{i} 2\pi s_k}}\right)^{N_r^{ik} N_l^{rj}},$ $\det(W_{i,jk}) = \prod \left(\frac{\mathrm{e}^{\mathrm{i} 2\pi s_{\bar{l}}}}{\mathrm{e}^{\mathrm{i} 2\pi s_{\bar{l}}} \mathrm{e}^{\mathrm{i} 2\pi s_{\bar{r}}}}\right)^{N_r^{jk} N_{\bar{l}}^{ri}}.$ $W_{i,i}, W_{i,k}, W_{i,ik}$ are diagonal with the dimension of the fusion space $\mathcal{V}_{\text{fus}}(i, j, k, l)$: $\sum_{r} N_{r}^{ij} N_{\bar{r}}^{rk} = \sum_{r} N_{r}^{ik} N_{\bar{r}}^{rj} = \sum_{r} N_{r}^{jk} N_{\bar{r}}^{ri}$ $ightarrow \sum V^r_{ijkl} s_r = 0 \mod 1$ $V_{iikl}^{r} = N_{r}^{ij}N_{\bar{r}}^{kl} + N_{r}^{il}N_{\bar{r}}^{jk} + N_{r}^{ik}N_{\bar{r}}^{jl} - (\delta_{ir} + \delta_{jr} + \delta_{kr} + \delta_{lr})\sum_{k}N_{m}^{ij}N_{\bar{m}}^{kl}$

A simplified theory of UMTC based on (N_k^{ij}, s_i, c)

Rowell-Stong-Wang arXiv:0712.1377, Wen arXiv:1506.05768 • Fusion ring: N_{μ}^{y} are non-negative integers that satisfy $N_k^{ij} = N_k^{ji}, \ \ N_j^{1i} = \delta_{ij}, \ \ \sum^N N_1^{ik} N_1^{kj} = \delta_{ij},$ $\sum_{m=1}^{N} N_m^{ij} N_l^{mk} = \sum_{m=1}^{N} N_l^{im} N_m^{jk} \text{ or } \mathbf{N}^i \mathbf{N}^k = \mathbf{N}^k \mathbf{N}^i$ where $i, j, \dots = 1, 2, \dots, N$, and the matrix N^{j} is given by $(\mathbf{N}^{j})_{ik} = N_{k}^{ij}$. N_{1}^{ij} defines a charge conjugation $i \to \overline{i}$: $N_1^y = \delta_{\overline{i}i}$. We refer N as the rank. There are only finite numbers of solutions for each fixed N, D. • N_{ν}^{ij} and s_i satisfy $\sum_r V_{iikl}^r s_r = 0 \mod 1$ $V_{ijkl}^{r} = N_{r}^{ij}N_{\bar{r}}^{kl} + N_{r}^{il}N_{\bar{r}}^{jk} + N_{r}^{ik}N_{\bar{r}}^{jl} - (\delta_{ir} + \delta_{jr} + \delta_{kr} + \delta_{lr})\sum N_{\bar{m}}^{ij}N_{\bar{m}}^{kl}$ This determines s_i to be a rational number. There are only finite sets of solutions. • • = • • = • = •

Lectures on topological order: Long range entanglement and t

A simplified theory of UMTC based on (N_k^{ij}, s_i, c)

From $(N_k^{ij}, s_i, c) \rightarrow (S, T)$

• Let d_i be the largest eigenvalue of the matrix N^i . Let

$$S_{ij} = rac{1}{D} \sum_{k} N_k^{ij} \mathrm{e}^{2\pi \mathrm{i} (s_i + s_j - s_k)} d_k, \ \ D^2 = \sum_i d_i^2$$

Then, **S** satisfies

$$S_{11} > 0, \quad \sum_{k} S_{kl} N_{k}^{ij} = \frac{S_{li} S_{lj}}{S_{1l}}, \quad S = S^{\dagger}C, \quad C_{ij} \equiv N_{1}^{ij}.$$

• Let $T_{ij} = e^{i2\pi s_{i}} e^{-i2\pi \frac{c}{24}} \delta_{ij}$ then $(SL(2, \mathbb{Z}) \text{ modular representation})$
 $S^{2} = (ST)^{3} = C.$

• Let $\nu_i = \frac{1}{D^2} \sum_{jk} N_i^{jk} d_j d_k e^{4\pi i (s_j - s_k)}$. Then $\nu_i = 0$ if $i \neq \overline{i}$, and $\nu_i = \pm 1$ if $i = \overline{i}$. Rowell-Stong-Wang arXiv:0712.1377

向下 イヨト イヨト

2+1D bosonic topo. orders (up to E_8 -states) via (N_k^{ij}, s_i, c)

$\zeta_n^m = \frac{\sin(\pi(m+1)/(n+2))}{\sin(\pi/(n+2))}$ Rowell-Stong-Wang				; arXiv:0712.1377; Wen arXiv:1506.05768		
N _c ^B	d_1, d_2, \cdots	s_1, s_2, \cdots	wave func.	N _c ^B	d_1, d_2, \cdots	s_1, s_2, \cdots wave func.
1 ^B ₁	1	0				
2 ^B ₁	1,1	$0, \frac{1}{4}$	$\prod (z_i - z_j)^2$	2^{B}_{-1}	1,1	$0, -\frac{1}{4} \prod (z_i^* - z_i^*)^2$
2 ^B _{14/5}	$1, \zeta_{3}^{1}$	$0, \frac{2}{5}$	Fibonacci TO	$2^{B}_{-14/5}$	$1, \zeta_3^1$	$0, -\frac{2}{5}$
3 ^B ₂	1, 1, 1	$0, \frac{1}{3}, \frac{1}{3}$ (221) double-layer	3 ^B _2	1, 1, 1	$0, -\frac{1}{3}, -\frac{1}{3}$
3 ^B /8/7	$1, \zeta_{5}^{1}, \zeta_{5}^{2}$	$0, -\frac{1}{7}, \frac{2}{7}$		3 ^B -8/7	$1, \zeta_5^1, \zeta_5^2$	$0, \frac{1}{7}, -\frac{2}{7}$
$3^{B}_{1/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, \frac{1}{16}$	Ising TO	$3^{B}_{-1/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, -\frac{1}{16}$
3 ^B /3/2	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, \frac{3}{16}$	$\mathcal{S}(220), \Psi_{Pfaffian}$	$3^{B}_{-3/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, -\frac{3}{16}$
$3^{B}_{5/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, \frac{5}{16}$	$\Psi_{\nu=2}^2 SU(2)_2^f$	$3^{B_{-5/2}}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, -\frac{5}{16}$
3 ^B 7/2	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{7}{16}$		3 ^B -7/2	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{7}{16}$
$4_0^{B,a}$	1, 1, 1, 1	$0, 0, 0, \frac{1}{2}$ (1, a)	e, m, f) Z ₂ -gauge	4 ^B ₄	1, 1, 1, 1	$0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
4 ^B ₁	1, 1, 1, 1	$0, \frac{1}{8}, \frac{1}{8}, \frac{1}{2}$	$\prod (z_i - z_j)^4$	4^{B}_{-1}	1, 1, 1, 1	$0, -\frac{1}{8}, -\frac{1}{8}, \frac{1}{2}$
4 ^B ₂	1, 1, 1, 1, 1	$0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}$ (220) double-layer	4 ^B ₋₂	1, 1, 1, 1	$0, -\frac{1}{4}, -\frac{1}{4}, \frac{1}{2}$
4 ^B ₃	1, 1, 1, 1	$0, \frac{3}{8}, \frac{3}{8}, \frac{1}{2}$		4 ^B -3	1, 1, 1, 1	$0, -\frac{3}{8}, -\frac{3}{8}, \frac{1}{2}$
4 ^{<i>B</i>,<i>b</i>}	1, 1, 1, 1	$0, 0, \frac{1}{4}, -\frac{1}{4}$	double semion	4 ^B / _{9/5}	$1, 1, \zeta_3^1, \zeta_3^1$	$0, -\frac{1}{4}, \frac{3}{20}, \frac{2}{5}$
4 ^B -9/5	$1, 1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{4}, -\frac{3}{20}, -$	25	4 ^{B'} _{19/5}	$1, 1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{4}, -\frac{7}{20}, \frac{2}{5}$
$ 4^{B}_{-19/5} $	$1, 1, \zeta_3^1, \zeta_3^1$	$0, -\frac{1}{4}, \frac{7}{20}, -$	$\frac{2}{5} \Psi_{\nu=3}^2 SU(2)_3^f$	40 ^{B, c}	$1, \zeta_3^1, \zeta_3^1, \zeta_3^1\zeta_3^1$	$0, \frac{2}{5}, -\frac{2}{5}, 0$ Fibonacci ²
4 ^B _{12/5}	$1, \zeta_3^1, \zeta_3^1, \zeta_3^1\zeta_3^1$	$0, -\frac{2}{5}, -\frac{2}{5}, \frac{1}{5}$	5	$4^{B}_{-12/5}$	$1, \zeta_3^1, \zeta_3^1, \zeta_3^1\zeta_3^1$	$0, \frac{2}{5}, \frac{2}{5}, -\frac{1}{5}$
4 ^B _{10/3}	$1, \zeta_7^1, \zeta_7^2, \zeta_7^3$	$0, \frac{1}{3}, \frac{2}{9}, -\frac{1}{3}$		$4^{B}_{-10/3}$	$1, \zeta_7^1, \zeta_7^2, \zeta_7^3$	$0, -\frac{1}{3}, -\frac{2}{9}, \frac{1}{3}$
5 ^B 0	1, 1, 1, 1, 1, 1	$0, \frac{1}{5}, \frac{1}{5}, -\frac{1}{5}, -$	$-\frac{1}{5}$ (223) DL	5 ₄	1, 1, 1, 1, 1, 1	$0, \frac{2}{5}, \frac{2}{5}, -\frac{2}{5}, -\frac{2}{5}$
52 ^{B,a}	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, \frac{1}{8}, -\frac{3}{8}, -\frac{3}{8},$	13	52 ^{B,b}	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, -\frac{1}{8}, \frac{3}{8}, \frac{1}{3}$
5 ^{B,b} -2	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, \frac{1}{8}, -\frac{3}{8}, -\frac{3}{8}$	$-\frac{1}{3}$	$5^{B,a}_{-2}$	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, -\frac{1}{8}, \frac{3}{8}, -\frac{1}{3}$
5 ^B _{16/11}	$1, \zeta_9^1, \zeta_9^2, \zeta_9^3, \zeta_9^4$	$0, -\frac{2}{11}, \frac{2}{11}, \frac{2}{11}$	$\frac{1}{1}, -\frac{5}{11}$	$5^{B}_{-16/11}$	$1, \zeta_9^1, \zeta_9^2, \zeta_9^3, \zeta_9^4$	$0, \frac{2}{11}, -\frac{2}{11}, -\frac{1}{11}, \frac{5}{11}$
5 ^B _{18/7}	$1, \zeta_5^2, \zeta_5^2, \zeta_{12}^2, \zeta_{12}^4$	$0, -\frac{1}{7}, -\frac{1}{7}, \frac{1}{7}$	$\frac{1}{7}, \frac{3}{7}$	$5^{B}_{-18/7}$	$1, \zeta_5^2, \zeta_5^2, \zeta_{12}^2, \zeta_{12}^4$	$(0, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, -\frac{3}{7})$

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and t

Remote detectability: why those (N_k^y, s_i, c) are realizable

• The list cover all the 2+1D bosonic topological orders. But the list might contain fake entries that are not realizable.

• 3 >

Remote detectability: why those (N_k^{ij}, s_i, c) are realizable

 The list cover all the 2+1D bosonic topological orders. But the list might contain fake entries that are not realizable. Schoutens-Wen arXiv:1508.01111 used simple current CFT to construct many-body wave functions for all the entries in the list.
 All the topological order in the table can be realized in multilayer FQH systems

Remote detectability: why those (N_k^{ij}, s_i, c) are realizable

 The list cover all the 2+1D bosonic topological orders. But the list might contain fake entries that are not realizable. Schoutens-Wen arXiv:1508.01111 used simple current CFT to construct many-body wave functions for all the entries in the list.
 All the topological order in the table can be realized in multilayer FQH systems

Levin arXiv:1301.7355, Kong-Wen arXiv:1405.5858

- Remote detectable = Realizable (anomaly-free): Every non-trivial topo. excitation *i* can be remotely detected by at least one other topo. excitation *j* via the non-zero mutual braiding $\theta_{ij}^{(k)} \neq 0 \rightarrow S_{ij} = \frac{1}{D} \sum_k N_k^{ij} e^{-i\theta_{ij}^{(k)}} d_k$ is unitary (one of conditions) \rightarrow the topological order is realizable in the same dimension.
- The centralizer of BFC C = the set of particles with trivial mutual statistics respecting to all others: $C_{C}^{\text{cen}} \equiv \{i \mid \theta_{ij}^{(k)} = 0, \forall j, k\}$. Remote detectable $\leftrightarrow C_{C}^{\text{cen}} = \{1\} \leftrightarrow \text{Realizable (anomaly-free}) \equiv$

Xiao-Gang Wen, Boulder summer school

Lectures on topological order: Long range entanglement and t

Bosonic/fermionic topo. orders with/without symmetry

- "Topological" excitations with symmetry: Two particles are equivalent iff they are connected by symmetric local operators.
 Equivalent classes = topological types with symmetry
- **Example**: for G = SO(3):
- Trivial "topogical" types: spin-0. (centralizer=SFC)
- Non-trivial "topogical" types: spin-1, spin-2, $\cdots \sim$ irreducible reps. (Cannot be created by local symmetric operators, but can be created by local asymmetric operators.)
- Really non-trivial "topogical" types. (Other types) (Cannot created by local symmetric operators, nor by local asymmetric operators.)
- How to classify topological orders with symmetry? How to classify fermionic topo. orders with/without symmetry? Consider braided fusion category whose centralizer is non-trivial. centralizer = symmetric fusion category (SFC) = symmetry

< 글 > < 글 > ... 글

SFC = Exc. in bosonic/fermionic product states with symmetry = a categorical description of symmetry

Symmetric fusion catgeories (SFC):

For bosonic product states, 1) Particle are bosonic with trivial mutual statistics (not remotely detectable);
2) Particles are labeled by irrep. R_i.
Topological types = irreducible representation R_i ∈ Rep(G)
The fusion and the trivial braiding of R_i define a spectial UBFC, called symmetric fusion category (SFC) and denoted as Rep(G)

- 4 周 ト 4 日 ト 4 日 ト - 日

SFC = Exc. in bosonic/fermionic product states with symmetry = a categorical description of symmetry

Symmetric fusion catgeories (SFC):

- For bosonic product states, 1) Particle are bosonic with trivial mutual statistics (not remotely detectable);
 2) Particles are labeled by irrep. R_i.
 Topological types = irreducible representation R_i ∈ Rep(G)
 The fusion and the trivial braiding of R_i define a spectial UBFC, called symmetric fusion category (SFC) and denoted as Rep(G)
- For *fermionic product states*, 1) Some particles are bosonic, and others are fermionic, and all have trivial mutual statistics
 2) Particles are labeled by irrep. *R_i*. The full symm. group *G^f* contain fermion-number-parity *f̂* = (−)<sup>*N̂*f</sub> ∈ *G^f*.
 </sup>
- Topological types = irreducible representation R_i (ex. spin-s) The particle R_i has a Fermi statistics if $\hat{f} \neq 1$ in R_i (ex. spin-1) The particle R_i has a Bose statistics if $\hat{f} = 1$ in R_i (ex. spin- $\frac{1}{2}$)
- The fusion and bosonic/fermionic braiding of $R_i \rightarrow SFG = sRep(G^f)$ and Signature School Center School Center

• Bosonic topo. orders: trivial particle 1 is the only particle that has trivial mutual statistics with all other particles.

- Bosonic topo. orders: trivial particle 1 is the only particle that has trivial mutual statistics with all other particles.
- Fermionic topo. orders: $(1, f) = \operatorname{sRep}(Z_2^f)$ are the only particles that have trivial mutual statistics with all others
 - \rightarrow All abelian fermionic topogical orders
 - = bosonic topogical orders \boxtimes fermion product state

向下 イヨト イヨト

- Bosonic topo. orders: trivial particle 1 is the only particle that has trivial mutual statistics with all other particles.
- Fermionic topo. orders: $(1, f) = \operatorname{sRep}(Z_2^f)$ are the only particles that have trivial mutual statistics with all others
 - \rightarrow All abelian fermionic topogical orders
 - = bosonic topogical orders \boxtimes fermion product state
- Bosonic topo. orders with symm. *G*: **Rep**(*G*) are the only particles that has trivial mutual statistics with all particles.

(4月) (3日) (3日) 日

- Bosonic topo. orders: trivial particle 1 is the only particle that has trivial mutual statistics with all other particles.
- Fermionic topo. orders: $(1, f) = \operatorname{sRep}(Z_2^f)$ are the only particles that have trivial mutual statistics with all others
 - \rightarrow All abelian fermionic topogical orders
 - = bosonic topogical orders \boxtimes fermion product state
- Bosonic topo. orders with symm. *G*: **Rep**(*G*) are the only particles that has trivial mutual statistics with all particles.
- Fermionic topo. orders with symm.: sRep(*G^f*) are the only particles that have trivial mutual statistics with all particles.

$\mathsf{UMTC}_{/\mathcal{E}}$ and topological phases with symmetry/fermion

- To describe topological phases with symmetry/fermion, we need
- a unitary BFC \mathcal{C}
- that contains a SFC \mathcal{E} ,
- such that the particles (objects) in $\boldsymbol{\mathcal{E}}$ are transparent
- and there is no other transparent particles (objects).
 - \rightarrow Unitary non-degenerate braided fusion category over a SFC (UMTC $_{/\mathcal{E}}).$

Using the notion of centralizer: $C_{\mathcal{C}}^{\text{cen}} = \mathcal{E}$, $\mathcal{E}_{\mathcal{C}}^{\text{cen}} = \mathcal{C}$.

▲□→ ▲目→ ▲目→ 三日

$\mathsf{UMTC}_{/\mathcal{E}}$ and topological phases with symmetry/fermion

- To describe topological phases with symmetry/fermion, we need
- a unitary BFC \mathcal{C}
- that contains a SFC \mathcal{E} ,
- such that the particles (objects) in ${\mathcal E}$ are transparent
- and there is no other transparent particles (objects).
 - \rightarrow Unitary non-degenerate braided fusion category over a SFC (UMTC_{/\mathcal{E}}).

Using the notion of centralizer: $C_{\mathcal{C}}^{cen} = \mathcal{E}$, $\mathcal{E}_{\mathcal{C}}^{cen} = \mathcal{C}$.

Can $UMTC_{/\mathcal{E}}$'s classify topological phases with symmetry/fermion?

(本間) (本語) (本語) (語)

$\mathsf{UMTC}_{/\mathcal{E}}$ and topological phases with symmetry/fermion

- To describe topological phases with symmetry/fermion, we need
- a unitary BFC $\ensuremath{\mathcal{C}}$
- that contains a SFC \mathcal{E} ,
- such that the particles (objects) in ${\mathcal E}$ are transparent
- and there is no other transparent particles (objects).
 - \rightarrow Unitary non-degenerate braided fusion category over a SFC (UMTC $_{/\mathcal{E}}).$

Using the notion of centralizer: $C_{\mathcal{C}}^{cen} = \mathcal{E}$, $\mathcal{E}_{\mathcal{C}}^{cen} = \mathcal{C}$.

Can UMTC/E's classify topological phases with symmetry/fermion?

Answer: No.

We also require the symmetry to be gaugable: the $\text{UMTC}_{/\mathcal{E}}$ must have modular extension.

Why do we require modular extensions?

• The symmetry *G* in a physical system is always twistable (on-site) *ie* we can always put the physical system on any 2D manifold with any flat *G*-connection, still with consistent braiding and fusion.

Why do we require **modular extensions**?

• The symmetry *G* in a physical system is always twistable (on-site) *ie* we can always put the physical system on any 2D manifold with any flat *G*-connection, still with consistent braiding and fusion.
Why do we require **modular extensions**?

- The symmetry G in a physical system is always twistable (on-site) ie we can always put the physical system on any 2D manifold with any flat G-connection, still with consistent braiding and fusion.
- We can add extra particles that braid non-trivially with the particles in SFC E, and make the UMTC_{/E} C into a unitary non-degenerate braided fusion category (ie an UMTC) M. M is called the modular extension of C:

 $\mathcal{E} \hookrightarrow \mathcal{C} \hookrightarrow \mathcal{M}, \qquad D_{\mathcal{E}}^2 D_{\mathcal{C}}^2 = D_{\mathcal{M}}^2$ In \mathcal{M} , the set of particles that have trivial double-braiding with the particles in \mathcal{E} is given by \mathcal{C} . Using controlling $\mathcal{C}^{\text{cen}} = \mathcal{E}$. $\mathcal{E}^{\text{cen}} = \mathcal{E}$

particles in \mathcal{E} is given by \mathcal{C} . Using centralizer: $\mathcal{C}_{\mathcal{M}}^{cen} = \mathcal{E}$, $\mathcal{E}_{\mathcal{M}}^{cen} = \mathcal{C}$.

• Only UMTC_{/E}'s C that have modular extensions are realizable by physical 2D bulk systems (maybe with symmetry and/or fermion).

2+1D fermionic topo. orders (up to p + ip) via (N_k^{ij}, s_i, c)

Classified Lan-Kong-V	by U Ven arX	IMTC _{/E} 's with	$\mathcal{E} = \{1, f\}.$	
$N_c^F(\frac{ \Theta_2 }{\angle \Theta_2/2\pi})$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
$2_0^F({\zeta_2^1 \atop 0})$	2	1, 1	$0, \frac{1}{2}$	$\mathcal{F}_0 = sRep(Z_2^f)$ fermion product state
$4_0^F(_0^0)$	4	1, 1, 1, 1	$0,\tfrac{1}{2},\tfrac{1}{4},-\tfrac{1}{4}$	$\mathcal{F}_0 \boxtimes 2_1^B \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \qquad \mathcal{K} = \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$
$4_{1/5}^{F}(\frac{\zeta_{2}^{1}\zeta_{3}^{1}}{3/20})$	7.2360	$1, 1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{2}, \frac{1}{10}, -\frac{2}{5}$	$\mathcal{F}_0 \boxtimes 2^B_{-14/5} \begin{pmatrix} \zeta_3^1 \\ 3/20 \end{pmatrix}$
$4_{-1/5}^{F}(\frac{\zeta_{2}^{1}\zeta_{3}^{1}}{-3/20})$	7.2360	$1, 1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{2}, -\frac{1}{10}, \frac{2}{5}$	$\mathcal{F}_0 \boxtimes 2^B_{14/5} \begin{pmatrix} \zeta_3^1 \\ -3/20 \end{pmatrix}$
$4_{1/4}^{F}(\frac{\zeta_{6}^{3}}{1/2})$	13.656	$1,1,\zeta_6^2,\zeta_6^2=1+\sqrt{2}$	$0,\tfrac{1}{2},\tfrac{1}{4},-\tfrac{1}{4}$	$\mathcal{F}_{(A_1,6)}$
$6_0^F(\frac{\zeta_2^1}{1/4})$	6	1, 1, 1, 1, 1, 1, 1	$0, \tfrac{1}{2}, \tfrac{1}{6}, -\tfrac{1}{3}, \tfrac{1}{6}, -\tfrac{1}{3}$	$\mathcal{F}_0 \boxtimes 3^B_{-2}(\frac{1}{1/4}) K = (3), \Psi_{1/3}(z_i)$
$6_0^F(\frac{\zeta_2^1}{-1/4})$	6	1, 1, 1, 1, 1, 1, 1	$0, \tfrac{1}{2}, -\tfrac{1}{6}, \tfrac{1}{3}, -\tfrac{1}{6}, \tfrac{1}{3}$	$\mathcal{F}_0 \boxtimes 3_2^B(\begin{smallmatrix} 1 \\ -1/4 \end{smallmatrix}) \mathbf{K} = (-3), \Psi^*_{1/3}(z_i)$
$6_0^F(\frac{\zeta_6^3}{1/16})$	8	$1,1,1,1,\zeta_2^1,\zeta_2^1=\sqrt{2}$	$0,\tfrac{1}{2},0,\tfrac{1}{2},\tfrac{1}{16},-\tfrac{7}{16}$	$\mathcal{F}_0 \boxtimes 3^B_{1/2}(\zeta_{1/16}^{\zeta_6^1}), \mathcal{F}_{U(1)_2/\mathbb{Z}_2}$
$6_0^F(\frac{\zeta_6^3}{-1/16})$	8	$1,1,1,1,\zeta_2^1,\zeta_2^1$	$0, \tfrac{1}{2}, 0, \tfrac{1}{2}, - \tfrac{1}{16}, \tfrac{7}{16}$	$\mathcal{F}_0 \boxtimes 3^B_{-1/2} \begin{pmatrix} \zeta_6^1 \\ -1/16 \end{pmatrix}$
$6_0^F(\frac{1.0823}{3/16})$	8	$1,1,1,1,\zeta_2^1,\zeta_2^1$	$0, \frac{1}{2}, 0, \frac{1}{2}, \frac{3}{16}, -\frac{5}{16}$	$\mathcal{F}_0 \boxtimes 3^B_{3/2}({}^{0.7653}_{3/16})$
$6_0^F(\frac{1.0823}{-3/16})$	8	$1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$0, \frac{1}{2}, 0, \frac{1}{2}, -\frac{3}{16}, \frac{5}{16}$	$\mathcal{F}_0 \boxtimes 3^B_{-3/2}({0.7653 \atop -3/16})$
$6_{1/7}^{F}(\frac{\zeta_{2}^{1}\zeta_{5}^{2}}{-5/14})$	18.591	$1,1,\zeta_{5}^{1},\zeta_{5}^{1},\zeta_{5}^{2},\zeta_{5}^{2}$	$0, \tfrac{1}{2}, \tfrac{5}{14}, -\tfrac{1}{7}, -\tfrac{3}{14}, \tfrac{2}{7}$	$\mathcal{F}_0 \boxtimes 3^B_{8/7}(\begin{array}{c} \zeta_5^2\\ -5/14 \end{array})$
$6^{F}_{-1/7}(rac{\zeta_{2}^{1}\zeta_{5}^{2}}{5/14})$	18.591	$1,1,\zeta_{5}^{1},\zeta_{5}^{1},\zeta_{5}^{2},\zeta_{5}^{2}$	$0, \frac{1}{2}, -\frac{5}{14}, \frac{1}{7}, \frac{3}{14}, -\frac{2}{7}$	$\mathcal{F}_0 \boxtimes 3^B_{-8/7}(\frac{\zeta_5^2}{5/14})$
$6_0^F({2\zeta_{10}^1\atop -1/12})$	44.784	$1, 1, \zeta_{10}^2, \zeta_{10}^2, \zeta_{10}^4, \zeta_{10}^4$	$0,\tfrac{1}{2},\tfrac{1}{3},-\tfrac{1}{6},0,\tfrac{1}{2}$	$\mathcal{F}_{(A_1,-10)}$
$6_0^F (\frac{2\zeta_{10}^1}{1/12})$	44.784	$1, 1, \zeta_{10}^2, \zeta_{10}^2, \zeta_{10}^4, \zeta_{10}^4$	$0, \frac{1}{2}, -\frac{1}{3}, \frac{1}{6}, 0, \frac{1}{2}$	($\mathcal{F}_{(A_1^{\flat},10)}$) \rightarrow (\downarrow) \rightarrow (\downarrow) (\downarrow

Xiao-Gang Wen, Boulder summer school

2+1D bosonic topo. orders with Z_2 symmetry

Classified by **UMTC**_{$/\mathcal{E}$}'s with centralizer $\mathcal{E} = \text{Rep}(Z_2)$.

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment	
$2_0^{\zeta_2^1}$	2	1,1	0,0	$\mathcal{E} = Rep(Z_2)$	
$3_2^{\zeta_2^1}$	6	1,1,2	$0, 0, \frac{1}{3}$		
$3_{-2}^{\zeta_2^1}$	6	1, 1, 2	$0, 0, \frac{2}{3}$	$K = \begin{pmatrix} -2 & -1 \\ -1 & -2 \end{pmatrix}$	
$4_1^{\zeta_2^1}$	4	1, 1, 1, 1	$0,0,\tfrac{1}{4},\tfrac{1}{4}$	$\Psi^{neutral}_{\nu=1/2}\boxtimes Rep(Z_2)$	
$4_1^{\zeta_2^1}$	4	1, 1, 1, 1	$0,0,\tfrac{1}{4},\tfrac{1}{4}$	$\Psi^{charged}_{\nu=1/2}\boxtimes Rep(Z_2)$	
$4_{-1}^{\zeta_2^1}$	4	1, 1, 1, 1	$0,0,\tfrac{3}{4},\tfrac{3}{4}$	$ \Psi_{ u=-1/2}^{neutral} oxtimes Rep(Z_2) $	
$4_{-1}^{\zeta_2^1}$	4	1, 1, 1, 1	$0,0,\tfrac{3}{4},\tfrac{3}{4}$	$ \Psi^{charged}_{\nu=-1/2}\boxtimes Rep(Z_2) $	
$4_{14/5}^{\zeta_2^1}$	7.2360	$1, 1, \zeta_3^1, \zeta_3^1$	$0,0,rac{2}{5},rac{2}{5}$	$2^B_{14/5} \boxtimes \operatorname{Rep}(Z_2)$	
$4^{\zeta_2^1}_{-14/5}$	7.2360	$1, 1, \zeta_3^1, \zeta_3^1$	$0,0,\tfrac{3}{5},\tfrac{3}{5}$	$2^B_{-14/5} \boxtimes \operatorname{Rep}(Z_2)$	
$4_0^{\zeta_2^1}$	10	1, 1, 2, 2	$0,0,\tfrac{1}{5},\tfrac{4}{5}$		
$4_4^{\zeta_2^1}$	10	1,1,2,2	$0, 0, \frac{2}{5}, \frac{3}{5}$	$\left \begin{array}{cccc} & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{array} \right $	

Lan-Kong-Wen arXiv:1602.05946

Xiao-Gang Wen, Boulder summer school

2+1D bosonic topo. orders with Z_2 symmetry (conitnue)

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
$2_0^{\zeta_2^1}$	2	1,1	0,0	$\mathcal{E} = Rep(Z_2)$
$5_0^{\zeta_2^1}$	8	1, 1, 1, 1, 2	$0,0,\tfrac12,\tfrac12,0$	$SB:4^B_0$ $F:Z_2 \times Z_2$
$5_{1}^{\zeta_{2}^{1}}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}$	$SB:4^B_1 F: Z_2 imes Z_2$
$5_{2}^{\zeta_{2}^{1}}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}$	$SB:4^B_2$ $F:Z_2 \times Z_2$
$5_3^{\zeta_2^1}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}$	SB:4 ^B ₃ F:Z ₂ × Z ₂
$5_4^{\zeta_2^1}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$SB:4_4^B \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$
$5_{-3}^{\zeta_2^1}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{8}$	$SB:4^B_{-3}$ F: $Z_2 \times Z_2$
$5^{\zeta_2^1}_{-2}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}$	$SB:4^B_{-2}$ $F:Z_2 \times Z_2$
$5_{-1}^{\zeta_2^1}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{7}{8}$	$SB:4^B_{-1} F: Z_2 imes Z_2$
$5_{2_1}^{\zeta_2^1}$	14	1, 1, 2, 2, 2	$0, 0, \frac{1}{7}, \frac{2}{7}, \frac{4}{7}$	SB:72 ^B
$5^{\zeta_2^1}_{-2}$	14	1, 1, 2, 2, 2	$0, 0, \frac{3}{7}, \frac{5}{7}, \frac{6}{7}$	SB:7 ^{<i>B</i>} ₋₂
$5_{12/5}^{\zeta_2^1}$	26.180	$1, 1, \zeta_8^2, \zeta_8^2, \zeta_8^4$	$0, 0, \frac{1}{5}, \frac{1}{5}, \frac{3}{5}$	SB:4 ^B _{12/5}
$5_{-12/5}^{\zeta_2^1}$	26.180	$1, 1, \zeta_8^2, \zeta_8^2, \zeta_8^4$	$0, 0, \frac{4}{5}, \frac{4}{5}, \frac{2}{5}$	$SB:4^B_{-12/5}$

SB: $4_0^B \rightarrow$ topo. order after symmetry breaking is \mathbb{Z}_2 -gauge theory.

Xiao-Gang Wen, Boulder summer school

The Z_2 symmetry is anomalous, since the following BF categories have no modular extensions:

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
$2_0^{\zeta_2^1}$	2	1,1	0,0	$\mathcal{E} = Rep(Z_2)$
$5_0^{\zeta_2^1}$	8	1, 1, 1, 1, 2	$0, 0, rac{1}{2}, rac{1}{2}, 0$	SB:4 ^B ₀ F: Z_4 anom.
$5_{1}^{\zeta_{2}^{1}}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}$	$SB:4_1^B F:Z_4$ anom.
$5_{2}^{\zeta_{2}^{1}}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}$	SB:4 ^B ₂ F: Z_4 anom.
$5_{3}^{\zeta_{2}^{1}}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}$	SB:4 ^B ₃ F: Z_4 anom.
$5_{4_{1}}^{\zeta_{2}^{1}}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	SB:4 ^{<i>B</i>} ₄ F: Z_4 anom.
$5_{-3}^{\zeta_2^1}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{8}$	SB:4 ^B ₋₃ F: Z_4 anom.
$5_{-2}^{\zeta_2^1}$	8	1, 1, 1, 1, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}$	SB:4 ^B ₋₂ F: Z_4 anom.
$5_{-1}^{\zeta_2^1}$	8	1,1,1,1,2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{7}{8}$	SB:4 ^B ₋₁ F: Z_4 anom.

(4) (5) (4) (5) (4)

Z_2 -gauge theory with Z_2 symmetry

The first rows of last two tables are identical. They have identical d_i but different N_k^{ij}

They are Z_2 -gauge theory 1, e, m, f, with Z_2 symmetry: $e \leftrightarrow m$

Fus	usion rules: $Z_2 \times Z_2$							Z_4				
	10	1_1	f_0	f_1	$e \oplus m$			10	1_1	$f_{1/2}$	$f_{3/2}$	$e\oplus m$
S	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0		Si	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0
d	; 1	1	ī	ī	2		di	1	1	ī	ī	2
5 ₀ ^ζ	¹ / ₂ 1	2	3	4	5		$5_0^{\zeta_2^1}$	1	2	3	4	5
1	1	2	3	4	5		1	1	2	3	4	5
2	2	1	4	3	5		2	2	1	4	3	5
3	3	4	1	2	5		3	3	4	2	1	5
4	4	3	2	1	5		4	4	3	1	2	5
5	5	5	5	5	$1\oplus2\oplus3\oplus4$		5	5	5	5	5	$1\oplus2\oplus3\oplus4$
		An	om	alv	-free			ŀ	٩no	malo	ous	

- F: $Z_2 \times Z_2$ means that the four $d_i = 1$ particles have a fusion described by $Z_2 \times Z_2$.
- F: Z_4 means that the four $d_i = 1$ particles have a fusion described by Z_4 :

Xiao-Gang Wen, Boulder summer school

Fermionic topo. orders with mod-4 fermion number conservation: symmetry $G^f = Z_4^f$

Classified by **UMTC**_{$/\mathcal{E}$}'s with centralizer $\mathcal{E} = \mathbf{sRep}(Z_4^f)$:

N _c ^Θ	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
4 ⁰ ₀	4	1, 1, 1, 1	$0, 0, \frac{1}{2}, \frac{1}{2}$	$\mathcal{E} = \operatorname{sRep}(Z_4^f)$
6 <mark>0</mark>	12	1, 1, 1, 1, 2, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{6}, \frac{2}{3}$	$\mathcal{K} = -\begin{pmatrix} 1 & 2\\ 2 & 1 \end{pmatrix}$
6 <mark>0</mark>	12	1, 1, 1, 1, 2, 2	$0,0,\tfrac{1}{2},\tfrac{1}{2},\tfrac{1}{3},\tfrac{5}{6}$	$K = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
80	8	1, 1, 1, 1, 1, 1, 1, 1, 1	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$2^{B}_{-1} \boxtimes \operatorname{sRep}(Z_{4}^{t})$
80	8	1, 1, 1, 1, 1, 1, 1, 1, 1	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$	$2_1^B \boxtimes \operatorname{sRep}(Z_4^t)$
8 ⁰ -14/5	14.472	$1, 1, 1, 1, 1, \zeta_3^1, \zeta_3^1, \zeta_3^1, \zeta_3^1, \zeta_3^1$	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{10}, \frac{1}{10}, \frac{3}{5}, \frac{3}{5}$	$2^{B}_{-14/5} \boxtimes \operatorname{sRep}(Z_{4}^{\dagger})$
8 ⁰ _{14/5}	14.472	$1, 1, 1, 1, 1, \zeta_3^1, \zeta_3^1, \zeta_3^1, \zeta_3^1$	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{2}{5}, \frac{2}{5}, \frac{9}{10}, \frac{9}{10}$	$2^B_{14/5} \boxtimes \operatorname{sRep}(Z^f_4)$
8 <mark>0</mark>	20	1, 1, 1, 1, 2, 2, 2, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{10}, \frac{2}{5}, \frac{3}{5}, \frac{9}{10}$	$SB:10_0^F(\begin{array}{c} \zeta_2^1\\ 0\\ 0 \end{array})$
80	20	1, 1, 1, 1, 2, 2, 2, 2	$0,0,\tfrac{1}{2},\tfrac{1}{2},\tfrac{1}{5},\tfrac{3}{10},\tfrac{7}{10},\tfrac{4}{5}$	$SB:10_0^F(\frac{\zeta_2^1}{1/2})$
$10^{0}_{0}(^{4}_{0})$	16	1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}$	$SB:8_0^F(\sqrt[]{8})$
$10^{0}_{0}(^{4}_{0})$	16	1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}$	$SB:8_0^F(\sqrt[]{8})$
$10^{0}_{0}(\frac{\sqrt{8}}{1/8})$	16	1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{5}{8}$	SB:8 ^F ₀ (² _{1/8})
$10^{0}_{0}(\frac{\sqrt{8}}{1/8})$	16	1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{5}{8}$	SB:8 ^F ₀ (² _{1/8})
$10^{0}_{0}(^{0}_{0})$	16	1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	$SB:8_0^F({0 \atop 0})$
$10^{0}_{0}(^{0}_{0})$	16	1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}$	$SB:8_0^F({0 \atop 0})$
$10^{0}_{0}(\frac{\sqrt{8}}{-1/8})$	16	1, 1, 1, 1, 1, 1, 1, 1, 2, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{7}{8}$	SB:8 ^F ₀ (² _{-1/8})
$10^{0}_{0}(\frac{\sqrt{8}}{-1/8})$	16	1, 1, 1, 1, 1, 1, 1, 1, 2, 2	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{7}{8}$	SB 8 ^F ₀ (² ₋₁₇₈)

Xiao-Gang Wen, Boulder summer school

Distinct topo. phases with identical set of bulk excitations

In the presence of symmetry/fermion, there are distinct topological phases, such as SPT phases with the same symmetry, that have identical bulk excitations. But they have different edge structures.

 A UMTC_{/E} C only describes the bulk excitations. But it can have several different modular extensions. → Distinct topological phases with identical set of bulk excitations, but different edge structures.

The main conjecture: Lan-Kong-Wen arXiv:1602.05946

- The triple $(\text{Rep}(G) \hookrightarrow C \hookrightarrow M)$ classifies 2+1D bosonic topological phase with symmetry G.
- The triple $(\mathsf{sRep}(G^f) \hookrightarrow \mathcal{C} \hookrightarrow \mathcal{M})$ classifies 2+1D fermionic topological phase with symmetry G^f .

Xiao-Gang Wen, Boulder summer school

- Stacking two topological phases *a*, *b* with symmetry *G* give rise to a third topological phase $c = a \boxtimes_{\text{stack}} b$ with symmetry *G* c-TO = a-TO = b-TO
- For a fixed SFC \mathcal{E} , there exists a "tensor product" $\boxtimes_{\mathcal{E}}$, under which the triple ($\mathcal{E} \hookrightarrow \mathcal{C} \hookrightarrow \mathcal{M}$) form a commutative monoid ($\mathcal{E} \hookrightarrow \mathcal{C}_1 \hookrightarrow \mathcal{M}_1$) $\boxtimes_{\mathcal{E}} (\mathcal{E} \hookrightarrow \mathcal{C}_2 \hookrightarrow \mathcal{M}_2) \equiv (\mathcal{E} \hookrightarrow \mathcal{C}_3 \hookrightarrow \mathcal{M}_3)$
- $\boxtimes_{\mathcal{E}}$ is different from the Deligne tensor product \boxtimes : $(\mathcal{E} \hookrightarrow \mathcal{C}_1 \hookrightarrow \mathcal{M}_1) \boxtimes (\mathcal{E} \hookrightarrow \mathcal{C}_2 \hookrightarrow \mathcal{M}_2)$ $\equiv (\mathcal{E} \boxtimes \mathcal{E} \hookrightarrow \mathcal{C}_1 \boxtimes \mathcal{C}_2 \hookrightarrow \mathcal{M}_1 \boxtimes \mathcal{M}_2)$

which has a symmetry $G \times G$. Need to be reduced to G (or \mathcal{E}).

- Lan-Kong-Wen arXiv:1602.05936 has constructed $\boxtimes_{\mathcal{E}}$ using condensable algebra $\mathcal{L}_{\mathcal{E}} = \bigoplus_{a \in \mathcal{E}} a \boxtimes \overline{a}$:

 $\begin{array}{ll} \mathcal{E} = (\mathcal{E} \boxtimes \mathcal{E})_{\mathcal{L}_{\mathcal{E}}}^{0}, \quad \mathcal{C}_{3} = (\mathcal{C}_{1} \boxtimes \mathcal{C}_{2})_{\mathcal{L}_{\mathcal{E}}}^{0}, \quad \mathcal{M}_{3} = (\mathcal{M}_{1} \boxtimes \mathcal{M}_{2})_{\mathcal{L}_{\mathcal{E}}}^{0} \\ \text{eg, } \mathcal{M}_{3} \text{ is the category of local } \mathcal{L}_{\mathcal{E}} \text{-modules in } \mathcal{M}_{1} \boxtimes \mathcal{M}_{2} \end{array}$

- { $(\mathcal{E} \hookrightarrow \mathcal{C} \hookrightarrow \mathcal{M})$ } describes topological phases with symmetry \mathcal{E} . Its subset { $(\mathcal{E} \hookrightarrow \mathcal{E} \hookrightarrow \mathcal{M})$ } describes symmetry protected trivial (SPT) phases, which forms an abelian group under the stacking.
- For a fixed SFC \mathcal{E} , the modular extensions of \mathcal{E} form an abelian group. $\boxtimes_{\mathcal{E}}$ is the group product, the Drinfeld center $Z(\mathcal{E})$ is the identity, and the "complex conjugate" is the inverse.
- A special case: $\{(\mathsf{Rep}(G) \hookrightarrow \mathcal{M})\} = \mathcal{H}^3(G, \mathbb{R}/\mathbb{Z})$

- 本部 とくき とくき とうき

- { $(\mathcal{E} \hookrightarrow \mathcal{C} \hookrightarrow \mathcal{M})$ } describes topological phases with symmetry \mathcal{E} . Its subset { $(\mathcal{E} \hookrightarrow \mathcal{E} \hookrightarrow \mathcal{M})$ } describes symmetry protected trivial (SPT) phases, which forms an abelian group under the stacking.
- For a fixed SFC \mathcal{E} , the modular extensions of \mathcal{E} form an abelian group. $\boxtimes_{\mathcal{E}}$ is the group product, the Drinfeld center $Z(\mathcal{E})$ is the identity, and the "complex conjugate" is the inverse.
- A special case: $\{(\mathsf{Rep}(G) \hookrightarrow \mathcal{M})\} = \mathcal{H}^3(G, \mathbb{R}/\mathbb{Z})$
- The modular extensions of Rep(G), $(\text{Rep}(G) \hookrightarrow \mathcal{M})$, classifies 2+1D bosonic SPT phases with symmetry G.
- The c = 0 modular extensions of $sRep(G^f)$, $(sRep(G^f) \hookrightarrow \mathcal{M})$, classifies 2+1D fermionic SPT phases with symmetry G^f .

- { $(\mathcal{E} \hookrightarrow \mathcal{C} \hookrightarrow \mathcal{M})$ } describes topological phases with symmetry \mathcal{E} . Its subset { $(\mathcal{E} \hookrightarrow \mathcal{E} \hookrightarrow \mathcal{M})$ } describes symmetry protected trivial (SPT) phases, which forms an abelian group under the stacking.
- For a fixed SFC \mathcal{E} , the modular extensions of \mathcal{E} form an abelian group. $\boxtimes_{\mathcal{E}}$ is the group product, the Drinfeld center $Z(\mathcal{E})$ is the identity, and the "complex conjugate" is the inverse.
- A special case: $\{(\mathsf{Rep}(G) \hookrightarrow \mathcal{M})\} = \mathcal{H}^3(G, \mathbb{R}/\mathbb{Z})$
- The modular extensions of Rep(G), $(\text{Rep}(G) \hookrightarrow \mathcal{M})$, classifies 2+1D bosonic SPT phases with symmetry G.
- The c = 0 modular extensions of $sRep(G^f)$, $(sRep(G^f) \hookrightarrow \mathcal{M})$, classifies 2+1D fermionic SPT phases with symmetry G^f .
- There can be several topological phases that have identical bulk excitations. They are related by stacking SPT phases.

(日) (同) (E) (E) (E)

- { $(\mathcal{E} \hookrightarrow \mathcal{C} \hookrightarrow \mathcal{M})$ } describes topological phases with symmetry \mathcal{E} . Its subset { $(\mathcal{E} \hookrightarrow \mathcal{E} \hookrightarrow \mathcal{M})$ } describes symmetry protected trivial (SPT) phases, which forms an abelian group under the stacking.
- For a fixed SFC \mathcal{E} , the modular extensions of \mathcal{E} form an abelian group. $\boxtimes_{\mathcal{E}}$ is the group product, the Drinfeld center $Z(\mathcal{E})$ is the identity, and the "complex conjugate" is the inverse.
- A special case: $\{(\mathsf{Rep}(G) \hookrightarrow \mathcal{M})\} = \mathcal{H}^3(G, \mathbb{R}/\mathbb{Z})$
- The modular extensions of Rep(G), $(\text{Rep}(G) \hookrightarrow \mathcal{M})$, classifies 2+1D bosonic SPT phases with symmetry G.
- The c = 0 modular extensions of $sRep(G^f)$, $(sRep(G^f) \hookrightarrow \mathcal{M})$, classifies 2+1D fermionic SPT phases with symmetry G^f .
- There can be several topological phases that have identical bulk excitations. They are related by stacking SPT phases.
- All the modular extensions of a UMTC_{$/\mathcal{E}$} \mathcal{C} are generated by $\boxtimes_{\mathcal{E}}$ ing with the modular extensions of \mathcal{E} :

 $(\mathcal{E} \hookrightarrow \mathcal{C} \hookrightarrow \mathcal{M}) = (\mathcal{E} \hookrightarrow \mathcal{C} \hookrightarrow \mathcal{M}_0) \boxtimes_{\mathcal{E}} (\mathcal{E} \hookrightarrow \mathcal{E}_{P} \hookrightarrow \mathcal{M}') \to \mathbb{R}$

Bosonic 2+1D SPT phases from modular extensions

• Z₂-SPT phases:

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
$2_0^{\zeta_2^1}$	2	1,1	0,0	$\operatorname{Rep}(Z_2)$
4 ^B ₀	4	1, 1, 1, 1	$0, 0, 0, \frac{1}{2}$	Z ₂ gauge
4 ^B ₀	4	1, 1, 1, 1	$0, 0, \frac{1}{4}, \frac{3}{4}$	double semion

• S₃-SPT phases:

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
$3_0^{\sqrt{6}}$	6	1, 1, 2	0,0,0	$\operatorname{Rep}(S_3)$
8 <mark>8</mark>	36	1, 1, 2, 2, 2, 2, 3, 3	$0, 0, 0, 0, \frac{1}{3}, \frac{2}{3}, 0, \frac{1}{2}$	S_3 gauge
8 ^B 0	36	1, 1, 2, 2, 2, 2, 3, 3	$0, 0, 0, 0, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}$	
8 ^B 0	36	1, 1, 2, 2, 2, 2, 3, 3	$0, 0, 0, \frac{1}{6}, \frac{4}{6}, \frac{7}{6}, 0, \frac{1}{2}$	$(B_4, 2)$
$8_0^{\tilde{B}}$	36	1, 1, 2, 2, 2, 2, 3, 3	$0, 0, 0, \frac{1}{6}, \frac{4}{6}, \frac{7}{6}, \frac{1}{4}, \frac{5}{4}$	
$8_0^{\check{B}}$	36	1, 1, 2, 2, 2, 2, 3, 3	$0, 0, 0, \frac{3}{2}, \frac{5}{3}, \frac{8}{3}, 0, \frac{1}{2}$	$(B_4, -2)$
8 ⁸ 0	36	1, 1, 2, 2, 2, 2, 3, 3	$0, 0, 0, \frac{2}{9}, \frac{5}{9}, \frac{8}{9}, \frac{1}{4}, \frac{3}{4}$	

Fermionic 2+1D SPT phases from modular extensions

• Z_2^f -SPT phases	(16 modular extension	s, 1 with $c = 0$)
-----------------------	-----------------------	---------------------

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
2 <mark>0</mark>	2	1,1	$0, \frac{1}{2}$	$sRep(Z_2^f)$
4 ^{<i>B</i>} ₀	4	1, 1, 1, 1	$0, \frac{1}{2}, 0, 0$	Z_2 gauge
4_1^B	4	1, 1, 1, 1	$0, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}$	F: <i>Z</i> 4
4 ^{<i>B</i>} ₂	4	1, 1, 1, 1	$0, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}$	$F:Z_2 \times Z_2$
4 ⁸ 3	4	1, 1, 1, 1	$0, \frac{1}{2}, \frac{3}{8}, \frac{3}{8}$	F: <i>Z</i> 4
4 ^B	4	1, 1, 1, 1	$0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$F:Z_2 \times Z_2$
4^{B}_{-3}	4	1, 1, 1, 1	$0, \frac{1}{2}, \frac{5}{8}, \frac{5}{8}$	F: <i>Z</i> 4
4^{B}_{-2}	4	1, 1, 1, 1	$0, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}$	$F:Z_2 \times Z_2$
4^{B}_{-1}	4	1, 1, 1, 1	$0, \frac{1}{2}, \frac{7}{8}, \frac{7}{8}$	F: <i>Z</i> 4
$3^{B}_{1/2}$	4	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{1}{16}$	p+ipSC
$3^{B}_{3/2}$	4	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{3}{16}$	
$3^{B'}_{5/2}$	4	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{5}{16}$	
3 [₿] 7/2	4	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{7}{16}$	
3 ^B _7/2	4	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{9}{16}$	
$3^{B'}_{-5/2}$	4	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{11}{16}$	
$3^{B'}_{-3/2}$	4	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{13}{16}$	
$3^{B'}_{-1/2}$	4	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{15}{16}$	

Xiao-Gang Wen, Boulder summer school

Fermionic 2+1D SPT phases from modular extensions

• Z_4^f -SPT phases (only 8 modular extensions, 1 with c = 0):

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
4 ⁰ ₀	4	1, 1, 1, 1	$0, 0, \frac{1}{2}, \frac{1}{2}$	$sRep(Z_4^f)$
16 ^B ₀	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0, 0, 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}$	
16 ^B	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{32}, \frac{1}{32}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{9}{32}, \frac{9}{32}, \frac{17}{32}, \frac{17}{32}, \frac{17}{32}, \frac{25}{32}, \frac{25}{32}$	
16 ^B ₂	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{1}{16}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{5}{16}, \frac{5}{16}, \frac{9}{16}, \frac{9}{16}, \frac{13}{16}, \frac{13}{16}$	$8_1^B \boxtimes 2_1^B$
16 ^B 3	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{32}, \frac{3}{32}, \frac{1}{32}, \frac{1}{32}, \frac{1}{32}, \frac{1}{32}, \frac{3}{32}, \frac{3}{32}, \frac{3}{32}, \frac{3}{32}, \frac{3}{32}, \frac{3}{32}, \frac{1}{32}, \frac{1}{32}, \frac{1}{32}, \frac{27}{32}, \frac{27}{32}$	
16 ^B / ₄	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{5}{8}, \frac{5}{8}, \frac{7}{8}, \frac{7}{8}$	$4^B_3 \boxtimes 4^B_1$
$16^{B'}_{-3}$	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{32}, \frac{5}{32}, \frac{13}{32}, \frac{13}{32}, \frac{13}{32}, \frac{5}{32}, \frac{5}{8}, \frac{5}{8}, \frac{5}{8}, \frac{5}{8}, \frac{21}{32}, \frac{21}{32}, \frac{29}{32}, \frac{29}{32}$	
16^{B}_{-2}	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{3}{16}, \frac{7}{16}, \frac{7}{16}, \frac{7}{16}, \frac{11}{16}, \frac{11}{16}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{15}{16}, \frac{15}{16}$	$8^B_{-1} \boxtimes 2^B_{-1}$
16^{B}_{-1}	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{7}{32}, \frac{7}{32}, \frac{15}{32}, \frac{15}{32}, \frac{15}{32}, \frac{23}{32}, \frac{23}{32}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}, \frac{31}{32}, \frac{31}{32}$	

• Z_8^f -SPT phases: Z_2 class

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots
8 <mark>0</mark>	8	1 × 8	$0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}$
64 ^B ₀	64	1 imes 64	$0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
64 ^{<i>B</i>} ₀	64	1 imes 64	$ \begin{array}{c} 1\\ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{2}, \frac$

Xiao-Gang Wen, Boulder summer school

Fermionic 2+1D SPT phases from modular extensions

• $Z_2^f \times Z_2$ -SPT phases (128 modular extensions, 8 with c = 0):

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
4 ⁰ ₀	4	1, 1, 1, 1	$0, 0, \frac{1}{2}, \frac{1}{2}$	$sRep(Z_2 \times Z_2^f)$
9 ^{<i>B</i>} ₀	16	$1 \times 4, \zeta_2^1, \zeta_2^1, \zeta_2^1, \zeta_2^1, \zeta_2^1, 2$	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{7}{16}, \frac{9}{16}, \frac{15}{16}, 0$	$3^B_{-1/2} \boxtimes 3^B_{1/2}$
9 ^B 0	16	$1 \times 4, \zeta_2^1, \zeta_2^1, \zeta_2^1, \zeta_2^1, \zeta_2^1, 2$	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{7}{16}, \frac{9}{16}, \frac{15}{16}, 0$	$3^{B'}_{-1/2} \boxtimes 3^{B'}_{1/2}$
9 ^{<i>B</i>} ₀	16	$1 \times 4, \zeta_2^1, \zeta_2^1, \zeta_2^1, \zeta_2^1, \zeta_2^1, 2$	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{5}{16}, \frac{11}{16}, \frac{13}{16}, 0$	$3^{B'}_{-3/2} \boxtimes 3^{B'}_{3/2}$
9 ^B 0	16	$1 \times 4, \zeta_2^1, \zeta_2^1, \zeta_2^1, \zeta_2^1, \zeta_2^1, 2$	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{5}{16}, \frac{11}{16}, \frac{13}{16}, 0$	$3^{B_{-3/2}} \boxtimes 3^{B_{-3/2}}$
16_0^B	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$4_0^B \boxtimes 4_0^B$
16_0^B	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{5}{8}, \frac{5}{8}, \frac{7}{8}, \frac{7}{8}$	$4^B_{-1} \boxtimes 4^B_1$
16_0^B	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{5}{8}, \frac{5}{8}, \frac{7}{8}, \frac{7}{8}$	$4^B_{-1} \boxtimes 4^B_1$
16^{B}_{0}	16	1 imes 16	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac$	$8^B_{-1} \boxtimes 2^B_1$

伺い イヨト イヨト

Bosonic 2+1D Z_2 -SET phases from modular extensions

• Z_2 -SET phases (Z_2 -gauge with Z_2 symmetry $e \leftrightarrow m$)

4 modular extensions, 2 distinct phases:

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
$5_0^{\zeta_2^1}$	8	$1 \times 4, 2$	$0, 0, \frac{1}{2}, \frac{1}{2}, 0$	
9 ^B ₀	16	$1 \times 4, 2, \zeta_2^1 \times 4$	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, \frac{15}{16}, \frac{1}{16}, \frac{7}{16}, \frac{9}{16}$	$3^B_{-1/2} \boxtimes 3^B_{1/2}$
9 ⁸	16	$1 \times 4, 2, \zeta_2^1 \times 4$	$0, 0, \tfrac{1}{2}, \tfrac{1}{2}, 0, \tfrac{3}{16}, \tfrac{13}{16}, \tfrac{11}{16}, \tfrac{5}{16}$	$3^{B'}_{3/2} \boxtimes 3^{B'}_{-3/2}$
9 ^B ₀	16	$1 imes 4, 2, \zeta_2^1 imes 4$	$0, 0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{16}, \frac{15}{16}, \frac{9}{16}, \frac{7}{16}$	$3^B_{1/2} \boxtimes 3^B_{-1/2}$
9 ^{<i>B</i>} ₀	16	$1\times 4, 2, \zeta_2^1\times 4$	$0, 0, \tfrac{1}{2}, \tfrac{1}{2}, 0, \tfrac{13}{16}, \tfrac{3}{16}, \tfrac{5}{16}, \tfrac{11}{16}$	$3^{\vec{B}}_{-3/2} \boxtimes 3^{\vec{B}}_{3/2}$

- Z₂-SET phases (Z₂-gauge with Z₂ symmetry $e \leftrightarrow m$, plus fermion condensation to $\nu = 1$ IQH state)
 - 4 modular extensions, 3 distinct phases:

$N_c^{ \Theta }$	D^2	d_1, d_2, \cdots	s_1, s_2, \cdots	comment
$5_1^{\zeta_2^1}$	8	$1 \times 4, 2$	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}$	
9^{B}_{1}	16	$1 \times 4, 2, \zeta_2^1 \times 4$	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}, \frac{9}{16}, \frac{9}{16}$	$3^B_{1/2} \boxtimes 3^B_{1/2}$
9^B_1	16	$1\times 4, 2, \zeta_2^1\times 4$	$0, 0, \tfrac{1}{2}, \tfrac{1}{2}, \tfrac{1}{8}, \tfrac{13}{16}, \tfrac{13}{16}, \tfrac{5}{16}, \tfrac{5}{16}$	$3^{B}_{-3/2} \boxtimes 3^{B}_{5/2}$
9^{B}_{1}	16	$1 imes 4, 2, \zeta_2^1 imes 4$	$0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{15}{16}, \frac{3}{16}, \frac{7}{16}, \frac{11}{16}$	$3^B_{-1/2} \boxtimes 3^B_{3/2}$
9^B_1	16	$1 \times 4, 2, \zeta_2^1 \times 4$	$0, 0, \tfrac{1}{2}, \tfrac{1}{2}, \tfrac{1}{8}, \tfrac{3}{16}, \tfrac{15}{16}, \tfrac{11}{16}, \tfrac{7}{16}$	$3^B_{3/2} \boxtimes 3^B_{-1/2}$

Xiao-Gang Wen, Boulder summer school

Zoo of quantum phases of matter

230 crystals from group theory
<

• Infinity many topological orders in 2+1D from category theory

Xiao-Gang Wen, Boulder summer school