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Gas diffusion
• bubble volumes can change by the diffusion of gas across films

– gas flux goes from high to low pressure bubbles, as set by Laplace’s law
{generally, from smaller to larger bubbles}

– monodisperse foams are unstable: fluctuations are magnified…
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Coarsening
• small bubbles shrink…large bubbles grow…the texture coarsens

– interfacial area decreases with time (driven by surface tension)
– similar behavior in other phase-separating systems

• eg called Ostwald ripening for grain growth in metal alloys



Coarsening alters the topology
• number of bubbles decreases as small bubbles evaporate

– this is called at “T2” process
{topology change of the second kind}



Other topology changes
• in 2D, neighbor switching happens only one way:

– the so-called “T1” process

• in 3D, there is more than one type of neighbor-switching process:

the “quad-flip” is most prevalent



Rearrangement dynamics
• these events can be sudden / avalanche-like:

– similar rearrangements occur during flow… (next time)

• surface of a bulk foam
• 30 µm diameter bubbles



self-similarity
• bubble-size distribution scales with the average

– p(R,t) = F(R/<R(t)>) where all t-dependence is in <R(t)>
– arbitrary initial distribution evolves to this distribution
– time sequence looks like an increase in magnification

this property makes it simple
to compute the rate of coarsening…
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Rate of coarsening I.
• The bubbles in a foam are polydisperse

– smaller bubbles have higher pressures (Laplace)

– concentration of disolved gas is therefore higher just outside 
smaller bubbles (Henry)

– hence there is a diffusive flux of disolved gas down the 
concentration gradient from smaller to larger bubbles (Fick)

Pinside=Poutside+γ/r

• ρ=const x Pinside

ρ



Rate of coarsening II.
• mean-field argument:   dV/dt ~  –A (P-Pc) 

V = average bubble volume, A = average bubble area
{dV/dt = A dR/dt, so dR/dt ~ -(P-Pc) in any dimension}
{proportionality constant scales as diffusivity x solubility / film thickness}

(P-Pc) = pressure difference of average bubble with neighboring
‘crossover’ bubbles that neither grow nor shrink:

P

ρ
Pc

ρc

shrink    grow       dRc/dt=0



Rate of coarsening III.
• (Pc-P)=(γ/rc-γ/r), difference of Plateau border curvatures

• two steps to connect to bubble size:
– self-similarity of the bubble-size distribution implies that R is

exactly proportional to Rc

– ε ~ (r/R)2 = (rc/Rc)2

• Altogether: dR/dt ~ (Pc-P) = (γ/rc-γ/r) ~ 1/(Sqrt[ε]R)
– therefore, R~t1/2 {in both 2D and 3D}

Pc=Po+γ/rc

P=Po+γ/r

Pc Pc

r
rc



Lifshitz & Slyozov (1961)
• considered coarsening of metal alloys

– droplets separated by a distance >> droplet size
– full distribution size distribution f(R,t), with <R(t)> ~ t1/3

grow gas concentration

shrink



von Neumann’s law for 2D dry foams
• sum rule for change in tangent angles going around an n-sided 

bubble with arclengths li and radii ri is 

• flux across each arc scales as li / ri

• rate of change of area thus scales as

– the crossover bubble is six-sided
– the average bubble area grows as A~t {consistent with r~t1/2}

• cannot be carried into 3D, but approximations have been proposed
– RdR/dt ~ (F-Fo) with Fo~14  {Glazier}
– RdR/dt ~ F1/2-Fo

1/2 {Hilgenfeldt}
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experiments, 2D
• soap bubbles squashed between glass plates:



experiments, 3D
• Gillette Foamy, from multiple light scattering



experiments, 3D
• custom made foams of uniform liquid fraction (large symbols)
• a single foam sample that is draining and coarsening (small dots)

• liquid-fraction dependence: dR/dt ~ 1/(Sqrt[ε]R)
{cf competing arguments where liquid-filled Plateau borders completely block 

the flux of gas:  dR/dt ~ (1-Sqrt[ε/0.44])2 (dash)}



Coarsening can’t be stopped
• but it can be slowed down:

– make the bubbles monodisperse
– choose gas with low solubility and low diffusivity in water
– add trace amount of “insoluble” gas

• works great for liquid-liquid foams (ie emulsions)
• composition difference & osmotic pressure develop that oppose Laplace

less insoluble gas more insoluble gas

∆PLaplace

∆POsmotic



Drainage intro
• Under influence of earth’s gravity, the liquid drains downwards in 

between the bubbles - primarily through the Plateau borders
• some debate about role of films in liquid transport…

– unlike coarsening, this mechanism can be turned off (microgravity)
– drainage and/or evaporation are often a prelude to film rupture

g

different from ordinary porous medium:
the pore (i.e. Plateau borders) shrink as
drainage proceeds: ε ~ (r/R)2



Forces?
• drainage is driven by gravity, but opposed by two other forces

– viscous dissipation
• if the monolayer are rigid:

– no-slip boundary, so Shear Flow in Plateau borders
• if the monolayers are mobile:

– slip boundary, so Plug Flow in Plateau borders and shear flow only in vertices

– capillarity

slip:no-slip: higher pressure

lower pressure

shear in
vertex



Liquid flow speed, u?
• estimate ∆E/time in volume r2L for all three three forces:

• use r~ε1/2R and require Σ(∆E/time)=0 :
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Drainage Equation: PDE for ε(z,t)
• continuity equation for liquid conservation:

• boundary conditions:
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Equilibrium capillary profile
• u=0 everywhere: gravity balanced by capillarity

( )[ ] heightcolumn H  ,21)( 2 =−−= ξεε zHz c
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liquid



Forced-drainage
• pour liquid onto foam column at constant rate Q

– wetness front propagates at constant speed & shape (solitary wave)
εQ Q

Z

Q Q Q

V(Q)



Convection & size segregation
• but don’t pour too hard!
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Free-drainage in straight column
• no analytic solution is known!

– initially, becomes dry/wet at top/bottom; ε=constant in interior
– leakage begins when ε->εc at bottom
– eventually, rolls over to equilibrium capillary profile

ε

z (depth into foam)

0       εo εc0

H

V(t) = volume of drained liquid

log[ time ]

total liquid in initial foam

liquid in capillary profile

Vt

0



Free-drainage in Eiffel Tower

• exponentially-flaring shape: A(z)~Exp[z/zo]

• simple analytic solution (ignoring boundary conditions)
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Eiffel Tower - data
• uniform drying (no ε-gradients, until late times)
• but much faster than predicted

– capillarity in BC’s slows down leakage
– must be due to effects of coarsening…
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Drainage-coarsening connection
• vicious cycle:

– dry foams coarsen faster…
– large bubbles drain faster…
– etc.

• to model this effect:
– combine with RdR/dt=1/Sqrt[ε]
– add one more ingredient…

large & dry

small & wet



Coarsening Equation
• Previous treatments assume spatial homogeneity, which 

isn’t the case for freely draining foams
• gradient causes net gas transport

• curvature contributes to bubble growth

• The full coarsening equation must thus be of the form 
∂R/∂t = D[ X + (R2/α)∂2X/∂z2 ]:
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Compare with data
• simultaneously capture straight and flaring columns:



Next time…

• Foam rheology

– linear response (small-amplitude deformation)

– bubble rearrangements and large-deformation flow
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