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Central to our understanding of quantum many particle physics are two ideas due

to Landau. The first is the notion of the electron as a well-defined quasiparticle excita-

tion in the many body state. The second is that of the order parameter to distinguish

different states of matter. Experiments in a number of correlated materials raise serious

suspicions about the general validity of either notion. A growing body of theoretical work

has confirmed these suspicions, and explored physics beyond Landau’s paradigms. This

article provides an overview of some of these theoretical developments.
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1. Introduction

Much of our understanding of quantum many electron physics rests on two central

ideas which may be traced to Landau. The first is the notion that the electron

retains its integrity as a quasiparticle excitation above the quantum ground state

of the many particle system. This notion underlies Landau’s celebrated Fermi Liq-

uid theory of metals but is also shared by many familiar phases of matter (band

insulators, BCS superconductors, spin density waves, .....). This is true even if mi-

croscopically the electrons interact reasonably strongly with each other. The other

important idea of Landau is that of the order parameter to classify and distinguish

phases of matter. Closely related is the notion of spontaneously broken symmetry

- indeed the Landau order parameter quantifies the amount of symmetry breaking

in any ordered phase. The concept of the order parameter plays an important role

in phase transition theory. The universal critical singularities at second order phase

transitions are usually attributed to the long wavelength fluctuations of the order

parameter degrees of freedom. When combined with general renormalization group

ideas this gives a sophisticated theoretical framework - often known as the Landau-

Ginzburg-Wilson(LGW) paradigm - for describing phase transition phenomena.

Both of these two notions - the integrity of the electron and the Landau order

parameter - are so fundamental that they are routinely taught at the early stages

of a solid state physics education. Remarkably in the last several years, a number

of experimental developments have challenged the general applicability of either
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of these two basic notions to quantum condensed matter. The best known is the

phenomenon of the quantum Hall effect that occurs in a two dimensional electron gas

in high magnetic field1. The quantum Hall systems are striking and well-established

examples of the violation of both of Landau’s paradigms. Indeed the electron does

not in general survive as a quasiparticle2 in fractional quantum Hall states nor is

the order in such a state captured by a local Landau order parameter3.

Since the discovery and explanation of the quantum Hall effect, a number of

other remarkable phenomena have been found in other correlated electron systems

which are poorly understood. Perhaps the most notorious is the problem of high

temperature superconductivity but there are many others as well. Examples include

a host of “non-fermi liquid” phenomena in the rare-earth intermetallics known as the

heavy fermions4, various kinds of materials near Mott metal-insulator transitions,

etc. Many of these long standing problems in condensed matter theory seem not

to yield to any conventional thinking. They presumably require new methods of

attack, new languages, and perhaps even new conceptual advances. At any rate these

experimental discoveries certainly lead to the suspicion that Landau’s paradigms

may breakdown in serious ways in correlated many electron systems. In the last

few years, this suspicion has been strikingly confirmed by a variety of theoretical

advances that unquestionably demonstrate the inadequacies of Landau’s paradigms

for a general understanding of correlated matter.

This article provides an overview of these theoretical developments. We begin

by briefly discussing phases of quantum matter that do not fit in with Landau’s

ideas. We then discuss very recent work on the breakdown of the Landau paradigm

at zero temperature ‘quantum’ phase transitions.

2. Breakdown of Landau paradigms in correlated quantum phases

As mentioned above the fractional quantum Hall effect provides a well-established

(and by now old) example of a correlated phase that violates Landau’s paradigms.

An even older example is provided by one dimensional systems such as (half-integer)

quantum spin chains or polyacetylene5. A more modern realization of one dimen-

sional physics occurs in the Carbon nanotubes6. In these examples, the electron

does not retain its integrity as a quasiparticle excitation. Rather the excitations

have quantum numbers that are fractions of those of the electron.

One of the most interesting theoretical developments in the last several years

is the realization that such ‘broken electron’ phenomena are not restricted to such

extreme situations as one dimension or two dimensions in strong magnetic fields.

Indeed it has become clear that electrons can break apart in regular solids with

strong electron-electron interaction in any spatial dimension. The electron does not

survive as a quasiparticle in such phases of matter - instead there are excitations

with quantum numbers that are fractions of those of the electron.

A great deal has been learnt about these ‘fractionalized’ phases in d ≥ 2 at

zero magnetic field theoretically. The structure of the excitation spectrum (or
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more generally the structure of the low energy effective field theory) has been

elucidated7,8,9,10,11,12. These phases have a certain kind of ‘order’ that is not cap-

tured by a local Landau order parameter. Rather the ordering is a global property

of the many electron ground state wavefunction13,8,14 - often referred to as ‘topolog-

ical order’. This kind of order generalizes and is indeed distinct from the old notion

of spontaneously broken symmetry. Several concrete and simple microscopic mod-

els which display these phenomena exist in both two15,16,17,18,19,20,21,22 and three

spatial dimensions20,23,24,25. Prototypical ground state wavefunctions for a number

of such fractionalized states can be written and explicitly shown to possess prop-

erties (such as topological order) expected on general grounds13,26. Finally there

even exist some ideas on how to directly detect certain kinds of topological order in

experiments14,27,28.

All of this is spectacular theoretical progress - much of it happened in the last

five or so years and builds on important ideas and results29,13,7,8 from the early

days of high-Tc theory. In particular many of the theoretical criticisms levelled

against these ideas have now been satisfactorily answered. However there still is

no unambiguous identification of such broken electron phenomena in experiments

other than the previously established instances (FQHE and d = 1).

Where else might it happen? The theoretical understanding provides some hints.

It has long been appreciated that frustrated quantum magnets may be a good place

to look for such physics. It has also become clear that other promising candidates

are not-so-strongly correlated materials. This may be seen explicitly in some of the

microscopic models showing fractionalization where it appears in intermediate corre-

lation regimes where neither kinetic nor potential energy overwhelmingly dominates

the other20. Further support is provided by the observation that in spin systems

fractionalization is promoted by multi-particle ring exchange terms30,10,18ch terms

become increasingly important for the spin physics of Mott insulators as one moves

away from the very strong interaction limit (decreasing U in a Hubbard model de-

scription). Thus Mott insulators that are not too deeply into the insulating phase

or quantum solids such as He-3 or He-4 near melting may be good places to look as

well.

3. Breakdown of Landau paradigms at quantum phase transitions

We now turn to the breakdown of Landau’s paradigms at zero temperature ‘quan-

tum’ phase transitions. That this might happen was originally hinted at by various

distinct kinds of observations in the literature. First as reviewed in the previous sec-

tion, Landau order parameters do not necessarily capture the true order in quantum

phases. Then it is quite natural that transitions out of such phases are not described

by Landau ideas either. For instance continuous transitions exist between distinct

quantum Hall states which clearly cannot be described in terms of simple order

parameter fluctuations a’la Landau. But what about transitions out of of phases in

which Landau order parameters do capture the order? Here at least one might have
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hoped for Landau ideas on phase transitions to work. We now review recent work

showing that even in this case the Landau paradigm breaks down.

The possibility of such a breakdown is suggested by two different observations.

The first is in numerical calculations on various quantum transitions that see a direct

second order quantum phase transition between two phases with different broken

symmetry characterized by two apparently independent order parameters31,32. This

is in general forbidden within the Landau approach to phase transitions except at

special multicritical points. A similar phenomenon is also seen in experiments33 on

the heavy fermion compound UPt3. At low temperatures, this is a superconductor

(believed to be triplet paired). Upon doping Pd into the Pt site, the supercon-

ductivity very quickly disappears and is replaced instead by an antiferromagnetic

metal. Within the resolution of the existing experiments these two different kinds

of order (superconductivity and antiferromagnetism) seem to be separated by a di-

rect second order transition - within Landau order parameter theory this too would

be a special accident. However the surprising frequency with which such ‘Landau-

forbidden’ quantum transitions show up suggests a reexamination of the validity of

the Landau paradigm itself.

A second and perhaps more important reason to suspect the general validity of

the Landau paradigm comes from a number of fascinating experiments probing the

onset of magnetic long range order in the heavy fermion metals4. Remarkably the

behavior right at the quantum transition between the magnetic and non-magnetic

metallic phases is very strikingly different from that of a fermi liquid. The natural

assumption is to attribute the non-fermi liquid physics to the universal critical

singularities of the quantum critical point. Within the Landau paradigm these will

be due to long wavelength long time fluctuations of the natural magnetic order

parameter. In other words the hope is that Landau’s ideas on phase transitions

may perhaps be used to kill Landau’s theory of Fermi Liquids. However theories

associating the critical singularities with fluctuations of the natural magnetic order

parameter in a metallic environment34 seem to have a hard time explaining the

observed non-fermi liquid phenomena. This failure once again fuels the suspicion

that perhaps the Landau approach to phase transitions is incorrect. Specifically

other phenomena such as the possible loss of Kondo screening of local moments may

contribute35 to and perhaps even dominate the critical singularities36. This kind of

thinking - particularly the latter possibility - is clearly outside the LGW framework

for critical phenomena. In other words the Landau order parameter (even if present)

may distract from the fluctuations responsible for the true critical behavior.

These suspicions have been strikingly confirmed in recent theoretical work37,38

on quantum phase transitions in insulating magnets in two spatial dimension. As

usual insulating magnets provide a good theoretical laboratory to study phase tran-

sition phenomena. A number of results have been found which quite clearly demon-

strate the failure of LGW theory at certain (but not all) quantum phase transitions.

In all the examples studied so far the critical phenomenology is instead apparently

most conveniently described in terms of objects that carry fractional quantum num-
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Fig. 1. Schematic picture of a columnar VBS state showing the four degenerate ground states.

The encircled lines represent the bonds across which the spins are paired into a valence bond. The

four ground states are associated with four different orientations of a Z4 clock order parameter.

bers and which interact with each other through emergent gauge forces. These

fractional objects do not necessarily exist (as good excitations) in the two phases

but become useful degrees of freedom at the quantum critical point. This kind of

phenomenon has been dubbed ‘deconfined’ quantum criticality - with a sharp and

specific meaning of the term ‘deconfined’.

Consider a spin-1/2 antiferromagnet on a two dimensional square lattice de-

scribed by a Hamiltonian of the general form

H = J
∑

<rr′>

~Sr.~Sr′ + ....... (1)

The ~Sr are spin-1/2 operators and J > 0 is the nearest neighbour exchange constant.

The ellipses represent other interactions such as a diagonal exchange or multiparticle

ring exchange that may be tuned to drive phase transitions. In the absence of

these extra terms the ground state is known to have long ranged Neel order. The

corresponding order parameter is a vector in spin space ~N ∼ (−1)(x+y)~Sr. For

suitable choices of the extra terms it is expected that the ground state will not have

long range Neel order even at zero temperature. The simplest of such ‘quantum

paramagnets’ are states known as valence bond solids(VBS) - see Fig. 1 In a cartoon

of such states each spin forms a singlet valence bond with one of its neighbours. The

resulting dimers stack up in some particular pattern in the VBS ground state. The

resulting state clearly has spin rotation symmetry but the pattern of dimer ordering

breaks various lattice symmetries. Clearly the order parameter for the VBS state is

a spin singlet that transforms non-trivially under the lattice space group operations

- it is readily constructed out of the bond energy operators ~Sr.~Sr′ . The elementary

spin-carrying excitations in this phase are gapped spin triplet particles.
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In a naive Landau description of the two phases that focuses only on the low

energy order parameters, a direct second order transition is not expected except at

fine tuned multicritical points. However this naive expectation has been argued to

be incorrect. A generic second order transition is possible between these two phases

with different broken symmetries. The resulting critical theory is however unusual

and not naturally described in terms of the order parameter fields of either phase.

The key reason behind this violation of naive Landauesque expectation lies in

the observation39,40 that topological defects in either order parameter carry non-

trivial quantum numbers. In particular the defects in one order parameter transform

in the same way under the microscopic symmetries as the order parameter for the

other phase. Thus when the defects in, say the Neel vector configuration, proliferate

they destroy long range Neel order. However the non-trivial quantum numbers they

carry induces VBS order in the resulting paramagnet41.

In the theory of Ref. 37, 38 the natural description of the transition is in terms

of spin-1/2 “spinon” fields zα (α = 1, 2 is a spinor index). The Néel order parameter

is bilinear in the spinons:

~N ∼ z†~σz. (2)

Here ~σ is the usual vector of Pauli matrices and multiplication of the spinor index

is implied. The fields zα create single spin-1/2 quanta, “half” that of the spin-1

quanta created by the Néel field ~N . The analysis of Ref. 37,38 shows that the correct

critical field theory has the action Sz =
∫

d2rdτLz , and

Lz =

2
∑

a=1

| (∂µ − iaµ) za|
2 + s|z|2 + u

(

|z|2
)2

+ κ (ǫµνκ∂νaκ)
2
, (3)

This is distinct from both the O(3) universality class in D = 3 (as might have

been expected based on the Neel order parameter) or the Z4 universality class

(as expected from the Z4 VBS order parameter). The distinction with the O(3)

universality class may be a bit puzzling to field theorists familiar with the CP 1

description of the O(3) non-linear sigma model - the crucial point is that the gauge

field in Eqn. 3 above is non-compact. As explained in Ref. 42 with a non-compact

gauge field this model does not describe the usual O(3) ordering transition in D = 3

- rather it describes the transition43 in O(3) models wehere ‘hedgehog’ defects have

been suppressed by hand44. Ref. 42 also contains detailed numerical calculations of

critical exponents for the transition in the model Eqn. 3. The non-compactness of

the gauge field leads to an extra emergent conservation law (conserved gauge flux)

that helps give precise meaning to the notion of deconfinement at the critical point.

This conservation law emerges only at the critical point and does not obtain away

from it in either phase.

The critical behavior at this transition is strikingly anamolous - indeed it may

be viewed as the moral equivalent of ‘non-fermi liquid’ behavior in this insulating
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context. For instance the magnon spectral function is extremely broad when com-

pared to other quantum transitions - the exponent η is estimated42 to be ≈ 0.6,

bigger by an order of magnitude as compared to the conventional O(3) fixed point.

This may roughly be understood as being due to the decay of magnons into the

spinon degrees of freedom. A number of other interesting properties - such as the

presence of more than one diverging length/time scale - have also been found37,38.

The Neel-VBS transition is not the only example of this kind of quantum phase

transition. A number of other transitions in quantum antiferromagnetism have been

shown to have many similarities with the phenomena described above. These in-

clude the transition from the VBS state to a gapped ‘spin liquid’ paramagnet38

and quantum transitions between two different patterns of VBS ordering on certain

lattices45,46 (for instance in a bilayer honeycomb lattice). Further deconfined criti-

cal phases described by gapless Dirac-like fermionic spin-1/2 objects coupled to an

emergent non-compact U(1) gauge field have been shown to exist as stable quan-

tum phases47 in two space dimensions. Thus it appears that the phenomenon of

deconfined quantum criticality is reasonably common in two dimensional quantum

magnets.

Easy plane versions of quantum spin-1/2 models have also been examined and

shown to have Landau-forbidden transitions and asociated deconfined quantum crit-

ical points37,38. These may also be fruitfuly viewed as superfluid-insulator transi-

tions of bosons at half-filling on the square lattice. The case of bosons at a general

commensurate filling p/q has been examined recently48 - again the topological de-

fects have been shown to carry non-trivial quantum numbers which in turn leads

to non-trivial order in the insulating phase. Direct second order Landau-forbidden

transitions seem possible for a number of special fillings.

4. Conclusions

The developments discussed above provide a theoretically important zeroth order

answer to the basic question posed by experiments in modern correlated electron

physics: Can Landau’s ideas breakdown in quantum matter more generally than in

one dimension or the quantum Hall effect? While the theoretical progress at this

basic level has been dramatic, we do not at present know what role, if any, it will

play in understanding existing experiments on materials such as the cuprates or the

heavy fermions. Nevertheless the intuition gleaned from these results will hopefully

suggest ways of thinking correctly about such experimental problems.
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