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Abstract
The recently discovered Fe-pnictide and chalcogenide superconductors display low-temperature properties
suggesting superconducting gap structures which appear to vary substantially from family to family, and even
within families as a function of doping or pressure. We propose that this apparent nonuniversality can actually
be understood by considering the predictions of spin fluctuation theory and accounting for the peculiar
electronic structure of these systems, coupled with the likely ‘sign-changing s-wave’ (s±) symmetry. We
review theoretical aspects, materials properties and experimental evidence relevant to this suggestion, and
discuss which further measurements would be useful to settle these issues.

Satisfactoriness has to be measured by a multitude of standards, of which some, for aught we know,
may fail in any given case; and what is more satisfactory than any alternative in sight, may to the end
be a sum of pluses and minuses, concerning which we can only trust that by ulterior corrections and
improvements a maximum of the one and a minimum of the other may some day be approached.

William James, Meaning of Truth

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

1.1. Aim and scope of this paper

The iron arsenide superconductor LaFeAsO with critical
temperature 26 K was discovered in 2008 by Hideo Hosono

and collaborators [1]. Within two months, materials based on
substitution of La with other rare earths had been synthesized,
raising the critical temperature of Fe-based superconductors
(FeBS) to 55 K. This rapid sequence of discoveries captured
the attention of the high-temperature superconductivity
community. The following three years saw the discovery
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of several related families of materials, the rapid calculation
of their electronic structure within density functional theory
(DFT), and the development of microscopic models for
superconductivity largely based on these DFT calculations.
The existence of a second class of high-temperature
superconductors is generally agreed to be important not only
for the possible existence of materials with even higher Tcs
within the same class of Fe-based materials, but because the
comparison with the cuprates can allow one to potentially
understand the essential ingredients of high-temperature
superconductivity. Because of the extremely rapidly
advancing nature of the field, the perils of writing a review are
obvious. Several authors have nevertheless recently attempted
to summarize the status of research in this area, and we have
benefited greatly from the existence of these works [2–10].

We intend in this smaller scope review to focus on
one particular question among the several fascinating issues
surrounding the FeBS, namely the symmetry and structure
of the superconducting gap. In the study of cuprate
superconductors, the dx2−y2 symmetry of the gap, with cos kx–
cos ky structure, was empirically established soon after high
quality samples were prepared, by penetration depth, angle
resolved photoemission spectroscopy (ARPES), NMR and
phase sensitive Josephson tunneling experiments. After three
years of intensive research on the FeBS, no similar consensus
on any universal gap structure has been reached, and there is
strong evidence that small differences in electronic structure
can lead to strong diversity in superconducting gap structures,
including gaps with nodes in some and full gaps in other
materials. The actual symmetry class of most of the materials
may be the same, of generalized A1g (s-wave) type, probably
involving a sign change of the order parameter between
Fermi surface sheets in most materials. In addition, there
have been recent suggestions that some related materials,
furthest from the nearly compensated semimetal band structure
of the originally discovered compounds, may have d-wave
symmetry. Understanding both the symmetry character of
the superconducting ground states and the detailed structure
should provide clues to the microscopic pairing mechanism
in the pnictides and thereby a deeper understanding of the
phenomenon of high-temperature superconductivity.

A complete review of the literature of even the more
focused problem of gap structure we consider here is beyond
the scope of our paper. We have attempted to select those works
we find most relevant (or at least sufficiently representative) to
the questions we believe to be important:

• What do experiments tell us about the pairing symmetry
and gap structure of the Fe-based materials, and what
systematic trends can one identify?

• How do changes in electronic structure drive changes in
gap symmetry and structure?

• What physical effect drives pairing in Fe-based materials?
Is more than one important, at least in some materials?

• What role does disorder play, and how is it related to
changes in carrier densities, electronic structure, and
pairing interactions?

If any works in this category have been omitted or slighted,
we beg the authors will attribute it to ignorance or haste rather
than malice!

1.2. Fe-based superconductors

1.2.1. Comparison with cuprates. High-Tc cuprates are
known for their high critical temperature, unconventional
superconducting state and unusual normal state properties.
The FeBS, with Tc up to 55 K in SmFeAsO1−xFx stand in
second place after cuprates and 15 K above MgB2. When
superconductivity in the FeBS was discovered, the question
immediately arose: how similar are they to cuprates? Let us
compare some of their properties.

Both cuprates and FeBS have 2D lattices of 3d transition
metal ions as the building blocks. In both cases orthorhombic
distortions can be present at small doping. The main structural
difference in these planes is that the 2p-ligands lie very nearly
in the plane with the Cu in cuprates, while in FeBS As, P,
Se or Te lie in nearly tetrahedral positions above and below
the Fe plane. The in-plane subset of Cu d-orbitals eg are
both present near the Fermi level, and of these, the planar
dx2−y2 is quite dominant (see, however, [11]), allowing in
principle the reduction of the multiband electronic structure to
a low-energy effective one-band model. In FeBS, on the other
hand, out-of-plane As hybridize well with the t2g Fe d-orbitals
and all three of them have weight at the Fermi surface. In
addition (as opposed to the cuprates), there is substantial
overlap between the d-orbitals. The minimal model is then
essentially multiband and that makes FeBS in this respect more
similar, e.g. to ruthenates than to cuprates.

At first glance, the phase diagrams of cuprates and many
FeBS are similar. In both cases the undoped compounds
exhibit antiferromagnetism, which vanishes with doping;
superconductivity appears at some nonzero doping and
then disappears, such that Tc forms a ‘dome’. While in
cuprates the long-range ordered Néel phase vanishes before
superconductivity appears, in FeBS the competition between
these orders can take several forms. In LaFeAsO, for example,
there appears to be a first order transition between the magnetic
and superconducting states at a critical doping value, whereas
in the 122 systems the superconducting phase coexists with
magnetism over a finite range and then persists to higher
doping. It is tempting to conclude that the two classes
of superconducting materials show generally very similar
behavior, but there are profound differences as well. The
first striking difference is that the undoped cuprates are Mott
insulators, but FeBS are metals. This suggests that the
Mott–Hubbard physics of a half-filled Hubbard model is not
a good starting point for pnictides, although some authors
have pursued strong-coupling approaches. It does not of
course exclude effects of correlations in FeBS, but they may
be moderate or small. In any case, DFT-based approaches
describe the observed Fermi surface and band structure
reasonably well for the whole phase diagram, contrary to the
situation in cuprates, especially in undoped and underdoped
regimes.

The second important difference pertains to normal
state properties. Underdoped cuprates manifest pseudogap
behavior in both one-particle and two-particle charge and spin
observables, as well as a variety of competing orders. At least
for hole-doped cuprates, a strange metal phase near optimal
doping is characterized by linear-T resistivity over a wide
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range of temperatures. In FeBS, different temperature power
laws for the resistivity, including linear T -dependence of the
resistivity for some materials, have been observed near optimal
doping and interpreted as being due to multiband physics and
interband scattering [12]. The FeBS do not manifest a robust
pseudogap behavior in a wide variety of observable properties.

The mechanism of doping deserves additional discussion.
Doping in cuprates is accomplished by replacing one of
the spacer ions with another one with different valence
or adding extra out-of-plane oxygen, e.g. La2−xSrxCuO2,
Nd2−xCexCuO2, and YBa2Cu3O6+δ . The additional electron
or hole is then assumed to dope the plane in an itinerant
state. In FeBS, the nature of doping is not completely
understood: similar phase diagrams are obtained by replacing
the spacer ion as in LaFeAsO1−xFx and Sr1−xKxFe2As2,
or by in-plane substitution of Fe with Co or Ni as in
Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2, or by replacing
Ba with K, Ba1−xKxFe2As2. Whether these heterovalent
substitutions dope the FeAs or FeP plane as in the cuprates
was not initially clear [13], but now it is well established that
they affect the Fermi surface consistent with the formal electron
count doping [14, 15]. Another mechanism to vary electronic
and magnetic properties is via the possibility of isovalent
doping with phosphorous in BaFe2(As1−xPx)2 or ruthenium in
BaFe2(As1−xRux)2. ‘Dopants’ can act as potential scatterers
and change the electronic structure because of differences
in ionic sizes or simply by diluting the magnetic ions with
nonmagnetic ones. But crudely the phase diagrams of all
FeBS are quite similar, challenging workers in the field to
seek a systematic structural observable which correlates with
the variation of Tc. Among several proposals, the height
of the pnictogen or chalcogenide above the Fe plane has
frequently been noted as playing some role in the overall
doping dependence [16–18].

It is well established that the superconducting state in
the cuprates is universally d-wave. In contrast, we review
evidence that the gap symmetry and/or structure of the FeBS
can be quite different from material to material. Nevertheless,
it seems quite possible that the ultimate source of the pairing
interaction in both systems is fundamentally similar, although
essential details such as pairing symmetry and the gap structure
in the FeBS depend on the FS geometry, orbital character and
degree of correlations.

1.2.2. Comparison with MgB2. MgB2 was the first example
of multigap superconductivity (or at least, the first one
recognized as such). There is little doubt that this property is
shared by FeBS, as discussed below; therefore it is instructive
to see which multiband features have been discovered in MgB2

and what similarities can be found in FeBS.
The thermodynamic properties of MgB2 show very

characteristic behavior which can easily be understood within
multiband Bardeen–Cooper–Schrieffer (BCS) theory (see
section 3.3) assuming a weak coupling between bands. At
the critical temperature the larger gap is clearly visible
in thermodynamics, and at a lower temperature, roughly
corresponding to the critical temperature of the weaker band
alone, the second gap becomes manifest in thermodynamic

properties. The second gap, while formally appearing at the
same temperature as the first gap, remains very small until
a much lower temperature. Such considerations of course
lead one to also examine the opposite situation where the
bands are strongly coupled (as in essentially all theories of
superconductivity in FeBS). In this case both gaps gradually
diminish as T is raised, but one or both may show non-
BCS behavior, and the thermodynamic properties cannot be
accurately described by one gap; the sum of two gaps, on
the other hand, can provide a realistic description. This is
indeed the case in many FeBS, as probed by specific heat,
penetration depth, NMR relaxation rate, etc (see section 5). On
the other hand, the picture is additionally clouded, as compared
with MgB2, because of presumably larger gap anisotropy and
pairbreaking effects of impurity scattering, as discussed below.

Another manifestation of multiband superconductivity
is found in the thermal conductivity. The reduced thermal
conductivity κ/T is, generally speaking, zero at T = 0,
if the Fermi surface is fully gapped in the superconducting
state (although pairbreaking effects due to magnetic impurities
may, in principle, create mobile quasiparticle states with zero
energy [19]). In MgB2, as well as in many FeBS, this is the
case. Upon applying magnetic field, Abrikosov vortices form
in the system. As soon as these vortices begin to overlap, the
thermal conductivity starts growing. This happens at field on
the order of Hc2/3. Now, if there are two gaps in the system,
one substantially smaller than the other, one may think that
the vortex overlap will start at much smaller fields. Indeed,
the distance between the vortices is proportional to H−1/2,
while their size is defined by the coherence length and thus
inversely proportional to �. So, the critical field where the
‘weaker’ band will be smaller than that for the ‘stronger’ band
by a factor of, roughly. (�1/�2)

2, which is, for MgB2, about
10. So, the argument goes [20], one cannot observe the flat
low-field part of κ(H)/T , and experimentally the dependence
looks linear at the smallest accessible H . Of course, one must
see flattening at H � Hc2/30, but so far nobody has observed
this. We only emphasize here that many FeBS studied by this
technique show a linear increase of κ/T |T →0 with H at small
H , which, in a traditional multiband interpretation, suggest
a considerable disparity between the largest and the smallest
gaps, or possibly strong gap anisotropy.

Another interesting lesson that one can derive from the
MgB2 studies is negative. One of the reasons why a number of
theorists were initially reluctant to accept the two-gap scenario
for this material is the fact that nonmagnetic impurities, in the
Abrikosov–Gor’kov (AG) theory, should suppress Tc linearly
with fairly large slope until the gaps are averaged. This effect
has not been observed in MgB2. While there have been
reasonable explanations of why particular impurities may have
little effect on Tc [21], in retrospect it is clear that the impurity
effect is weaker than that expected from the theory in many
different cases.

Finally, it is worth looking back at the normal state
of MgB2. Detailed quantum oscillation studies [22] prove
unambiguously that the two-band systems (π and σ ) are shifted
with respect to each other by up to 100 meV. Similarly, in
FeBS quantum oscillations show that the hole bands and the

3



Rep. Prog. Phys. 74 (2011) 124508 P J Hirschfeld et al

electron bands are shifted with respect to each other by up
to 70 meV, so that the hole and the electron Fermi surface
become smaller relative to DFT predictions. This holds both
in magnetic [23] and nonmagnetic [24] cases. It has been
ascribed to correlation effects [25], but the comparison with
MgB2 demonstrates that these effects beyond the local density
approximation (LDA) are, if anything, less severe than in
MgB2, which is not generally considered to be a correlated
metal.

1.2.3. Conceptual importance. While the FeBS may not
signify a particular advance in terms of practical applications—
their Tc is only 15 K higher than that of MgB2, and, just
as the cuprates, they are expensive to make and difficult
to work on—their conceptual value is hard to overestimate.
Indeed, fullerides and MgB2 clearly belong to a different
class than the cuprates, being in certain respects exotic, but
still phonon-driven superconductors. Not surprisingly, there
had been a growing feeling among physicists that phonon
superconductivity will probably never grow past 50–60 K,
while true high-temperature superconductivity is a strong-
correlation phenomenon limited to the unique family of layered
cuprates. It had been justly pointed out that the CuO2 layers
have many unique properties, largely coming from the fact
that Cu is the last 3d transition metal and as such is by far
the most strongly correlated of all, yet its simple one-orbital
electronic structure provided a simple and large Fermi surface
when doped. One can point to many aspects in which cuprates
are unique, and many people did.

What the discovery of the FeBS brought to the table
was the understanding that however unique cuprates may be,
these features are not prerequisites for non-phonon, high-
temperature superconductivity. And, if that is true, there are
likely many other crystallochemical families to be discovered,
some of which may have higher critical temperature or be better
suited for applications than cuprates and FeBS.

In a twisted way, we are lucky that FeBS and cuprates
are so different in so many aspects. This makes it more
reasonable to look for those few commonalities which exist
and to assume, even without profound theoretical insight, that
these commonalities are important for high Tc. Some of
these obviously include proximity to magnetism and quantum
criticality, or substantial anisotropy of the Fermi surface
(quasi-2D) and it has already been argued by many that one
should look for a combination of these factors to search for
novel superconductors [26].

1.2.4. Gap symmetry and structure. The group
theoretical classification of gap structures in unconventional
superconductors is somewhat arcane and has been amply
reviewed elsewhere [27]. Here we present the simplest notions
relevant to the discussion of symmetry and structure of the
order parameters under discussion in the FeBS at present. In
the absence of spin–orbit coupling, the total spin of the Cooper
pair is well defined and can be either S = 1 or S = 0.
Experimental data appear to rule out spin triplet states (see
section 4), so we focus on the spin singlet case. We focus first
on simple tetragonal point group symmetry. In a 3D tetragonal

Figure 1. Cartoon of order parameters under discussion in the
Fe-pnictide superconductors represented in the 2D 1-Fe Brillouin
zone (see section 2). Different colors stands for different signs of
the gap.

system, group theory allows only for five 1D irreducible
representations: A1g (‘s-wave’), B1g (‘d-wave’ [x2 − y2]), B2g

(‘d-wave’ [xy]), A2g (‘g-wave’ [xy(x2−y2)]) and Eg (‘d-wave’
[xz, yz]) according to how the order parameter transforms
under rotations by 90◦ and other operations of the tetragonal
group. In figure 1 we have illustrated two of these symmetries,
namely s-wave and dx2−y2 -wave. Note that the s++ state and
s± states represented all have the same symmetry, i.e. neither
changes sign if the crystal axes are rotated by 90◦. In contrast,
the d-wave state changes sign under a 90◦ rotation. Note further
that the mere existence of the single hole and single electron
pocket shown lead to new ambiguities in the sign structure of
the various states. In addition to a global change of sign, which
is equivalent to a gauge transformation, one can have individual
rotations on single pockets and still preserve symmetry; for
example, if one rotates the gap on the hole pocket for the d-wave
case in figure 1 by 90◦ but keeps the electron pocket signs
fixed, it still represents a B1g state. Note also that B2g states,
while not shown in the figure, are also possible by symmetry
and would have nodes on the electron pockets. Further, more
complicated, gap functions with differing relative phases on
the different pockets become possible when more pockets are
present, and/or when 3D effects are included (see section 3.5).

These symmetry properties are distinct from gap structure,
a term we use to designate the k-dependent variation of an order
parameter within a given symmetry class. Gaps with the same
symmetry may have very different structures, as also illustrated
in the figure, where three different types of s-wave states are
shown. The isotropic, fully gapped s++ and s± states differ only
by a relative phase of π in the latter case between the hole and
electron pockets. On the other hand, in the nodal s case, the gap
is shown vanishing at certain points on the electron pockets.
This particular situation is a case we will sometimes refer to as
‘nodal s±’, in that the sign of the hole pockets is still opposite
the average sign of the electron pockets. Nodes of this type
are sometimes described as ‘accidental’, since their existence
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is not dictated by symmetry, but rather by the details of the
pair interaction. As such, they can be removed continuously,
resulting in either an s++ or an s± state.

2. Electronic structure

2.1. First principles

2.1.1. General properties of FeBS electronic structure. The
basic crystallographic element of the FeBS is the FeAs (where
instead of As one can also have P, Se or Te) plane with an a×a

square plane of Fe ions, and two ã × ã square planes of As
above and below (where ã = a

√
2). The minimal unit cell of

the entire FeAs plane is, therefore, also ã × ã and includes two
formula units. In some, but not all cases the low-energy part of
the electronic structure can be ‘unfolded’ into a Brillouin zone
(BZ) which is twice as large, corresponding to the a × a unit
cell, so that the real band structure can be recovered by folding
the 2D BZ in such a way that the ‘unfolded’ X = (π/a, 0)

and Y = (0, π/a) points fold on top of each other, forming the
M̃ = (π/ã, π/ã) point in the small BZ. Here and throughout
the paper we always use the untilded notations in the 1-Fe
unit cell and the ‘unfolded’ BZ, and the tilded notations in the
crystallographic unit cells and the corresponding BZ.

Despite the large variety of crystal structure and chemical
compositions, all FeBS share the same gross features of
electronic structure. These can be listed as follows:

1. In the nonmagnetic state, the band structure is of
semimetallic nature, with two or more hole band crossing
the Fermi level near the � point and two electron bands
crossing the Fermi level near the M̃ point.

2. Two hole bands, universally present in all superconducting
compositions, are formed by the xz and yz derived
Fe band, which are degenerate (without the spin–orbit
effects) at the � point, but split apart (and acquire some
z2 character) in a relatively uniform manner away from
it. The two electron bands take their origin from the
downfolding effect described above, and are formed
mostly by the xz and yz orbitals, respectively, plus the
xy orbital.

3. As a result, there are always at least two hole Fermi
surfaces and two electron Fermi surfaces, which are
well separated in the reciprocal space. Moreover, their
respective centers are removed from each other exactly

by Q = ˜(π/ã, π/ã) = (π/a, 0). In general, the
Fermi surfaces have sufficiently different shapes so that
one cannot speak of a good nesting here, only of a
quasinesting.

On the other hand, many aspects of the electronic structure
vary from material to material. For instance, in some materials
another hole band appears, which may be either of z2 character,
in which case it is substantially 3D, or xy, which is even more
2D than the xz/yz bands.

Different FeBS may have different degrees of charge
doping, of either sign, ranging from 0.5 h to 0.15 e per
Fe. It appears though that in all this compositional range,
the general structure of the FS almost always survives.

That is, while either the electron or the hole FS shrinks,
they never entirely disappear in the superconducting range
of dopings, even though the nesting conditions may have
drastically deteriorated. It is worth remembering that in
strongly anisotropic systems the size of an FS has little
correlation with its density of states at the Fermi level. In
addition, recently two FeBS systems have been discussed that
are superconducting but which may lie outside this ‘typical’
range; in KFe2As2 the Fermi surface pockets near the X point
nearly disappear, while the hole pockets around � are greatly
expanded, and KFe2Se2 may (or may not; see section 5.3) be
completely lacking the hole pockets.

In contrast, the kz dispersion can vary substantially from
material to material. This depends mostly on two factors: the
thickness of the ‘filler’ layer between the FeAs or FeSe layer,
and on crystallographic symmetry. Obviously, materials with
the 1111 structure are more anisotropic, in fact nearly 2D,
than those with the same P 4/nmm symmetry but not filler
species, that is, with the 11 structure. Less obviously, materials
with a body center symmetry, such as 122 (I4/mmm), have
an additional reason for a 3D character: the downfolding
procedure in that case projects the electronic states near the
(π/a, 0, 0) point onto the states near (0, π/a, π/c). Crossings
occur at a general k-point, and therefore hybridization between
these states is not forbidden, but depends on kz. As a
result these materials tend to be even more 3D than the
11 compounds, despite having a filling monolayer in the
former. We explore the consequences of kz dispersion for
superconductivity in section 3.5.

2.1.2. Limitations of DFT calculations. First principles
calculations were very important at the beginning of the FeBS
era, and they have informed the emerging understanding of
the physics of the FeBS much more than in the case of
cuprate superconductors, although due to somewhat stronger
correlations and complexity of materials they have not yet
proven as definitively useful as in MgB2. In FeBS, they
successfully predicted the right topology of the FS [28], as
well as the correct magnetic ordering in the normal state
[29]. The most successful proposal regarding the pairing
symmetry so far has been made based on band structure
calculations [29]. These facts have been instrumental in
boosting the reputation of band theory in the superconducting
context, but one should remember that while DFT is not a
snake oil, it is not a panacea either, and nor are any of its
generalizations such as DFT+DMFT etc. Let us list below
the most important shortcomings and limitations of the DFT
calculations as regards FeBS.

1. The DFT is, by construction, a mean-field theory
(but not a low-energy theory, as is sometimes incorrectly
asserted). It is a more sophisticated mean-field theory
than many, for it includes in the energy functional (and
thus in the mean field potential), all correlation effects
and integrates in all fluctuations. On the other hand, the
actual implementations of the DFT, such as the LDA or the
generalized gradient approximation (GGA), by construction
only include those correlations and those fluctuations that
are present in the reference system, the uniform electron
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gas, at densities comparable with the electron densities in
real solids. Remember that the uniform electron gas at
such densities is very far from magnetism, and even farther
from the electron localization (Wigner crystallization). The
corresponding physics is, therefore, largely missing when
DFT is used in a ‘local’ approximation. This belongs to two
major classes: (i) on-site Coulomb fluctuations, also called
Hubbard correlations, which are included in a very limited
way on the level of the Stoner magnetic interaction (reflecting
the first Hund’s rule) and (ii) quantum critical fluctuations;
examples of such are long-range ferromagnetic fluctuations in
nearly ferromagnetic metals [30]. The hallmark of the former
is underestimation of the tendency to magnetism in a DFT
calculation, of the latter—overestimation.

In cuprates, the DFT calculations suffer from the former
problem, in FeBS mostly from the latter. From the density
functional point of view, it is rather curious that despite the
fact that the calculated magnetic moments are large, as opposed
to such known cases of near-quantum-critical materials ZrZn2

or Fe3Al, the effect of such long-range fluctuations appears
to be strong. The explanation is that magnetic moments in
this system are quite soft (in the calculations they can change
from nearly zero to more than a Bohr magneton depending
on the magnetic pattern), and on top of the transverse spin
fluctuations typical for strong antiferromagnets, there are
longitudinal fluctuations characteristic of itinerant magnets
and quite efficient in reducing the ordered magnetic moment.
Moreover, there is a possibility that other, so-called ‘nematic’
fluctuations, may play an additional role in reducing the
ordered moment.

This does not mean that the first DFT problem, underesti-
mation of on-site Coulomb correlations, is nonexistent in these
materials. It is relatively mild, and secondary compared with
the other deficiency, yet it exists and it manifests itself, for
instance, in the bandwidth renormalization. For the purposes
of this section, the important corollary of the above is that su-
perconductivity in FeBS develops not on the background of
a nonmagnetic state, but of a paramagnetic state which still
has fluctuating local magnetization of Fe ions. Therefore, the
calculated bands and the Fermi surfaces are true only as long
as averaging over these fluctuating quasi-local magnetic mo-
ments is equivalent to dropping the spin-dependent part of the
crystal potential entirely. Experimental evidence so far has
been inconclusive. de Haas–van Alphen experiments gener-
ally agree well with the DFT calculation, up to some uniform
shift of different bands with respect to each other and overall
mass renormalization. ARPES derived Fermi surfaces, while
conforming with the general topology, predicted by DFT, dif-
fer in details substantially. It is fair to say that that the DFT
bands are a reasonable, but not exceedingly good approxima-
tion of the actual band structure, even after accounting for the
bandwidth renormalization and the band shifts. They appear
to be renormalized by a factor up to three, and may be even
larger for some systems, and the renormalization appears to
be stronger as the system approaches the antiferromagnetic
(AFM) quantum critical point [24]. Also, additional repulsive
interaction between the holes and the electrons seems to be
operative, pushing the (mostly occupied) hole bands down and

(mostly empty) electron bands up. The last effect is responsi-
ble for shrinking all Fermi surfaces compared with DFT, but
this effect is weak (but is, again, stronger near the quantum
critical point) [25].

The band renormalization comes from both the on-site
and long-range fluctuations. Existing DMFT calculations,
while qualitatively agreeing among themselves, disagree on
the exact share of the total mass renormalization provided by
the on-site versus long-range fluctuations. Indeed, all groups
find that the effect comes predominantly from Hund’s J , and
not Hubbard’s U , and that the 11 family is substantially more
correlated than other families. At the same time, the Rutgers
group has obtained mass renormalizations closely matching
the experiment, leaving basically no room for the long-range
fluctuations, while the other DMFT groups’ results suggest
that both effects provide comparable contributions to the total
renormalization in pnictides [31–33].

2.2. Minimal band models

On the basis of the DFT band structure one can make a
simplified model which then can be studied by sophisticated
theoretical methods like a Green’s function formalism. There
is always a trade off between complexity of a model and
physical effects captured by it. Here we discuss several popular
models with increasing levels of complexity.

According to DFT, FeBS are essentially multiband
systems and a minimal model must include both hole and
electron bands. The first complication comes from the As,
which forms square lattice planes between the lattice sites
of, but also above and below, the square lattice of Fe. This
alternating pattern of As makes the correct real space unit cell
twice the 1-Fe unit cell. The corresponding 2-Fe BZ is twice as
small as the 1-Fe one and called the ‘folded BZ’, see figure 2.
For the simplest case of single-layer FeBS the folding wave
vector is 2D and equal to QF = (π, π). Most experimental
results and DFT band structures are reported in the folded
BZ since crystallographically it is the correct one. However,
some experiments sensitive to the Fe positions, like neutron
scattering on Fe moments may, have more meaning in the 1-Fe
(‘unfolded’) zone. Theoretically, the virtue of using this zone
is its simplicity, since the number of bands is smaller by a factor
of two. From the point of view of symmetry, one might think
of the As height as a perturbation: if zAs = 0, the electronic
structure is correctly reproduced in the unfolded BZ, and when
zAs increases, the procedure of unfolding becomes less and less
justified from the structural point of view. Despite the fact that
the As displacements from the Fe plane are not small, use
of the Fe-only band structure in the 1-Fe zone is frequently
a good approximation (see, however, section 5.3) since DFT
calculations predict the band structure near the Fermi level to
be mostly due to Fe d-bands, while the As p-bands are about
2 eV below [28].

The simplest model accounting for distinct electron and
hole Fermi surfaces would be a model in the 1-Fe zone with
parabolic dispersions [34, 35],

H =
∑

k,σ,i=α1,α2,β1,β2

εi
kc

†
ikσ cikσ . (1)
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Figure 2. (a) FeAs lattice indicating As above and below the Fe plane. Dashed green and solid blue squares indicate 1- and 2-Fe unit cells,
respectively. (b) Schematic 2D Fermi surface in the 1-Fe BZ whose boundaries are indicated by a green dashed square. The arrow indicates
folding wave vector QF. (c) Fermi sheets in the folded BZ whose boundaries are now shown by a solid blue square.

Here, cikσ is the annihilation operator for an electron with
momentum k, spin σ , and band index i, ε

α1,2

k = − k2

2m1,2
+ µ,

ε
β1
k = (kx−π/a)2

2mx
+

k2
y

2my
− µ and ε

β2
k = k2

x

2my
+ (ky−π/a)2

2mx
− µ are

the dispersions of hole αi and electron βi bands.
The electron pockets have to be distinct since they are

located in the different points of the BZ, but since the two
hole pockets around � point are close in size, some physics
can be captured by approximating them as one band. After
the folding procedure, this model produces a Fermi surface
topology which agrees with the results of DFT calculations,
see figure 2. This is useful for qualitative analysis of the
physics near the Fermi level, like magnetic susceptibility
and formation of the spin density wave (SDW) state. The
simplest extensions are the tight-binding models which can be
formulated in either the folded [36] or the unfolded BZ [37].
These can reproduce correctly the Fermi surface and Fermi
velocities, but neglect the orbital character of the bands. The
orbital character of electrons in different bands is important
e.g. for a correct analysis of scattering in particle–particle
and particle–hole channels. Furthermore, local Coulomb
interactions like Hubbard U and Hund’s exchange J are
momentum-independent only in the orbital representation.

According to DFT analysis, the band structure near the
Fermi level consists mainly of Fe t2g orbitals, since the out-of-
plane As p orbitals hybridize most effectively with Fe orbitals
with both out-of-plane and in-plane components. These
conditions are satisfied for dxz,yz orbitals, so their contribution
at the Fermi level is dominant. The second largest contribution
comes from the dxy orbitals. The other two d orbitals, dx2−y2

and d3z2−r2 , also contribute at low energies, but their weight at
the Fermi surface is minimal except in some materials near the
top of the BZ.

A possible minimal model for the FeBS is then one
which includes two orbitals, dxz and dyz [38]. This has the
virtue of being simple while having mostly correct orbital
character along the Fermi surface—(0, π) and (π, 0) pockets
have dominant dxz and dyz contributions, respectively, and
hole pockets with a mixture of these two orbitals. This model
has several significant disadvantages [39, 40], however. The
first one is that the Fermi velocities are incorrect, leading

to incorrect tendencies towards superconductivity and SDW
formation. Second, it is missing small patches of dxy character
at the tips of the electron pockets, which can be important for
node formation [41] and transport [42]. Finally, a serious flaw
is the position of the larger hole pocket which is located at
(π, π) point of the 1-Fe zone. After the folding, this Fermi
surface sheet is centered at the � point and resembles DFT
results for the Fermi surface. But the fact that the two bands
forming hole sheets are not degenerate at the (0, 0) point
of the unfolded zone contradicts the symmetry of the DFT
wave functions. This problem can be adjusted by adding a
dxy orbital to the model [43], but this three-orbital model has
other pathologies and fails to reproduce the peak at the nesting
wave vector Q [44], which is established both experimentally
and theoretically. Although the origin of the problem is not
obvious, it is related to the matrix elements of transformation
from the orbital to the band basis.

The next step in the direction of more realistic models
is to include four or all five Fe d-orbitals. Models of this
type [40, 45] work well in reproducing the DFT Fermi surface
and band structure, and they are free from the disadvantages
described above. The kinetic energy in [40] is then given by
the Hamiltonian

H0 =
∑
kσ

∑


′

(ξ

′(k) + ε
δ

′) d
†

kσ d
′kσ , (2)

where d†

kσ creates a particle with momentum k and spin σ in

the orbital 
, ξ

′(k) are the hoppings, and ε
 are the single-site
level energies. This model with the parameters obtained by
Wannier fits to kz = 0 cuts of the 1111 band structure of Cao
et al [46] gives rise to the Fermi surfaces shown in figure 3
displayed in the unfolded BZ [40, 47]. The undoped material
has completely filled d6 orbitals corresponding to electron
number n = 6. Note for the hole-doped case n = 5.95
shown in figure 3 there is an extra hole FS γ around the
(π, π) point. An important role is played by the orbital matrix
elements a


ν(k) = 〈
|νk〉 which relate the orbital and band
states. The dominant (>50%) orbital weights |a


ν(k)|2 on the
Fermi surfaces are illustrated in figure 3 by the colors indicated.
The orbital matrix elements and the small patches of the dxy

contribution to the electron sheets play an important role in the

7



Rep. Prog. Phys. 74 (2011) 124508 P J Hirschfeld et al

0

π

0 π

k y

kx

n = 6.03

α1 α2 β1

β2

0

π

0 π

k y

kx

n = 6.03

α1 α2 β1

β2

dxz dyz dxy

0

π

0 π

k y

kx

n = 5.95

α1 α2 β1

β2 γ

0

π

0 π

k y

kx

n = 5.95

α1 α2 β1

β2 γ

dxz dyz dxy

Figure 3. Fermi sheets of the five-band model in the unfolded BZ for n = 6.03 (top) and n = 5.95 (bottom) with colors indicating majority
orbital character (red = dxz, green = dyz, blue = dxy). Note the γ Fermi surface sheet is a hole pocket which appears for ∼1% hole doping.
Reproduced with permission from [47].

formation of nodes in the superconducting order parameter as
will be discussed in section 3.1. Natural generalizations of
the multiorbital models are (1) to include dispersion along the
kz direction and (2) to include the proper effects of the 122
body centered cubic symmetry. These effects appear to have
important consequences for the pairing in Ba1−xKxFe2As2,
where effects of three dimensionality are more important than
in 1111 systems [48, 49].

3. Theoretical background

3.1. Spin fluctuation pairing

It has become commonplace when a new class of
superconductors is discovered to discuss electronic pairing
mechanisms as soon as there is some evidence that the
electron–phonon mechanism is not strong enough to produce
observed critical temperatures; this was the case in both the
cuprates and FeBS. Among many candidates for electronic
pairing, Berk–Schrieffer [50] type spin fluctuation theories
are popular because they are relatively simple to express
and give some qualitatively correct results in the well-known
cases of 3He and the cuprates. The interesting history of
the development of this theory in the one-band case has
been reviewed by Scalapino [51]. It is important to keep
in mind that this type of description cannot be regarded as
the complete answer even in superfluid 3He, where the true
pairing interaction contains a significant density fluctuation
component, while in the cuprates it is controversial whether
the full pairing interaction can be described by a simple
boson exchange theory at all. Nevertheless spin fluctuation
theories can explain the symmetry of the order parameter
in both systems quite well, in part because other interaction
channels are projected out in the ground state. For example,
in the cuprates, the d-wave nature of the pair wave function
follows from the strongly peaked spin susceptibility at (π, π),
characteristic of repulsive local interactions between electrons
hopping on a square lattice. In the FeBS, the early realization
that the Fermi surface consisted of small, nearly nested electron
and hole pockets led to the analogous anticipation of a strongly

peaked susceptibility near Q = (π, 0), and a corresponding
pairing instability with sign change between electron and
hole sheets. Below we illustrate the basic equations leading
to the canonical d-wave case within the one-band Berk–
Schrieffer approach, and sketch the generalization to the
multiorbital/multiband case. Many authors have obtained
similar results with a variety of related methods (see ‘similar
approaches’ below).

It is important to emphasize that while spin fluctuation
theories come in many varieties and flavors, they share more
commonalities than differences. Indeed, as will be discussed
later in this section, in the singlet channel spin fluctuations
exchange always leads to a repulsive interaction, and therefore
can only realize sign-changing superconducting states. If this
interaction is sufficiently strong at some particular momentum
it will necessarily result in superconductivity. In the case of a
single Fermi surface this superconductivity will necessarily
be nodal, usually of a d-wave symmetry. Examples of
this situation are high-Tc cuprates and, possibly, overdoped
KFe2As2 FeBS. On the other hand, in a multiband system
there may be a possibility to avoid nodes, while still preserving
a sign-changing structure. Examples of this are d-wave
superconductivity that can develop in a cubic system with
Fermi surface pockets around the X points and in a hexagonal
system with pockets around the M points [52], d-wave
superconductivity in a tetragonal system with FS pockets
near X/Y points [45], s± superconductivity proposed for
bilayer cuprates (where the bonding and the antibonding band
have opposite signs of the order parameter) [53, 54] and
the electron–hole s± superconductivity that can develop in
semimetals [55].

While all these options had been discussed theoretically
many years ago, all of them have been revisited in connection
to FeBS. The last option is now the leading contender
for the majority of pnictides and selenides, while d-wave
superconductivity has been proposed for KFe2As2 that is on
the verge of losing its semimetallic character (see section 5.4),
a version of the nodeless d-wave state first discussed in [45] has
been proposed for Se-based 122 materials (see section 5.3), and
the ‘bonding-antibonding’ nodeless s± state, analogous to that
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Figure 4. Heuristic snapshot of pairing of two test spins by
ferromagnetic spin fluctuations.

discussed in [53, 54] has also been proposed for these selenides.
What is important, however, is that as long as the spin
fluctuations are strong and nonuniform, some superconducting
state will unavoidably form, and the details of the electronic
structure and of the pairing interaction will decide which
particular symmetry will form, often in close competition with
other symmetries.

History: ferromagnetic spin fluctuations. The original
proposal of superconducting pairing arising from magnetic
interactions was put forward by Emery [56] and by Berk and
Schrieffer [50], who were interested primarily in transition
metal elements and nearly ferromagnetic metals. Such
systems are considered to be close to a ferromagnetic ordering
transition in the Stoner sense, i.e. their susceptibility may
be approximated by χ = χ0/(1 − Uχ0), where U is a
local Hubbard-like Coulomb matrix element assumed to be
large since Uχ0 � 1 (χ0 is the susceptibility in the absence
of interactions). Physically this means a spin up electron
traveling through the medium polarizes the spins around it
ferromagnetically, lowering the system’s energy as illustrated
in figure 4.

The excitations being ‘exchanged’ in such a picture are not
well- defined collective modes of the system such a phonons or
magnons, but rather ‘paramagnons’, defined by the existence
of a peak-like structure in the the imaginary (absorptive) part of
the small q susceptibility. Diagramatically, only the ring-type
diagrams shown in figure 5 contribute to the effective pairing
vertex in the equal-spin channel �↑↑, whereas both ring and
ladder-type diagrams contribute to the opposite-spin channel
�↑↓. These series may be summed in the usual way to give

�↑↑ = −U 2χ0(k
′ − k)

1 − U 2χ0
2(k′ − k)

, (3)

�↑↓ = U

1 − U 2χ0
2(k′ − k)

+
U 2χ0(k

′ + k)

1 − U 2χ0
2(k′ + k)

(4)

= U 2

(
3

2
χ s − 1

2
χ c

)
+ U, (5)

where we have defined χ s ≡ χ0/(1 − Uχ0) and χ c =
χ0/(1 + Uχ0), and in the last step we have changed −k to k in
the second term of �↑↓ because we assume we work in the even
parity (singlet pairing) channel. The total pairing vertex in the

triplet (singlet) channel is �t = 1
2�↑↑ (�s = 1

2 (2�↑↓ − �↑↑)).
In the original paramagnon theory, χ0(q) is the noninteracting
susceptibility of the (continuum) Fermi gas, i.e. the Lindhard
function. This function at small frequency has a maximum at
q = 0, meaning correlations are indeed ferromagnetic. Thus
due to the negative sign in the equation for �↑↑ (note χ0 > 0
and Uχ0 < 1 to prevent a magnetic instability), pairing is
attractive in the triplet channel and singlet superconductivity
is suppressed, which explains why Pd, for example, does not
superconduct [50].

Antiferromagnetic spin fluctuations. In the context of heavy-
fermion systems it was realized [57, 58] that strong AFM spin
fluctuations in either the weak- or strong-coupling limit lead
naturally to spin singlet, d-wave pairing. The weak-coupling
argument has been elegantly reviewed by Scalapino [59].
Suppose the susceptibility is strongly peaked near some wave
vector Q. The form of the singlet interaction is

�s(k, k′) = 3

2
U 2 χ0(q)

1 − Uχ0(q)
(6)

if we neglect terms which are small near the random phase
approximation (RPA) instability Uχ0(q) → 0 [60]. This now
implies that �s(q) is also peaked at this wavevector, but is
always repulsive. Nevertheless, if one examines the BCS gap
equation for this interaction

�k = −
∑
k′

′
�s(k, k′)

�′
k

2E′
k

tanh
E′

k

2T
, (7)

one sees immediately that an isotropic state cannot be a
solution, but that if the state changes sign,

�k = −�k+Q, (8)

a solution will be allowed.
In the cuprates, χ is peaked at Q � (π, π), and the two

possible states of this type which involve pairing on nearest
neighbor bonds only are

�
d,s
k = �0(cos kxa ∓ cos kya). (9)

Which state will be stabilized then depends on the Fermi
surface in question. So we need to use the fact that the
states close to the Fermi surface are the most important
in equation (7), and examine the pairing kernel for these
momenta. For example, for a (π/a, 0) → (0, π/a) scattering,
�s

k satisfies equation (8) by being zero, whereas �d
k is nonzero

and changes sign, contributing to the condensation energy.
It should therefore not be surprising that the end result of a
complete numerical evaluation of equation (7) over a cuprate
Fermi surface gives d-wave pairing.

An alternative way to approach the question of how a
purely repulsive interaction allows for pair formation is to
examine the interaction Fourier transformed back to real space,
where it shows regions (in the cuprates with Q = (π, π),
on nearest neighbor sites), where the pair potential becomes
attractive [59] if the interaction is sufficiently nonuniform in
momentum space.
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(a)

(b)

Figure 5. Effective pairing interaction between (a) equal spins and (b) opposite spins. Solid lines are electron G’s, dashed lines Hubbard
U ’s, i.e. interactions between electrons of opposite spin only.

Effect of two bands. The discussion in section 2 described
the unusual, fully compensated Fermi surface of the parent
Fe-pnictide materials. In the FeBS, the proximity of the Fe
d-states to the Fermi level has led many authors to consider
a Hamiltonian which takes a kinetic energy H0 consisting of
the bands derived from the five Fe d-orbitals found in DFT,
approximated within some tight-binding or other scheme. The
2D Fermi surface in the 1-Fe zone thus obtained is shown in
figure 3. Like DFT, this model Fermi surface is characterized
by small concentric hole pockets around the � point and
slightly elliptical electron pockets around the M points. Mazin
and collaborators [29] pointed out that modeling these pockets
in the simplest possible way, allowing for one hole and one
electron pocket, led to a very simple and elegant generalization
of the ‘standard’ argument for d-wave pairing in the cuprates
(a similar result was reached in a strong-coupling approach by
Seo et al [61]). In a weak-coupling approach, the near-nesting
of the hole and electron pockets suggested the existence of
a peak in the spin susceptibility at Q = (π, 0) in the 1-Fe
zone. The gap equation (7) then admits a solution with the
property (8) if there is a sign change of �k between electron
and hole pockets. In the simplest version of this theory,
the anisotropy on each electron sheet is neglected, with the
argument that the pockets are small. This leads to the so-called
isotropic ‘s±’ state (figure 1) which has become the leading
candidate for the discussion of many of the superconducting
properties of these materials. Note that such a state has the
full symmetry of the crystal lattice and is therefore formally
an A1g or ‘s-wave’ state, but with fundamentally different
gap structure which leads to many nontrivial superconducting
properties.

Spin fluctuation pairing in multiorbital systems. More
realistic analyses of pairing in these systems by electronic
interactions soon followed. Many authors began with a
Hamiltonian consisting of a kinetic energy H0 for the effective
Fe bands as described above, plus an interactionHint containing
all possible two-body on-site interactions between electrons
in Fe orbitals as a good starting point for a microscopic

description of this system,

H = H0 + Ū
∑
i,


ni
↑ni
↓ + Ū ′ ∑
i,
′<


ni
ni
′

+ J̄
∑
i,
′<


∑
σ,σ ′

c
†
i
σ c

†
i
′σ ′ci
σ ′ci
′σ

+ J̄ ′ ∑
i,
′ =


c
†
i
↑c

†
i
↓ci
′↓ci
′↑, (10)

where ni
 = ni,
↑ + ni
↓. The Coulomb parameters Ū , Ū ′, J̄

and J̄ ′ are in the notation of Kuroki et al [45], and are related
to those used by Graser et al [40] by Ū = U , J̄ = J/2, Ū ′ =
V +J/4 and J̄ ′ = J ′. The noninteracting H0 is given by a tight-
binding model spanned by the five Fe d-orbitals, equation (2),
which give rise to the Fermi surfaces shown in figure 3.

In equation (11), we have distinguished the intra- and
interorbital Coulomb repulsion, as well as the Hund’s rule
exchange J̄ and ‘pair hopping’ term J̄ ′ for generality, but if they
are generated from a single two-body term with spin rotational
invariance (SRI) they are related by Ū ′ = Ū −2J̄ and J̄ ′ = J̄ .
In a real crystal, such a local symmetry will not always hold.

The generalization of the simple one-band Berk–
Schrieffer spin fluctuation theory to the multiorbital case
was discussed by many authors [62, 63]. The effective pair
scattering vertex �(k, k′) between bands i and j in the singlet
channel is

�ij (k, k′) = Re

 ∑

1
2
3
4

a
2,∗
νi

(k)a
3,∗
νi

(−k)

×�
1
2
3
4(k, k′, ω = 0)a
1
νj

(k′)a
4
νj

(−k′)
]
, (11)

where the momenta k and k′ are confined to the various Fermi
surface sheets with k ∈ Ci and k′ ∈ Cj . The orbital vertex
functions �
1
2
3
4 describe the particle–particle scattering of
electrons in orbitals 
1, 
4 into 
2, 
3 (see figure 6) and in the
fluctuation exchange formulation [63, 64] are given by

�
1
2
3
4(k, k′, ω) = [ 3
2 Ū sχRPA

1 (k − k′, ω)Ū s

+ 1
2 Ū s − 1

2 Ū cχRPA
0 (k − k′, ω)Ū c + 1

2 Ū c]
1
2
3
4 , (12)

where each of the quantities Ū s, Ū c, χ1, etc, represent matrices
in orbital space which depend on the interaction parameters.
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Figure 6. Top: pairing vertex �
1,
2,
3,
4 defined in terms of orbital
states 
i of incoming and outgoing electrons. Bottom: representative
examples of classes of orbital vertices referred to in the text: intra-,
inter- and mixed orbital vertices. Reproduced with permission
from [47].

This is the multiorbital generalization of equation (5). Here
χRPA

1 describes the spin fluctuation contribution and χRPA
0

the orbital (charge)-fluctuation contribution, determined by
Dyson-type equations as

(χRPA
0 )

pq
st = χ

pq
st − (χRPA

0 )pq
uv (U c)uv

wzχ
wz
st (13)

and
(χRPA

1 )
pq
st = χ

pq
st + (χRPA

1 )pq
uv (U s)uv

wzχ
wz
st , (14)

where repeated indices are summed over. Here χ
pq
st is a

generalized multiorbital susceptibility (see [47]).

Results of microscopic theory. The simplest goal of the
microscopic approach is to calculate the critical temperature Tc

via the linearized gap equation and determine the symmetry of
the pairing instability there. If one writes the superconducting
order parameter �(k) as �g(k), with g(k) a dimensionless
function describing the momentum dependence on the Fermi
surface, then g(k) is given as the stationary solution of the
dimensionless pairing strength functional [40]

λ[g(k)] = −

∑
ij

∮
Ci

dk‖
vF(k)

∮
Cj

dk′
‖

vF(k′)
g(k)�ij (k, k′)g(k′)

(2π)2
∑

i

∮
Ci

dk‖
vF(k)

[g(k)]2

(15)

with the largest eigenvalue λ, which provides a dimensionless
measure of the pairing strength. Here k and k′ are restricted to
the various Fermi surfaces k ∈ Ci and k′ ∈ Cj and vF,ν(k) =
|∇kEν(k)| is the Fermi velocity on a given Fermi sheet.

In figure 7, we plot the leading dimensionless gap function
g(k) derived from the RPA theory around the electron β1 sheet
for two different values of the doping, for spin-rotationally
invariant parameters U = 1.3 and J = 0.2. The gap on the
hole sheets is seen to be essentially isotropic, while on the elec-
tron sheets the average of the gap is of opposite sign compared

0 π 2π
φ around β

1
sheet

-0.1

0

0.1

g(
k)

n=6.03, J=0.2
n=5.95, J=0.2

Figure 7. Top: false color plots of dimensionless gap function g(k)
on various Fermi surface sheets for electron doped n = 6.03 (left)
and hole doped n = 5.95 (right). Bottom: detail of g(k) on β1

pocket for U = 1.3 and n = 5.95, J̄ = 0.2 (red squares) and
n = 6.01, J̄ = 0.2 (blue circles). Here the angle φ is measured from
the kx-axis. Reproduced with permission from [47].

with the hole sheets, and is highly anisotropic, with nodes in
the case of electron doping. One would like to understand the
origin of the anisotropy and its doping dependence.

Physical origins of the anisotropy of the pair state and node
formation. An unusual element which emerges from the spin
fluctuation pairing analysis based on (11) is that the orbital
structure of the Fermi surface can have a significant impact on
the anisotropy of the pair state. The intraorbital scattering of
dxz and dyz pairs between the α and β Fermi surfaces by (π, 0)

and (0, π) spin fluctuations (figure 6) leads naturally to a gap
which changes sign between the dxz/dyz parts of the α Fermi
surfaces and the dyz and dxz parts of the β1 and β2 electron
pockets, just as in the early proposal of Mazin et al [29], see
figure 3. However, as discussed by Maier et al [41], Kuroki
et al [16], and Kemper et al [47], scattering between the β1

and β2 Fermi surfaces frustrates the formation of an isotropic
s± gap there. Furthermore, this anisotropy can also be driven
by the effect of the intraband Coulomb interaction. Finally,
interorbital pair scattering can also occur, depending upon Ū ′

and J̄ ′. The contributions to the total pairing interaction arising
from mixed and interorbital processes may be shown explicitly
to be subdominant to the intraorbital processes but important
for nodal formation [47].

On the other hand, the β1 − β2 dxy orbital frustration is
weaker or does not occur if an additional hole pocket γ of dxy

character is present (see figure 3); these scattering processes are
at (π, 0) in the unfolded zone and therefore support isotropic
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Figure 8. Phase diagram in the FLEX treatment of SDW and SC
instabilities. Reprinted with permission from [72]. Copyright 2010
by the American Physical Society.

s± pairing (see figure 7). Kuroki et al [16] took the important
step of relating the crystal structure, electronic structure, and
pairing, by noting that the As height above the Fe plane in the
1111 family was a crucial variable controlling the appearance
of the γ pocket and thus driving the isotropy of the s±
state. It is important to note that the transition between nodal
and nodeless A1g gap structures, investigated by a number
of authors [16, 47, 65–68], does not involve any symmetry
change, and relies only on the details of the pairing interaction.

Similar approaches. In this discussion we have presented
‘spin fluctuation theory’ in terms of an RPA approximation to
the pair scattering vertices �, which also includes subleading
charge/orbital contributions via equation (12). It is important
to note that other approaches have obtained very similar results
for the Hamiltonian (11). The most closely related technique is
the FLEX (fluctuation exchange) approximation [64], which is
a conserving approximation to the Luttinger–Ward functional
and the self-energy. Several authors have applied this approach
to the pairing problem [69–73], employing a five-band model
for FeBS based on Wannier fits to DFT results. Qualitatively,
results are similar for the leading pairing instabilities, including
the doping dependence [72] (see figure 8), although node
formation or strong angular anisotropy have not been observed
in FLEX so far. In addition, FLEX has certain well-
known peculiarities which need to be handled carefully. In
particular, the real part of the self-energy, which shifts the
band structure in a momentum-dependent way, includes some
of the correlations already included in DFT; thus the use of a
kinetic energy H0 fit to DFT plus the self-consistent FLEX self-
energy tends to overcount these correlations. This problem is
traditionally handled by subtracting the real part of the static
self-energy [73].

A further popular approach is the functional renormaliza-
tion group (fRG) [74] , which has the advantage that it is capa-
ble of studying various instabilities of the system on an equal
footing, which is of particular relevance for studying the com-
petition between SDW and superconductivity in these systems

in realistic models. Numerical RG equations are derived by
dividing the BZ into N patches, and then summing at each RG
step over the five one-loop Feynman diagrams to compute the
renormalized four-point vertex function. This technique was
pioneered in connection with FeBS by Fang et al [75], general-
izing numerical work on one-band systems [76], and has been
extended and applied to various FeBS [66–68, 77, 78]. These
works are the intellectual offspring of earlier analytical (log-
arithmic) RG calculations in two-band models [79, 80] which
were later generalized to include low-order angular harmon-
ics [65] to describe gap anisotropy. Recently, this approach
has been extended and compared directly with the RPA results,
such that the doping evolution of the fundamental band inter-
actions could be obtained [81].

It is remarkable that rather dissimilar techniques, none of
which are controlled in the usual perturbative sense, give such
similar results. To illustrate this, in figure 9 we plot results
for a FeBS Fermi surface for LaFePO or LaFeAsO including
only the two inner hole pockets, obtained by fRG and RPA
techniques. Although the scale of the interactions are quite
different, the ratio J/U is �1 in both cases. Note that the
order parameter on both hole pockets is quite isotropic, but
that on the electron sheets nodes appear, but consistent with
the overall average s± character of the state.

Finally, we comment on so-called ‘strong-coupling’
approaches to pairing, based on the J1–J2 multiple competing
exchange model of the magnetism in these systems [82–84].
Note that this term frequently appears in reference to the large
size of the Hubbard interaction relative to the bandwidth, which
in the one-band case at half-filling allows for a description in
terms of the spin degrees of freedom as the charge degrees of
freedom become localized. The spin dynamics can become
more localized in situations other than the canonical Mott–
Hubbard case, however, and are in fact well described by DFT,
which for the FeBS gives a typical energy scale for the magnetic
interactions of order 100 meV or larger. Thus the moments are
large and quite localized. This is not a contradiction; even in
genuinely itinerant systems (elemental 3D metals are a good
example) magnetic interactions are essentially local, decaying
with distance as a power law.

This magnetic model leads to a competition between
the Néel and stripe-collinear orders, also present in the
(itinerant) DFT calculation, corresponding to the same ground
state magnetic pattern and to a similar structure of spin
fluctuations in the reciprocal state [a maximum near (π, 0)].
In [61], a t–J1–J2 model with two bands was studied, and
the exchange terms were decoupled in mean-field in the
pairing channel. In this procedure, the nearest neighbor
exchange J1 induces competing cos kx + cos ky and cos kx–
cos ky (s- and dx2−y2 -wave) pairing harmonics, while the
next nearest neighbor exchange leads to cos kx cos ky and
sin kx sin ky (s- and dxy-wave). In the region of the general
phase diagram with J2 � J1, cos kx cos ky was the leading
instability for the two-band Fermi surface, leading to a nodeless
s± state, and a similar ground state was also found for a five-
orbital model [85].

Mean-field theories of the strong-coupling type (see also
models where U and J1,2-type terms are treated as independent
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Figure 9. Comparison of fRG and RPA results for the gap function g(θ) versus θ , with θ parametrizing each Fermi pocket, for the
four-Fermi pocket model of LaFePO / LaFeAsO. Left: FRG results from [67] with Ū = 3.5, Ū ′ = 2.0, J̄ = J̄ ′ = 0.7. Reprinted with
permission from [67]. Copyright 2011 by the American Physical Society. Right: RPA results from [41] with Ū = 1.67, Ū ′ = 1.46,
J̄ = J̄ ′ = 0.10. Bands α1, α2, β1 and β2 correspond to inner and outer hole pockets, and two electron pockets, respectively. Energy units for
parameters are in eV, units on vertical axes of both figures are arbitrary.

before the mean-field step [43, 86]) show an intriguing set
of circumstantial agreement with the predictions of itinerant
weak-coupling models, despite the lack of logical continuity
between the two types of models. Yet it is not that surprising.
Indeed, the pairing symmetry in any spin-fluctuation model
is mainly defined by matching the structure of the spin
fluctuations and the FS geometry. Since both are rather similar
in the two approaches, not surprisingly, the main results agree.
In fact, Wang et al have shown that in the case with five Fermi
surface pockets, the low-energy spin and charge excitations in
the fRG treatment of the five-orbital model (11) overlap very
well with those of the t–J1–J2 model. At the Hamiltonian
level, however, there is no way to derive these particular strong-
coupling models (with unrenormalized kinetic term) from the
general model with on-site interactions.

An advantage of such strong-coupling approaches is that
they capture the local character and large amplitude of Fe
magnetic moments, in agreement with the DFT calculations.
They also have some attractive conceptual simplicity. On the
other hand, they have several uncontrollable shortcomings,
which make proper application of this approach tricky.

First and foremost, such theories artificially separate the
itinerant electrons and the local moments, as if the latter were
coming from a separate atomic species. Yet, the moments
are formed by exactly the same electrons that form the band
structure, which also mediate the magnetic interaction mapped
onto the J1–J2 Heisenberg Hamiltonian. In some papers
an attempt to account for this fact is made by adding spin
susceptibility of itinerant electrons to the aforementioned
Heisenberg Hamiltonian, which essentially amounts to a
double counting.

Second, actual band structure calculations [87–89] cannot
be mapped onto a Heisenberg Hamiltonian of any range.
They can be mapped onto a Heisenberg Hamiltonian with
biquadratic exchange, or possibly to a more complicated
Hamiltonian (such as ring exchange), but not onto a pure
Heisenberg model.

Third, ‘strong-coupling’ models essentially fix the shape
of the spin fluctuation induced interaction; therefore, the

resulting solution fixes the structure of the gap nodes in
momentum space, so that the amplitude, anisotropy and
possible nodes on actual FSs depends only on the proximity
of these FSs to the imaginary nodal lines. This result is not
corroborated by the weak-coupling calculations and is likely
unphysical.

The partial agreement between fRG and the t–J1–J2

results will therefore remain a curiosity until a more concrete
understanding of why the similarity of the low-energy sectors
of the two theories is observed.

Pairing in multiorbital systems from a DFT perspective.
RPA calculations, as well as other approaches discussed
above, use the same model Hamiltonian (11), but resort
to different approximate methods to solve the problem
of superconductivity emerging from this Hamiltonian.
Comparing results of such different approaches one can get an
idea of how accurate these solutions are. Yet this Hamiltonian
itself is a rather uncontrollable approximation, and one can
legitimately ask the question, to what extent the simplifications
introduced when constructing this Hamiltonian are justified.
Indeed, some of the qualitative results discussed above, such
as anisotropy (and possible nodes) of the order parameter,
are intimately related to the details of the model that may or
may not be sufficiently universal. Specifically, there are two
aspects of the model that appear to be qualitatively significant.
First, the leading spin-dependent term in this Hamiltonian,
Ū

∑
i,
 ni
↑ni
↓, is orbital diagonal (there are two other spin-

dependent terms, the Hund’s term, proportional to J̄ , and pair
hopping term proportional to J̄ ′, but these are smaller). That
makes the pairing interaction rather sensitive to the orbital
composition, with the parts of the Fermi surface whose orbital
content is not matched by that of the rest of the Fermi surface
effectively decoupled from the rest. This is true in RPA, FLEX,
fRG or any other method based on the same Hamiltonian. On
the other hand, there is growing belief [90] that physics of these
materials is controlled by the Hund rule’s coupling rather than
by the direct Coulomb repulsion, as implied for instance in
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the original expressions (3), (12). The second aspect of the
model is that it does not include the retardation effects, at least
on the RPA level. The large Coulomb repulsion that in real
life is logarithmically reduced in the calculations needs to be
avoided, which can be done, for an on-site local repulsion,
by tuning the order parameter in such a way that it integrates
to zero. These two problems, characteristic for this model,
suggest that the tendency towards gap anisotropy is probably
somewhat overestimated in this approach.

It is instructive to compare the effect of direct Coulomb
repulsion in conventional superconductors, such as V, to
another 3d transition metal with the interaction parameters in
the charge channel not much different from FeBS. There the
Coulomb repulsion, obviously strong, is renormalized as

µ = UN0, (16)

µ∗ = µ

/[
1 + µ ln

EC

Eb

]
, (17)

where N0 is the density of states at the Fermi level, EC is
a characteristic electronic energy (it may be the total band
width, or the plasmon energy, or a combination thereof),
and Eb is the energy of the pairing bosons. Given that
µ ln EC

Eb
� 1, µ∗ ≈ 1/ ln EC

Eb
∼ 0.1 − 0.15 for typical

conventional superconductors. For most Fe superconductors
Tc is only a factor of two or three larger than for the best
transition metal superconductors (niobum’s Tc is 10 K, that
of some binary alloys reaches 23 K), and the full d-band
widths are comparable, so if the Coulomb repulsion were
uniform one could apply similar reasoning and conclude that
for these systems µ∗ ∼ 0.15–0.2. If, on the other hand, the
unrenormalized Coulomb repulsion is different in the interband
and intraband channels, the renormalization equation should
be written differently, namely

µ∗
ij = µij −

∑
n

µin ln
EC

Eb
µ∗

nj , (18)

where i, j and n are band indices. The solution in the limit
|µi =j − µii | ln EC

Eb
� 1 (which may or may not fold for

FeBS) reads: µii ≈ 1/ ln EC
Eb

, µi =j ≈ const/ ln2 EC
Eb

. Thus the
renormalization in a multiband system has two effects: (1) it
strongly reduces the effect of Coulomb repulsion in general and
(2) it suppresses interband repulsion compared with intraband.
The latter effect has an important implication—the effect of
‘Coulomb avoidance’. Indeed, if the Coulomb repulsion does
not depend on the wave vector, the condition for it to cancel
out of the equations on Tc is that the order parameter, when
averaged over the entire FS and all its sheets, integrates to
zero. If the Coulomb repulsion is only present in the intraband
channel, than to avoid its effect on Tc entirely, the order
parameter must integrate to zero in each band separately.

It should be kept in mind that the preceding argument
implicitly relies upon an analogy with the Eliashberg theory,
assuming that all relevant interactions can be separated into
groups: a pairing interaction (boson exchange) that is restricted
to sufficiently low energies (recall that the spin resonance
in FeBS occurs at the energies around 30–40 meV), and is

also subject to the Migdal theorem, and a direct Coulomb
repulsion that exists at all energies, and gets renormalized after
the ladder diagrams are summed. Most existing approaches
explicitly or implicitly make this very assumption, with the
notable exception of the renormalization group techniques.
However, in reality for electronic (as opposed to a phonon)
superconductivity all interactions emerge from electrons
themselves, and such separation is not always possible. Nor
is it always possible to limit the approximation to the ladder
diagrams. In more complex cases, formally involving parquet
diagrams, the solution may depend on whether the Coulomb
interaction is first screened and then renormalized or first
renormalized and then screened, etc [91]. On the other hand,
in the renormalization group approach interactions are not
separated into these channels, and in principle all retardation
effects are supposed to be included. While it is very difficult to
make a one-to-one correspondence between such approaches
and RPA (and similar) calculations, is quite obvious that
they are based on substantially different physical assumptions.
Why, nevertheless, results obtained in RPA and in fRG group
approaches are quantitatively similar, is unclear and needs to
be understood.

Given these uncertainties involved in RPA calculations
described in the previous sections, as well as other similar
approaches, it is interesting to look at the problem at hand
not from the Hubbard model point of view, but from the
opposite, density functional one. Indeed many believe that,
as opposed to the high Tc cuprates, DFT is a reasonable
starting point for these materials, and in some sense it is more
consistent to use DFT for the full susceptibility as long as
we use the DFT band structure for the noninteracting one.
For instance, in classical semiconductors, such as Si, DFT
(even the exact DFT) underestimates the fundamental gap,
and thus yields an incorrect noninteracting susceptibility, yet
the full susceptibility calculated entirely within DFT is by
definition exact [92]. Note that within DFT there are only
two electronic interactions: the charge interaction is defined
as δ2Etot/δn(r)δn(r′), which includes the Coulomb (Hartree)
and the exchange-correlation interactions, and the spin
interaction is defined as Ixc(r, r′) = δ2Etot/δn↑(r)δn↓(r′).
Therefore, RPA is exact in DFT. Obviously, LDA and GGA
approximations to DFT are not exact, yet one may think that the
full spin susceptibility calculated, say, within LDA-DFT is not
a bad approximation. The only caveat is that in a quantum
critical material LDA deviates from the exact DFT in one
systematic way: the reduction of the Hund rule coupling due to
long-range spin fluctuations is not included. Emprically, it can
be accounted for by scaling Ixc down by 15–20%. After that,
one can use equations (3), (4) using Ixc(r, r′) = Ixc(r)δ(r−r′)
instead of U.

One can work in the orbital basis again, just as one does in
the Hubbard model, except that the spin-dependent term now
reads

∑
i,
,
′ I

′ni
↑ni
′↓. It is easy to show that I
=
′ = I

/3,

so some orbital dependence remains. Whether it will be
enough to provide for nodal lines, is unclear. The charge
channel should also be revisited in this case. The Coulomb
repulsion term should be added in the form of a matrix in band
indices, µ∗

ij , as defined in equation (18). The diagonal elements
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of this matrix should be taken as 0.15–0.20, and nondiagonal
between 0 and the diagonal ones, depending on how different
are the matrix elements of U in the band representation.

Although the course of action outlined above is
straightforward, so far it has not been tried yet. In principle,
such calculations could be very useful for understanding the
stability of the qualitative results, such as nodal structure,
with respect to principal approximation, because the Hubbard
model and the DFT in many aspects represent two opposite
approximations.

3.2. Alternative approaches

Historically, many other pairing agents have been proposed
proposed as mediators for unconventional (non-phonon)
superconductivity [93]. Arguably, the first suggestions were
those of Little [94] and Ginzburg [95], who proposed,
respectively, quasi-1D metal chains and quasi-2D metal
planes embedded in highly polarizable media. This was
dubbed ‘excitonic superconductivity’, after the simple physical
picture of Cooper pairs living in the metallic subsystem,
and the intermediate bosons being excitons localized in the
surrounding nonmetalic media. In the context of FeBS,
this proposition was recently brought back into limelight by
Sawatzky et al, who pointed out that As and Se are large
ions and thus have large polarizability [13, 96]. This model
is still being discussed; the arguments usually brought up
against it include the fact that Fe–As hybridization is not
small, as the model requires, that ion–ion interaction should
also be subject to screening by polarizable As ions, but no
anomalous phonon softening is observed, and, finally, that
superconductivity seems to be always adjacent in the phase
diagram to antiferromagnetism.

Other proposals rely on long wavelength electron charge
fluctuations known as plasmons, particularly on acoustic
plasmons. Theories of this type were attempted for cuprates,
for MgB2, and, most recently, for intercalated graphites. So
far this model, however, has not had any confirmed success.
One shortcoming that plagues the papers advocating this
mechanism is that they hardly ever address the lattice stability,
yet any sort of overscreening (and essentially any attractive
interactions in the charge channel can be considered as a
sophisticated overscreening) tends to overscreen phonons as
well and render them unstable. This is of course a problem
for other ‘excitonic’ mechanisms as well; one can achieve
pairing and keep phonons stable only through invoking vertex
corrections that appear in electron–electron but not in electron–
ion vertices.

Of all alternatives to the spin fluctuation model, the one
that has received most attention in the context of FeBS is the
orbital fluctuations model of Kontani and co-workers [97–99].
The possible importance of orbital fluctuations was pointed
out by several authors early on due to the possibility of orbital
ordering in the Fe d states at the orthorhombic transition
[84, 100–102]. The stripe magnetic order will drive an orbital
ordering to some degree even in itinerant models. Fluctuating
order of this type, taken in isolation, can in principle lead
to an attractive mechanism for pairing, although it is hard to

disentangle such orbital fluctuations from spin fluctuations of
the same symmetry.

It is useful to note that orbital fluctuations of this type are
present in the standard fluctuation exchange approach (12),
and of course driven by the interorbital Coulomb matrix
elements Ū ′, J̄ ′. It is normally assumed (and verified by
ab initio calculations [103]) that Ū > Ū ′, but one can ask,
taking Ū ′ as an independent parameter, what happens to the
effective electron pairing vertex? One may show that for
sufficiently large Ū ′,J̄ ′ the instability in the charge/orbital
channel dominates the spin channel contribution to �ij (k, k′),
equation (11), even for purely electronic interactions. In the
former channel the interorbital pair vertex becomes peaked at
(0, 0) (compare figure 10), such that the leading instability
occurs in the A1g channel but without sign change, i.e. a s++

state.
These strong orbital fluctuations are unphysical in the

required limit Ū ′ > Ū, J̄ ′ > J̄ , relying on electronic
interactions alone. However, as pointed out by Kontani and
Onari [97], certain in plane Fe phonons can in principle
‘bootstrap’ the interorbital processes such that they dominate
the spin fluctuation part of the interaction (a different
phonon was considered by Yanagi [104]). The electron–
phonon coupling to these phonons is included in an RPA-
type calculation [97], and it is found indeed that effective
interorbital couplings Ũ ′, J̃ ′, renormalized by the effective
electron–electron interaction due to phonons g(0), enhance
s++ pairing. The phase diagram of this model for fixed Ũ ′/Ũ
is shown in figure 10. Note that orbitals 2 and 4 in the Kontani–
Onari scheme are xz and xy.

While the concept of orbital fluctuation pairing is quite
clear, there are several open questions concerning this idea.
Probably the most intriguing one is how model calculations
of Kontani and Onari should be reconciled with the density
functional calculations. Indeed, electron–phonon coupling in
the linear harmonic adiabatic approximation is included in the
standard linear response calculations of the phonon frequen-
cies and coupling strength. These calculations find only very
moderate coupling strength for representative FeBS [105], and
include diagrams of the type shown in figure 11(a), where the
vertex is computed adiabatically, as a derivative of the elec-
tronic Green’s function with respect to ionic displacement. An
enhancement found by Kotani and Onari can only come from
vertex corrections. However, vertex corrections of the type
shown in figure 11(b) are excluded by virtue of the Migdal the-
orem, and vertex corrections of the type shown in figure 11(c),
where the springy line is a high-energy electronic excitation
(like an orbital fluctuation) are included in the adiabatic den-
sity functional calculations (any orbital repopulation due to a
static ionic displacement is accounted for). Thus, the slow
(compared with the electronic scale) orbital fluctuations are
excluded by the Migdal theorem, and fast ones (compared with
the phonon scale) are already included in the DFT calculations.
This appears to leave rather little room for strong renormaliza-
tion of the electron–phonon coupling.

Similarly, one can ask how such a huge enhancement will
affect the corresponding phonon self-energy. Indeed pretty
much the same vertex corrections enter the equation on the
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Figure 10. (a) Phase diagram for pairing in the Hubbard–Holstein model. g(0) is the bare electron–electron interaction due to
electron–phonon coupling. (b) Interorbital susceptibility mixing xz and xy orbitals; (c) Intraorbital susceptibility for xz orbitals. Reprinted
with permission from [97]. Copyright 2010 by the American Physical Society.

Figure 11. Diagrams for the electron–phonon vertex renormalization. Straight red lines are electron propagators, the wavy green line is the
phonon propagator, and the curly magenta line is a high-energy electronic excitation (orbital fluctuation).

phonon frequency and one would expect that if the DFT fails
so miserably in calculating the electron–phonon coupling for
a particular mode, it should also drastically overestimate the
frequency of this mode compared with the experiment. Yet
this is definitely not the case [106].

Thus, the question as to what extent this interesting orbital
fluctuation model operates in real compounds remains open.
It is possible that, due to varying interactions strengths, orbital
fluctuations dominate in some of the FeBS and spin fluctuation
in the others. The authors of these works believe that orbital
fluctuations, and thus s++ pairing, are dominant in most of these
systems, pointing to weak impurity scattering [107], the broad
neutron scattering resonance observed in most FeBS [98], and
the natural explanation [99] of the Lee plot (maximum of Tc

within family at tetrahedral Fe–As angle [108]) as evidence in
favor of this scenario. We postpone the question of whether or
not s++ pairing has in fact been observed to section 5.1.

3.3. Multiband BCS theory

The famous BCS formula is derived with the assumption that
the pairing amplitude (superconducting gap, order parameter)
is the same at all points on the Fermi surface. The variational
character of the BCS theory makes one think that giving the
system an additional variational freedom of varying the order
parameter over the Fermi surface should always lead to a
higher transition temperature. For a case of two bands with
uniform order parameters in each of them this problem was
solved first in 1959 by Matthias and co-workers [109] and by
Moskalenko [110]. It can be easily generalized onto a general
k-dependent order parameter. In the weak-coupling limit it
reads

�(k) =
∫

�(k, k′)�(k′)F [�(k′), T ] dk′, (19)
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where summation over k also implies summation over all bands
crossing the Fermi level. A strong-coupling generalization
in the spirit of Eliashberg theory is straightforward. Here
the matrix � characterizes the pairing interaction, and F =∫ ωB

0 dE tanh(
√

E2+�2

2T
)/

√
E2 + �2 . The intermediate boson

frequency sets the cut-off frequency. Assuming that the order
parameter � varies little within each sheet of the Fermi surface,
while differing between the different sheets, equation (19) is
reduced to the original expression of [109, 110]:

�i =
∑

j

�ij�jF (�j , T ), (20)

where i, j are the band indices and � is an asymmetric matrix
related to the symmetric matrix of the pairing interaction V ,
�ij = VijNj , where Ni is the contribution of the ith band to
the total density of states (DOS). It can be shown that in the
BCS weak-coupling limit the critical temperature is given by
the standard BCS relation, kTc = h̄ωD exp(−1/λeff), where
λeff is the largest eigenvalue of the matrix �. The ratios of
the individual order parameters are given by the corresponding
eigenvector. Note that although the matrix � is not symmetric,
its eigenvalues (but not eigenvectors!) are the same as those
of the symmetric matrix

√
NV

√
N .

Furthermore, it is evident from equation (20) that unless
all Vij are the same, the temperature dependence of individual
gaps does not follow the canonical BCS behavior. For instance,
in a two-band superconductor where the intraband coupling
dominates, the smaller gap opens initially at a very small
value, and only at a temperature corresponding to its own
superconducting transition (not induced by the larger gap)
it starts to grow. This effect is gradually suppressed as
the interband coupling approaches the geometrical average
of the intraband couplings, but as the interband coupling
starts to dominate the gaps again show non-BCS temperature
dependence. In this limit, however, it is the larger gap that
deviates more from the BCS behavior.

It was realized in 1972 [55] that equations (19) and (20)
may have solutions even when all elements of the interaction
matrices � are negative, i.e. repulsive. The simplest example
is an off-diagonal repulsion: V11 = V22 = 0, V12 = V21 =
−V < 0. In this case the solution reads λeff = √

�12�21 =
|V12|

√
N1N2, �1(Tc)/�2(Tc) = −√

N2/N1. At lower
temperatures the gap ratio becomes somewhat closer to 1.

It is important to bear in mind that actual FeBS materials
have more than two bands—rather four or five. These
may all have different gap magnitudes, and possibly angular
dependences, as discussed in section 5.

3.4. Disorder in multiband superconductors

Experiments on impurity substitution [111–113] and proton
irradiation [114] have given the impression that Tc is
suppressed generally more slowly than the maximum rate
obtained for pure interband scattering in the symmetric model,
which is identical to the AG universal Tc suppression curve.
It is worth advising the reader to interpret Tc suppression
experimental results with caution, for several reasons. First,
in some cases not all the nominal concentration of impurity

Figure 12. Schematic representation of two Fermi surface pockets
with superconducting gaps indicated by their signs. Top: interband
scattering by impurities mixes �1 and �2. Bottom: intraband
scattering mixes states on each pocket.

substitutes in the crystal. Second, ‘slow’ and ‘fast’ Tc

suppression cannot be determined by plotting Tc versus
impurity concentration, but only versus a scattering rate
directly comparable to a theoretical scattering rate (see below),
which is generally difficult to determine. The alternative is to
plot Tc versus residual resistivity change �ρ, but (a) this is
only possible if the ρ(T ) curve shifts rigidly with disorder,
and (b) if comparisons with theory include a proper treatment
of the transport rather than the quasiparticle lifetime [115].
Finally, the effect of a chemical substitution in a FeBS is quite
clearly not describable solely in terms of a potential scatterer,
but the impurity may dope the system or cause other electronic
structure changes which influence the pairing interaction.

Given the many uncertainties present in the basic modeling
of a single impurity, as well as the multiband nature of
the Fe-based materials, it is reasonable to assume that
systematic disorder experiments may not play a decisive
role in identifying order parameter symmetry as they did,
e.g. in the cuprates. Nevertheless, one can perhaps
draw useful qualitative conclusions about the effects of
impurities on the various types of superconducting states under
discussion by attempting to study models of pairbreaking by
impurities which are generalizations of the conventional AG
approach [116].

3.4.1. Intra- versus interband scattering. In conventional
two-band superconductors with two different isotropic gaps,
nonmagnetic impurities can either scatter quasiparticles
between bands or within the same band. Interband processes
(see figure 12) will average the gaps and can thus lead to
some initial Tc suppression, after which Tc will saturate until
localization effects become important. Interband scattering
is much more profound in a sign-changing two-band system
[117–119], where nonmagnetic impurities with interband
component of the scattering potential are pairbreaking even if
the gaps and DOSs are equal on both bands (symmetric model).
In such a situation, Tc will eventually be suppressed to zero at
a finite critical concentration as in the theory of scattering by
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magnetic impurities in a one-band s-wave system [116]. In the
context of the FeBS, these general considerations were pointed
out early on by several groups [29, 120–122]. A given type of
chemical impurity in a given host will be characterized crudely
by an effective interband potential u and an intraband potential
v, and results for various quantities in the superconducting state
will depend crucially on the size and relative strengths of these
two quantities.

Most calculations are performed in the framework of the
T -matrix approximation to calculate the average impurity self-
energy for pointlike scatterers �̂imp(ωn),

�̂imp = nimpÛ + ÛĜ(ωn)�̂
imp(iωn), (21)

where Û = U ⊗ τ̂3, nimp is the impurity concentration, and
the τi are Pauli matrices in particle–hole space. Here U is
a matrix in band space, frequently taken for simplicity to be
represented by constant intra- and interband potentials v and u,
respectively, such that (U)αβ = (v−u)δαβ +u. This completes
the specification of the equations which determine Green’s
functions

Ĝ(k, ω)−1 = Ĝ0(k, ω)−1 − �̂imp(k, ω), (22)

where Ĝ0 is the Green’s function for the pure system. Note
that the self-consistent T -matrix approximation includes only
diagrams corresponding to multiple scattering from a single
impurity, and is well known to have some pathologies in two
dimensions [123]. In the context of impurities in an s± state, it
has been claimed to produce inaccurate results in the statistics
of subgap states [19]. Nevertheless, for qualitative purposes—
and we will argue below that one cannot go beyond a qualitative
analysis here anyway—it seems quite adequate.

3.4.2. Effect on Tc. Properties in the presence of disorder
can depend sensitively on the coupling constants λij of the
two-band superconductor (see section 3.3) as well, since these
enter the BCS gap equations including impurities. In general,
even the two-band problem can seem to be quite dependent on
many parameters which are difficult to determine as a practical
matter. Recently, a simplification was pointed out in [124]
whereby the suppression of Tc can be expressed solely in terms
of a universal pairbreaking parameter

�̃12 = �1(2)

(1 − σ̃ )

σ̃ (1 − σ̃ )η
(N1 + N2)

2

N1N2
+ (σ̃ η − 1)2

, (23)

where σ̃ = (π2N1N2u
2)/(1 + π2N1N2u

2) and �1(2) =
nimpπN2(1)u

2(1 − σ̃ ) are cross-section and normal state
scattering rate parameters, respectively. The parameter η =
v/u is the ratio of intraband to interband scattering. In the weak
scattering (Born) limit, σ̃ → 0, while for σ̃ → 1 the unitary
limit (strong scattering) is reached. Note the strange result that
�̃12 → 0 in the unitary limit, i.e. nonmagnetic impurities do not
affect Tc in an s± state [119]. While this may be an artifact of
the two-band model used, it is an indication that a rather robust
set of parameters may produce significantly weaker effects of
Tc suppression than expected.
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Figure 13. Critical temperature for various σ̃ and η as a function of
(a) the impurity scattering rate �1 and (b) the effective interband
scattering rate �̃12. The parameters are N2/N1 = 2, coupling
constants are for 〈λ〉 > 0: λ11 = 3, λ12 = −0.2, λ21 = −0.1,
λ22 = 0.5; for 〈λ〉 = 0: λ11 = 2, λ12 = −2, λ21 = −1, λ22 = 1; for
〈λ〉 < 0: λ11 = 1, λ12 = −2, λ21 = −1, λ22 = 1. From [124].

Expressed in terms of (23), all Tc suppression curves
collapse onto one of three ‘universal’ curves, depending on
whether the average pairing strength parameter 〈λ〉 is positive,
negative, or zero, as shown in figure 13. It is clear that in
the case where intraband scattering dominates, even in the
‘standard’ s± scenario with 〈λ〉 < 0, the Tc suppression will be
much slower than the AG result; thus experimental results need
not be taken as evidence against the s± state. In the interesting
and relatively unexplored 〈λ〉 > 0 case, a transition below Tc

from s± to s++ with increasing disorder is possible [124].

3.4.3. Anisotropic states. There is substantial evidence
from low-energy thermodynamics and transport experiments
(section 5) that low-energy quasiparticle excitations are present
in many Fe-based materials, indicating either very small
minimum gaps or true nodes of the order parameter on one
or more Fermi surface sheets. The effect of nonmagnetic
impurities on s-wave states of this type also depends on
the character of the scattering, in particular whether or not
inter- or intraband processes dominate. If intraband scattering

18



Rep. Prog. Phys. 74 (2011) 124508 P J Hirschfeld et al

0 90 180 270 360
0

0.5

1

1.5

2

2.5

φ (º)

Ω
G

(φ
)/

T
c0

Figure 14. Normalized spectral gap �G(φ)/Tc0 versus angle φ on
the Fermi surface for an extended s-wave state
�(φ) = �0(1 + r cos 2φ), with �0/Tc0 = 1, r = 1.3 and Born limit
scattering rate �/Tc0 = 0 (dashed), 0.3 (dotted), 1.0 (solid), and 3.1
(dashed–dotted). From [125].

processes are considered by themselves, they simply average
the angular structure of the order parameter on each Fermi
surface sheet, as in the conventional s-wave case [126]. Tc

will fall initially and then saturate. If gap nodes are present,
they will be lifted by the averaging process at a critical value of
disorder (figure 14), and give rise to a crossover at the lowest
temperature from power laws in T to exponential behavior
[125] with increasing disorder. Thus if intraband scattering
dominates, such nodal or near-nodal systems will display,
in the clean limit, the low-energy excitations characteristics
of nodes, while dirty systems will be gapped with
reduced Tc.

In the early literature on disorder in Fe-based system it was
frequently assumed, to the contrary, that the order parameter
was isotropic s±, and that interband scattering dominates.
In this case, under special circumstances (see section 3.4.4),
bound states at the Fermi level may be induced and mimic
the effect of nodes in some experiments [79, 120]. In such a
situation, the opposite behavior with disorder is to be expected:
clean systems will display exponential T -dependence and
dirty systems the power laws expected from impurity-induced
residual DOSs.

3.4.4. Single impurity problem. In the most general
and presumably realistic situation, anisotropic multiband
order parameters are present with both intra- and interband
scattering. Intraband scattering probably dominates in most
situations (see below) and for intermediate to strong impurity
potentials, interband scattering effects are largely irrelevant.
To understand why this is the case, we consider the single
impurity problem in a symmetric s± state. Equation (21)
for �̂imp is essentially identical to the T -matrix for a single
impurity, whose poles at �0 indicate the existence of impurity
bound states [127]. In general, energies nested near the gap
edge correspond to weak pairbreaking, while energies near
the Fermi level correspond to strong pairbreaking. A plot of

Figure 15. Energy of single impurity bound state �/�0 in a
symmetric s± superconductor with gaps ±�0 as a function of
interband (u) and intraband (v) scattering (Kemper, private
communication).

the single impurity resonance energy position in a symmetric
s± state is given in figure 15, and shows that in order to
influence the states near the Fermi level a very specific fine
tuning of interband and intraband scattering is required. For
the symmetric model, this corresponds to η = u/v = 1 in the
intermediate to strong potential range, but this criterion will
be different in the asymmetric model N1 = N2, �1 = �2.
It thus seems a priori unlikely that the impurity band in an
isotropic s± state explanation for experiments indicating low-
lying quasiparticle states is correct. For further discussion, see
section 5.

The single impurity problem has been considered in more
detail in a two-band model in [122, 128–134] and in a five-
band model in [135]. These calculations show a much richer
structure of the local DOS around a single impurity than is
found, e.g. in the one-band d-wave problem [127], as might
be expected, and a complicated dependence on interaction and
impurity parameters. It seems unlikely, given this complexity,
that the combination of scanning tunneling microscopy (STM)
imaging of impurity states [127] and theories of this type will
be able to provide definitive information on order parameter
symmetry or structure in these systems.

One approach to reducing the number of parameters and
making theories of this type more predictive has been to try
to calculate impurity potentials from first principles methods.
For example, Kemper et al [136] calculated the nonmagnetic
and magnetic impurity potentials for a Co substituting for
an Fe in BaFe2As2 within DFT. Nakamura et al [14] later
performed similar calculations for several impurity types. In
principle, such calculations can provide important input into
phenomenological treatments of disorder by specifying u and
v in band space, but band-resolved results of this type have
not yet been given. Kemper et al found in their calculations
the nonmagnetic potential was significantly larger than the
magnetic one, and that the interband scattering was perhaps a
factor of three smaller than intraband. In orbital space, results
from [14, 136] disagree substantively for the Co potential, but
it is not clear whether this arises from the fact that the former
calculations were performed in the spin-polarized phase, or due
to a different treatments of the nonlocal LDA potential [14].
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3.4.5. Magnetic impurities. A qualitative rule of thumb
when considering the effect of magnetic and nonmagnetic
impurities on multiband, anisotropic superconductors is as
follows: when a nonmagnetic impurity scatters a pair from
one point on the FS into another point, such that the order
parameter does not change sign, scattering is not pairbreaking;
if the order parameter flips its sign, it is pairbreaking. For
a magnetic impurity, the opposite is true: scattering with an
order parameter sign change is not pairbreaking, otherwise it is.
However, quantifying this rule of thumb may be complicated
and results are sometimes counterintuitive.

In terms of concrete calculations for magnetic impurities
in s± states, Golubov and Mazin [118] showed that for
the symmetric model considered above, Tc is suppressed by
magnetic and nonmagnetic impurities at the same rate in the
disorder averaged theory. The analogous single impurity
problem was treated by Akbari et al [137] within an Anderson
model approach to a rare earth impurity in such a system in the
s± state. In both situations only quantitative differences in the
scattering from magnetic impurities relative to the usual s-wave
case were found. In special symmetric situations, interband
magnetic scattering in an s± state can give rise to arbitrarily
weak pairbreaking, whereas intraband scattering is strongly
pairbreaking as expected from AG theory [131].

3.4.6. Orbital effects. In section 3.4.4 above it was argued
that fine tuning of intra- and interband pairing amplitudes
was required in order to create substantial pairbreaking in an
s± state, e.g. create bound states near the Fermi level. In a
more realistic approach, however, these parameters (u and v)
should not be considered arbitrary, For example, if one starts
from a local atomic picture where an impurity is assumed to
modify the orbital occupation energies of the Fe-derived d
states, and then transforms to a band basis, it is easy to see
that intraband scattering terms of the same order as interband
ones are automatically generated by the unitary transformation
from orbitals to bands. This was the basis of the argument
made in [107] that interband scattering generically leads to
u � v and therefore to large Tc suppression in the symmetric s±
model; this was taken as evidence against s± pairing. However
as seen in section 3.4.4, a fine tuning is required to produce
significant pairbreaking, so we consider it generically unlikely
that for a given set of four or five Fermi surface pockets,
with differing DOS and order parameter magnitudes, that
the condition for maximal (AG like) Tc suppression will be
achieved accidentally. This point of view is also borne out by
the argument in [124] and exhibited in figure 13.

3.5. Dimensionality.

In this section we will concentrate on the qualitative effects
due to 3D dispersion of the electronic bands. It should be kept
in mind that dimensionality also plays a role in magnetism,
in particular, it may affect the extent of the magnetic part of
the phase diagram and magnetic-orthorhombic splitting [138],
and also it can manifest itself through anisotropy of elastic
properties, phonon dispersion and electron–phonon coupling
(which does not seem to be the case in FeBS). Again, we will

Figure 16. dz2 orbital character on the Fermi surface of 5%
electron-doped Ba-122 according to DFT. The two outer hole Fermi
surfaces are clipped at ±π/2c to show the parts carrying most of the
dz2 character.

not discuss these effects, but only the effects of dimensionality
on the band structure, and, via the latter, on superconductivity.

Such effects can be, roughly speaking, divided into three
groups. First, there is a generic issue of the correspondence
between the number of carrier and their DOS. Let us compare
conventional superconductors, MgB2 and B-doped diamond.
Both exhibit hole-doped covalent bonds, and electron–phonon
matrix elements are practically identical. Note that it is rather
difficult to dope such bonds, so the number of carriers is small
in both cases. Yet in the quasi-2D σ -bands of MgB2 this small
amount creates a sizeable DOS (recall that in ideal 2D parabolic
bands DOS does not depend on the carrier concentration
at all), and a critical temperature of 40 K, while in boron-
doped diamond the DOS remains small, according to the small
number of holes, and so does Tc.

The second effect is the geometry of the Fermi surface.
As we know, in the spin fluctuation model the structure of
the order parameter is defined by the interplay between the
q-dependence of the spin fluctuations and the shape of the
Fermi surface. This is an interesting possibility that has been
explored mostly by that part of the community which traces
the spin fluctuations to nearest- and second nearest neighbor
superexchange (see section 3.1). In that case the nodal lines are
fixed in reciprocal space at kx = ±π/2, and at ky = ±π/2. If
at some particular kz a Fermi surface expands as to cross these
lines, actual gap nodes develop.

Finally, the last group of effects is not related so much
to possible changes with kz of the Fermi surface shape, but
to the orbital composition of the states forming the Fermi
surface. These may come from two sources. First, near the �

point, in addition to the ubiquitous xz/yz band, occasionally
other bands may cross the Fermi level, including the z2 band
that is very dispersive in the direction. This band hybridizes
with the xz/yz band everywhere except the high-symmetry
planes, leading to Fermi surface pockets that rapidly change
their character as kz changes (see figure 16).

Another, more subtle source of 3D effect related to the
orbital character of the bands comes from the fact that the
electron bands, as discussed in section 2 are never pure xz/yz,
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Figure 17. Band dispersion in the unfolded BZ corresponding to a
1-Fe unit cell. Major orbital contributions are labeled.

but always have an admixture of the xy symmetry, in the outer
barrel. This fact was first noted and explained by Lee and
Wen [39], and elaborated in a review paper by Andersen and
Boeri [139]. The relevant physics also controls the warping
and the twisting of the electron FSs.

To understand this, we will start as usual with the unfolded
band structure (figure 17), corresponding to a single-Fe unit
cell (figure 16(b)). The unfolded Fermi surface geometry of
the electron pockets is, essentially, defined by their ellipticity
and its variation with kz. The ellipticity at a given kz in the
unfolded zone is determined by the relative position of the xy

and xz/yz levels of Fe, and the relative dispersion of the bands
derived from them. Indeed, the point on the Fermi surface
located between � and X has a purely xy character, while that
between X and M a pure yz character. At the X point the xy

state is slightly below the yz state, but has a stronger dispersion,
therefore depending on the system parameters and the Fermi
level the corresponding point of the Fermi surface may be more
removed from X, or less. In the 1111 compounds, for instance,
the dispersion of the xy band is not high enough to reverse the
natural trend, so the Fermi surface remains elongated in the
�M (1,0) direction.

Both xy and xz/yz orbitals point away from the Fe–Fe
bond (as opposed to the x2−y2) orbital, therefore their hopping
mainly proceeds via As (Se) p-orbitals. The xy states near
the X point mainly hop through the pz orbital (see [139] for
more detailed discussions), and xz (yz) via py (px) orbitals (not
because of the orbitals’ shape, but because of their phases at
Y[X]). If there is a considerable interlayer hopping between the
p orbitals, whether direct (11 family) or assisted (122 family),
the ellipticity becomes kz-dependent. For instance, in FeSe
there is noticeable overlap between the Se pz orbitals, so that
they form a dispersive band with the maximum at kz = 0
and the minimum at kz = π/c. Obviously, hybridization is
stronger when the pz states are higher, therefore the Fermi
surface ellipticity is practically absent in the kz = 0 plane,
while it is rather strong in the kz = π/c plane, which leads to
formation of the characteristic ‘bellies’ in the Fermi surface of
FeSe. On the other hand, px,y orbitals in FeSe hardly overlap
in the neighboring layers, so the xz and yz bands have very

little kz dispersion, so that the inner barrels of the electronic
pockets in this compound are practically 2D.

In 122, the interlayer hopping proceeds mainly via the Ba
(K) sites, and thus the kz dispersion is comparable, but opposite
in sign (for instance, at the� point the hopping amplitudes from
Ba s to As pz orbitals above and below have opposite signs,
while those for the As px,y orbitals have the same signs) for
the xy and xz/yz bands. Note this difference between the 122
and 1111 materials is related simply to the structural difference
between ‘in-phase’ and ‘out of phase’ FeAs layers in the unit
cell. As a result, when going from the kz = 0 plane to the
kz = π/c plane the longer axis of the Fermi pocket shrinks,
and the shorter expands. In BaFe2As2 the average ellipticity is
very small, while the As–Ba overlap is large, so that the actual
ellipticity changes sign when going from kz = 0 to kz = π/c.
On the other hand, in Se-based 122 systems the Se–K hopping
is quite small, so ellipticity is small for all kz.

Importantly, the symmetry operation that folds down the
single-Fe BZ when the unit cell is doubled according to the As
(Se) site symmetry is different in the 11 and 1111 structures,
as compared with the 122 structure. In the former case, the
operation in question is the translation by (π, π, 0),without
any shift in the kz direction, in the latter by (π, π, π). Thus
the folded Fermi surface in 11 and in 1111 has full fourfold
symmetry, while that in the 122 has such symmetry only for
one particular kz, namely kz = π/2c. Furthermore, in 122
the folded bands are not degenerate along M̃X̃ as they were in
11/1111. Finally, there is a considerable (at least on the scale of
the superconducting gap) hybridization when the folded bands
cross (except for kz = 0). As a result, although the band
structure calculations for 122 materials actually produce two
detached (except for one plane) cylinders for the electronic FSs,
one cannot ‘unfold’ these two cylinders as if one of them was
folded down into the other. The actual folded FSs intersect, yet
we do not observe these intersections because of hybridization
induced by the As (Se) potential.

All these effects of three-dimensionality of the electronic
structure manifest themselves in the 3D gap structure, tending
to complicate the simple 2D theoretical pictures. We comment
below on some of the most significant ways in which this
occurs.

4. Gap symmetry

The first question to be asked regarding the pairing state
in a novel superconductor is, what is the symmetry of the
order parameter? Of course, the symmetry itself does not
fully describe the structure of the gap. For instance, even
a full-symmetry (s-wave, or, synonymously, A1g, symmetry)
order parameter may have ‘accidental’, that is, not required
by symmetry, nodes, as long as these nodes transform into
each other by all point group operations. Yet, establishing the
right symmetry is arguably the most important step towards
uncovering the full gap structure.

4.1. Triplet or singlet?

In materials with an inversion center, so-called centrosymmet-
ric, any Cooper pair can be characterized by its parity, in the
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sense that the spatial part of its wave function (the order pa-
rameter) can either change sign or remain the same under the
inversion operation. Electrons being fermions, the full wave
function is always antisymmetric. Since inversion corresponds
to swapping the pair components, if they have total spin S = 1
(triplet), the spatial part of the wave function should be odd,
and if they have S = 0 (singlet) it should be even.

A triplet Cooper pair with Sz = ±1 can screen an external
magnetic field, just as individual electrons can. The spin–
orbit interaction can prevent this for some directions, but not
for others. On the other hand, a singlet pair has no net spin
and does not contribute to magnetic susceptibility as T → 0.
Thus for singlet superconductivity one can expect the uniform
spin susceptibility to diminish below Tc. The easiest and
the most accurate way to probe the latter is via the Knight
shift. This experiment has been performed on several FeBS
including Ba(Fe1−xCox)2As2 [140], LaFeAsO1−xFx [141],
PrFeAsO0.89F0.11 [142], Ba1−xKxFe2As2 [143, 144], LiFeAs
[145, 146] and BaFe2(As0.67P0.33)2 [147], and it was found that
the Knight shift decreases in all crystallographic directions.
This effectively excluded triplet symmetries such as p-wave or
f-wave.

4.2. Chiral or not?

Another way to classify the superconducting state is according
to whether it breaks time-reversal symmetry or not, and
according to whether it is chiral (finite expectation value of
the magnetic moment operator in the ground state) or not. A
singlet chiral superconducting state is allowed in tetragonal
symmetry [27], and is transformed under the symmetry
operations as xz + iyz (of course the complex conjugate state,
xz − iyz, is also allowed). There are several ways to detect
T -breaking and chirality, but the simplest is probably the muon
spin resonance (µSR) spectroscopy. This technique is sensitive
to small local magnetic fields, as long as they are static. In a
chiral superconductor, as long as the balance between the two
conjugate states is broken, which should be happening near
crystallographic defects, spontaneous orbital current appear,
and should be visible by the µSR technique. Such an effect
was observed, for instance, in Sr2RuO4 [148], but not in
FeBS [149]. In principle, a chiral state can also be generated
by mixing two 1D representations, e.g. a so-called d + id′

(note a s + id state, also possible in principle, is T -breaking
but is not chiral). However, this requires separate transition
temperatures corresponding to the two representations; since
this has not been observed, we do not discuss this possibility
further.

4.3. d or s?

Having excluded triplet (p and f) symmetries, as well as the
chiral state, we are left with the following singlet pairing
possibilities (in a 3D system with tetragonal symmetry):
s-wave [A1g]; d(xy) [B2g]; d(x2 −y2) [B1g]; g-wave (xy(x2 −
y2)) [A2g]; and d(xz ± yz) [Eg]. It is important to note that,
while d-wave does not necessarily imply the existence of gap
nodes, in combination with a quasi-2D Fermi surface centered
around the �Z line such nodes are unavoidable, either vertical

for the A and B symmetries, or horizontal, for the E symmetry.
As will be discussed later in this review, the surface probes,
such as ARPES and tunneling show full gaps with no nodes,
and, at least for some compounds bulk probes show exponential
low-temperature behavior.

There are also direct experiments that provide evidence
against d-wave. The d-wave representations, B1g and B2g,
should not exhibit any Josephson current when weakly coupled
to a known s-wave superconductor, by symmetry, if the current
flow precisely along the z-axis. However, such current was
observed in the 122 single crystals [150]. This observation
is difficult to explain away by deviation from the correct
geometry, because the observed current was strong and showed
a well-defined Fraunhofer diffraction.

Another piece of evidence comes from the so-called
anomalous Meissner, or Wohlleben effect. This effect was
predicted in the beginning of the cuprates era [151] and since
then has been routinely observed in d-wave superconductors.
In a nutshell, this effect appears in polycrystalline samples with
random orientation of grains. For any d-wave superconductor
one expects roughly 50% of weak links to have a zero phase
shift, and 50% a π phase shift. One can show that in this case
the response to a weak external magnetic field is paramagnetic,
i.e., opposite to the standard diamagnetic superconducting
response. This effect has been searched for in FeBS [152],
but not found.

These separate pieces of evidence strongly suggest that the
pairing symmetry is s, and not d. However, we want to stress
that direct testing similar to that performed in cuprates, namely
a single-crystal experiment with a 90◦ Josephson junction
forming a closed loop, is still missing, and it is highly desirable
for experimentalists to perform this ultimate test. In addition,
it should be borne in mind that no law of nature forbids
different FeBS materials from having different order parameter
symmetries, although our previous experience with other novel
superconductors tends to argue against this. Indeed, there are
several proposals that, while most FeBS are s-wave, those with
unusual Fermi surfaces with only one type of pocket can be d
wave, see section 5.3.

5. Gap structure

5.1. Does the gap in FeBS change sign?

Even though there is convincing evidence that the point
symmetry of the order parameter is for most, if not for all
compounds, s-wave, it does not tell us much about the actual
structure of the order parameter and the excitation gap. As
opposed to the d-wave case, where nodes are mandated on the
hole pockets by symmetry, in an extended s-wave scheme they
may appear on either type of pocket if higher harmonics in
the angular expansion of the order parameter are sufficiently
large. As discussed in section 3.1, there are microscopic
reasons why this may be the case. Moreover, since nodeless
s±, nodeless s++, and an extended s with accidental nodes all
belong to the same symmetry class, the difference between
them is only quantitative (but important). In this regard, several
experiments appear relevant.
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5.1.1. Spin resonance peak. One obvious effect that was
mentioned even in the very first paper proposing the s±
scenario [29] and later elaborated in detail [36, 153, 154], is
neutron spin resonance. Neutron scattering is a powerful
tool to measure the dynamical spin susceptibility χs(q, ω).
For the local interactions (Hubbard and Hund’s exchange,
see equation (11)), χs can be obtained in the RPA from the
bare electron–hole bubble χ0(q, ω) by summing up a series of
ladder diagrams to give

χs(q, ω) = [I − Usχ0(q, ω)]−1 χ0(q, ω), (24)

where I is a unit matrix in orbital space and all other quantities
are matrices as well.

The fact that χ0(q, ω) describes particle–hole excitations
has interesting consequences in the case of an unconventional
superconducting state. Excitations are gapped below
approximately 2�0; (at T = 0) only above this threshold
does Imχ0(q, ω) become nonzero. The term arising from the
anomalous Green’s functions is proportional to∑

k

[
1 − �k�k+q

EkEk+q

]
..., (25)

where ... represents the kernel of the BCS susceptibility (see

e.g. [155]). At the Fermi level, Ek ≡
√

ε2
k + �2

k = |�k|.
If �k and �k+q have the same sign, the coherence factor in
square brackets in (25) vanishes, leading to a smooth increase
of the magnetic response with frequency above the T = 0
threshold of �c = min(|�k| + |�k+q|). In the case of
unconventional superconductors [156], when for a given q,
sgn�k = sgn�k+q, the coherence factor is nonzero and the
imaginary part of χ0 possesses a discontinuous jump at �c.
Due to the Kramers–Kronig relations, the real part exhibits
a logarithmic singularity. For a range of interaction values
entering the matrix Us, Im χ0 = 0 and nonzero Reχ0 result
in the divergence of Im χs(q, iωm) according to equation (24).
Such an enhancement of the spin susceptibility is called a ‘spin
resonance’. The corresponding peak appears at a frequency
below �c with the exact position �res pushed below �c by an
amount which scales with the strength of Us.

Scattering between nearly nested hole and electron Fermi
surfaces in FeBS produce a peak in the normal state magnetic
susceptibility at or near q = Q = (π, 0). For the uniform
s-wave gap, sgn�k = sgn�k+Q and there is no resonance
peak. For the s± order parameter, Q connects Fermi sheets
with mostly different signs of the gaps, see figure 18(b). This
fulfils the resonance condition for the interband susceptibility,
and a well-defined spin resonance peak is formed (compare
normal and s± superconductor’s response in figure 18(a)).
Moreover, the intraband bare susceptibilities are small at this
wave vector due to the direct gap, i.e. no states at the Fermi
level can be connected by intraband scattering with wave vector
Q. Therefore, a single pole will occur for all components of
the RPA spin susceptibility at �res � �c and a spin exciton
forms [36, 153].

In the case of the dx2−y2 superconducting gap under
discussion in FeBS, the situation is more complicated. Q

connects states rather close to the nodes of the order parameter
on the hole sheets (see figure 18(b)) and the overall gap in
Imχ0 determined by �c is significantly reduced. Still, the
resonance condition can be fulfilled due to the fact that for
some k’s �k = −�k+Q. However, because of the smallness
of �c the discontinuous jump in Im χ0 is vanishingly small
or zero. Thus the total RPA susceptibility shows a moderate
enhancement with respect to the normal state value, as seen
in figure 18(a). The same holds for dxy- and dx2−y2 + idxy-
wave symmetries [36] and a triplet p-wave [153]. Of course,
for states in addition to s± a resonance can occur at a different
wave vector Q connecting surfaces where the gap changes sign;
in the d-wave case a resonance has been predicted for the wave
vector q ≈ (π, π) connecting the two electron pockets [154].

Thus, the resonance peak at (π, 0) is pronounced only
for the sign-changing s-wave order parameter like s±. Such
a distinct behavior for the s- and d-wave gaps can be clearly
resolved via the inelastic neutron scattering experiments and
therefore it is a direct probe for the gap symmetry in FeBS
[36, 153, 154]. This situation is similar to the high-Tc cuprates
and heavy-fermion superconductors where a bound state
(spin resonance) with a high intensity also forms below Tc

[158–160].
The existence of the spin resonance in FeBS was first

calculated theoretically [36, 153] and subsequently discovered
experimentally. No pronounced features were observed in
the earliest work [161], presumably due to sample quality
issues. This was followed, however, by many reports of
well-defined spin resonances near (π, 0) in 1111, 122 and
11 families of FeBS [157, 162–174]. Although the ratios
of 2�0/Tc vary from material to material [175], the gross
features of the spin excitations are similar: they are gapped
below �c at T < Tc, and there is an enhancement at
�res, which vanishes at temperatures above Tc. Results for
BaFe1.85Co0.15As2 shown in figure 18(d) are representative in
many respects. For this material, �res/2�0 = (0.79 ± 0.15)

[157] which is close to 0.64, which has been claimed to be a
universal value for cuprates, heavy-fermion superconductors,
and FeBS [175, 176]. (Note there is no compelling theoretical
reason for this to be the case.) While the resonance in
FeBS and cuprates are similar in many aspects, there are
some differences. For instance, the temperature evolution
of �res in Ba(Fe1−xCox)2As2 is BCS-like without a signature
of the pseudogap [157]. Also, because in cuprates the AFM
wave vector QAFM connects different parts of the same Fermi
surface, for q < QAFM the gap becomes smaller than at
QAFM since we are closer to the d-wave nodes; the resonance
therefore shows downward dispersion. On the other hand,
in FeBS with the s± gap symmetry the resonance disperses
upwards, see figure 18(c).

There are still a few puzzles connected with the spin
resonance. In figure 18(c), we show the total RPA spin
susceptibility as a function of both momentum and frequency
for almost perfectly nested Fermi surfaces. Note that the s± gap
changes only slightly on the hole and electron Fermi sheets and
can nearly be considered as a constant. Therefore, one always
finds �k = −�k+q as long as the wave vector q < Q connects
the states on the distant Fermi surfaces. The nesting condition
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Figure 18. (a) Calculated Im χ(q = Q, ω) in the normal state and for the dx2−y2 and s± pairing symmetries [36]. In the latter case, the
resonance is clearly seen around ω = 2�0. (b) Cartoon of the order parameter symmetries and a wave vector Q connecting different Fermi
sheets. (c) Im χ(q, ω) for the s± state as a function of frequency ω and momentum along the (1, 1) direction [36]. (d) Experimental neutron
data showing the appearance of the spin resonance in BaFe1.85Co0.15As2 below Tc = 25 K. Reprinted by permission from Macmillan
Publishers Ltd: Nature Phys. [157], copyright 2010.

is very sensitive to the variation of q away from Q and already
at q ≈ 0.995Q, the Reχ0(q, �r) is much smaller than its value
at Q. As a result the resonance peak is confined to the nesting
wave vector and does not disperse very much as occurs in high-
Tc cuprates. Therefore, one expects that when a system doped
away from the perfectly nested case, the spin resonance should
become incommensurate with q = Q. This is, however, not
the case in the 1111 and Co-doped 122 families where it stays
at Q independently of doping (within experimental accuracy)
[157, 163–165]. On the other hand, incommensurability was
found in the Fe(Se,Te) [166], and recently in the K-doped
122 system as well [167]. Note that in the latter case the
K-doping was far from the optimal doping studied in [162],
which may explain why the incommensurability was easier to
detect. However, there is currently no clear understanding of
why the resonance appears to be commensurate in some cases
and not others.

Another puzzle is connected with the anisotropy in the spin
space observed with polarized neutrons in the nonmagnetic
phase of Ba(Fe1−xNix)2As2 [168]. It was found that Imχ+−
and 2Imχzz are different, displaying different resonance
frequencies and intensities. This contradicts SRI condition
〈S+S−〉 = 2〈SzSz〉 which must be obeyed in the paramagnetic
system. The relation Im χ+− > 2Im χzz was confirmed
by measurements of the NMR spin–lattice relaxation rate in

the perpendicular magnetic fields [143, 169]. One possible
solution to the puzzle could be the presence of the spin–
orbit interaction, which can break the SRI as it does in
Sr2RuO4 [170].

Recently, it was suggested that the theoretically predicted
peak for the isotropic s± state is is too sharp and too strong
compared with the maximum observed in the experiment.
Onari et al [98] proposed an alternative explanation for the
spin resonance that does not involve a sign change of the
order parameter. They noted that if there is a collapse of the
scattering rate below the pairbreaking edge, the redistribution
of the spectral weight upon entering the superconducting state
can lead to the enhancement of the spin response below Tc as
compared with the normal state. This effect does not represent
a true spin resonance in the sense that there is no divergence in
Imχ , but depending on the parameters one can gain significant
enhancement, and the observed resonance is indeed generally
broader than predicted in theories of the neutron response in a
clean s± state.

On the other hand, the similar spin resonance in cuprates,
albeit somewhat sharper than that in FeBS, is also rather
broad, and in this case there there is little doubt that the
scattering involves a sign-changing gap. Broadening of a spin
excitation can of course arise from many sources, the most
obvious one in this case being significant anisotropy of the
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Figure 19. Sandwich design suggested in [177].

s± gap. Another problem with the explanation of [98] is that
it may require a special form of scattering in the normal state,
Im �(q, ω) = A(πT + ω), and in addition one needs to fine-
tune the parameter A. The exact effect of various assumptions
regarding the scattering has in fact been the subject of some
debate [171, 172]. The fact that extremely similar features
of the spin excitations are observed in all families of FeBS
would seem to argue against the possibility of an isotropic
s++-wave gap.

5.1.2. Josephson junctions. While in cuprates the existence
of the neutron resonance mode was a strong argument in
favor of d-wave pairing, really instrumental in establishing this
beyond reasonable doubt were Josephson-based experiments.
A direct probe of the symmetry of the order parameter
was performed by creating a current loop that included two
Josephson contacts, one at the a face of a crystal, and the other
at the b face. It is easy to show that if the phase difference
across both contacts is zero, the allowed values of magnetic
flux through the loop, expressed in flux quanta, are integer,
while if one of the two contacts has a phase shift of π , they are
half-integer. The two cases are easily distinguishable in the
experiment.

The problem with applying this technique to FeBS is that
in the s± case there is no direction where symmetry would
be dictating the phase of the order parameter. The x and
the y directions are indistinguishable by symmetry. On may
think about a Josephson loop with the contacts in the ab-
plane, but along inequivalent directions (for instance, [10] and
[11]), in the hope that the numbers that define the Josephson
current (orbital composition of the wave function, relative gap
sizes, etc) will conspire in such a way that the current along
one direction will be dominated by holes and the other by
electrons [177, 178]. Unfortunately, such contacts are not only
difficult to make but also there is no guarantee that the numerics
will work out right; existing theoretical estimates are on the
borderline. Some other designs have been proposed, but they
either incorrectly (and too favorably) estimate the condition of
the π contact formation, or are even less practical.

More promising is another suggestion [177]. This one
utilizes a so-called sandwich design (figure 19), wherein an
epitaxial film of a hole-doped FeBS is grown on top of an
electron-doped one (or vice versa). If the parallel momentum
is conserved at the interface (which is why epitaxial growth is
necessary), the phase coherence is established among the holes
in both slabs, and correspondingly among electrons. A point
contact to the hole-doped slab will be dominated by the hole

current, because of the prevalence of this type of carriers, and
the one to the electron-doped slab by the electron current. If
these contacts are now connected in a loop, the desired phase
difference is achieved.

So far no such (or similar) experiment has been performed.
However, there is an experiment that presents indirect evidence
that Josephson loops with a π phase shift can be formed in
these materials [179]. In this experiment, rather than carefully
preparing two Josephson contacts that are dominated by hole
and electron currents, respectively, one measures a very large
number of randomly formed contact pairs, in hope that some
of them will accidentally fulfil the condition that the two
contacts have the required phase shift. In general, a point
contact to an electron-doped sample (on which the experiment
[179] was performed) will be dominated by electron current.
Nevertheless, there is a possibility that some of the randomly
formed contacts will have a sufficiently thick tunneling barrier,
in which case the current may be dominated by the states near
the zone center, i.e. the hole states. Thus, one expects in such
an experiment to see a small, but non-negligible fraction of the
formed loops to exhibit the π phase difference. This is exactly
what was reported in the experiment [179].

5.1.3. Quasiparticle interference. Another important
experiment providing information on gap structure is the so-
called quasiparticle interference scattering (QPI). The idea
of this method is simple: any sort of impurity or defect in
a metal is screened by the conducting electrons. This leads
to the well-known Friedel oscillations of the charge and spin
density around the imperfection. In real space, interference
among such oscillations stemming from random impurities
is currently unresolvable in these systems, but the Fourier
transform of the measured electron density will reflect the
structure of the charge susceptibility in reciprocal space. A
natural way to map the electron density near the Fermi level is
by scanning tunneling spectroscopy. The theory of this effect in
a d-wave superconductor was proposed by Wang and Lee [180]
for a single impurity, and subsequently established for a finite
density of impurities [181, 182].

This technique can be used to gain information on the
phases of the superconducting order parameter. Indeed, let
us begin with a simple BCS theory with a uniform gap. Let
us further assume that we have tuned our tunneling bias to
a voltage slightly above the gap value. The quasiparticle
DOS is enhanced at this voltage, showing a coherence peak
as the voltage approaches the gap value. As with any
generalized susceptibility, there are coherence factors involved
[183, 184]. It turns out that for scattering from magnetic
impurities, or from order parameter suppressions, including
vortices, the coherence factors are proportional to (ukuk′ +
vkvk′), that is, they are constructive when �k�k′ > 0, and
destructive otherwise. Just as with impurity pairbreaking
effects, discussed in section 3.4, the situation is reversed
when the impurity is nonmagnetic, and the coherence factor is
proportional to (ukuk′ −vkvk′). Thus, magnetic impurities and
vortices emphasize processes that scatter pairs without flipping
the sign of the order parameter, and the nonmagnetic defects
emphasize the sign-changing processes. We do not have a tool
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to change dynamically the impurity concentration, but we can
introduce vortices by applying an external magnetic field, and
then the QPI features associated with the same-sign scattering
will be enhanced in comparison with those due to the sign-flip
scattering [185].

In the FeBS, theoretical predictions for the dispersion of
the QPI q-peaks have been made for models with electron
and hole pockets [186] in the presence of s± superconducting
order [77, 68], in the SDW state with no superconducting
order [187] and in the coexistence phase [188]. All give
differing signatures depending on the evolution of the contours
of constant quasiparticle energy in the various reconstructed
Fermi surfaces. The QPI signatures depend strongly on the
sign change of the gap, but also on details of the Fermi surface.
A problem that prevents QPI from being as useful a tool as
it was in cuprates, is that in a d-wave superconductor the
tunneling current at low biases is dominated by ‘hot spots’
on the underlying Fermi surface where the superconducting
gap is exactly equal to the bias voltage [184]. In an isotropic
nodeless superconductor there are no ‘hot spots’ and the entire
theoretical picture is therefore blurred compared with QPI in
cuprates.

Experimentally, QPI measurements on Ca-122 lightly
doped with Co [189] in the magnetic phase revealed strong
breaking of tetragonal symmetry, qualitatively consistent with
the observed SDW [187] and with DFT calculations with the
observed stripelike magnetic order [190]. It was also pointed
out that scattering in this system may be affected by anisotropic
impurity states around the Co sites imaged in the experiment,
enhancing or modifying the background anisotropy caused by
the stripelike magnetism.

In the superconducting state of an Fe(Se,Te) superconduc-
tor near optimal doping, a QPI experiment in a varying mag-
netic field was performed by Hanaguri et al [191]. They found
three features, one associated with the hole–electron scattering
(the smallest momentum), and two associated with two differ-
ent electron–electron scattering options. The last two features
grow with respect to the first one, which led Hanaguri et al to
conclude that the holes and electrons have opposite signs of
the order parameter, as dictated by the s± model.

It should be noted [192] that the last two wave vectors
coincide with the two smallest reciprocal lattice vectors, so
QPI features at these vectors (if any) will coincide with Bragg
peaks. Hanaguri et al [193] argued that the corresponding
features can be decomposed into sharp peaks reflecting the
Bragg reflection, and broader paddings than must arise from
QPI. The problem however remains that both the sharp peaks
and the paddings show similar dependence on magnetic field
(although the Bragg peaks should be insensitive to the vortex
concentration), which makes one suspect the real effect of
magnetic peaks is suppression of the small-moment feature,
rather than enhancing the other two. Thus the issue of whether
Hanaguri et al have really observed QPI features and can make
conclusions regarding the order parameter is open.

Finally, there is another intriguing aspect of the QPI
spectroscopy. If the order parameter has nodes or deep minima,
and there is a good experimental reason to believe that this
is the optimally doped Fe(Se,Te) [229], the same mechanism

that creates hot spots, dominating the QPI picture in cuprates,
will kick in as soon as the bias voltage is larger than the
gap minimum. After that, the spectrum should be dominated
by these hot spots, creating, similarly to the cuprates, a
complicated patter of multiple very sharp spots, dispersing with
the bias. No trace of this effect has been observed.

5.1.4. Coexistence of magnetism and superconductivity.
This discussion will not be complete without mentioning an
experiment that Mother Nature has performed for us, namely
that in the phase diagram of the Co-doped BaFe2As2 there
is a well established range with microscopic coexistence
of weak antiferromagnetism and superconductivity [194].
Moreover, the ‘backbending’ of the SDW instability line in the
coexistence phase, observed in Co-doped Ba-122, indicates
that the magnetism and superconductivity are carried by the
same electrons so that the two instabilities compete for the
same carriers. It can be shown [195, 196] that in this case an
s± superconductivity can easily coexist with an SDW state,
but s++ can only for a very narrow range of parameter. Thus,
s± appears to be a much more natural state given that the
coexistence appears in a large part of the phase diagram,
and probably also exists in other FeBS, although for the
other materials direct microscopic probes (e.g. NMR) are still
missing.

This is a quantitative argument. One can also make
another, slightly more subtle, qualitative argument. It was
noted some time ago [197] that if conventional (s++ in our
language) superconductivity develops on the background of
a spin density wave, the order parameter develops nodes.
These appear everywhere where new band crossings occur due
to SDW symmetry lowering (see [198] for a more detailed
discussion). On the other hand, when we introduce such an
SDW in an otherwise nodeless s± superconductor, it can be
shown that no nodes develop even if in the new, downfolded
BZ, the ‘s+’ and the ‘s−’ bands cross [199].

The importance of this theorem can be appreciated if we
remember that the in-plane thermal conductivity in this very
part of the phase diagram show the clear absence of any vertical
nodal lines (there are indication of possible horizontal or so-
called ‘c-axis’ nodal lines, but the above mentioned SDW-
induced BZ band folding creates full vertical lines of new
band crossings, where the hole and the electron Fermi surfaces
now overlap). Thus, if the order parameter has the same sign
for all FS pockets, in the coexistence region vertical nodal
lines must appear, and they must show up in the in-plane
thermal conductivity. If that does not happen, it leaves only
one possibility: an s± order parameter.

5.2. Evidence for low-energy subgap excitations

In the few years of experimental studies on Fe-pnictide
superconductors, the hope that one might quickly identify a
universal form of the superconducting order parameter was
confounded by an unexpectedly wide diversity of experimental
results, with some consistent with fully gapped behavior, and
others providing evidence for very low-energy excitations
consistent with gap nodes. Early discussion focused on the
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Figure 20. Schematic phase diagram of FeBS versus doping, with
the order parameter expected from 2D spin fluctuation theory
plotted in one quadrant of BZ as false color on the Fermi surface
[red = +, blue = −].

possibility that variations could be explained exclusively by the
effect of disorder (see section 3.4), so that some varying results
on different samples of the same material could be explained
in this way. It may still be true that in some situations disorder
plays a key role and needs to be understood. However, in
the past year or so different experimental probes, particularly
penetration depth experiments and thermal conductivity, both
bulk probes, are now providing a consistent picture of the
evolution of the low-energy quasiparticle density across the
phase diagram of the 122 materials, and to a lesser extent in
other families as well. This suggests a picture in which the
gap structure is sensitively related to the details of the Fermi
surface as it evolves across the phase diagram from hole- to
electron-doped systems (see figure 20).

From the point of view of spin fluctuation theory outlined
in section 3, this evolution is relatively easy to anticipate. As
we move away from the parent compound, the spin pairing
interaction weakens. On the other hand, in the ordered phase
superconductivity is suppressed entirely by the competition
with magnetism for states near the Fermi level, until the SDW
amplitude is sufficiently weak, when Tc can begin to grow.
The optimal doping is thus expected to be not far from the
AFM quantum critical point, as it is indeed in reality. One can
also understand on a similarly qualitative level the tendency to
node formation in the overdoped regime. Suppose that local
interaction parameters do not vary significantly with doping, as
might be expected if they are derived generally from Fe atomic
orbitals (and possibly ligand polarization effects, see [13]).
Generally speaking, the highest pairing strengths are predicted
for systems that have taken full advantage of the available
condensation energy, i.e. optimally doped systems should be
maximally isotropic. Note that this may be a gap close to
the idealized isotropic s± state, or one with considerably more
anisotropy, depending on details of the band structure and the
interactions themselves. Optimal doping is then determined by
a compromise between ‘nesting’, which is generally maximal
for the undoped parent compound, and the proximity of
the ordered SDW. As one overdopes the system, nesting
deteriorates, and Tc decreases. As discussed in section 3, the
dominant orbital interaction is between dxz and dyz orbitals
on the electron and hole pockets, while the subdominant one
which drives nodal behavior derives from the dxy interactions.

The former interactions are weakened with overdoping while
the latter remain constant, leading to a relative enhancement
of the frustrating interactions and a tendency towards nodes
which grows with overdoping. Finally, in the common 1111
and 122 systems, there is a further effect which drives an overall
asymmetry of the T versus doping phase diagram. This is the
existence of the additional dxy hole pocket which appears with
sufficient hole doping. As explained in section 3, this implies
that hole-doped systems should be generally more isotropic
than electron-doped ones. The above ‘standard scenario’
should now be tested against experiment.

5.2.1. Penetration depth. Magnetic penetration depth
measurements, summarized in figure 21, are bulk probes of
quasiparticle excitations which can provide evidence for nodal
structures or small gaps. In general, fits to theory over the
entire temperature range are difficult particularly for multiband
systems, and depend sensitively on details, so information
obtained at low temperatures is simpler to relate directly to
gap structure. The relation of different gap nodal structures
to power laws in temperature �λ ∼ T n was pointed out
by Gross et al [200]. In a fully gapped system, at low
temperatures relative to the smallest full gap in the system
an exponentially activated behavior is expected; if this gap is
very small, however, the penetration depth can typically be fit
to a power law in T over some intermediate temperature range.
Another factor complicating the interpretation is disorder; at
the lowest temperatures, impurity scattering can lead to a
T 2 dependence [200] if a residual DOS at the Fermi level
is induced (see section 3.4). Thus fits to low-temperature
power laws at low but not asymptotically low temperatures
may not be completely straightforward to interpret, but do
provide evidence for low-lying quasiparticle excitations. Only
in the case that a true linear power law �λ ∼ T is observed
may one make definitive statements about the existence of
(line) nodes.

In both the LaFePO system [201, 202] and in
BaFe2As1−xPx [203], a linear-T dependence of the low-
T penetration depth �λ(T ) was reported. In contrast, in
Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2, �λ was initially
reported to vary close to T 2 over most of the phase diagram
[204, 205]; these power laws are in contrast to the activated
temperature dependences expected for an isotropic gap. While
T 2 is the power law one naively expects for a (dirty) line
nodal state, one may also show that in an isotropic (s±)
superconductor, disorder can create subgap states [118] under
certain conditions, depending on the ratio of inter- to intraband
impurity scattering [125] (see section 3.4). If these states
are at the Fermi level, a fully gapped s± state will also lead
to �λ ∼ T 2. Fits of the same or very similar data on
these systems Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2 near
optimal doping are also possible for an isotropic multigap
model [206], and at optimal doping the T 2 fit is rather poor,
suggesting a small true gap. In this context, it is worth
noting that a number of multigap fits—to penetration depth,
specific heat, and other observables—in the literature violate
BCS theory by taking arbitrary ratios of the gaps �i/Tc as fit
parameters. Kogan et al [207] have warned that unphysical
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Figure 21. Superfluid density temperature variation of Fe-pnictide superconductors. (a) (λ(Tmin)
2/λ(T )2 versus T (K) for optimally doped

Ba1−xKxFe2As2 [208]; (b) T -dependent change in penetration depth �λ(T ) (nm) versus (T /Tc)
2 for Ba(Fe1−xNix)2As2 [205]; (c)

�λ(T )/λ(0) for optimally doped BaFe2(As1−xPx)2 [203]; (d) �λ(T ) (Å) for LaFePO. Reprinted with permission from [202]. Copyright
2009 by the American Physical Society.

results can be obtained by this procedure even if the gaps are
truly isotropic, since the various gaps are coupled through the
BCS gap equation. At the moment, substantial experience
has been accumulated by researchers from various groups
that indicates that the full solution of multiband Eliashberg
equations in realistic cases always yields at least one gap that
is larger than the isotropic gap with the same Tc, and one
smaller [207] (figure 21).

Finally, there are some systems where a large full
gap has been reported. For example, in optimally doped
Ba1−xKxFe2As2, a minimum gap of 1.3kBTc was extracted
in [208, 209], and similar behavior was found for LiFeAs [210].
Early reports of exponential behavior in 1111 systems with
any rare earth except La were probably ‘contaminated’ by
the magnetic susceptibility of the rare earth ion [211], and
LaFeAsO1−xFx itself has been reported to have a power-law
T dependence close to n = 2 [212].

Experimental attempts have been made to correlate
disorder to the low-T penetration depth to see if conclusions
could be drawn regarding the structure of the underlying
order parameter. Hashimoto et al [208] reported not only the
sample which fit well to an exponential T -dependence, but a

second sample, considered dirtier due to its smaller Tc, which
exhibited a T 2 behavior. This was interpreted as pairbreaking
caused by interband scattering in an s± state. A similar model
was employed to study changes in low-T power laws with
disorder, explicitly calculating the low-energy DOS induced by
interband impurity scattering and its effect on the penetration
depth and Tc simultaneously [213]. While these studies are
suggestive, they cannot be regarded as conclusive regarding
either the structure of the order parameter or the nature of
the disorder scattering, due to the uncertainties regarding
the difficulty of determining impurity model parameters, see
section 3.4.

5.2.2. Specific heat. Specific heat was pioneered [214] as
a tool for investigating the gap structure on YBCO. Since
the DOS of an unconventional superconductor with line
nodes varies as N(ω) ∼ ω, the temperature dependence of
the Sommerfeld coefficient γ = limT →0 C/T in a clean
superconductor with lines of nodes varies as T as T → 0.
This is a difficult measurement since disorder generally gives
rise to a residual DOS N(0) which induces a linear-T term
in γ (T ) below some disorder scale. It is therefore sometimes
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Figure 22. Magnetic field dependence of the low-temperature
specific heat of Ba(Fe1−xCox)2As2 (circles, x = 0.045; triangles,
x = 0.105; squares, x = 0.08). Empty and full symbols represent
unannealed and annealed data, The dotted, solid, and dashed lines
describe the field dependences of the low-temperature specific heat
according to clean s-, anisotropic s-, and clean d-wave. Reprinted
with permission from [223]. Copyright 2011 by the American
Physical Society.

more useful to examine the field dependence, which is also
quite sensitive to low-energy excitations.

In a clean nodal system, the theory of Volovik [216]
predicts γ ∼ √

H in a clean superconductor with lines of nodes
(disorder changes this behavior slightly, to γ ∼ H log H [217]
for a disordered superconductor with lines of nodes). These
power laws can be derived very easily from the Doppler shift
of the low-energy nodal quasiparticles in the superflow field
of the vortex lattice. For a fully gapped superconductor,
γ should vary linearly with H at low fields due to the
localized Caroli-de Gennes–Matricon states in the vortex
cores. This probe provides a first indication of the variability
of thermodynamic properties in the Fe-pnictide materials:
in Ba1−xKxFe2As2 γ ∼ H [218] (implies fully gapped
superconductivity), while γ ∼ H 1/2 in LaFeAsO1−xFx [219]
(implies nodal superconductivity). Recently, Gofryk et al
[220] performed measurements on Ba(Fe1−xCox)2As2 across
the electron doping range, and reported a nonmonotonic
dependence of the density of excitations with doping. At
optimal doping, a very weak field dependence consistent with
a small gap or weak nodes was reported, with quasiparticle
contributions increasing on either side of optimal doping
(figure 22). Note that the underdoped sample is in the
SDW-SC coexistence phase. In the isovalent analog system
BaFe2(As1−xPx)2, an early report of linear-H behavior which
appeared inconsistent with penetration depth measurements
[221] reporting linear T behavior as discussed above [203],
as well as evidence for nodes from NMR [147] and thermal
conductivity measurements [203], was recently superseded by
a measurement reporting a small Volovik term at low fields
crossing over to linear behavior at higher fields [222]. This
work underlined the importance of determining on which
sheets the nodes occur, since sheets with smaller mass and

longer relaxation times will dominate transport, while larger
mass alone will determine specific heat. Theoretically, the
field crossover of γ was examined in a semiclassical multigap
s± framework [238] whose validity is questionable since
it neglects the contribution of the core states, which must
contribute significantly in a fully gapped superconductor. Fits
to the H 1/2 → H behavior were, however, obtained within
a multiband Eilenberger approach [222] assuming a highly
anisotropic state on one band.

If the system has gap nodes or deep minima, the
semiclassical theory of specific heat of an unconventional
superconductor predicts [224] that the measured specific heat
should oscillate as a function of magnetic field direction
relative to the crystal axes. At the lowest temperature and
fields, it is generally expected that the minima in the specific
heat will correspond to fields pointing in nodal directions. It
should be noted, however, that this result depends sensitively
on the phase space available for quasiparticle scattering, and
need not be universal for arbitrary superconducting states. The
roles of minima and maxima in the specific heat can also
reverse as a function of temperature or field, as is found even
in the well-known d-wave case [225, 226]. Early on in the
discussion of the symmetry of the Fe-based superconducting
order, it was noted that phase sensitive experiments of the
type which led ultimately to the definitive determination of
d-wave pairing in the cuprates [227] would be difficult in
the new systems, both due to sample preparation difficulties
and because of the complexity of interpreting Josephson-
based experiments in multiband systems. As an alternative,
it was proposed that specific heat oscillations might provide
important information as to the k-space structure of the order
parameter [228]. This experiment was first perfomed on the
Fe(Te,Se) system by Zeng et al [229] (figure 23). The positions
of the specific heat minima along the �–M axis are consistent
[228, 230, 231] with an anisotropic gap with minima at these
angles, as predicted by spin fluctuation theories (see section 3).

5.2.3. Thermal conductivity. The experimental probe of the
bulk order parameter that has so far been performed at the
lowest temperatures is thermal conductivity. In a system of
normal conducting electrons, the thermal conductivity varies
linearly with T . While in principle thermal currents are
carried by phonons as well, at low T the contribution to
the thermal conductivity from phonons κph typically varies
as T 3 or nearby power, depending on the phonon mean free
path; thus at sufficiently low T , any linear-T term in κ may
be attributed to electronic excitations. In a superconductor,
this term provides information on both the superconducting
gap structure and the role of disorder. The technique has
been applied extensively over many years to cuprates and
unconventional superconductors [232]. In the presence of a
magnetic field which creates a vortex state, quasiparticles are
Doppler shifted as in the case of the specific heat, not only in the
DOS but also in the lifetime. In a clean nodal superconductor,
a field dependence of �κ ∼ H log H is expected [233].

In principle, then, thermal conductivity should be one
of the best probes of low-energy quasiparticle excitations
arising from gap structure. However, even taken alone the
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Figure 23. (a) Angle dependence of the specific heat coefficient C/T for FeSe0.45Te0.55 at H = 9 T; (b) possible positions of gap minima
consistent with measurements from [229].

thermal conductivity data on the various Fe-based systems
present a complex picture. In the 122 systems, the ab-plane
thermal conductivity data for both electron doping and hole
doping exhibit zero or extremely small linear-T term in zero
magnetic field, reflecting the apparent absence of any nodes
in the superconducting gap. The field dependence, however,
is significantly stronger than that expected for a large-gap
superconductor [234–236] (see, however, a discussion in
section 1.2.2), particularly away from optimal doping (see,
e.g. figure 24(a)). Mishra et al [237] then proposed that such
results could most naturally be explained in terms of a gap with
A1g symmetry with no nodes but deep minima on the electron
sheets. Bang proposed that such strong field dependence could
also be explained phenomenologically by an isotropic ‘s-wave’
state with very small gap on one Fermi surface sheet [238]
(on the other hand, such an explanation appears to be ruled
out by c-axis thermal conductivity, see below). To provide a
scale to interpret statements about the size of the low-T thermal
conductivity in the superconducting state, we remind the reader
that in a 2D nodal superconductor

κab

T

∣∣∣∣
T →0

� aNnodes
k2

Bm∗

h̄d

[
v2

F,ab

kFv�,ab

]
node

, (26)

where a is a dimensionless constant which depends on the
nodal phase space, d is the distance between planes, Nnodes

is the number of distinct nodal surfaces, assumed equivalent,
and m∗ is the effective mass for motion of quasiparticles in the
ab-plane. The conclusion of all experiments on near-optimally
doped K- doped or Co-doped Ba-122 systems was that the
measured linear term was much less than expected from this
expression, i.e. a � 1.

Recently, Reid et al [239] showed that in the same samples
where the ab-plane thermal conductivity was very small
(consistent with zero within experimental error), a significant
c-axis linear-T thermal conductivity was reported (note that
‘significant’ here refers to values normalized to normal state
values determined by the Wiedemann–Franz law; absolute
values are still of the same order as quoted error bars for the in-
plane conductivity). This is paradoxical at first glance, because
if order parameter nodes exist, they should influence transport

properties in both directions, the only difference being a weight
factor of v2

F,i for i = ab, c, as seen, e.g. in equation (26).
The only possible interpretation [239] is that the nodes are
located on flared portions of the Fermi surface where the c-
axis velocities are very high. Mishra et al [241] confirmed this
picture and pointed out that that the result a � 1 above in the
ab-plane implies that the phase space for the nodes producing
the c-axis signal must be very small. Their result is consistent
with ‘weak nodes’, which exist over a small portion of the
Fermi surface rather than running the length of the Fermi
cylinders. These could be the ‘V-shaped’ or ‘loop’ nodes
found in [48, 49] on the hole pockets near the Z point, or
small loop nodes on electron pockets as suggested in [242].
In figure 24(c) the data of Reid et al are plotted as a function
of doping at H = 0 and H = Hc2/4. It is seen that the
normalized thermal conductivity, reflecting the existence of
low-energy quasiparticles, increases dramatically away from
optimal doping for currents along the c-axis in zero field. In
nonzero field, however, the response is quite isotropic. One is
tempted to conclude that only one Fermi surface sheet plays a
role in thermal transport at higher field, such that the thermal
current is isotropic when normalized; this is far from obvious,
however, given that the field is aligned in the c direction in both
cases, so that the averaging over the inhomogeneous response
function is quite different for the two directions. These issues
are discussed in [241].

The existence of nodes on the flared portion of the Fermi
surfaces may appear an unlikely accident, but it is easy to see
within the context of spin fluctuation theory that changes in
orbital character on the Fermi surface tend to produce nodes
because of the strong tendency of like orbitals to pair. As
discussed in section 3.5, while the 122 systems look quite
similar to the 1111 systems at kz = 0 (except for differences
in ellipticity), at higher kz other bands, particularly the z2, mix
strongly, such that at the top of the BZ, where the hole pockets
are most flared, there is a strong admixture of several bands
whose weight varies around the sheet. This is most likely the
origin of possible weak nodes in the hole band [48, 241].

The above discussion has applied exclusively to the Ba-
122 system doped with K or Co. The measurements on
optimally doped BaFe2(As1−xPx)2 find a strong linear-T term,

30



Rep. Prog. Phys. 74 (2011) 124508 P J Hirschfeld et al

Figure 24. (a) Field dependence of in-plane κa/T in Ba(Fe1−xCox)2As2 from [239]. (b) Same for both normalized κa and κc in
Ba1−xKxFe2As2, [240]. (c) Normalized a and c thermal conductivities as functions of doping. Reprinted with permission from [239].
Copyright 2010 by the American Physical Society.

suggesting a strong nodal component [203], consistent with
other measurements on this material. Measurements in FeSe
find a small linear term [244], which the authors reported as
consistent with nonzero gap, but whose size is of order that
found by Reid et al for the ab-plane values. We are not aware
of any thermal conductivity measurements on the 111 or 1111
families.

The oscillations of thermal conductivity in a rotating
magnetic field provide similar information to angle-dependent
specific heat oscillations. They tend to be easier to
observe and somewhat less straightforward to interpret [243].
At the time of writing, this experiment has only been
performed on P-doped Ba-122, where significant oscillations
are observed [245], and interpreted in terms of loop nodes
on the electron pockets. As mentioned above, both
penetration depth and thermal conductivity experiments have
provided evidence for nontrivial 3D nodal structures in the
Ba(Fe1−xCox)2As2 and now the BaFe2(As1−xPx)2 systems. A
variety of such structures have been suggested, by microscopic
theory [48, 49], and phenomenology [242, 245], which we
summarize in figure 25.

For the most part, we have not discussed experiments
in the so-called ‘coexistence phases’ of the FeBS phase
diagram where superconductivity and magnetic order are
simultaneously present. In part this is because the microscopic
homogeneity of these phases is not firmly established, and
in part because theoretical calculations to predict transport

properties have not yet been performed. We note that the
spin fluctuation theory calculations for the instability line of
Tc versus doping in the absence of magnetic order do not show
a suppression of superconductivity in the underdoped regime
(see, e.g. figure 8), suggesting that the suppression is due to the
competition with magnetic order. Recent experimental results
in this regime also imply that the magnetic ordering plays
an important role in gap structure in the coexistence regime.
Penetration depth measurements on Ba(Fe1−xCox)2As2 early
on reported a sharp rise in the coefficient of the T 2 term in
�λ in the underdoped regime [204]. More recently, thermal
transport measurements [239] reported a similar sharp increase
in the normalized linear-T κc term (figure 24(c)). While
these two results on underdoped Ba(Fe1−xCox)2As2 have
not been understood completely within a single model (see
however [241]), they are strong indications that the number
of quasiparticles increases in the coexistence phase due to a
strengthening of nodal behavior. On the hole-doped side, the
effect is even stronger and appears quite abruptly in κab/T

[240]. This effect will be important to understand theoretically
to complete the picture of the 122 materials, but should be
approached with caution because issues of inhomogeneity are
not settled, particularly on the K-doped side.

5.2.4. The ARPES ‘paradox’. Low-energy excitations whose
existence is implied by the above measurements should be
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Figure 25. (a) Nodal structure on α (hole) and β (electron) pockets
in 3D spin fluctuation calculation for Ba(Fe1−xCox)2As2 by Graser
et al [48]; (b) Similar result for an α sheet of BaFe2(As1−xPx)2 [49]
(reprinted with permission from the Physical Society of Japan); κa

and κc in Ba1−xKxFe2As2, [240]; loop-like nodes around the point
of maximum (A), rather than minimum (B) Fermi velocity on the
outer β pocket in BaFe2(As1−xPx)2 deduced from angle-dependent
thermal conductivity [245], similar to that found in [242] from an
analysis of Raman scattering on Ba(Fe1−xCox)2As2.

visible in ARPES. In fact, ARPES is arguably the most direct
probe of the superconducting gap structure. Yet at the time of
writing, no ARPES experiment [246–253] has reported the
existence of gap nodes or even significant gap anisotropy,
in dramatic contrast to the cuprate case, where ARPES was
one of the experiments providing definitive evidence for
d-wave superconductivity [254]. The disagreement between
bulk probes and ARPES on FeBS is an important point
which requires resolution if we are to rely on both types of
measurements to study superconductivity, as we have in the
past. There are several possibilities to explain the discrepancy:

• Surface electronic reconstruction. One possibility is that
the electronic structure at the surface is different from that
of the bulk. This was the point of view advocated by
Kemper et al [47], who calculated the bulk and surface
band structures of BaFe2As2 from DFT, and discovered
that the surface bands included an additional pocket of xy

orbital character at the Fermi level, and gave arguments to
the effect that such a pocket would stabilize an isotropic
pair state.

• Surface depairing. Given the common assumption that the
ground state of many (but probably not all) FeBS display
anisotropic A1g order, it is easy to see that the anisotropic
component of the gap (whether on hole or electron
sheet) will be destroyed by in-plane intraband scattering

by the rough surface, since it does not conserve the
parallel (to the surface) quasiparticle momentum. Thus,
as one approaches the surface, the superconducting gap
associated with a pair of momentum k, −k should become
isotropic and the nodes lifted. The phenomenon is similar
to that observed for the same type of superconducting
order in the presence of intraband scattering by impurities
[125]. Surface scattering and electronic reconstruction
should be smaller for nonpolar surfaces which occur,
e.g. in the LiFeAs material. In this case, however,
spin fluctuation theory [255], thermal conductivity [256],
penetration depth [210], ARPES [252] and STM [257] are
all in agreement that the gap is fully developed.

• Resolution issues. Gaps on the hole sheets around the
� point should be imaged with relative ease by ARPES,
and it is possible to imagine reconciling the largely
isotropic gaps found on these sheets with thermodynamic
measurements, since other evidence points primarily
to nodes on the electron sheets, as discussed above.
It is noteworthy that the nominally highest resolution
experiments using laser sources find full gaps but
otherwise qualitatively different results than synchrotron-
based ARPES [253]. Most calculations predicting nodal
effects are done in the 1-Fe zone; when folding such states
one gets gaps from two electron pockets centered at the
M points. Given that the resolution around these points
(not probed by laser ARPES) is typically several meV,
it seems possible that the anisotropy of the gaps on the
electron sheets might be missed if the spectral peaks from
both sheets were broadened into one with averaged—and
hence isotropic—dispersion.
We note that although ARPES experiments to date
are apparently providing unreliable measures of the
superconducting gap anisotropy, this does not necessarily
mean that they are inconsistent with bulk gap scales, as
shown by the comparison of two gaps extracted from
ARPES and specific heat on LiFeAs [258].

5.2.5. NMR 1/T1. In addition to the Knight shift, which
allows one to distinguish between singlet and triplet pairing
(see section 4.1), NMR can probe the spin–lattice relaxation
rate 1/T1 that corresponds to a the spin susceptibility integrated
over the BZ,

1

T1T
∝ lim

ω→0

∑
q

Imχ(q, ω)

ω
. (27)

As in the case with the spin resonance, section 5.1.1,
1/T1 carries information about the underlying gap symmetry
and structure. For example, an isotropic s-wave state is
characterized by a Hebel–Slichter peak just below Tc and
an exponential low-T temperature dependence. It is well
known that d-wave superconductors exhibit weak or absent
peak and demonstrate T −1

1 ∼ T 3 behavior for T � Tc. In
the case of FeBS, the situation is somewhat more complicated.
Typical data for some 1111 and 122 systems are shown in
figure 26(a). Apparently, there is no peak below Tc and
the temperature dependence does not follow the same simple
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Figure 26. Temperature dependence of 1/T1 in FeBS. (a) Experimental results for two classes of materials, 1111 and 122, from [144]
(reprinted with permission from the Physical Society of Japan). (b) Log–log plot summarizing experimental data from several
groups [141, 142, 260], theoretical curve for the s± superconductor with intermediate strength of impurity scattering (0 � σ � 1) and
pairbreaking parameter γinterband = 0.4�0, and T 2.5 curve to demonstrate a power-law dependence. Reprinted with permission from [120].
Copyright 2008 by the American Physical Society.

power or exponential law in all systems. However, simple
arguments can enable us to understand the main features found
in experiments.

In the case of a weakly coupled clean two-band
superconductor below Tc, assuming that the main contribution
to Imχ(q, ω) comes from interband interactions, we have

1

T1T
∝

∑
kk′

[
1 +

�k�k′

EkEk′

] (
−∂f (Ek)

∂Ek

)
δ (Ek − Ek′) ,

(28)

where k and k′ lie on hole and electron Fermi sheets,
respectively, and Ek is the quasiparticle energy in the
superconducting state. This is a straightforward generalization
of the textbook expression [155]. As in the spin resonance
case, the coherence factor in square brackets gives rise to an
important distinction between different symmetries of the gap.
In the NMR T −1

1 case, we see that the internal sign is different
from that which occurs in equation (25) for the neutron spin
resonance effect. Assuming first an isotropic s++-wave gap
with �k = �k′ = �, one finds

1

T1
∝

∫ ∞

�(T )

dE
E2 + �2

E2 − �2
sech2

(
E

2T

)
. (29)

The denominator gives rise to a peak just below Tc, which is
the famous Hebel–Slichter peak. As pointed out earlier in [29],
it is suppressed for the s± state. Indeed, if �k = −�k′ = �,

1

T1
∝

∫ ∞

�(T )

dE
E2 − �2

E2 − �2
sech2

(
E

2T

)

=
∞∫

�(T )

dE sech2

(
E

2T

)
, (30)

which is just the Yoshida function, which decreases
monotonically as temperature is decreased below Tc. The same
can be shown for a more general s± case of |�k| = |�k′ | [120].

It is well known that pairbreaking impurity scattering
dramatically increases the subgap DOS just below Tc, and
even weak magnetic scattering can broaden and eliminate
the Hebel–Slichter peak in conventional superconductors. In
FeBS, the same effect is present due to the nonmagnetic
interband scattering [118]. Since the Hebel–Slichter peak
is not present in this scenario even in a clean sample, see
equation (30), the pairbreaking effect is more subtle: it changes
exponential behavior below Tc to a more power-law like one.
If the impurity-induced bound state lies at the Fermi level
(section 3.4), the relaxation rate acquires a low-temperature
linear-T Korringa-like term over a range of temperatures
corresponding to the impurity bandwidth [259].

Qualitative arguments suggest that neither pure Born nor
pure unitary limits with a simple isotropic s± state are well
suited for explaining the observed 1/T1 behavior: the former
leads to an exponential behavior at low temperatures in a
relatively clean system, the latter to Korringa behavior. Various
early data on the 1111 systems appeared to be between these
two limits. On the other hand, early theory by Parker et al
studying the intermediate scattering regime seemed to be
rather promising in this respect. Figure 26(b) shows various
experimental data for 1111 systems [141, 142, 260] together
with a calculation of T −1

1 for the simple s± gap [120]. We
observe that the s± state result exhibits no coherence peak
and as opposed to the Born and unitary limits, intermediate-σ
scattering is capable of reproducing the experimental behavior
[120–122]. It is not clear that these results, taken alone, should
be taken as evidence for an isotropic s± state, since strong gap
anisotropy is probably present in some of these systems, and
will also lead to a higher density of quasiparticles contributing
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at intermediate temperatures. From the data, one can say with
certainty only that the K-doped Ba-122 system appears to have
a large full gap, while the 1111 systems show a much higher
density of low-energy excitations.

Regarding other systems, data obtained on BaFe2

(As1−xPx)2 show a linear-T term in T −1
1 for an optimally doped

sample, crossing over to something roughly approximating
T 3 above ∼0.1Tc [147, 261], consistent with reports of nodes
in this material from other probes. Low-temperature data on
Co-doped Ba(Fe1−xCox)2As2 are not available at the time of
writing. In Ba0.68K0.32Fe2As2, 1/T1 shows an exponential
decrease below T ≈ 0.45Tc consistent with a full s± gap
[169]. Finally, consistent with other measurements, NMR in
the LiFeAs system also shows a full gap [146].

5.2.6. Electronic Raman scattering. Because the momentum
and polarization of incoming and outgoing photons can be
controlled in a Raman scattering measurement, this technique
is useful to probe selectively different parts of the Fermi
surface. The nonresonant electronic Raman intensity can
to a good approximation be represented as an electron–hole
bubble with Raman vertices γnk = εi

α(∂εnk/∂kα∂kβ)ε
f

β ,
where the ε̂’s are the incident and scattered (final) photon
polarizations, εnk is the electronic dispersion and n is the band
index. Muschler et al [262] measured Raman scattering on an
optimally doped sample of Ba(Fe1−xCox)2As2 and presented
a simple approximation to these vertices which suggested
that the A1g polarization (symmetric configuration of ε̂i,f )
intensity is maximal near the BZ center and thus probes the
hole Fermi sheets; similarly, B1g probes the electron pockets,
and B2g is maximal near (π/2, π/2) points where there is no
Fermi surface (we use the notation of the 1-Fe zone here, i.e.
B1g = B̃2g). Within this interpretation, the large B1g peak
observed corresponds to twice the maximum gap in the system,
yielding a value of �max � 70 cm−1 on the electron sheets.
Furthermore, Muschler et al showed that in this polarization
excitations were present down to the lowest measurement
frequency, indicating nodes or deep gap minima less than their
resolution of order 10 cm−1. Strong in-plane anisotropy of the
B1g peak was also reported across a wider range of dopings
in [263].

The theory of electronic Raman scattering in the
superconducting state has been reviewed by Devereaux and
Hackl [264]. An early discussion of the intensities to be
expected in a two-band isotropic s± state [265] predicted a
peak at 2�0 and a resonance below 2�0—analogous to the
neutron spin resonance (section 5.1.1)—in the A1g channel.
No peak or resonance was observed later in Muschler et al.
It was then pointed out by Boyd et al [266] that Coulomb
backflow effects in the doped multiband system, which did not
occur in [265], would strongly suppress the 2�0 peak. Boyd
et al, however, did not consider vertex corrections due to short-
range interactions which are important for a formation of the
resonance below 2�0 [265] and a subgap resonance for A1g

polarization may therefore still be possible. The experimental
situation in this channel is still controversial with the reported
observation of a weak peak in BaFe1.84Co0.16As2 [267].

Analysis of the B1g channel by Muschler et al [262] and
Boyd et al [266] in terms of highly anisotropic s± states
provides internally consistent evidence for order parameter
nodes or deep minima on the electron pockets in the electron-
doped 122 system. But it was also argued that the gap
on the electron pocket observed in the B1g channel can be
strongly affected by disorder [268], which not only broadens
the 2�0 peaks but can lift the nodes, as apparently observed
by Muschler et al upon doping.

More recently, a more detailed analysis of the correct
Raman vertices for these systems based on DFT was attempted
by Mazin et al [242], who concluded that the earlier
approximation for the B1g vertex (which weighted the entire
electron pocket essentially equally) was too crude, and used the
Muschler et al data to argue that gap nodes or deep minima had
to be present in the form of loops on the electron barrels circling
the �–X axis. It is interesting to note that this identification
is consistent with that of Yamashita et al [245] from angle-
dependent magnetic field thermal conductivity measurements
on the BaFe2(As1−xPx)2 system, supporting the notion that the
gap minima in the Ba(Fe1−xCox)2As2 might deepen and evolve
into nodes in the BaFe2(As1−xPx)2 system.

5.3. Alkali-intercalated iron selenide

As this review was being finalized, a new intriguing
FeBS material was discovered, challenging both theory and
experiment with its novel properties. As of now, this is still
a work in progress, and the field remains very controversial.
Some would argue that the subject is not ripe for a review
yet, and indeed it is too early to pass any judgement on the
superconducting mechanism, superconducting symmetry, or
even physical properties of this system. Nevertheless, the
authors of this review are of the opinion that it is worthwhile to
review here the preliminary results, both on the experimental
and theoretical sides, as a matter of a status report, rather than
an analytical review along the lines of the previous sections.

In November 2010 a new superconductor, believed at
that time to have the chemical formula of K0.8Fe2Se2, was
reported, with a maximum critical temperature of 33 K. The
formal electron count makes this compound electron-doped at
the level of 0.4e per Fe, the same as Ba(Fe0.6Co0.4)2, which is
far beyond the superconducting dome of the Co-doped system,
and significantly past the level of doping at which the hole
pockets completely sink under the Fermi level. The calculated
band structure (figure 27(a)) shows no hole pockets at all, but
rather a large electron pocket at the corner of the BZ (M̃) and
a small electron pocket at the center (�). Several ARPES
measurements were reported within a few months [269], all
agreeing among themselves on the Fermi surface shown in
figure 27(a). In addition, some reported a uniform nodeless
gap around the large FS pocket. This, by itself, is rather
inspiring. Indeed, in the absence of the central hole pocket the
basis for the s± pairing is essentially lost, and the whole theory
seems to be in need of revisiting. Such revisiting, which we
will discuss in more detail later, did come nearly immediately
from numerous groups [271, 272, 275, 276].

However, the next wave of experiments, probing the
bulk of the samples, came to different conclusions, not
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Figure 27. (a) Fermi surface of K0.8Fe2Se2 (from [270]). (b) Cartoon showing a generic 3D Fermi surface for an AFe2Se2 material in the
unfolded (one Fe/cell) BZ. Different colors show the signs of the order parameter in a nodeless d-wave state, allowed in the unfolded zone.
The � point is in the center (no Fermi surface pockets around �), and the electron pockets are around the X, Y points. (c) Same as (b), but
assuming a finite ellipticity (still zero kz dispersion). Different colors show the signs of the order parameter in a d-wave state. Wherever the
two colors meet, turning on hybridization due to the Se potential creates nodes in the order parameter.

readily compatible with the results of photoemission. It
appears that the most accurate methods for determining the
exact composition in the bulk, such as neutron scattering,
invariably yield the so-called charge-balanced compositions,
namely K2xFe2−xSe2 , where each extra electron brought in
by alkaline intercalation is compensated by holes introduced
by Fe vacancies [277]. Obviously, if that is the case, and
one neglects all effects of vacancy ordering, this compositions
brings us back to the parent FeSe material, with equal hole
and electron FSs, favorable for the s± model and completely
inconsistent with the ARPES data. One can, as usual, ascribe
the difference to surface effects, but that would require the
surface to be stoichiometric in Fe, with 20% Fe vacancies in
the bulk, which seems unlikely.

It was also suggested [278] that the ARPES-measured
band structures differ from DFT calculations in the sense that
the hole bands are strongly shifted down, and the electron
bands up, so that the bottom of the latter is above the top
of the former. The authors of [278] claim that their actual
composition is K0.8Fe1.7Se2, corresponding to 0.1 e/Fe doping,
close to optimal doping in Ba(Fe,Co)2As2. However, because
of the assumed band shifts, they argue, the Fermi level only
crosses the electron bands. This explanation, however, is only
valid for this particular composition, and it does not seem
very plausible that this composition is special in any other
way. Indeed, figure 28(a) shows the data from [278], overlaid
with their own band structure calculations. The suggested
band shifts are illustrated in figure 28(b). As one can see,
particularly in figure 28(c) (where only the bands modified
according to [278]’s suggestion are shown), if the composition
is reduced to no electron doping (K0.8Fe1.6Se2), the Fermi
level will shift down and will cross a completely different
band, neither the familiar hole pockets near �, not the familiar
electron pockets near M̃ .

The surprises do not end there. Particularly stable appears
the composition with x = 0.4, K0.8Fe1.6Se2, which can also
be written as K2Fe4Se5, suggesting a particular superstructure
with a five-fold unit cell. Indeed such a superstructure was
found [279], and corresponds to Fe vacancies forming a

√
5 ×√

5 structure. The formula unit contains one vacancy and four
Fe ions, forming a square plaquette. Each plaquette is ordered

ferromagnetically, forming a rigid ferromagnetic cluster. First
principles calculations [280, 281] have independently arrived
at the same picture. Inside the plaquette the calculated
Fe–Fe bonds are noticeably shorter than the average Fe–
Fe distance [280], also in agreement with the experiment
[279]. Additionally, Yan et al [280] have shown that shrinking
of Fe–Fe bonds is not a magnetic effect, even though the
ferromagnetic ordering benefits from such shrinking, but a
covalent effect existing apart from Fe spin polarization [280].
Moreover, both experiment and theory suggest an extremely
large ordered magnetic moment on Fe, up to 3.3 µB in
the experiment and even larger in the calculations. Note
that this corresponds to a plaquette with a supermoment
of at least 13µB . Several groups claim, nevertheless, that
this ordered magnetic state coexists microscopically with
superconductivity.

Several considerations are in order here. This vacancy-
ordered structure corresponds to a lattice parameter of the order
of 6 Å. The coherence length has been measured [283] to be
less than 60 Å. One can estimate [270] that a net misalignment
of the moments of the order of 0.05 degree will result in a
net exchange field larger than Hc2. It is hard to see how one
can avoid this in real samples with strain, grain boundaries,
etc. Furthermore, calculations unambiguously show that the
ideally ordered stoichiometric K2Fe4Se5 is a band insulator
with a large gap [280, 281]. Experimental samples with this
claimed composition are metallic, but an insulating phase
has been found (and initially identified as a Mott insulator,
although in view of the most recent data (see, e.g. [282]) a band
insulator appears more likely) nearby in the phase diagram; the
metallicity of the ordered stoichiometric composition, in fact,
may be an experimental artifact.

So now we face not only the fact that ARPES and
bulk probes suggest different valence states for Fe, we also
seem to have high-temperature superconductivity in a strongly
magnetic insulator. An interesting, and possibly correct
explanation of this controversy was suggested recently in
[284]. They suggest that although superconductivity and
magnetism occur in the same sample, and each involves
nearly 100% of carriers, they never occur simultaneously. In
short, the statement is that whenever vacancies are disordered,
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Figure 28. Measured and calculated band structure of K0.8Fe1.7Se2. (a) ARPES data and DFT calculations from [278]. (b) A modification
of the DFT bands according to the suggestion in [278]. (c) Modified DFT bands alone. Note the absence of a band gap between the electron
states at M̃ and hole states at � points. Reprinted with permission from [278]. Copyright 2011 by the American Physical Society.

the sample is superconducting, and whenever they order it
becomes AFM, but not superconducting. The authors’ claim
that the vacancies reversibly order upon heating and disorder
upon cooling sounds counterintuitive. On the other hand,
this picture was recently lent support by Li et al [286], who
found, using STM, that areas of a K-intercalated Fe selenide
with ordered Fe vacancies were not superconducting, but areas
closer to stoichiometric KFe2Se2 were.

One can say that in this contradictory experimental
situation any speculations are out of place. Yet, it is
interesting to discuss what can possibly happen in the
superoverdoped regime that ARPES suggests. Indeed this
intriguing Fermi surface topology was already discussed in
one of the first theoretical papers, by Kuroki et al [45]
who pointed out that in the absence of the hole pockets
in the unfolded BZ this band structure is an ideal 2D
representation of the ‘Agterberg–Barzykin–Gor’kov’ gapless
d-wave superconductor [52] (figure 27(b)). Indeed, in this
case the quasinesting between the hole and electron pockets is
supplanted by the quasinesting between the electron pockets,
resulting in a d-wave state with alternating signs of the
order parameters, while the symmetry-required nodal lines
fall between the Fermi surfaces. After the first ARPES
experiments on the Se-based 122 systems appeared, several
theoretical groups have revisited this idea [271, 272].

However, the original Agterberg et al paper unambigu-
ously identifies possible locations of the zone-corner pockets
allowing for a gapless d-wave superconductor. These are:
(π, 0) and equivalent points in a tetragonal symmetry, and
(π, 0, 0) and equivalent in a cubic one. This is the case in
the unfolded BZ, but in the folded zone the pockets are at the
(±π, ±π) points, connected among themselves by reciprocal

lattice vector. The pockets in question are formed by shift-
ing the unfolded FSs by (π, π, π), and overlapping the result-
ing pockets (figure 27). As discussed in detail in [199, 287],
this unavoidably leads to node formation. At the same time,
not only ARPES data, but also various bulk probes [288, 289]
indicate that superconductivity in KxFeySe2 is nodeless. Since
the nodes in this case are driven by the hybridization of the two
unfolded FSs, the phase space for quasiparticle excitations as-
sociated with such nodes is less than generic d wave nodes if
the hybridization gap is small (cf [199]). Roughly, the phase
space affected is reduced compared with d wave as V/�E,
where V is the matrix element of the symmetry-breaking Se
potential and�E � vFδk, where δk is the ellipticity of the elec-
tron FS pocket. While in actual DFT calculations it appears
that V ≈ �E, and ARPES seems to show small ellipticity as
well, one cannot exclude at this stage a possibility that V/�E

is considerably smaller than one, in which case spectroscopic
signatures of a d state with no nodes enforced by tetragonal
symmetry but weak ones imposed by hybridization of the two
electron bands will be much harder to detect.

At the time of writing, at least three qualitatively different
proposals exist. One is, as mentioned, a ‘quasinodeless’
d-wave (nodes only induced by hybridization) (figure 27). The
second is, essentially, the same s± as in other materials, but with
the ‘minus’ pairs formed not on the Fermi surface but on the
hole band 50–100 meV below the Fermi level (the problem here
is that superconductivity appears only in higher orders in the
coupling constant) [272, 273]; such a state would look for most
practical purposes like a regular same-sign s-wave, so it can
be called ‘incipient s±’. The third state that allows for a sign-
changing order parameter is an s± one, but entirely different
form the one discussed throughout this review. Rather, this
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(a) (b) (c)

Figure 29. This cartoon shows three proposed pairing states for KxFe2−ySe2 in the 2-Fe BZ. As suggested by the first principles
calculations, a finite gap between the inner and the outer Fermi surface sheets is introduced. (a) d-wave state, including small parts of the
Fermi surface where the gap is small; (b) the ‘incipient’ s± state, with hole bands in proximity of the Fermi level, but not crossing it; (c) the
‘bonding-antibonding’ s± state. Note that (a) and (c), but not (b), can give rise to a spin resonance at (π, π) (in the unfolded BZ).

is an s± state that was discussed more than a decade ago in
connection with bilayer cuprates. Here one refers to the fact
that in a bilayer system every band is split in a bonding and an
antibonding combination, and these may have different signs
of the order parameter. Since DFT calculations predict that
the two electron pockets in KxFeySe2 are strongly hybridized,
over most of the Fermi surface the calculations predict similar
bonding-antibonding splitting and a possibility of a strictly-
nodeless sign-changing s-wave superconductivity [287]. The
three different types of states are summarized in figure 29.
The physical idea behind the ‘incipient s±’ is actually very
simple. One can also pair electrons that are removed from
the Fermi surface, as long as their energy is less than the
energy of intermediate bosons (spin excitations, in this case).
A straightforward generalization of the BCS theory, taking into
account that only electrons with energy smaller than −Eg pair,
leads, starting from equation (19), instead of equation (20), to
the following system (near Tc),

�e = −V Nh

2
�h log(ωc/Eg), (31)

�h = −V Ne�e log(1.13ωc/Tc), (32)

where the subscripts stand for holes and electrons, Eg > 0
is the difference between the Fermi level and the top of the
hole bands, ωc is the BCS cutoff (spin fluctuation frequency),
and Nh is the DOS inside the hole band (not on the Fermi
level). These equations have, in the limit Tc < Eg � ωc, a
solution exactly the same as for the original s± model, except
the effective coupling constant is renormalized as follows:

λ → λ2 log
√

ωc/Eg = 1

2
λ0 − 1

2
λ2

0 log
1.13Eg

Tc0
. (33)

In the regime where Eg ∼ Tc (not too far from the numbers
reported for KxFe2−ySe2), λ is reduced by a factor close to two.

One of the latest experimental developments relevant to
the the order parameter in KxFeySe2 is a recent inelastic
neutron scattering measurement [274]. In agreement with
ARPES-measured band structure, these authors did not find
any peak around the (π, 0) wave vector, indicating the absence
of the conventional electron–hole nesting. In agreement with
theoretical expectation [271], there is not much scattering

at exactly (π, π), even though this is the vector of nearly
exact electron–electron nesting. The reason is that the real
part of the noninteracting spin susceptibility is large when
the Fermi velocities of the initial and the final states are
opposite, and the real part controls the Stoner enhancement
of the full susceptibility. Thus, a peak in susceptibility is
expected when the FSs displaced by the given momentum just
touch; if the radius of the electronic FSs in KxFeySe2 is kF,
then a peak in the neutron scattering is expected near Q =
(π/a, π/a) − (kF, kF). Actual calculations [271] show that
due to the somewhat squarish shape of the FS the peak appears
to be asymmetric and located at (π, 0.625π) (for 0.1e doping).
Experimentally, a peak is observed at (π, π/2), not far from
this predicted position, and found to be resonantly enhanced
below Tc. The latter fact indicates that this wave vector
connects two points on the FS, and these points have order
parameters of the opposite signs, consistent, in principle, with
the ‘quasinodeless’ d-wave or with the bonding-antibonding
s±, but not with the ‘incipient s±’.

A second look, however, reveals that this straightforward
interpretation may be too naive. Indeed, the FS suggested
by ARPES has by far too small electron pockets to provide
any states removed from each other by (π, π/2). One either
needs to assume that the Fe content is grossly underestimated
in [274], or that sizeable hole pockets are present (in
which cases a feature at q ≈ (π, 0) would be expected).
Combined with the complex AFM structure found in the same
compound, and possibly (even though unlikely) coexisting
with superconductivity, one may think that this AFM structure,
either present or incipient in the superconducting state,
may drastically change the physics of superconductivity in
these materials. In this regard, resolving the mystery of
interplay and possible coexistence between magnetism and
superconductivity in these selenides is the most burning issue
at the time of writing.

5.4. Differences among materials: summary

In the above discussion we have focused primarily on the
heterovalently doped BaFe2As2 materials, on which most
experiments have been performed to date, and argued that
thermodynamic properties tend to support fully gapped
behavior near optimal doping, and increasing anisotropy
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Table 1. Gap structures in Fe-based materials deduced from thermodynamic and transport measurements. OD—overdoped, OP—optimally
doped, UD—underdoped.

Family Full gap Highly anisotropic Strong nodal

1111 PrFeAsO1−y[52K] [290] LaFeAs(O, F)[26K] [212] LaFePO[6K] [201, 202, 291]
SmFeAs(O, F)[55K] [211] NdFeAs(O, F) [212]

122 (Ba, K)Fe2As2[40K] [144, 234, 240, 292] Ba(Fe, Co)2As2[OD] [236, 239]* KFe2As2[4K] [209, 304]
Ba(Fe, Co)2As2[OP, 23K] [236, 206] Ba(Fe, Ni)2As2 [293]* BaFe2(As, P)2[OP, 31K] [203, 147]

Ba(Fe, Co)2As2[UD] [239]* (Ba, K)Fe2As2[UD] [240]
111 LiFeAs[18K] [294, 256] LiFeP[6K] [295]
11 Fe(Se, Te)[27K] [229, 244]

Note: Symbol * indicates possible evidence for ‘c-axis nodes’.

and eventual nodal behavior away from it, consistent with
expectations from a spin fluctuation picture. The 122 family
may indeed be representative of FeBS, but it is worth noting
that it is among the most weakly correlated families, and
the most 3D as well. Therefore it is important to review
some of the other families, in the hope that new aspects
of the physics may be gleaned from the comparison. In
table 1, we have tried to group materials into three categories,
according to whether they display—in bulk thermodynamic
properties alone—a large gap (at least several meV), deep
gap minima or weak nodes, or clear nodal behavior. The
middle category is clearly somewhat delicate, since it contains
materials which have in some cases been explored extensively,
whereas others have received less experimental attention. In
addition, the distinction between deep gap minima and weak
nodes (situations where the gap changes sign only over a very
small part of the Fermi surface) is not a clear one, since in
A1g symmetry, a gap with deep minima can be adiabatically
transformed into a one with weak nodes, and vice versa, with
small changes in electronic structure, disorder, etc. Note
we have deliberately omitted AFe2Se2 from the table due to
its unclear materials properties and incomplete experimental
information on the superconducting state at the time of writing.

In our discussion of other materials, we first focus on the
isovalently doped BaFe2(As1−xPx)2 system, which displays
clear nodal behavior. This material is interesting in several
regards, including its remarkable ‘quantum critical’ normal
state properties and its phase diagram versus P concentration
remarkably similar to Ba(Fe1−xCox)2As2 despite the isovalent
nature of the substitution of P for As [296]. It has the highest
critical temperature (31 K at optimal doping) of the confirmed
nodal superconductors. (Tc’s for LaFePO and KFe2As2 are
6 K and 4 K, respectively). The fact that the three P-doped
superconductors BaFe2(As1−xPx)2, LaFePO, and LiFeP are
nodal whereas their As-doped counterparts Ba1−xKxFe2As2,
Ba(Fe1−xCox)2As2, LaFeAsO, and LiFeAs are either fully
gapped or anisotropic is also striking. In the case of the
LaFeAsO/LaFePO comparison, the claim has been made by
Kuroki et al [16] and Wang et al [68] that the distinction
arises from the lack of a third hole pocket in the LaFePO band
structure. This does not appear to provide an explanation in
the case of LiFeAs and LiFeP, where both materials have a
third hole (γ ) pocket. On the other hand, the third pocket is
important because it allows (π, 0) processes to couple to the
dxy states on the electron pockets, as discussed in section 3.1.
Hashimoto et al [295] pointed out that a preponderance of dxy

orbital character on the α2 hole pocket of LiFeAs (negligible
in the LiFeP case) may play the same role, and induces a
more isotropic state. Other possibilities to explain differences
between As- and P-based compounds include the effective
local interactions on Fe orbitals, which might be different
due to the local polarizabilities of the ligand As or P [13].
Such effects should be accounted for in DFT calculations;
however these do not show significant differences in static local
interactions U , U ′, J and J ′ for As- and P-based systems [103].

As emphasized in table 1, the 1111 materials based on As
are both gapped and possibly nodal; it was this discrepancy
among measurements on these early samples which led
to the initial diversity of low-T results and impression of
nonuniversality of the superconducting state in these materials.
The substitution on the rare earth site is known to affect
the lattice constants, in particular the c-axis constant, which
shrinks as Tc grows. The concomitant changes in electronic
structure have been ascribed primarily to the pnictogen height
by Kuroki et al [16], who parameterized them in an attempt
to explain the sequence of Tcs in this family. It is clearly
significant that the more isotropic materials have the highest
Tcs, as would generally be expected from the spin fluctuation
theory argument, but better crystals need to be made and other
experiments performed to confirm the assignments given here.

In the past year, a great deal of progress has been made in
preparing high quality single crystals of LiFeAs (Tc = 17 K).
Since these crystals cleave well at the nonpolar Li surface,
one might expect that surfaces would be excellent, and recent
unpublished STM work with atomic resolution indeed shows
beautiful surfaces [257]. No surface states near the Fermi
level are expected on the basis of DFT calculations [297]. But
the earliest ARPES experiment on this system, by Borisenko
et al [252], reported a Fermi surface very different from the
rather conventional set of hole and electron pockets predicted
by DFT, in particular less clear nesting of hole and electron
pockets. More recently, on the other hand, de Haas–van
Alphen measurements [298] showed good agreement with bulk
DFT. A second controversy relates to the spin excitations of
the material. While early NMR work reported a strongly
temperature dependent Knight shift and 1/T1 below Tc,
consistent with s-wave pairing [146], this has been challenged
recently by Baek et al [300], who report a Knight shift in some
magnetic field directions with no T -dependence and claim
consistency with recent theoretical analysis proposing triplet
pairing for this system [301]. While the existence of a spin
resonance does not definitively exclude triplet pairing [302],
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the LiFeAs Fermi surface seems much more likely to support a
resonance in an s± state with wave vector (π, 0) [303]. These
debates clearly need to be settled before it can be decided if
LiFeAs fits into the usual framework discussed above, with
pairing driven by spin fluctuations. What is fairly certain
phenomenologically is that this system has a full gap, as
determined by various superconducting state measurements
[210, 252, 256, 257, 295].

A final system which deserves special comment is
the strongly hole-doped compound KFe2As2, with a Tc of
4 K, which may be considered to be the end point of the
Ba1−xKxFe2As2 series with Ba entirely replaced by K. The
Fermi surface calculated by DFT shows no electron pockets,
and experiments have reported large quasiparticle densities
at low T in the superconducting state, consistent with gap
nodes [209, 304, 305]. From a theoretical standpoint, this
material is particularly interesting because it allows one to ask
what the subleading spin fluctuation pairing channel is when
the pair interaction between electrons and holes no longer
drives superconductivity. An fRG study by Thomale et al
[306] found d-wave pairing, which was discussed in terms of
scattering between �-centered and M-centered pockets (1-Fe
zone) yielding strong spin fluctuations at q = (π, π). Maiti
et al [81] discussed this system in a more general context,
studying the evolution of pairing within the RPA, and noted
the decay of the s± channel relative to the d channel as the
system was doped in either direction. They also found a
leading d-wave pairing instability for KFe2As2. However, a
recent study [307] of the vortex lattices in KFe2As2 claimed
the results inconsistent with an in-plane anisotropy of the order
parameter (including a d-wave state), and invoking a horizontal
nodal line instead. Lacking more direct probes of the gap
anisotropy, though, the controversy about the possible d-wave
pairing in KFe2As2 remains.

6. Conclusions

In the past year, a confusing variety of experiments on
the superconducting state of FeBS indicating a much wider
diversity of gap structure among materials in the same family
than expected has, with the help of theory, been classified
in such a way that most variations can be qualitatively
understood. The general hypothesis, which still requires
further experimental and theoretical underpinning, is that in
a ‘typical’ FeBS, a spin fluctuation interaction between like
orbitals on nearly nested hole and electron Fermi surfaces leads
to an s-wave state which changes sign between these sheets. At
optimal doping, the condensation energy obtained from such
an interaction is maximal and there is a true spectral gap; the
extent to which the overall gap is still somewhat anisotropic
depends on details of the system, including whether three or
two hole pockets are present. Hole-doped systems are, within
this picture, generally expected to have higher Tc and be more
anisotropic relative to their electron-doped counterparts. In
both cases, however, as one dopes the system away from
optimal, the relative importance of subdominant interactions,
in particular the intraband Coulomb interaction and pair
scattering between the electron-like Fermi surface sheets,

increases and frustrates the isotropic s± interaction, leading
to anisotropy and eventually nodes. There is considerable
experimental evidence to support this picture in the As-based
122 family.

The s-wave (A1g) nature of the superconducting allows for
any distortion of the gap structure consistent with invariance
under the operations of the tetragonal group; in particular
nodes can be created or lifted without any thermodynamic
singularities (except weak ones at T = 0). Thus it is perhaps
not a surprise that on the one hand the P-doped Ba-122 system
exhibits a phase diagram which resembles strongly that of the
Co-doped Ba-122 system, yet the gap remains nodal across the
doping range. We have reviewed evidence in favor of deep gap
minima on the electron pocket in the Co-doped system, which
can easily shift to create nodes. The microscopic origin of this
tendency is still unknown, but we have pointed to the striking
tendency of the P-doped materials to be more anisotropic
than their FeAs analogs, representing an obvious challenge
to microscopic theory.

With the above explanation of the ‘nonuniversality’ of the
gap structure, the obvious question is whether one can develop
an intuitive understanding of what physical principles are at
work controlling the degree of anisotropy and, of course, the
size of Tc, without having to perform a full-blown theoretical
calculation for each material. One point emphasized early on
by Kuroki and co-workers was the importance of the third,
dxy-dominated hole pocket, whose influence we noted already
above. Their observation that this feature of the electronic
structure is controlled by the pnictogen height worked well
within the 1111 family, but appears not to apply directly in the
122 systems. This may be because of the stronger 3D character
of these systems. While few fully 3D theoretical calculations
have been attempted thus far due to technical limitations, it
is clear that the strong kz dispersion of certain bands forces
admixtures of new bands near the top of the BZ in the 122
systems, and that this in turn can force strong gap variations
and possibly nodes.

One of the themes of this review is that new physics can
be found with the addition of more bands and more orbitals.
The recipe for the highest Tc is not clear, but the intuition
gained from extensive spin fluctuation calculations can be
summarized as follows: at least in the general framework of
FeBS-type band structure, it is advantageous to maximize the
number of bands but minimize the number of orbitals present
at the Fermi surface. If variable orbital weight is present, it
should be distributed such that large momentum intraorbital
pair scattering processes should be available to the system.

One can also search for a general intuitive principle
describing the effect of disorder on gap structure. While
disorder will always reduce Tc, in complex multiband
superconductors with gap anisotropy, we have discussed that
disorder can have several different effects on gap structure—
even diametrically opposite ones—depending on impurity
scattering and band interaction parameters. We are therefore
somewhat pessimistic that systematic disorder studies will
in this case aid substantially in identifying order parameter
symmetry and structure.

We close by recalling the ancient remark that our
knowledge is but a white spot in a black vastness, and therefore

39



Rep. Prog. Phys. 74 (2011) 124508 P J Hirschfeld et al

the more we learn, the larger is the circle that separates us from
the unknown, and correspondingly larger is also our awareness
of the limits of our knowledge. In this case much hard work
by many experimentalists and theorists has gone into building
up a plausible ‘standard’ story of the FeBS with ‘typical’
electronic structure. The recent discovery of the AFe2Se2

based materials has shown us that there is probably further
terra incognita for superconductivity yet to be explored even
within this particular set of chemical elements and structures.
It is the grand challenge for theory to guide the search through
this terrain.
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