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Landau symmetry breaking theory does not
describe all quantum phases.

Why? What do the phases beyond Landau
symmetry breaking theory look like?
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Local quantum systems and gapped quantum systems

e A local quantum system is described by (Vy, Hy)
Vy: a Hilbert space with a tensor structure Vy = ®,’-V:1V,-
Hp: a local Hamiltonian acting on Vy:

Hy =3 05

- A ground state is not a single state in Vy, but a subspace
wgrnd space - VN-
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Local quantum systems and gapped quantum systems

e A local quantum system is described by (Vy, Hy)
Vy: a Hilbert space with a tensor structure Vy = ®,’-V:1V,-
Hp: a local Hamiltonian acting on Vy:

Hy =3 05

ground-state A—>finite gap
subspace e—>0

.

- A ground state is not a single state in Vy, but a subspace
wgrnd space C VN-

e A gapped quantum system (a concept for N — oo limit):
{Wnys Hy )i (Vg Haw )i (Vs Hiv )i - -+ + with gapped spectrum.

- A gapped quantum system is not a single Hamiltonian, but a
sequence of Hamiltonian with larger and larger sizes.
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A gapped (ie short-range correlated) quantum phase

e A gapped state is a sequence of ground subspaces: Wy, , Wy, , - -

e A gapped quantum phase is an equivalent class of local unitary

(LU) transformation of gapped states
(1)) = P(e T ) o HE)) jw(0))

— FEEEE )

where H(g) = >, O; is local.
Hastings-Wen cond-mat/0503554; Bravyi-Hastings-Michalakis arXiv:1001.0344
Chen-Gu-Wen arXiv:1004.3835

\UNU\UNQ?ng;WNu“' WNI WZ W3 W4

Vi Vi Vi Vi W

Wy, Wy, Wy, Y,

e OK definition with translation symmetry, since there is natural way
N; — Ni;1. Not OK without translation symmetry.
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A gapped (short-range correlated) quantum liquid phase

e A gapped quantum liquid phase:

\UNlawsz\UNwau"' WNI (V (V (V
Wi Wy Wi Wl
Nlerl = 25/\/;(, 3S ~ 3 WNI WNZ l|IN3 WN4
oWy, , 2 Uy ® W%’LPNI. Generalized local unitary (gLU) trans.

where Ny Ne Ni+1
VY=ol 1) R

Co| 4 sess)

SEERIRT

Zeng-Wen arXiv:1406.5090
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A gapped (short-range correlated) quantum liquid phase

e A gapped quantum liquid phase:

\UNlawsz\UNwau"' WNI (V (V (V
Wi Wy Wi Wl
Nlerl = ZSNk, 3S ~ 3 WNI WNZ l|IN3 WN4
oWy, , 2 Uy ® W%’LPNI. Generalized local unitary (gLU) trans.

where Ne Ne Ni+1
VY=ol 1) R

Co| 4 sess)

SEERIRT

Zeng-Wen arXiv:1406.5090

e gl U transformations allow us to take the thermal dynamical limit
(Nk — oo limit) without translation symmetry.
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Long range entanglement — topological order

For gapped systems with no symmetry:
e According to Landau theory, no symm. to break
— all systems belong to one trivial phase
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Long range entanglement — topological order

For gapped systems with no symmetry:
e According to Landau theory, no symm. to break
— all systems belong to one trivial phase

e Thinking about entanglement: there are  Chen-Gu-Wen arXiv:1004.3835
- long range entangled (LRE) states

- short range entangled (SRE) states
ILRE) # %%%%mroduct state) = |SRE)

local unitary
transformation

LRE SRE
state  product
state
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Long range entanglement — topological order

For gapped systems with no symmetry:
e According to Landau theory, no symm. to break
— all systems belong to one trivial phase

e Thinking about entanglement: there are  Chen-Gu-Wen arXiv:1004.3835
- long range entangled (LRE) states — many phases

- short range entangled (SRE) states — one phase

|
“_RE> # %%:%’product State> — ‘SRE> g2 topological order
LRE 1 - LRE2
local unitary local unitary local unitary )
transformation transformation transformation \ _ phase
LRE SRE RE SRE LRE1 LRE?2 SRE transition
state  product product product
state state state
e All SRE states belong to the same trivial phase g,

e LRE states can belong to many different phases: different
patterns of long-range entanglements defined by LU trans.
= different topological orders wen PRB 40 7387 (89)
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Examples of gapped quantum non-liquid states

e Stacking 2+1D FQH states — gapped quantum state,

but not liquids.
\
- Layered v = 1/m FQH state: —— §
— ——=
Ground state degeneracy can be —— —
GSD — mLZ, m, m2 periodic 1-twisted 2-twisted

e Haah's cubic code on 3D cubic lattice:

1Z— 71 jo'e X1
zZI v ZZ/ XI/ II/
— E V4 X ] i
cubes / e
I1Z zI IX XI
G? e

Jeongwan Haah, Phys. Rev. A 83, 042330 (2011) arXiv:1101.1962
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More exotic long-range entanglement

e Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14

— gauge theory Ne Ne Nevs
— Fermi statistics IRRILT

— quantum field theory '52 ;*i*ﬁ '5U>

— MERA rep. Vidal 06
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More exotic long-range entanglement

e Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14

— gauge theory M Ne Ness
— Fermi statistics R
— quantum field theory '52 ;*i*ﬁ '5U>
— MERA rep. Vidal 06
e s-source entanglement structure Swingle-McGreevy 14
- Quantum liquid has s = 1 Ne 2N, N1
- 3D layered FQH: s = 2 IR
- d+1D Fermi liquid:s = % 'l:} *44?:: 5/>
- no MERA rep.
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More exotic long-range entanglement

e Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14

— gauge theory M Ne Ness
— Fermi statistics R
— quantum field theory '52 ;*i*ﬁ '5U>
— MERA rep. Vidal 06
e s-source entanglement structure Swingle-McGreevy 14
- Quantum liquid has s = 1 Ne 2N, N1
- 3D layered FQH: s = 2 IR
- d+1D Fermi liquid:s = % 'l:} *44?:: 5/>
- no MERA rep.

e Haah's cubic code

- no MERA rep. i 2 et %
- No quantum field > = |
theory description A 2 ’

Many-body entanglement goes beyond quantum field theory.
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Bosonic/fermionic gapped quantum liquid phases

Both local bosonic and fermionic systems have the following local
property: Viot = ®;V; Gu-Wang-Wen arXiv:1010.1517

o, U= A e

e Bosonic liquid phases are defined by glLU trans. U = [ Uj:
(1) [Uijk, Urjrr] = 0
(2) Ujjk acts within V; @ V; @ V. eg. Uy = ei(bibjbj+h.c)

e Fermionic I|qU|d phases are defined by gLU trans. U’ =] Uuk
(1) [Uuk, ,k/] =0, but U,-'J(-k may not act within V; ® V; ® V.
e.g. Uuk ei(tﬁcfcf+h'°'), where ¢; = o} [[;_; 0F

Gapped quantum liquids for bosons and fermions have very

different mathematical structures
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Examples of topological orders (before 2000)

e V(z;,25,--+) =1 — equal amplitude superposition of all particle
configurations — A product state = superfluid state

Z ’> ®z(|0); + 1), +--+)

all conf.
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Examples of topological orders (before 2000)

e V(z;,25,--+) =1 — equal amplitude superposition of all part|c|e
conflguratlons — A product state = superfluid state

Z ’> ®z(|0); + 1), +--+)

all conf.
e Examples: 1) scamble the phases Laughlin 83

_ 2 o
\UII/:E?I{I/2(21?Z2 .. ) — |:H(ZI' — Zj)of%2|zf|2 — [Xl(zi)]2,
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Examples of topological orders (before 2000)

e V(z;,25,--+) =1 — equal amplitude superposition of all particle
configurations — A product state = superfluid state Y ‘”‘

Z ’> ®z(|0); + 1), +--+)

all conf.
e Examples: 1) scamble the phases Laughlin 83 |G
2
=1/2 12
Vi ez ) = [ - z)e i 7] = pa@)P
e Il) Put v = 1 state of spin-up(down) electrons y1(z T)Xl( i) on
lattice, with one electron per site — Chiral spin liquid
Kalmeyer-Laughlin PRL 59 2095 (87), Wen-Wilczek-Zee PRB 39 11413 (89)
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Examples of topological orders (before 2000)

e V(z;,25,--+) =1 — equal amplitude superposition of all particle
configurations — A product state = superfluid state Y ‘”‘

Z ’> ®z(|0); + 1), +--+)

all conf.
e Examples: 1) scamble the phases Laughlin 83 |G
2
=1/2 12
Vi ez ) = [ - z)e i 7] = pa@)P
e Il) Put v = 1 state of spin-up(down) electrons y1(z T)Xl( i) on
lattice, with one electron per site — Chiral spin liquid
Kalmeyer-Laughlin PRL 59 2095 (87), Wen-Wilczek-Zee PRB 39 11413 (89)

e 111) The square of v = 2 IHQ wavefunction [y2(z;)]> — bosonic
v=1 SU(2)£ non-abelian state. y1[x2]? fermionnic v = % state
Wen PRL 66 802 (91). CFT construction: Moore-Read NPB 360 362 (91)
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Examples of topological orders (before 2000)

e V(z;,25,--+) =1 — equal amplitude superposition of all particle
configurations — A product state = superfluid state Y ‘”‘

Z ’> ®z(|0); + 1), +--+)

all conf.
e Examples: 1) scamble the phases Laughlin 83

_ 2 o
\UII/:E?I{I/2(21?Z2 .. ) — |:H(ZI' — Zj)of%2|zf|2 — [Xl(zi)]2,

e Il) Put v = 1 state of spin-up(down) electrons y1(z T)Xl( i) on
lattice, with one electron per site — Chiral spin liquid
Kalmeyer-Laughlin PRL 59 2095 (87), Wen-Wilczek-Zee PRB 39 11413 (89)

e 111) The square of v = 2 IHQ wavefunction [y2(z;)]> — bosonic
v=1 SU(2)£ non-abelian state. y1[x2]? fermionnic v = % state
Wen PRL 66 802 (91). CFT construction: Moore-Read NPB 360 362 (91)
e IV) Put an electrons superconducting state on lattice, with one
electron per site — Z, topological order — 75 spin liquid
Read-Sachdev PRL 66 1773 (91), Wen PRB.44 2664 (91)
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Why Laughlin states have topological order?

K-matrix states (generalize Laughlin states):
/ K / NKy 1 112
wK:H(Zi_Zj) ! H(Zi_zj)”e a2l
i<jil ijil<J
e Quasiparticle excitations are labeled by integer vectors m

Ve = [J(€—2)mwk,
il
- If mis the [{" column of K — W discribe a missing hole in the /i"
layer, which is a local excitation (not fractionalized).
- Topological excitation is labeled by m mod columns of K.
Number of topo. exc. = det(K).
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Why Laughlin states have topological order?

K-matrix states (generalize Laughlin states):
/ K / NKy 1 112
wK:H(Zi_Zj) ! H(Zi_zj)”e a2l
i<jil ijil<J
e Quasiparticle excitations are labeled by integer vectors m

Ky
\Uf - H(g - Zil)ml\UKv L= alua aJ/\GM -+ mlé(g — x)a,o

il

- If mis the [{" column of K — W discribe a missing hole in the /i"
layer, which is a local excitation (not fractionalized).

- Topological excitation is labeled by m mod columns of K.

Number of topo. exc. = det(K). Statistics: 0, = 1m’ K~'m
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Why Laughlin states have topological order?

K-matrix states (generalize Laughlin states):
/ K / NKy 1 112
wK:H(Zi_Zj) ! H(Zi_zj)”e a2l
i<jil ijil<J
e Quasiparticle excitations are labeled by integer vectors m

Ky
\Ug = H({ — Z,-I)m’\UK, L= a,ua aJ,\e“ + m,é(f — x)a,o
il
- If mis the [{" column of K — W discribe a missing hole in the /i"
layer, which is a local excitation (not fractionalized).
- Topological excitation is labeled by m mod columns of K.
Number of topo. exc. = det(K). Statistics: 0, = 1m’ K~'m

K-matrix classification of abelian topological order
- Even K-matrix (all Kj; are even) classify all 241D Abelian
topological orders (in a many-to-one way) in local bosonic systems.
- Odd K-matrix (one of the Kj; is odd) classify all 2+1D Abelian
topological orders (in a many-to-one way) in local fermionic
systems. Wen-Zee PRB 46 2290 (92)
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Why is the state [x(z)]?

a non-Abelian QH state?

where yi(z1, ..., zy) is the IQH wave function of k filled Landau
levels.

- What kind of non-Abelian state?
- What is its effective theory
and edge excitations?
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Why is the state [Xk(z,-)]2 = X‘k(Z,-(l))ka(Z-2

i

a non-Abelian QH state?

where yi(z1, ..., zy) is the IQH wave function of k filled Landau
levels.

- What kind of non-Abelian state?
- What is its effective theory
and edge excitations?

Projective construction:
Split an eletron into partons
and glue them back together
Baskaran-Zou-Anderson

Solid State Comm. 63 973 (87)
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Projective construction: Wen PRL 66 802 (91); cond-mat/9811111

(21, zn) = [xu(z, o 20)]" = P2, (22, ) ]

electron — n-partons, a-kind partons z'¥) form v = k IQH xx

i

e Effective theory of independent partons
1 .
H = %M(a— Ay, I=1,---.,n

e Many-body wave function ®(z;) = (0| [ [ ¥e(zi)|xk - - X&)
The electron operator 1. = 1)1 - - -1, is SU(n) singlet,
if ¢, form an fundamental representation of SU(n).

e Introduce SU(n) gauge field to glue partons back to electrons:

1 . ;
H = %@[;}L(@ — iAdy — Iau)21/u

e Effective theory is obtained by integrating out the gapped parton

fields: k 2 N
L= ETr(aM&,a,\ + §aua,,a,\)e“”

SU(n)! CS theory. (Level k =1 SU(n)] CS theory is abelian.)
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Quasiparticle excitations in [x«(z)]* = Xk(Z,-T)Xk(Z,-i)\ler_z,

Consider the [x,(z)]* state: SU(2)! Chern-Simons theory

e A charge g = 1 hole can be splited into two — two charge
q = 1/2 quasiparticles. > ! o—

| ———

ahole ¢=1, s=0 q=1/2, =12 q=1/2, s=1/2

e The number of four-quasiparticle states: project to SU(2) singlet.
leolelel=(0ol)(0el)=001010(00102)

But 5U(2)£ state has - o — e—
no quasiparticle with spin s > &~ /

(@] O ¢
q=1, s=1
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Quasiparticle excitations in [x«(z)]* = Xk(z,-T)Xk(z,-i)\zl;r

Consider the [x,(z)]* state: SU(2)! Chern-Simons theory

e A charge g = 1 hole can be splited into two — two charge
q = 1/2 quasiparticles. > !

o—

_— ; D O
ahole ¢=1, s=0 q=1/2, =12 q=1/2, s=1/2

e The number of four-quasiparticle states: project to SU(2) singlet.
leolelel=(0ol)(0el)=001010(00102)

But SU(2)£ state has - o — e—
no quasiparticle with spin s > &~ /

(@] O ¢
q=1, s=1

Level-k fusion: s1 ® 5o = |s1 — 2| @ -+ - @ min(sy + s2, k — 51 — )
-Level-k=1: 3 0@ (3®3)=(0)®(0)=0
-Levekk=2ielelel=(0e)®(001)=081614(0)

Xiao-Gang Wen, Boulder summer school
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Edge excitations in [xk(z)]" state: U(1) x SU(k), CFT
e Edge state: Independent partons — filled Landau levels

ﬁ - ¢La(at - Vax)wozaa

a=1,--,n,
a=1,--,k
01 2' 3 e m
e Excitations are generated by (a, a' generate exc. in an oscillator)
U1) : J = Pfatbaa, — U(1) Kac-Moody algebra CFT

SU(k) : J™ = ba T o, — SU(k), Kac-Moody algebra CFT

Su(n):j! = wgasc’wq/)ﬂa, — SU(n), Kac-Moody algebra CFT
e Glue partons back to electrons = remove the SU(n) excitations.
e Edge excitations are generated by

U(l) = w:&awrlay

SU(K) - J7 = da Totbas

Edge CFT: U(1) x SU(k), Kac-Moody algebra ¢ = 1 4 221,
o Bulk effective theory SU(n)! CS theory

-k
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Another example S[[1(z; — z)* [T(wi — w;)?]

e Consider with two partons 11, 1, each fills the first Landau level.
— v = 1/2 Laughlin state [[(z; — z)? = (0| [T ¥1(z:)v2(2i)|x1x1)

e Now start with four partons 11, 15, 13, 14, each fills the first
Landau level:

[1(zi — 2)* TI(wi — w;)? = (01 TT¥1(2)v2(2) TT s (wi)a(wi) [ x1x1x1x2)
o S[[1(zi — 2)* [T(wi = w;)*] = (O TT ¥e(Z))Ix1x1X1X1)

where 1e(Zj) = 1(Zj)2(Zi) + v3(Zi)va(Z).
e Under SO(8) trans. between (Ret;, Im);), 1)e is an SO(5) singlet
o Effective theory H = ! (9 — A — a;)?¢; — SO(5) CS theory
e Edge states: Wen cond-mat/9811111

Independent partons — 4 Dirac fermions = 8 Majorana fermions
After projection — 8-5 chiral Majorana fermions.

e S[[1(zi — z)? [1(w; — w;)?] is the bosonic Pfaffian state.

Vs(a20) = S[TI(zi — z)* [1(wi — w))°] = Al 25 525 111z - 2)
Moore-Read NPB 360 362 (91); Rezayi-Wen-Reéad arXiv:1004.2563
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How to realize non-Abelian QH states in experiments?

Wen cond-mat/9908394; Rezayi-Wen-Read arXiv:1004.2563
nnm bi-layer state with no interlayer tunneling

e (nnm) state
Pppm = H(Zi = z)"(w; — w;)"(z — Wi)me’% e+ wil?

where n = odd for fermionic electron and n = even for bosonic
“electron”.

e (nnm) state ~ (n— m,n — m,0) state: ®ppm = X" Prmn—mo
Will consider only (n — m, n — m,0) state, but results apply to
(n,n, m) state as well:

(220) ~ (331) state with » = 1/2 and (330) with v = 2/3

e Intralayer repulsion Vi, = 1, increase interlayer repulsion

nn0 double
layer state ?7? Chimb state

Y
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Two possibilities

Interlayer-exciton = charge —% quasiparticle in one layer +
charge % quasihole in the other layer Py

e Interlayer-exciton condensation at k # 0

™~

nn0 double
| layerstate  ~ ST/WC | Chimb state
| A o inter
[ o o o [ 2 o o

e Interlayer-exciton condensation at k = 0

AP

nn0 double
Igyer state
\

‘WC | Chimb state
2e Laughlin \Y;

inter
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Why 2e-Laughlin state? — Hierarchical construction

e (nn0) is described by U(1) x U(1) CS theory

£=tadankle™ 1 J=12 K= (g S)

e The interlayer exciton (with statistics § = 27/n) is described by
L= ﬁa,@aJK” + m’aluj/“‘(x), m= <_11> :

e Exciton condensation £ = (j°)? —J with 0, /" = 0: j/* = ()”aA eHrA

1 - 1 -
By KIJ B2 o 7E2
£ 47raldaj 87r2x( v2 )

e — new FQH state:

K m n 0 1 2n 0 0
Koew = (mT o) =0 n —1|=w|[0 n%2 1|WT~(2n
1 -1 0 0 1 0
K and K = WKWT, we SL(k, Z), describe the same FQH state.

e New state is v* = 1/2n Laughlin state of charge-2e electron pairs.
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Critical theory for quantum phase transition

e Start with GL theory for excitons and anti-excitons:
L= 10,01 + alg® + Blgl*

« = 0 at the transition.
e GL-CS theory to reproduce statistics ¢ = 27/n

. . 1
L =1(0 — a1 + ia) o> + a|d|* + Blo|* + Ea/OaJKU.

e CS term does not destroy the critical point of GL theory, but
changes the critical exponents
(nn0) — 2e-Laughlin is a continuous transition between two states
with the SAME symmetry

e When n = 2, critical theory is massless Dirac fermion
£ = T 0t + miby

m = 0 at the transition.
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Turn on interlayer tunneling

Effective theory near transition .
L= (0 — iay + ia) > + a|¢> + Blo|* + (t¢"M + h.c) + Ea;f)aJKU.
L= '(/_J’y“a,,,w + mp + (thz/J + h.c.), forn=2

e When n = 2, the t) 1) term split the massless Dirac critical
point into two massless Majorana critical points.

t t
S(330) state S(220) state
Vinter 220 double Vinter
330 double charge-2e layer state charge-2e
layer state Laughlin state Laughlin state
S(330) state S(220) state

e Weak p + ip superconductor to strong p -+ ip superconductor is
connected by massless Majorana fermion Read-Green cond-mat/9906453

Vs (220) = S[[I(zi — 2)* TI(wi — wy)’l = Al 25 25, 1Tz = 2)
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Recent numerical result

Fractional Quantum Hall Bilayers at Half-Filling:
Tunneling-driven Non-Abelian Phase Wei Zhu et al.

Predicted by Xiao-Gang Wen &
other works

000FE ks T % T ]
~O—K=n XX
v,,‘ ‘ Wl 00251k
+-K=0
0.020F O others %

0015F 0/ o Y
0.06F MR Pfaffian ]
Mol g — 8]

Energy spectra E -
o
o
=

0.04 X Xi 4
LR . 0005k \4 fold 8
Halperin 331 - Oty g/
0.02f P By
[ P crL 0.000 | x AAE\S—Q&QI Y ——tl
oooles v T T 000 004 008 012 0.16
2 3 4 5 t
d/l 1
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Projective construction of topo. ordered states on lattice

Consider a spin—% system on lattice.
e View spin-| as zero-boson state and spin-T as one-boson state
e Split the boson ¢; into to fermionic partons ¢; = 1112, where
i form a 2-dim. rep. of SU(2) and ¢; is the SU(2) singlet.
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Projective construction of topo. ordered states on lattice

Consider a spin—% system on lattice.
e View spin-| as zero-boson state and spin-T as one-boson state
e Split the boson ¢; into to fermionic partons ¢; = 1112, where
i form a 2-dim. rep. of SU(2) and ¢; is the SU(2) singlet.
e Consider the mean-field ground state of a free parton Hamiltonian
Hmean = Z(U) 1/)I-Tu,-j1/1j, uj =2 X 2 matrix; — ]Wﬁq”gan>
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Projective construction of topo. ordered states on lattice

Consider a spin—% system on lattice.
e View spin-| as zero-boson state and spin-T as one-boson state
e Split the boson ¢; into to fermionic partons ¢; = 1112, where
i form a 2-dim. rep. of SU(2) and ¢; is the SU(2) singlet.
e Consider the mean-field ground state of a free parton Hamiltonian
Hmean = Z(U) ’L/)}Luijl/Jj, uj =2 X 2 matrix; — ]Wﬁq”gan>
e Project to physical subspace on each site
[ 1) =10), | 1) = v}¢50), both SU(2) singlet.
Unphysical states ¢/, |0), ¢j2|0) form a SU(2) doublet.
- Project into SU(2)-singlet subspace on each site:

|W;”;y> 'DSU |Wmean>

\\Uphy> is a trial wave function with varlatlonal parameter uj;.
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Projective construction of topo. ordered states on lattice

Consider a spin—% system on lattice.
e View spin-| as zero-boson state and spin-T as one-boson state
e Split the boson ¢; into to fermionic partons ¢; = 1112, where
i form a 2-dim. rep. of SU(2) and ¢; is the SU(2) singlet.
e Consider the mean-field ground state of a free parton Hamiltonian
Hmean = Z(U) 1/)I-Tu,-j1/1j, uj =2 X 2 matrix; — ]Wﬁq”gan>
e Project to physical subspace on each site
[ 1) =10), | 1) = v}¢50), both SU(2) singlet.
Unphysical states ¢/, |0), ¢j2|0) form a SU(2) doublet.
- Project into SU(2)-singlet subspace on each site:

|W;”;y> 'DSU |Wmean>

\\Uphy> is a trial wave function with varlatlonal parameter uj;.

e What is the low energy effective theory that describes the low
energy excitations above the many-body state |V ) 7
Lattice partons v; couple to lattice SU(2) gauge field a,(x):

Her = > i ?/J ujet @iy + 374 ag (i)
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Z, topological order with time reversal symmetry

e Choose Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91)
3 1
Uji4+x = Ujj+y = —XO0, do = C0",
. o 1 Y 2 . 1 A 2
Ujitx+y = 10" + A0, Uiitx+y = 10" — A0

PSU(2)|\UﬂJgan> has all the symmetry: spin rotation-+time reversal.
o Her = 5 Wl ugbj + 3w agti will be fully gapped.
— The fermions are all gapped. The potential gapless excitations
may come from the SU(2) gauge fluctuations.
e a9 and SU(2) flux ®; = ujjujuy; behave like Higgs fields.
a0 — UagUT, &; — Ud;UT, U e SU(2).

- If they are invariant under the SU(2) transformation — The SU(2)
is unbroken — gapless gluon.

- If they are not invariant under the SU(2) transformation — Break
SU(2) to smaller gauge group.

e In our case, agp and ®; break the SU(2) down to Z>
— Z> gauge theory is gapped — 7> topological order.
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Quasiparticle excitations in the Z, topological order

e The pure Z, gauge theory: le
- Z» charge e: boson. el |
- 7> vortex m: boson.

e and m have mutual 7 statistics.
- e-m bound state f: fermion.

e Our 2> topological order = dressed Z, gauge theory, which also
has spin rotation, time reversal and all the lattice symmetry:

- Z> charge e: spin—% fermion.

- Z» vortex m: spin-0 boson (fermion?).

- e-m bound state f: spin-3 boson (fermion?).

e We have two possibilities: (2 bosons 1 fermion) or (3 fermions).
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Quasiparticle excitations in the Z, topological order

e The pure Z, gauge theory: le
- Z» charge e: boson. el |
- 7> vortex m: boson.

e and m have mutual 7 statistics.
- e-m bound state f: fermion.

e Our 2> topological order = dressed Z, gauge theory, which also
has spin rotation, time reversal and all the lattice symmetry:

- Z> charge e: spin—% fermion.

- Z» vortex m: spin-0 boson (fermion?).

- e-m bound state f: spin-3 boson (fermion?).

e We have two possibilities: (2 bosons 1 fermion) or (3 fermions).

The above is the history before 2000

3 fermions) has a time reversal anomaly, and s not possible:
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Examples of topological orders (after 2000)

To make topological order, we need to sum over many different
product states, but we should not sum over everything.

Nay=]—-=".)

Zall spin config.
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Examples of topological orders (after 2000)

To make topological order, we need to sum over many different
product states, but we should not sum over everything

Zall spin config. > = ‘ - > @@@ CD {}% 2/@

e sum over a subset of spin config.: @ @@@ M
‘(Dloops - Q‘>

O
‘¢|oops> - Z(_)# of loops \ Q<>
‘¢Ioops> _ Z(eie)# of loops x g>

e Can the above wavefunction
be the ground states of
local Hamiltonians?

P
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Sum over a subset: local rule — global wave function
KX
POPPD
POOPD 90@ﬁ> @ 9@@@ @
® @
odo00 O O

e Local rules of a string liquid:
(1) Dance while holding hands (no open ends)

2 () =0 (1) 0 (0 &) =00 ()

— Global wave function g, (g)g =1

e Local rules of another string liquid:
(1) Dance while holding hands (no open ends)

(2) O () = 00 (I5), o (> W) = — o0 (HW)
— Global wave function ®g;, (&j)&) = (—)# of loops

e Two topo. orders: Z> topo. order Read-Sachdev PRL 66, 1773 (91), Wen
PRB 44, 2664 (91), Moessner-Sondhi PRL 86 1881 (01) and double-semion
topo. order. Freedman etal cond-mat/0307511, Levin-Wen cond-mat /0404617
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Emergence of fractional spin/statistics

e Why electron carry spin-1/2 and Fermi statistics?
e Ends of strings are point-like excitations,
which can carry spin-1/2 and Fermi statistics?
Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583

o O (?g) — 1 string liquid ¢str< > < ) - cbst,( [ | )
360° rotation: T% C? and C? = @ — T: R3600 = <(1) é)

T+C? = e spin 0 mod 1. T—@E em spin 1/2 mod 1.
o o, (?&) = (=) oo string fiquid @, ([ <) = —ou (1)
360° rotation: | — Pand ¥ = - = 1 Ryepo = <(1’ 01>

T—é— i@zs_ spin —% mod 1. T— i@zar spin % mod 1.
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Spin-statistics theorem

(e

e (a) = (b) = exchange two string-ends.

e (d) — (e) = 360° rotation of a string-end.

e Amplitude (a) = Amplitude (e)

e Exchange two string-ends plus a 360° rotation of one of the
string-end generate no phase.

— Spin-statistics theorem
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String operators in Z, topological order (Z, gauge theory)

e Toric code model: Kitaev quant-ph/9707021
H:_UZIQI_gZpFP
QI - Hlegs of I UI'Z'

FP = Hedges of p U;(

e Topological excitations:
e-type: Q=1— Q=-1
m-type: Fp =1 — Fp = —
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String operators in Z, topological order (Z, gauge theory)

e Toric code model: Kitaev quant-ph/9707021
H:—UZ,QI—gZpr ﬁ /_P
QI - Hlegs of I UI'Z'

FP = Hedges of p U;(

e Topological excitations:
e-type: Q=1— Q=-1
m-type: Fp =1 — Fp = —1

e Type-e string operator W, =[], o7

e Type-m string operator W, = [, « 07

e Type-f string op. Wy =[], o Hlegs of

o [H, W] = [H, W9 = 0. — Closed strings cost no energy

o [Q, WEP"] #£ 0 flip Q — —Qy, [Fp, WaX*"] # 0 flip Fp — —Fp
— open-string create a pair of topo. excitations at their ends.
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String operators in Z, topological order (Z, gauge theory)

e Toric code model: Kitaev quant-ph/9707021
H:—UZ,QI—gZpr ﬁ /_P
QI - Hlegs of I UI'Z'

FP = Hedges of p U;(

e Topological excitations:
e-type: Q=1— Q=-1
m-type: Fp =1 — Fp = —1

e Type-e string operator W, =[], o7 — e-type. exe=1
e Type-m string operator Wy, = [[,«07 — m-type. mx m=1
e Type-f string op. Wy =[], o Hlegs of — f-type=exm

o [H, W] = [H, Wsd] = 0. — Closed strings cost no energy

o [Q, WEP"] #£ 0 flip Q — —Qy, [Fp, WX # 0 flip Fp — —Fp
— open-string create a pair of topo. excitations at their ends.

e Fusion algebra of string operators — fusion of topo. excitations:
We2 = W2 = Wf2 = W.W,,Wr = 1 when strings are parallel
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Statistics of ends of strings

e The statistics is determined by particle hopping operators
Levin-Wen cond-mat,/0302460:

tbdh/; ha b
d

&
Lbalchthd /L \
a

e An open string operator is a hopping operator of the ‘ends’.
The algebra of the open string operator determine the statistics.
e For type-e string: tp, = of, top = 03, tpg = 05
We find tpgtoptha = thatcntpd
The ends of type-e string are bosons
e For type-f strings: tp, = 07, to), = 0307, tpg = 0503
We find thgtontbs = —tpalcotbd o
The ends of type-f strings are fermions

e Works for abelian anyons and non-abelian anyens.
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How to label all topological orders
systematically?

What are the probes (topological invariants)
that allow us to distingush all topological
orders?
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Systematic theory of topo. orders from topo. invariants

Topological order describes the order in gapped quantum liquds.

We conjectured that 2+1D topological order can be

completely defined via only two topological properties:

Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen 1JMPB 7, 4227 (93)

e (1) Wgnq = space of degenerate ground states, which is robust

against any local perturbations.

Topological degeneracy:

Dy = dimWgpnq,
depends on topology of space Deg=1  Deg.=D,
Wen PRB 40, 7387 (89), Wen-Niu PRB 41, 9377 (90)
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Systematic theory of topo. orders from topo. invariants

Topological order describes the order in gapped quantum liquds.

We conjectured that 2+1D topological order can be

completely defined via only two topological properties:

Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen 1JMPB 7, 4227 (93)

e (1) Wgnq = space of degenerate ground states, which is robust

against any local perturbations.

Topological degeneracy:

Dy = dimWgpnq,
depends on topology of space Deg=1  Deg.=D,
Wen PRB 40, 7387 (89), Wen-Niu PRB 41, 9377 (90)

e (2) Vector bundle on the moduli space
i. Consider a torus ¥; w/ metrics gj. ii. Different metrics gj; form
the moduli space M = {gj;}. iii. The LI states depend on spacial
metrics: W, (gjj) — a vector bundle over M with fiber W, (gj).
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Topological invariants that define LRE and topo. orders

Vector bundle on the moduli space

- Local curvature detects grav.

j 2mc
Chern-Simons term ¢! 2¢ Ju2xst«3

Tangent bundle on a 2-sphere
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Topological invariants that define LRE and topo. orders

Vector bundle on the moduli space

- Local curvature detects grav.

j 2mc
Chern-Simons term ¢! 2¢ Ju2xst«3

- Loops w1 (M) = SL(2,7Z): «
90O rOtatlon |WO(> — |wi¥> = 5@6‘w3> Tangent bundle on a 2-sphere

S, T generate a rep. of modular group: S? = (ST)> = C,C? =1
Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen [JMPB 7, 4227 (93)
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Topological invariants that define LRE and topo. orders

Vector bundle on the moduli space

- Local curvature detects grav.

j 2mc
Chern-Simons term ¢! 2¢ Ju2xst«3

- Loops w1 (M) = SL(2,7Z):
90O rOtatlon |WO(> — |w;¥> = Saﬁ‘w3> Tangent bundle on a 2-sphere

S, T generate a rep. of modular group: S? = (ST)> = C,C? =1
Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen [JMPB 7, 4227 (93)

Conjecture: The vector bundles from all genus-g >, (ie the
data (S, T,c), ...) completely characterize the topo. orders

Conjecture: The vector bundle for genus-1 ¥; (e the data
(S, T,c)) completely characterize the topo. orders
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Measure topo. order: Universal wavefunction overlap

Moradi-Wen arXiv:1401.0518, He-Moradi-Wen arXiv:1401.5557
e Ground states |V,,) on torus T2 under S and T.
The non-Abelian geometric phases S, T via overlap
2 1
Sage ST = (W, S|w) s i

—fTL2+O( ) o -

= (Wo| T|Wg)

Tage
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Measure topo. order: Universal wavefunction overlap

Moradi-Wen arXiv:1401.0518, He-Moradi-Wen arXiv:1401.5557
e Ground states |V,,) on torus T2 under S and T.
The non-Abelian geometric phases S, T via overlap

Sape™ ST — (0, |S|wy)
Tage T+ = (W, | T|wg)

e For Z> topo. order:
— gstring—length

_) W, gstr—len

)
(24) = (
\U3() — (_)Wygstr—len
(E24) = (

o ) Wi+W, gstr—len

Xiao-Gang Wen, Boulder summer school
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Measure topo. order: Universal wavefunction overlap

Moradi-Wen arXiv:1401.0518, He-Moradi-Wen arXiv:1401.5557 .
e Ground states |V,,) on torus T2 under S and 7. [
The non-Abelian geometric phases S, T via overlap
Sape S+ = (v alS|Ws) s i
Tage THEHe) = (W, | Twy)
° For Z> topo. order:
( ) strmg length
- Str'len —4—12 steps of RG
Eg E ;W str-len G ==t
Yg - 25.
\U4() — (7) X+Wygstr—len #|
e g < 0.8 small-loop phase @ °
|W,,) are the same state
e g > 0.8 large-loop phase 5‘=(
|W,,) are four diff. states
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Measure topo. order: Universal wavefunction overlap

Moradi-Wen arXiv:1401.0518, He-Moradi-Wen arXiv:1401.5557
e Ground states |V,,) on torus T2 under S and T.
The non-Abelian geometric phases S, T via overlap
Sape S+ = (v alS|Ws) s i
Tape™ T = (W | T1wg)

° For Z> topo. order:
( strmg—length

) =
() ( ) str—len o] | rsmars
=) =

—v—16 steps of RG

n(T)
H
[ 3

( ' ( )Wygstr—len - R .
Wy (E20) = (—) Wt Wogstrlen =) R R
e g < 0.8 small-loop phase @ ° '
|W,,) are the same state §=0.802

e g > 0.8 large-loop phase 5‘=(
|W,,) are four diff. states

e For double-semion topo. order: . _ 1 _ (1) ? 0

W(EH) = (—)# of loop 0 0 o 1) =lo0 A of
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Using group theory, we can classify all 230
crystal structures.

How to classify all 241D topological orders?
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Classify 2+1D topo. orders (ie patterns of entanglement)

via the topological invariants (S, T, ¢)

e A 241D topological order — a (S, T, ¢)
e An arbitary (S, T,c) # a 241D topological order

e (5, T,c)'s satisfying a set of conditions <> 2+1D topo. orders
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Classify 2+1D topo. orders (ie patterns of entanglement)

via the topological invariants (S, T, ¢)

e A 241D topological order — a (S, T, ¢)
e An arbitary (S, T,c) # a 241D topological order

e (5, T,c)'s satisfying a set of conditions <> 2+1D topo. orders
assuming each (S, T, c) — one topological order, otherwise
(S, T,c)'s satisfying a set of conditions <> several topo. orders
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Classify 2+1D topo. orders (ie patterns of entanglement)

via the topological invariants (S, T, ¢)

e A 241D topological order — a (S, T, ¢)
e An arbitary (S, T,c) # a 241D topological order

e (5, T,c)'s satisfying a set of conditions <> 2+1D topo. orders
assuming each (S, T, c) — one topological order, otherwise
(S, T,c)'s satisfying a set of conditions <> several topo. orders

e How to find the conditions,
beyond S% = (ST)3,5* = 17

Study topological excitations above the ground states.
ie consider vector bundle from the degenerate ground states on ¥
with punctures (quasiparticles).

- In particular, the vector bundles from the degenerate ground states
on Yo = S? with punctures (quasiparticles)
— unitary modular tensor category theory (UMTC)
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Local and topological quasiparticle excitations

In a system: H =) Hy
gl oL, excitation
e an excitation W, (£,&,--+) engergy density\ & ground state
= gapped ground space of ,/ engergy density
trap trap L
H+6HE ﬂ_(SH_&’ + c
e Local quasiparticle excitation at &:
Vee(&,8, ) = OcWeyc (€', -+ ) can be groundosare | A->finite gap

created by local operator O subspace v ¢ _o ()

]

e Topological quasiparticle excitation at &:
Were(£,8, ) # OcWeyc (€', - -+ ) cannot be created by local O
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Local and topological quasiparticle excitations

In a system: H =) Hy
gl oL, excitation
e an excitation W, (£,&,--+) engeray densityy & ground state
= gapped ground space of 4/ engergy density
trap trap L
H+6H£ ﬂ—(?Hé, + c
e Local quasiparticle excitation at &:
Wexc(ga 5/7 T ) - Ofwexc(g/r e ) can be ground—state A—>finite gap
created by local operator O subspace v ¢ _o ()
e Topological quasiparticle excitation at &:
Were(£,8, ) # OcWeyc (€', - -+ ) cannot be created by local O

]

e Topological types:~Consider two exictations at £ from different
traps: 5H£rap and 6H§rap: Voo (&, -) and Wy (£, --4)
-if Wee(&,-+0) = Og\TJeXC(f, --+) — they belong to the same type.

- if 5H£rap and 5/:I2rap can deform into each other without closing the
gap, then the traped excitations at ¢ belong to the same type.

e With symmetry — O¢, 6H£rap to be symmetric local operators.
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Simple/composite excitations and fusion ring

- simple excitation at ¢ The ground space WaePé(¢, - -+ ) is robust
against local perturbation near £ — type /.

- composite excitation at £: The ground space
Wee(&, - -+ ) (the degeneracy) can be splitted
by local perturbation near &, ie contain accidental

~

degeneracy — type a =i P J. o i
Fusion space = We,c(&1,82, 1) = Vius(in, 2, -+ )
Fusion ring of (non-Abelian) topological excitations
e For simple /., if we view (i, ) as one particle,
it may correspond to a composite particle:
Vfus("aja /17 /27 e ) — @nvfus(k.na /17 /27 T )
i®j=k®k @ - =oN/k
— the fusion ring (Grothendieck ring). = (k,, ..)
e = — (k...
e Associativity: (i)

(i0))ok=i0(ok)=aN , NK=S_NINK =S MNP
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. ijk;maf3
The F-symbol: F,;mA

e Consider fusion space: Vis(/,/, ) — the ground space of
H+Hg ™ + 6H ™ + -
The fusion i ® j = ®N,’jl give rise to a choice of basis of
Ves(i,J,---): |l,af; ), where of =1,2,--- [N/,

e Consider fusion space: Vis(/,/, k; -+ ), two ways of fusion give rise
to two choices of basis: )

- |I_/7k,> - |m7alh/”l; kr> - ‘mvayn;/aa;nk;"'>

i ki) = i, ads ) = | adn, ol

e The F-symbol is unitary matrix that relate the two basis

in " ;o ijk;ma%afﬂk ij . mk .
1, alm n,adk; ) = E F/-nafka"" |m, o L a™; )
- N
ma:l,,a/'"k
Pk i kI ()KL ((ij Jh)I*~11* (k)= (i(jk))I*
ijkl*  — @ — ijkl* —
o F o j- - = j- =
" Yo :> ot m —
n —_— L | —
i 1 .= 4 =

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



Consistent conditions fo F:;?X'gaﬂ and UFC

ijokol ijok 1
. . 9, .
Two different ways of fusion \;”{g?/ and W/ are related via
p

two different paths of F-moves: ”

ko1 k1

i i ik
Y o mkl;nBx o mkl;nBx ijgimoe 9
¢ (W) N zqﬁve Fp:qé‘ @ (W) B Zqﬁ,e;sv@vv Fp:q& Fp;sm ® S
P P

ikl ikl ikl
Y o ijk;ma B 9 o ijk;maB itl;npx h
® \z&%// B Zt,rw Fone = ® N - Znn.ws.nﬁ Fone " Foisny* ® W
P P )4
ik
o ijk;maB =itl;nex Ciklitns ¢q
- Ztgr;,r:;ga;sAﬁ,,w/;q,(i,(/) Fn;tnw FP;SR’Y Fs;q6¢ \ ‘e
P

The two paths should lead to the same unitary trans.:

ijk;maf Fitl;npx iklitns mkl;nBx —ijg;mae
E : Fn;fTW FP;SH“/ Fs;q&b - z :Fp;qée Fp;s¢~/

tﬂlﬂpvl{ €
Such a set of non-linear algebraic equations is the famous

pentagon identity. Moore-Seiberg 89

N,ij, ,:Ii;j:);(rgaﬁ — Unitary fusion category (UFC)
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Theory of quasiparticles = fusion category theory

A simples example with symmetry G:

e.g.: Each site has 4 states: spin-0 and spin-1. Hamiltonian
H=5":5;-S;. Ground state = ©;|0) is a product state.
e Type-i simple excitation defined by G-symmetric trap =/

irreducible represetation of G.

th

e The fusion | ® j = @kN,ijk is the fusion of representations.
For G = S0O(3): i =0,1,2,--- is the spin-s:
i®j=li—jloli-jl+1& - @it+]
e The Fukvmaﬁ is nothing but the well known 6j-symbol, that relate
two different ways of fusing three representations.
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Theory of quasiparticles = fusion category theory

A simples example with symmetry G:

e.g.: Each site has 4 states: spin-0 and spin-1. Hamiltonian
H=5":5;-S;. Ground state = ©;|0) is a product state.
e Type-i simple excitation defined by G-symmetric trap =/

irreducible represetation of G.

th

e The fusion | ® j = @kN,ijk is the fusion of representations.
For G = S0O(3): i =0,1,2,--- is the spin-s:
i®j=li—jloli-jl+1& - @it+]
e The Fukvmaﬁ is nothing but the well known 6j-symbol, that relate
two different ways of fusing three representations.

e Braiding: all the particles are bosons with trivial mutual statistics
Theory of quasiparticles = braided fusion category theory

e The above braided fusion category theory is called symmetric
fusion category (SFC) (described by N/, F/7*7).

e SFC is a way to described symmetry group without using
symmetry breaking probe: SFC <+ G.
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Quantum dimension and “fractional” degree of freedom

Vector space fractionalization:
e In general, dim[Ves(7, 7,1, -+ )] # (integer)”.
Quasiparticle i may carry fractional degree freedom.
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Quantum dimension and “fractional” degree of freedom

Vector space fractionalization:
e In general, dim[Ves(7, 7,1, -+ )] # (integer)”.
Quasiparticle i may carry fractional degree freedom.

o dim[Veus(iy i, 1)) = Yo Nib N3 - N2 = (M)t~ dlf
where the matrix (N');x = N/, and d; the largest eigenvalue of N':
dim[Vas(i, )] = Nif,  dim[Veus(i, i, )] = N NJ™
dim[Vas (i i, i, )] = N NN

e d; is called the quantum dimension of the quasiparticle /.
Abelian particle — d; = 1. Non-Abelian particle — d; # 1.
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Theory of topological excitations = braided fusion category

e In 1D, the set of particles — UFC o i -
All 1D topo. orders are described by UFC. X
All anomalous — boundary of 2D system. e—e—a@»—@—
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Theory of topological excitations = braided fusion category

e In 1D, the set of particles — UFC - o i -
All 1D topo. orders are described by UFC. X
All anomalous — boundary of 2D system. e—e—a@»—@—

e Above 1D, particles can braid — unitary braided fusion category

e Braiding requires that o o o o
Ny = (i
S O S 3
K )
® @ - -
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Theory of topological excitations = braided fusion category

e In 1D, the set of particles — UFC L

All 1D topo. orders are described by UFC. e X ¢
All anomalous — boundary of 2D system. e—e—a@»—@—

e Above 1D, particles can braid — unitary braided fusion category

e Braiding requires that o  © - ’.f. ,,,,,, °
i _ i
N, = N,. ‘,\1 )
" S O S 3
e Braiding — mutual statistics ¢'%i o o k. >
and non-trivial fractional spin s;
27 rotation of (/, ) = 27 rotation of k ]Xl ; i

27 rotation of (/,/) = 27 rotation R N R

of i and j and exchange i/, twice |:> |:>
eiZWs;eiZWsjemgjk) — ei2ms v BY, ol

A unitary braided fusion category (UBFC) is a set of topological

types with fusion and braiding, which is described by data (], s;)
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Relation between (S, T,c) and (N!, s;, ¢)

Conjecture: A bosonic topological order [ie a non-degenerate
UBFC = an unitary modular tensor category (UMTC)] is
fully characterized by data (S, T, c) or by data (N/,s;,c) .

e From (5 T,c)to (N/,sj,c):  E Verlinde NPB 300 360 (88)
SiiSi(Si)* i27s; —i2nS
Z/ JS“ , el<™ie 24 = Tj.
e From (NJ s,-, c)to (S, T,c):
’J 27r1 si+s;—s . ai2ms —i27m
= V@ Sk N, T = oo

Conditions on (N,’{,s,-, c¢) +» Conditions on (5, T, ¢)
— A theory of unitary modular tensor category (UMTC)
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Relation between (S, T,c) and (N!, s;, ¢)

Conjecture: A bosonic topological order [ie a non-degenerate
UBFC = an unitary modular tensor category (UMTC)] is
fully characterized by data (S, T, c) or by data (N/,s;,c) .

e From (5 T,c)to (N/,sj,c):  E Verlinde NPB 300 360 (88)
SiiSi(Si)* i27s; —i2nS
Z/ JS“ , el<™ie 24 = Tj.
e From (NJ s,-, c)to (S, T,c):
’J 27r1 si+s;—s . ai2ms —i27m
= V@ Sk N, T = oo

Conditions on (N,’{,s,-, c¢) +» Conditions on (5, T, ¢)
— A theory of unitary modular tensor category (UMTC)
simplified theory of UMTC Rowell-Stong-Wang arXiv:0712.1377

e The standard point of view:
UMTC's are fully characterized by (N F,U,’fw';’ag RV '3) (but not
one-to-one). Conditions on those data + the equwalent relations

—> a theory of UMTC. hard to work with
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d + 1D Topological quantum field theory

e d-dim. closed manifold M¢
— Hilbert space V.« = {|a)}.

A—>finite gap

Subspace of ground states on md §5§;‘3§;§me
*{— e—>0
e d + 1-dim. open manifold D91 ©
d+1y in V. d d+1
— a vector |[D") in Vypair. M D+

e Partition function on closed space-time N9*1
= a vector Z(N9T!) € Vypaii_y = C (ie a complex number)

e Surgery formula:

oo

(My|Mp) = Z
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The relations between (N, s;, ¢) and (S, T, ¢)

o Number of particle types (dimensions of N/, s;)
= ground state degeneracy on torus (dimensions of S, T).
Type-i particle is created as the end of type-i string operator,
which also describe particle-anti-particle tunneling process.

- A particular ground state |/) on torus is obtained via the time
evolution on space-time of a solid torus. Other ground state |W;)
is obtained by inserting a loop of type i string operator W;.

‘ W1> Wstr‘ Wl
=3 .
Y@

e S-matrix and link loops:
Sij = <W\5\W =7
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Verlinde formula — The relations between N,'(j and S

Witten CMP 121 351 (89); Wang-Wen-Yau arXiv:1602.05951
e A surjery formula <MU|MD><NU|ND> = <MU‘ND><NU|MD>

provided that the ground state degeneracy on the space-B is one.
°e— (WilSI1)(Wi|SIW) & k) = (Wil SWj) (W] S| W)

where we have used the string operator algebra

VA\/jstr V"‘/Ztr _ Z N{k V’“/istr N ‘VVJWk> = Z ka‘ W/>
: /

]

e Verlinde formula: ), 5;15,-/ka = S Si
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The relation between quantum dimension d; and S

=51 = <Vvia7‘ VVI'~>17> >0

e Let vector v; = (51, Si2, - -+ ). Verlinde formula can be rewritten as
Sik

N v; = \evi,  \f =
Sit

Since v; has positive components, )\’1‘ is the largest eigenvalue of
Nk — g—ﬁ = d;. Using >, S% =1, we find

Si=S1=d/D, D*=> d.
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The relation between quantum dimension d; and S

=51 = <Vvia7‘ VVI'~>17> >0

e Let vector v; = (51, Si2, - -+ ). Verlinde formula can be rewritten as
Sik

N v; = \evi,  \f =
Sit

Since v; has positive components, )\’1‘ is the largest eigenvalue of
Nk — g—ﬁ = d;. Using >, S% =1, we find

Si=S1=d/D, D*=> d.

e We also find

$3

_Su

= Si; Z(S3%) = d;Z(S3); @ _ S0 S;D
Su i " Si
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The relation between fractional spin s; and T

e A particle is not an ideal point. ;| i% A Je '
It has internal structure. We (Y} — 4 — ei2ns |/ e=l
. $ ‘ m =1
can use the framing to represent ‘

the internal structure.

|
G 4-b d-p

(b) e—i27rs,-
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The relation between fractional spin s; and T

Q

It has internal structure. We
can use the framing to represent

e A particle is not an ideal point. ;| [ I
() "eﬂnv :

the internal structure.

° (a) ei27rs,- d
b e—i27r5,' P %
( ) (d) (b)
e T is a 27 twist of the
particle world line:

:
|
TIW) = e!2m| W)

e But T also change the metrics of the solid tours — / independent

: 2me [
phase from the gravitational CS term e’ 24 Jwz st s

7"-‘ VV,> _ ei27rs,-efi27rc/24‘ VV,>
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From (NY,s;, ) to (S, T, c) — Graphic calculus

GO >CO CO -

127r(s,+sj 5 D _ Zk U 127TSkd
The above can be rewritten as

1 .
Sy = 55 2 Nj eI =g,
k
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A relation between

Anderson-Moore CMP 117 441 (88); Vafa PLB 206, 421 (88)
Wi jk

det( /Jk) = det( VV,"_J') det( VV,'J()
ei2ms NI Nk Qﬁ
o) =TT ()™ .

ei2msj gl 27s;
i [

)

e127rsr > N;"‘ NI_’J

det(Wik) =[] <W
r

. _ T
e 1 27'('5, ) N{ Nl_rr

det(Wijk) = H(W
r

Wi j, Wi, W ji are diagonal with the dimension of the fusion
space Vius(i,j, k, 1) 32, NP N/ = S NKNZ = 52 M

— Z Vs =0 mod 1

Vi, = NINK 4 N;"N{-'k n N[kNi-.I — (8ir + 0jr + Oker + O1r) Z NI NK

’J
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A simplified theory of UMTC based on (N,'Z,s,-, c)

Rowell-Stong-Wang arXiv:0712.1377, Wen arXiv:1506.05768
e Fusion ring: N,’{ are non-negative integers that satisfy

g i i _ s kK _
Ng =N, Nj' =0, ZN Ny = 6,

=2

Z NI Nmk Z Nim N5 or NTNK = KN

where i, - .' = 1 2,- N and the matrix N/ is given by
(N)y = N!. N defmes a charge conjugation i — i

Nln = 07;. We refer N as the rank.

There are only finite numbers of solutions for each fixed N, D.

° NU and s; satisfy Z,. V,'Jr'k/sr =0 mod 1
Vi = NINE + NINE 4+ NN — (83 + 8 + Ok +01r) > NENK

m
This determines s; to be a rational number. There are only finite
sets of solutions.

Xiao-Gang Wen, Boulder summer school
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A simplified theory of UMTC based on (NU,S,', c)

From (NJ si,c) = (S, T)
e Let d; be the largest eigenvalue of the matrix N'. Let

ij 271 si+s;j—s, 2 2
SI — Ek NJ e ( i) k)d , D — E d/ .
Ihen, 5 Satisﬁes

5,5
511 >0, ZSkIN s

s=sfc, ¢=n.
o Let Tj;. = cl?™ie” 127T24 §;j then (SL(2,Z) modular representation)
S2— (ST =C.

L1 Uk . Ami(s;—s L . B
o Let v = 1y Yo N djdice®™™ (57%). Then v; = 0/if i # 7, and
vi==+1if i =1I. Rowell-Stong-Wang arXiv:0712.1377
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241D bosonic topo. orders (up to Eg-states) via (N, s;, ¢

Rowell-Stong-Wang arXiv:0712.1377; Wen arXiv:1506.05768

n inlam /n«L')\
NCB dy, do, - 51,52, ¢ wave func. NCB dy, do, - 51,52, ¢ wave func.
LR 0
28 1,1 0, ! Iz —z)? || 2B, |11 0,-1 I —7)?
2B 11,4 0, 2 Fibonacci TO || 2B |, o | 1,¢3 0,—2
¥ 11,1 01,1 (221) double-layer 3B, 11,1 0,-1,-1
35, | 1.¢. ¢ 0,-1,2 38, [1.¢d.¢2 0,%3,-2
3?2 1,1,¢ 0,1, & Ising TO 3‘51/2 1,1,¢ 0,3, -%
33‘5,2 1,1,¢ 0,3, 35  S(220), Wppaian || 3%5,, [1,1,3 0,%,-3
32, |11, 0,3, % v, su@f || 3%, [11G 0,%,-2
B 1 1 7 B 1 1 7
3f, |1,1,¢ 01, £ 3B, |11 01 £
45*” 1,1,1,1 0,0,0, 3 (1, e, m, f) Zr-gauge 45 1,1,1,1 0,3,3,3%
a8 11,11 01,31 [ —2z)* || 48, [1,1,11 0,-1,-11
48 1,111 0,%,%,3 (220) double-layer 48 1,1,1,1 0,—4,-1,1
B 3 3 1 B 3 3 1
AR 03,31 42, JLuia 0,-3,-31
45 1,1,1,1 0,01, -1 double semion 455 1,1,¢,¢ 0,1, 5,2
B 1 1 1 3 2 B 1 1 1 7 2
foss | LG5 G 0%~ "5 s |LLGG 0.5 —2% %
4‘319/5 1,1,¢3, ¢4 0,1, I, -2 w2 _, su@)f 49° 1,63, ¢,¢3¢ 0,2, — 2,0 Fibonacci?
45 [1,63,6,6¢6 |0,-3, -3, % 4% s |LCh G G |02 28
a8 . 11,88, 0,3.2,-1 Bl |16 2 ¢ 0,-%1,-2,1
s [1,1,1,1,1 01,1, -1, -1 (223)DL 58 1,1,1,1,1 0,2,2,-2,-2
B,a 1 1 1 3 1 B,b 1 1 1 3 1
5§b l,l,Cg,C‘iﬂ 0,0,?7?51 5%5 1,1,@1,@},2 0,0,7??51
Pl IV Bk A S e SOV DA X N
515?/11 17(3»(37<g’gg Oviﬁvﬁvﬁﬁiﬁ 5E16/11 17C92»§37<37C9 Oaﬁviﬁviﬁyﬁ
4 1 1 1 3 4 1.1 1 3
5 1,¢5,65,¢12,C12 |0, =5, =7, 7,7 57 157 | 15 €555 Co5Kin [ 0575 7, =7, — 7
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Remote detectability: why those (N?,s;, ¢) are realizable

e The list cover all the 2+1D bosonic topological orders.
But the list might contain fake entries that are not
realizable.
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Remote detectability: why those (N?,s;, ¢) are realizable

e The list cover all the 2+1D bosonic topological orders.
But the list might contain fake entries that are not
realizable. Schoutens-Wen arXiv:1508.01111 used
simple current CFT to construct many-body wave
functions for all the entries in the list.

All the topological order in the table can
be realized in multilayer FQH systems
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Remote detectability: why those (N, s;, c) are realizable

e The list cover all the 2+1D bosonic topological orders.
But the list might contain fake entries that are not
realizable. Schoutens-Wen arXiv:1508.01111 used
simple current CFT to construct many-body wave
functions for all the entries in the list.

All the topological order in the table can
be realized in multilayer FQH systems

»

P8

Levin arXiv:1301.7355, Kong-Wen arXiv:1405.5858
e Remote detectable = Realizable (anomaly-free):
Every non-trivial topo. excitation / can be remotely detected by at
least one other topo. excitation j via the non-zero mutual braiding
QEJ-k) 40— Si=3>, N,’;je_m'(fk) dy is unitary (one of conditions)
— the topological order is realizable in the same dimension.
e The centralizer of BFC C = the set of particles with trivial mutual
statistics respecting to all others: C5" = {/ | Hl(.jk) =0, Vj, k}.
Remote detectable <» C5" = {1} <> Realizable (anomaly-free)
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Bosonic/fermionic topo. orders with /without symmetry

e “Topological” excitations with symmetry: Two particles are
equivalent iff they are connected by symmetric local operators.
Equivalent classes = topological types with symmetry

e Example: for G = SO(3):

- Trivial “topogical” types: spin-0. (centralizer=SFC)

- Non-trivial “topogical” types: spin-1, spin-2, - - - ~ irreducible reps.
(Cannot be created by local symmetric operators, but can be
created by local asymmetric operators.)

- Really non-trivial “topogical” types. (Other types)
(Cannot created by local symmetric operators, nor by local
asymmetric operators.)

e How to classify topological orders with symmetry?

How to classify fermionic topo. orders with/without symmetry?
Consider braided fusion category whose centralizer is non-trivial.
centralizer = symmetric fusion catgeory (SFC) = symmetry
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SFC = Exc. in bosonic/fermionic product states

with symmetry = a categorical description of symmetry

Symmetric fusion catgeories (SFC):

e For bosonic product states, 1) Particle are bosonic with trivial
mutual statistics (not remotely detectable);
2) Particles are labeled by irrep. R;.
Topological types = irreducible representation R; € Rep(G)
The fusion and the trivial braiding of R; define a spectial UBFC,
called symmetric fusion category (SFC) and denoted as Rep(G)
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SFC = Exc. in bosonic/fermionic product states

with symmetry = a categorical description of symmetry

Symmetric fusion catgeories (SFC):

e For bosonic product states, 1) Particle are bosonic with trivial

mutual statistics (not remotely detectable);

2) Particles are labeled by irrep. R;.

Topological types = irreducible representation R; € Rep(G)

The fusion and the trivial braiding of R; define a spectial UBFC,
called symmetric fusion category (SFC) and denoted as Rep(G)

e For fermionic product states, 1) Some particles are bosonic, and
others are fermionic, and all have trivial mutual statistics
2) Particles are labeled by irrep. R;. The full symm. group G*
contain fermion-number-parity / = (—)"Alf e G*.

- Topological types = irreducible representation R; (ex. spin-s)
The particle R; has a Fermi statistics if f £ 1in R;  (ex. spin-1)
The particle R; has a Bose statistics if f = 1in R;  (ex. spin-1)

- The fusion and bosonic/fermionic braiding of R; — SFC = sRep(G')
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:

e Bosonic topo. orders: trivial particle 1 is the only particle
that has trivial mutual statistics with all other particles.
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:

e Bosonic topo. orders: trivial particle 1 is the only particle
that has trivial mutual statistics with all other particles.

e Fermionic topo. orders: (1,f) = sRep(Z}) are the only
particles that have trivial mutual statistics with all others

— All abelian fermionic topogical orders
= bosonic topogical orders XI fermion product state
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:

e Bosonic topo. orders: trivial particle 1 is the only particle
that has trivial mutual statistics with all other particles.

e Fermionic topo. orders: (1,f) = sRep(Z}) are the only
particles that have trivial mutual statistics with all others

— All abelian fermionic topogical orders
= bosonic topogical orders XI fermion product state

e Bosonic topo. orders with symm. G: Rep(G) are the only
particles that has trivial mutual statistics with all particles.
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:

e Bosonic topo. orders: trivial particle 1 is the only particle
that has trivial mutual statistics with all other particles.

e Fermionic topo. orders: (1,f) = sRep(Z}) are the only
particles that have trivial mutual statistics with all others

— All abelian fermionic topogical orders
= bosonic topogical orders XI fermion product state

e Bosonic topo. orders with symm. G: Rep(G) are the only
particles that has trivial mutual statistics with all particles.

e Fermionic topo. orders with symm.: sRep(G’) are the only
particles that have trivial mutual statistics with all particles.
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UMTC ¢ and topological phases with symmetry/fermion

e To describe topological phases with symmetry/fermion, we need
- a unitary BFC C
- that contains a SFC €&,
- such that the particles (objects) in £ are transparent
- and there is no other transparent particles (objects).
— Unitary non-degenerate braided fusion category over a
SFC (UMTC ).
Using the notion of centralizer: C5*" = &, £5" = C.
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UMTC ¢ and topological phases with symmetry/fermion

e To describe topological phases with symmetry/fermion, we need
- a unitary BFC C

- that contains a SFC €&,

- such that the particles (objects) in £ are transparent

- and there is no other transparent particles (objects).

— Unitary non-degenerate braided fusion category over a
SFC (UMTC ).

Using the notion of centralizer: C5*" = &, £5" = C.

Can UMTC¢'s classify topological phases with symmetry/fermion?
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UMTC ¢ and topological phases with symmetry/fermion

e To describe topological phases with symmetry/fermion, we need
- a unitary BFC C
- that contains a SFC €&,
- such that the particles (objects) in £ are transparent
- and there is no other transparent particles (objects).
— Unitary non-degenerate braided fusion category over a
SFC (UMTC ).
Using the notion of centralizer: C5*" = &, £5" = C.

Can UMTC¢'s classify topological phases with symmetry/fermion?
Answer: No.

We also require the symmetry to be gaugable: the UMTC ¢ must
have modular extension.
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Why do we require modular extensions?

e The symmetry G in a physical system is always twistable (on-site)
ie we can always put the physical

system on any 2D manifold with
any flat G-connection, still with

consistent braiding and fusion.
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Why do we require modular extensions?

e The symmetry G in a physical system is always twistable (on-site)
ie we can always put the physical

system on any 2D manifold with x
any flat G-connection, still with @

consistent braiding and fusion.
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Why do we require modular extensions?

e The symmetry G in a physical system is always twistable (on-site)
ie we can always put the physical
system on any 2D manifold with
any flat G-connection, still with
consistent braiding and fusion.

e We can add extra particles that braid non-trivially with the
particles in SFC £, and make the UMTC ¢ C into a unitary
non-degenerate braided fusion category (ie an UMTC) M.

M is called the modular extension of C:

E=C—= M, DiDZ = D3,
In M, the set of particles that have trivial double-braiding with the
particles in £ is given by C. Using centralizer: C§' = &, £57" = C.

e Only UMTC ¢’s C that have modular extensions are
realizable by physical 2D bulk systems (maybe with
symmetry and/or fermion).
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2+1D fermionic topo. orders (up to p + ip) via (NU, Si, C)

Classified by UMTC /¢’s with & = {1,f}. : @
Lan-Kong-Wen arXiv:1507.04673 =%

©
NF(Alazz/lz,,) D? |di,dy, - 1,92, COmme"tA “
0(%2) 2 1,1 0,% Fo :sRep(ZZ) fermion product state
F(O 11 1 B0 _ (22
45 () 4 una 0,3,1,-1 Fom28(3) k=(39)
1.1
F (¢3¢ 1 41 11 2
4/5(3258) | 72360 1,1, G5, G5 0,3, 15, — 2 Fo &2_14/5(3/20)
aF (2 )| 7,360 | 1,1, ¢, ¢ 0,1, -1,2 FoR2B ( )
—1/5% _3/20 . » 463563 271075 0 14/5 3/20
F Cg- 2 ~2 11 1
41/4(1 ) 13.656 | 1,1,¢¢,66 =1+V2 [ 0,5, %, —% F(A;.6)
133 1
65(1/24) 6 1,1,1,1,1,1 0,4,¢,-1,1,-1 J—‘0®352(1/4) K = (3), Wy 3(z)
1
Fe € 1 11 11 B 1 _
6o _124) 6 1,1,1,1,1,1 015!767§v761§ ‘7?0&32(,1/4)}(*(*3) Wf/g(zi)
Fo ¢ 11 B (G
60(1/616) 8 1111111,C27C2:\/§ Oﬁ%aoa%v%ﬁ’—%ﬁ ]:0®31/2(1/616),fu(1)2/22
F Cg 1 .1 1 1 107 Cé
60(_1%6) 8 1,1,1,1,6,6 0,5,0,3,— 7> 1 -7:0@3,1/2( 1%16)
F(1.0823 1.1 0.765:
60(3/16) 8 1,1,1,1,4, 6 01%,0,%71%7—1% -7'-0&33/2( 3/16)
1.0823 0.7653
65(,3{16) 8 |1,1,1,1,¢3,¢} 0,3,0%,-3.& fo®353/2(,3/m)
2
F ¢3¢ 1 .1 .2 2 1 5 1 3 2
61/7(72 ?4) 18.501 1a15457C5v<57C5 O,f,ﬁ,77,7ﬁ,7 ~7:0®38/7( 5/14)
¢ 1 41 2 2 1 5 1 3 2
6,1/7(52/14?) 18.591 1:1:<5’C51C5,§5 0;5;*ﬁ’7vﬁ:*7 -7'-0®3 3/7(5/14)
ol
66( 2119, | 44788 | 1,1, ¢k, B¢l ¢y 0,33, -3.0.4 Flag,—10)
ocl
65 ( °lo) 44.784 | 1,1, 6o, ¢y, Clo, o | 0,3, — 3, £.0, 3 F(A;,10
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2+1D bosonic topo. orders with Z, symmetry

Classified by UMTC /¢'s

with centralizer £ = Rep(2).

N D? |di,da,--- | 51,5, -+ | comment
2521 2 1,1 0,0 £ = Rep(2)
362 6 |1,1,2 0,0, |k- G ;)
33212 6 [1,1,2 0,02 |k-= (j :;)
46 4 |1,1,1,1 0,01, 1 | Wil @ Rep(2,)
462 4 |1,1,1,1 (0,011 | W R Rep(2,)
45211 4 111,11 |0,0,3,3 | v ) K Rep(Z2)
45211 4 |L,1,1,1 (0,033 |WIPEY R Rep(22)
4?/5 72360 1,1,¢},¢1{0,0,2, 2 | 28,  ®Rep(2)
45214/5 7.2360 | 1,1,¢3,¢3 (0,0, 3,3 | 25, )5 M Rep(22)
48 | 10 [1,1,22 (0,018 k= G 3
1 2 1 0 O
452 10 [1,1,22 (00,23 |k=|} 2 9!
0 1 1 2

A
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2+1D bosonic topo. orders with Z, symmetry (conitnu

Nlel D? di,dy, - S1,80, " comment
T
282 2 [1,1 0,0 & = Rep(2)
T
5¢ 8 |1,1,1,1,2 |0,0,1,1,0|SB:4B F:Z, x 2
1
52 | 8 |1,1,1,1,2 [0,0,1,11|SB4EF:zx 2,
a 111 4B E.
5§ 8 |1,1,1,1,2 [0,0,1,1,1|SB:4B F:zo x 2
11 3 B E.-
552 8 [1,1,1,1,2 |0,0,1,1,3|5B:45 F'zzzfzﬁ 1
G 111 . 1 2 0 o0
5,2 8 |L,1,1,1,2 [0,0,5,5,5|SB4Z% (1 & 5
1 0 0 2
a 115 B
5%, 8 |1,1,1,1,2 |0,0,1,1,5|5B:48, F:Z, x 2
1
5%, 8 [1,1,1,1,2 |0,0,1,1,3|SB:4B, F.zo x 2,
1
52, 8 [1,1,1,1,2 |0,0,1,1,7|5B:4B F:Z, x 2
1
552 14 |1,1,2,2,2 (0,012 4 |sB:75
1
5%, | 14 [1,1,2,2,2 |0,0,2,2,8|SB:78,
1
5f§/5 26.180 | 1,1,¢2,¢2,¢4 0,0, 2,1, 3 SB:4132/5
3] 2 2 4 4 4 2 4B
52,5 26180 | 1,1,¢3, 3,4 (0,0, %, 2,2 | SB4E .

SB: 4(')3 — topo. order after symmetry breaking is Z»>-gauge theory.
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2+1D bosonic topo. orders with Z, symmetry (conitnu

The Z> symmetry is anomalous, since the following BF categories
have no modular extensions:

Nle‘ D2 | dy,do,--- | 51,50, - comment

2521 2 |1,1 0,0 £ = Rep(2,)

5521 8 (1,1,1,1,2(0,0,1,1,0 | SB:48 F:Z, anom.
52 | 8 |1,1,1,1,2 0,0,1,1,1|5B:48 F:Z, anom.
5¢ | 8 [1,1,1,1,2]0,0,3, 1,1 [SB:4B F:Z, anom.
59 | 8 [1,1,1,1,2(0,0,1, 1,2 [SB:4B F:Z, anom.
5? 8 |1,1,1,1,2]0,0,3,1,1 | SB:45 F:Z anom.
54_%3 8 (1,1,1,1,2|0,0,1,1, 2| SB:45, F:Z, anom.
5%, | 8 [1,1,1,1,2 0,0,1,%,3 |SB:4B, F:Z, anom.
52, | 8 |1,1,1,1,2 0,0,3,%,%|SB:48, F:Z, anom.
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Z>-gauge theory with Z, symmetry

The first rows of last two tables are identical.
They have identical d; but different N/

They are Z>-gauge theory 1, e, m, f, with Z, symmetry: e <> m

Fusion rules: 7, x Z» Zs
1o 11 fo A e®m lo 11 fiyn f30 e®m

s |0 0 3 2 0 s |0 0 3 3 0
|1 1 11 2 |1 1 1 1 2
T

5201 2 3 4 5 5911 2 3 4 5
11 2 3 & 5 11 2 3 4 5
22 1 43 5 22 1 4 3 5
33 412 5 3(3 4 2 1 5
414 3 21 5 414 3 1 2 5
5|5 5 5 5 10234354 5/5 5 5 5 1020304

Anomaly-free Anomalous

- F: Z» x Z> means that the four d; = 1 particles
have a fusion described by Z> x Z5.

- F: Z4 means that the four d; = 1 particles
have a fusion described by Zy:
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Fermionic topo. orders with mod-4 fermion number

conservation: symmetry G = Zf

Classified by UMTC ¢’s with centralizer £ = sRep(Z]):

Nc‘el D? di,do, - S1,80, "+ comment
43 4 [1,1,1,1 0,0,1,1 € = sRep(Z))
63 12 [1,1,1,1,2,2 0,0,%,1,1,2 Kzf(é f)
0 1115 _ (1 2
6 12 [1,1,1,1,2,2 0,0,1,1,1,8 K_<2 1)
0 1 1 1 1 3 3 B id
88 8 1,1,1,1,1,1,1,1 0101?7?’§»§1§7§ 2E1|Z|SR9P(%4)
080 8 1,1,1,1,1,11,11,11 ) 0,0,?,?,11,1,13,313 215®5Rep(24) .
8,014/5 14.472 1 1,1,1,1, Ciy €3,¢3,¢310,0,5,5, 75355 5 2514/5 X SReP(sz;)
85 | 14472|1,1,1,1,¢3,¢3,¢3,63 (0,05, 3. 2. 2. %5 1% 214/5®slfep(z4)
85 20 |1,1,1,1,2,2,2,2 0,03,3, 4.2, 3 SB:10{§(<021)
0 111 3 7 4 10F( S
89 20 |1,1,1,1,2,2,2,2 0,0,3,3: %15 157 & SB:10g (2,)
04 11 11 1 .qF 8
105(¢) 16 |1,1,1,1,1,1,1,1,2,2 |1 0,0, 3, 3,0,0,5, 5,0, 5 SB,SO(\O[)
4 8
100(¢3) 16 (1,1,1,1,1,1,1,1,2,2 [ 0,0, 1,3,0,0, 1, 3,0, 3 | sB:8f ()
2
103(1‘@) 16 [1,1,1,1,1,1,1,1,2,2 [0,0,1,1,0,0,4, 1, 1,5 | sB:sf(,75)
0, V8 11 1115 oF( 2
100(168) 6 [1,1,1,1,1,1,1,1,2,2 [0,0,3,4,0,0,4,1, 1,8 SBABO(é/S)
1o§(8) 16 [1,1,1,1,1,1,1,1,2,2 | 0,0, 3, },0,0, 1,1, 13 SB:S(E(S)
11 111 3 .
100(% 16 |1,1,1,1,1,1,1,1,2,2 | 0,0,%,3,0,0, 3, 1,1, 3 saso(o)2
109( Yjg) | 16 |1,1,1,1,1,1,1,1,2,2 | 0,0,3,3,0,0, 5,3, %, Z | sB:8f( _{/5)
0 V8 11 113 7 oF( 2
109( %) | 16 |1,1,1,1,1,1,1,1,2,2 | 0,0,%,1,0,0,3, 1, 3,7 | sBi8f(_2;)
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Distinct topo. phases with identical set of bulk excitations

In the presence of symmetry/fermion, there are distinct topological
phases, such as SPT phases with the same symmetry, that have
identical bulk excitations. But they have different edge structures.

&1 topological order  SASY-LRE 1|SY—LRE2 | SET orders

(non—deg. UBF category) — intrinsic topo. order — (UBF ;zll:t(e:gory
U351 ‘ LLI3E 2 sB-LRE1|sB-LRE) )
symmetry breaking
SB-SRE 1 ‘ SB=SRE2 " (group theory)
SKRE SY-SRE 1 ‘ SY-SRE2 SPT orderes
(group cohomology
No symmetry 8 With symmetry 8§, theory)

e A UMTC ¢ C only describes the bulk excitations. But it can have
several different modular extensions. — Distinct topological phases
with identical set of bulk excitations, but different edge structures.
The main conjecture: Lan-Kong-Wen arXiv:1602.05946

- The triple (Rep(G) < C <— M) classifies 241D bosonic
topological phase with symmetry G.

- The triple (sRep(G) < C = M) classifies 241D fermionic
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From physical picture to mathematical theorem

e Stacking two topological phases a, b with symmetry G give rise to

a third topological phase
¢ = aWgiack b with c—TO a=TO
symmetry G b-TO

- For a fixed SFC &, there exists a “tensor product” X, under
which the triple (£ — C — M) form a commutative monoid

(€ —C1 = Mp)Kg (€ = Cor — M) = (€ — C3 — M3)

- K¢ is different from the Deligne tensor product X:
(5%61‘—)M1)|X(5‘—)C2‘—>M2)
= (5&5%& &Cz ‘—>M1®M2)

which has a symmetry G x G. Need to be reduced to G (or &).

- Lan-Kong-Wen arXiv:1602.05936 has constructed X¢ using
condensable algebra L = $,ccaX 3 :
E=(EREN,, C=(C1REG), Msz=(MiEM,),
eg, M is the category of local Lc-modules in M X M,

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



From physical picture to mathematical theorem

e {(£ < C < M)} describes topological phases with symmetry £.
Its subset {(£ < £ < M)} describes symmetry protected trivial
(SPT) phases, which forms an abelian group under the stacking.

- For a fixed SFC &, the modular extensions of £ form an
abelian group. X¢ is the group product, the Drinfeld center Z(&)
is the identity, and the “complex conjugate” is the inverse.

- A special case: {(Rep(G) — M)} = H3*(G,R/Z)
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From physical picture to mathematical theorem

e {(£ < C < M)} describes topological phases with symmetry £.
Its subset {(£ < £ < M)} describes symmetry protected trivial
(SPT) phases, which forms an abelian group under the stacking.

- For a fixed SFC &, the modular extensions of £ form an
abelian group. X¢ is the group product, the Drinfeld center Z(&)
is the identity, and the “complex conjugate” is the inverse.

- A special case: {(Rep(G) — M)} = H3*(G,R/Z)

- The modular extensions of Rep(G), (Rep(G) — M), classifies
241D bosonic SPT phases with symmetry G.

- The ¢ = 0 modular extensions of sRep(G’), (sRep(G’) — M),
classifies 241D fermionic SPT phases with symmetry G*.
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From physical picture to mathematical theorem

e {(£ < C < M)} describes topological phases with symmetry £.
Its subset {(£ < £ < M)} describes symmetry protected trivial
(SPT) phases, which forms an abelian group under the stacking.

- For a fixed SFC &, the modular extensions of £ form an
abelian group. X¢ is the group product, the Drinfeld center Z(&)
is the identity, and the “complex conjugate” is the inverse.

- A special case: {(Rep(G) — M)} = H3*(G,R/Z)

- The modular extensions of Rep(G), (Rep(G) — M), classifies
241D bosonic SPT phases with symmetry G.

- The ¢ = 0 modular extensions of sRep(G’), (sRep(G’) — M),
classifies 241D fermionic SPT phases with symmetry G*.

e There can be several topological phases that have identical bulk
excitations. They are related by stacking SPT phases.

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



From physical picture to mathematical theorem

e {(£ < C < M)} describes topological phases with symmetry £.
Its subset {(£ < £ < M)} describes symmetry protected trivial
(SPT) phases, which forms an abelian group under the stacking.

- For a fixed SFC &, the modular extensions of £ form an
abelian group. X¢ is the group product, the Drinfeld center Z(&)
is the identity, and the “complex conjugate” is the inverse.

- A special case: {(Rep(G) — M)} = H3*(G,R/Z)

- The modular extensions of Rep(G), (Rep(G) — M), classifies
241D bosonic SPT phases with symmetry G.

- The ¢ = 0 modular extensions of sRep(G’), (sRep(G’) — M),
classifies 241D fermionic SPT phases with symmetry G*.

e There can be several topological phases that have identical bulk
excitations. They are related by stacking SPT phases.
- All the modular extensions of a UMTC ¢ C are generated by
Xeing with the modular extensions of &:
(E—=C = M)=(E=C— M) Re (£ =L — M)
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Bosonic 2-+1D SPT phases from modular extensio

e Z>-SPT phases:

Nie[ D? | dy,do, - | 51,5, | comment
T
22 | 2 1,1 0,0 Rep(Z>)
45 14 1,1,1,1 Jo,0, o,l% Z, gauge
4(")3 4 11,1,1,1 10,0, %, 7 | double semion

Nle‘ D? | dy,dp,-- S1,82, " comment
3% |6 1,12 0,0,0 Rep(S3)
88 [36]1,1,2,2,2,2,3,3 o,o,o,o,%,%,o,l% S3 gauge
8¢ |36(1,1,2,2,2,2,3,3 o,o,o,o,g,%,%,g

8¢ 36(1,1,2,2,2,2,3,3]0,0,0, %, 2,£,0,% | (Bs,2)

8¢ |36(1,1,2,2,2,2,3,3 o,o,o,%%,%,%é

88 [36(1,1,2,2,2,2,3,3 o,o,o,f,g,g,o,%3 (Bs, —2)
8¢ 36(1,1,2,2,2,2,3,3 o,o,o,g,g,g,%,Z
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Fermionic 2+1D SPT phases from modular extensions

e ZI-SPT phases (16 modular extensions, 1 with ¢ = 0):

Nl.el D? | di,dp, - | s1,%, -+ | comment
28 1201,1 0,1 sRep(ZJ)
45 14 ]1,1,1,1 [0,5,0,0 |2 gauge
48 14 11,111 o,i,l,l F:Z,

48 1 411,111 0%%% F:Z> x Z»
48 1 411,111 o,%,§,§ F:Z,

48 1 411,111 0’%’@’3 F:Z x 2,
48,1 4 11,1,1,1 0’§’§’§ F:Z,
48, 1 4 11,1,1,1 ng’z’z F:Z, x 2,
48,14 11,1,1,1 o,%,g,g F:Z,
3?2 4 1,1,421 o,%,% p+ipSC
3%, | 4|LLG 0,3, =

35/2 4 1,1,¢3 0,3, %

35/2 4 1,1,¢ 0,1, %

3’37/2 4 1,1,¢ 0,1, %

3'35/2 4 1,1,¢ 0,1, 4

3'33/2 4 1,1,¢ 0,1,

38, 41,1, 01,8
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Fermionic 2+1D SPT phases from modular extensions

e Z/-SPT phases (only 8 modular extensions, 1 with ¢ = 0):

Nle‘ D? | di,dp, - | 51,5, comment
T 1
49 14 ]1,1,1,1 0,0,5,5 sRep(Z))
165 [ 16 [1x 16 0,0,%,,0,0,0,0,0,0,7, 7,5, %,3,3
168 |16 |1x16 |00 L1 1 111 1°1%9"8 % 17 25 2
1 sV 555, ) 78787878 ; ; ) ) )
165 |16 |1 x 16 ooiiffiififgﬁﬁﬁﬁsf?&zf?
2 ) 7%7%7 ’ ’ 7474’4716’1g7%87i8759759 1 1
165 |16 |1x16 |0,0,1,2 3 3 LAl 3/ 3°3°2 1B B o 2
B TN 111232 %0 120,808 8083y 3 s 32 oo B
164 16 |1 x 16 0107?7?171§7§7§ag7§7§7§1§1§7§7§ 43&41
168 16 |1 x 16 00 i 1 5 5 15 I3°5°5°5°5°21 21 29 29
5 P PR YRR HNEESLR R R s o8
1672 16 |1 x 16 O0)EvéaE)@)@)@7@7?717171)17?)? 87]_‘X|271
168,116 |1x16 0,01, 1 L L B D e e 11 1 308l
—1 72227327322 32732°32°32°8782878 327 32
f .
e Z;-SPT phases: Z; class
8 - 42
NPT D? [ di,dy,-- [ s1,50, -
80 [ 8]1x8 0,2,0,7,0,7,0,%
1 1 1 1 T 1T 1T 1
64(? 64 |1 x 64 07§7oa§70757075707oa07070a0707070707070»07070»07§7§7§»§v
111°11°11°13333111111115555
%7%7§’g’§’§7§7§7§7§7§?§’2’27272727272?2’8’87878!
s 4044°4°2,4°274878°8" 8 L1
645 | 64 |1 x 64 0,3,0,3,0,3,0,4,0,0,0,0,0,0,0,0,0,0,0,0, 3, 3¢, 7, 75
3'3 3 311115 5 5 5 7 7 7 7 1111
167 16’ 167 167 4747 47 4° 167 16° 16’ 162 16’ 16’ 16’ 16’ 2’ 27 27 2"
9 0 9 9 11 11 1 11 3 3 3°3 13 13 13 13 15 15 15 15
162 162 162 162 167 167 167 162 4° 4> 4> 47 16°16° 162 16’ 16’ 16’ 16’ 16
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Fermionic 2+1D SPT phases from modular extensions

e ZI x Z,-SPT phases (128 modular extensions, 8 with ¢ = 0):

Nlel D? |dy,do,--- S1,82, " comment
8 1401,1,1,1 0,0, ;,; s,Rep(z2 x ZF)
B 1 1 A1 A1 I 1 7 9 15
90 16 1X4’C27<27<2)C2a2 00’5’5’%’173’?6’?670 3 1/2&31/2
98 |16 |1x4,¢},¢3,¢3,¢3,2(0,0,3, 3, 55, &% 1% 12,0 3B 1/2&31/2
95 |16 |1x4,(3,3,¢3,83,2(0,0,3, 3, 15 167 16+ 160 3%, &3/
B 1 1 1 +1 11 3 5 11 13
9% |16|1x4,6,0,6,6:2(|0,0,3,5,35 35 16 16 ° 38 3/2&3/
165 |16 |1 x 16 0,0,%,% ooooooo,o,%,%,%,% 48 =4
165 |16 |1 x 16 °’°§50000§’§’§’§’57§’§’% 4§1®4f
168 | 16 |1 x 16 0,0,g,%,o,o,o,o,?ﬂ?,ﬂf,f,ﬂg 48 W48
165 | 16 |1 x 16 070,57%70707070717ZvZ?Z?Z7Z7ZVZ 88, 258
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Bosonic 2+1D Z,-SET phases from modular extensions

e Z>,-SET phases (Z>-gauge with Z> symmetry e <> m)
4 modular extensions, 2 distinct phases:

Nie‘ D2 | di,db, - 51,8, comment
5521 8 |1x4,2 0,01, 10

9 |16 |1xa2¢cixalo0d 408 & & & (3%, ,K37,
95 |16 |1x42.¢x4003.3.03. 8. 8. 535,835, ,
9 |16 [1xa2¢cixalo0d 404 B & & [37,835, ,
95 |16 |1x42.¢x400.3. 308 5 5 1[35,,K35,

e Z»,-SET phases (Z>-gauge with Z, symmetry e <> m,
plus fermion condensation to v = 1 IQH state)
4 modular extensions, 3 distinct phases:

Nlel D2 | di, b, - S1, 80, - comment
52 | 8 [1x4,2 003,11

9F [16|1xa2cdx4al00..3. 5. & & % 5% 35/2@352
of |16 |1xa2cix4]00 b B85 5(3%,,835,
9% [16 [1x4a2,cdxaf001, 11,8, %, L 1 3’31/2®3’§/2
of |16 |1xa2cix4[00 .88 % 8 8 535,835,
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Zoo of quantum phases of matter
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