

THE PHYSICS OF FOAM

- Boulder School for Condensed Matter and Materials Physics July 1-26, 2002: Physics of Soft Condensed Matter
 - 1. Introduction Formation

Microscopics

2. Structure

Experiment Simulation

3. Stability

Coarsening

Drainage

4. Rheology

Linear response Rearrangement & flow Douglas J. DURIAN UCLA Physics & Astronomy Los Angeles, CA 90095-1547 <durian@physics.ucla.edu>

- shear a 2D honeycomb, always respecting Plateau's rules
 - deformation is not affine: vertices must rotate to maintain 120-120-120

shear modulus: $G_o = \gamma_{film} / Sqrt[3]a$ yield strain: $\gamma_v = 1.2$

- Princen-Prud'homme is for <u>2D</u> periodic static dry foam
 - dimensionality?
 - generally expect G ~ Laplace pressure (surface tension/bubble size)
 - wetness?
 - shear modulus must vanish for wet foams
 - dissipation?
 - nonzero strainrate or oscillation frequency?
 - disorder?
 - smaller rearrangement size (not system)?
 - smaller yield strain?

small-strain non-affine motion

(DJD)

• bubble motion is up & down as well as more & less

- compare bonds and displacements (normalized to affine expectation)
- trends vs polydisersity and wetness

width=0.75 width=0.1 =0.84

Frequency dependence, $G^*(\omega)$

- (A. Saint-Jalmes & DJD)
- Simplest possibility: Kelvin solid $G^*(\omega) = G_0 + i\eta\omega$ {i.e. $G'(\omega) = G_0$ and $G''(\omega) = \eta\omega$ }
- But typical data looks much different:
 - G'(ω) isn't flat, and increases at high ω ...

 $- G''(\omega)$ doesn't vanish at low $\omega \dots$

High-ω rheology

• Due to non-affine motion, another term dominates: $G^*(\omega) = G_0(1 + \text{Sqrt}[i\omega/\omega_c])^{**}$ shown by dotted curve for ϵ =0.08 foam:

[**seen and explained by Liu, Ramaswamy, Mason, Gang, Weitz for compressed emulsion using DWS microrheology]

- long-τ: rearrangements give exponential decay
- short- τ : thermal interface fluctuations (Y= $<\Delta r^2(\tau)>$)

- amplitude of fluctuations: $\delta = 13 \pm 3$ angstroms
- microrheology: $G_o \approx \frac{k_B T}{R\delta^2} \approx 1000 \pm 300 \text{ dyne/cm}^2$

Unjamming vs gas fraction

(A. Saint-Jalmes & DJD)

- Data for shear modulus:
 - symbols: polydisperse foam
 - solid curve: monodisperse emulsion (Mason & Weitz)
 - dashed curve: polydisperse emulsion (Princen & Kiss)

polydispersity makes little or no difference!

Behavior near the transition

• simulation of 2D bubble model

(DJD)

Unjamming vs time

(A.D. Gopal & DJD)

- elasticity vanishes at long times...
 - stress relaxes as the bubbles coarsen
 - time scale is set by foam age
 - ie how long for size distribution to change
 - not set by the time between coarsening-induced rearrangements (20s)

- Even though this is not a thermally activated mechanism like diffusion or reptation, the rheology is linear
 - $G^*(\omega)$ and G(t) date are indeed related by Fourier transform

Unjamming vs shear

- make bubbles rearrange & explore packing configurations
 - slow shear:
 - sudden avalanche-like rearrangements of a few bubbles at a time
 - fast shear:
 - rearrangements merge together into continuous smooth flow

fast & smooth

Rearrangement sizes

- even the largest are only a few bubbles across
 - picture of a very large event
 - distribution of energy drops (before-after) has a cutoff

{but it moves out on approach to ϕ_c "point J"}

NB: shear deformation is uniform

shear-band

- UCLA:
 - direct observation of free surface in Couette cell
 - viscosity and $G^*(\omega)$ are indep. of sample thickness & cell geometry
 - DWS gives expected decay time in transmission and backscattering
 - viscous fingering morphology
- Hohler / Cohen-Addad lab (Marne-la-Vallee):
 - multiple light scattering and rheology
- Dennin lab (UC Irvine):
 - 2D bubble rafts and lipid monolayers
- Weitz lab (Exxon/Penn/Harvard):
 - Rheology of emulsions
- Computer simulations:
 - bubble model (DJD-Langer-Liu-Nagel)
 - Surface evolver (Kraynik)
 - 2D (Weaire)
 - vertex model (Kawasaki)

 γ_v :

important scales

notation:

- τ_{oq} : time between coarsening induced rearrangments
- $\tau_{\rm d}$: duration of rearrangement events
 - yield strain
- $\dot{\gamma}_c = \gamma_y / \tau_{oq}$: whether coarsening or shear induced rearrangements dominate
- $\dot{\gamma}_m = \gamma_v / \tau_d$: whether rearrangements are smooth or avalanche-like

values for Foamy:

 $\tau_{oq} = 20s$ $\tau_{d} = 0.1s$ $\gamma_{y} = 0.05$ $\dot{\gamma}_{c} = 0.003 / s$ $\dot{\gamma}_{m} = 0.5 / s$

bubble motion via DWS

DWS times vs strainrate

- (A.D. Gopal & DJD)
- behavior changes at expected strainrate scales

- simplest expectation is Bingham plastic: $\sigma = \sigma_y (1 + \dot{\gamma} \tau_d / \gamma_y) \text{ and hence } \eta = \sigma_y (1 / \dot{\gamma} + 1 / \dot{\gamma}_m)$ (A.D. Gopal & DJD)
 - but $1/\dot{\gamma}$ isn't seen in either data or bubble-model:
 - no real signature of $\dot{\gamma}_m$ in data

Superimpose step-strain!

• Stress jump and relaxation time both measure elasticity

bubble motion vs rheology

- All measures of elasticity vanish at same point where rearrangements merge together into continuous flow
 - "unjamming" shear rate = yield strain / event duration

This completes the connection between bubble-scale and macroscopic foam behavior

- We've now seen three ways to unjam a foam
 - ie for bubbles to rearrange and explore configuration space
 - vs liquid fraction (gas bubble packing)
 - vs time (as foam coarsens)
 - vs shear

Trajectories in the phase diagram?
does shear play role of temperature?

Three effective temperatures

(I.K. Ono, C.S O'Hern, DJD, S.A. Langer, A.J. Liu, S.R. Nagel)

- Compressibility & pressure fluctuations $\kappa_{S}^{-1} = \frac{A}{T} \langle (p - \langle p \rangle)^{2} \rangle$
- Viscosity & shear stress fluctuations

$$\eta = \frac{A}{T} \int_{0}^{\infty} dt \left\langle \sigma_{xy}(t) \sigma_{xy}(0) \right\rangle_{c}$$

• Heat capacity & energy fluctuations

$$\frac{\partial \langle U \rangle}{\partial T} = \frac{1}{T^2} \left\langle \left(U - \langle U \rangle \right)^2 \right\rangle$$

- T's all reduce to $(dS/dU)^{-1}$ for equilibrated thermal systems
- What is their value & shear rate dependence; are they equal?
 - Difficult to measure, so resort to simulation...

The three T_{eff} 's agree!

• N=400 bubbles in 2D box at ϕ =0.90 area fraction

- T_{eff} approaches constant at zero strain rate
- T_{eff} increases very slowly with strain rate

...also agree with $T = (dS/dU)^{-1}$

• Monte-Carlo results for $\Omega(U)$, the probability for a randomly constructed configuration to have energy U

For this system, the effective temperature has all the attributes of a true statistical mechanical temperature.

Mini-conclusions

- Statistical Mechanics works for certain driven athermal systems, unmodified but for an effective temperature
 - When does stat-mech succeed & what sets the value of T_{eff} ?
 - Elemental fluidized bed (R.P. Ojha, DJD)
 - upflow of gas: many fast degrees of freedom, constant-temperature reservoir
 - Uniformly sheared foam (I.K. Ono, C.S O'Hern, DJD, S.A. Langer, A.J. Liu, S.R. Nagel)
 - neighboring bubbles: many configurations with the same topology
 - In general
 - Perhaps want fluctuations to dominate the dissipation of injected energy?
 - When does stat-mech fail & what to do then?
 - eg anisotropic velocity fluctuations in sheared sand
 - eg P(v)~ $Exp[-v^{3/2}]$ in shaken sand
 - eg flocking in self-propelled particles

• Thank you for your interest in foam!

