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Princen-Prud’homme model
• shear a 2D honeycomb, always respecting Plateau’s rules

• deformation is not affine: vertices must rotate to maintain 120-120-120
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Yes, but…
• Princen-Prud’homme is for 2D periodic static dry foam

– dimensionality?
• generally expect G ~ Laplace pressure (surface tension/bubble size)

– wetness?
• shear modulus must vanish for wet foams

– dissipation?
• nonzero strainrate or oscillation frequency?

– disorder?
• smaller rearrangement size (not system)?
• smaller yield strain?



small-strain non-affine motion
(DJD)

• bubble motion is up & down as well as more & less
• compare bonds and displacements (normalized to affine expectation)

• trends vs polydisersity and wetness
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Frequency dependence, G*(ω)
• Simplest possibility: Kelvin solid

G*(ω) = G0 + iηω {i.e. G’(ω) = G0 and G”(ω) = ηω}
• But typical data looks much different:

– G’(ω) isn’t flat, and increases at high ω…
– G”(ω) doesn’t vanish at low ω…

(A. Saint-Jalmes & DJD)



High-ω rheology
• Due to non-affine motion, another term dominates:

G*(ω) = G0(1 + Sqrt[iω/ωc])**

shown by dotted curve for ε=0.08 foam:

[**seen and explained by Liu, Ramaswamy, Mason, Gang, Weitz for compressed emulsion using DWS microrheology]

(A.D. Gopal & DJD)

NB: This gives a robust way
to extract the shear modulus
from G*(ω) vs ω data.
Here Go = 2300 dyne/cm2



Short-τ DWS
• long-τ: rearrangements give exponential decay
• short-τ: thermal interface fluctuations (Y=<∆r2(τ)>)

– amplitude of fluctuations:
– microrheology:
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Unjamming vs gas fraction
• Data for shear modulus:

– symbols: polydisperse foam
– solid curve: monodisperse emulsion (Mason & Weitz)
– dashed curve: polydisperse emulsion (Princen & Kiss)

0

400

800

1200

1600
Couette cell

cone-plate

0

0.1

0.2

0.3

0.4

0.5

 G
 (d

yn
/c

m
2 ) G

 / ( σ/R
)

0.5 0.6 0.7 0.8 0.9 1
φ

0.63

unjammed jammed

polydispersity
makes little or no

difference!

(A. Saint-Jalmes & DJD)



Behavior near the transition
(DJD)• simulation of 2D bubble model
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Unjamming vs time
• elasticity vanishes at long times…

– stress relaxes as the bubbles coarsen
– time scale is set by foam age

• ie how long for size distribution to change
• not set by the time between coarsening-induced rearrangements (20s)

• Even though this is not a thermally activated mechanism like 
diffusion or reptation, the rheology is linear
– G*(ω) and G(t) date are indeed related by Fourier transform

(A.D. Gopal & DJD)



Unjamming vs shear
• make bubbles rearrange & explore packing configurations

– slow shear:
• sudden avalanche-like rearrangements of a few bubbles at a time

– fast shear:
• rearrangements merge together into continuous smooth flow

slow & jerky                     fast & smooth



Rearrangement sizes
• even the largest are only a few bubbles across

– picture of a very large event
– distribution of energy drops (before-after) has a cutoff

{but it moves out on approach to φc “point J”}



NB: shear deformation is uniform

– UCLA:
• direct observation of free surface in Couette cell
• viscosity and G*(ω) are indep. of sample thickness & cell geometry
• DWS gives expected decay time in transmission and backscattering
• viscous fingering morphology

– Hohler / Cohen-Addad lab (Marne-la-Vallee):
• multiple light scattering and rheology

– Dennin lab (UC Irvine):
• 2D bubble rafts and lipid monolayers

– Weitz lab (Exxon/Penn/Harvard):
• Rheology of emulsions

– Computer simulations:
• bubble model (DJD-Langer-Liu-Nagel)
• Surface evolver (Kraynik)
• 2D (Weaire)
• vertex model (Kawasaki)

uniform                      shear-band                    exponential



important scales
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bubble motion via DWS
low shear                             high shear
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DWS times vs strainrate
(A.D. Gopal & DJD)

• behavior changes at expected strainrate scales
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Rheological signature?
• simplest expectation is Bingham plastic:

– but 1/γ isn’t seen in either data or bubble-model:
– no real signature of γm in data
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(A.D. Gopal & DJD)



Superimpose step-strain!
• Stress jump and relaxation time both measure elasticity
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bubble motion vs rheology
• All measures of elasticity vanish at same point where 

rearrangements merge together into continuous flow
• “unjamming” shear rate = yield strain / event duration
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Jamming
• We’ve now seen three ways to unjam a foam

• ie for bubbles to rearrange and explore configuration space

– vs liquid fraction (gas bubble packing)
– vs time (as foam coarsens)
– vs shear

• Trajectories in the phase diagram?
– does shear play role of temperature?

(A.J. Liu & S.R. Nagel)



Three effective temperatures

• Compressibility & pressure fluctuations

• Viscosity & shear stress fluctuations 

• Heat capacity & energy fluctuations

– T’s all reduce to (dS/dU)-1 for equilibrated thermal systems
– What is their value & shear rate dependence; are they equal?

• Difficult to measure, so resort to simulation…
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(I.K. Ono, C.S O’Hern, DJD, S.A. Langer, A.J. Liu, S.R. Nagel)



The three Teff’s agree!
• N=400 bubbles in 2D box at φ=0.90 area fraction

– Teff approaches constant at zero strain rate
– Teff increases very slowly with strain rate

γ.
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…also agree with T=(dS/dU)-1

• Monte-Carlo results for Ω(U), the probability for a 
randomly constructed configuration to have energy U

• For this system, the effective temperature has all the 
attributes of a true statistical mechanical temperature.
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Mini-conclusions
• Statistical Mechanics works for certain driven athermal

systems, unmodified but for an effective temperature
– When does stat-mech succeed & what sets the value of Teff?

• Elemental fluidized bed (R.P. Ojha, DJD)

– upflow of gas: many fast degrees of freedom, constant-temperature reservoir
• Uniformly sheared foam (I.K. Ono, C.S O’Hern, DJD, S.A. Langer, A.J. Liu, S.R. Nagel)

– neighboring bubbles: many configurations with the same topology
• In general

– Perhaps want fluctuations to dominate the dissipation of injected energy?

– When does stat-mech fail & what to do then?
• eg anisotropic velocity fluctuations in sheared sand
• eg P(v)~Exp[-v3/2] in shaken sand
• eg flocking in self-propelled particles



THE END.
• Thank you for your interest in foam!
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