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statistical systems biology: agenda

1. challenges to keep in mind

2. microarrays / regulation

3. networks

4. final thoughts



statistical systems biology: challenges

1. statistics

2. modeling

3. validation

4. interpretation



microarrays + transcriptional regulation

1. biological questions

2. history/context

3. methods

• “unsupervised”: cluster first, ask
questions later

• “supervised”: predicting methods



biology as told by a theorist



biology as told by a biologist

ptashne’s “a genetic switch”



what is to be measured?

1. “expression” via RNA abundance 



what is to be measured?

2. regulatory sequence
>YLR081W         GAL2
                                         CEN
AGGTTGCAATTTCTTTTTCTATTAGTAGCTAAAAATGGGTCACGTGATCT      -451
                                       GAL4
ATATTCGAAAGGGGCGGTTGCCTCAGGAAGGCACCGGCGGTCTTTCGTCC      -401

GTGCGGAGATATCTGCGCCGTTCAGGGGTCCATGTGCCTTGGACGATATT      -351
                       GAL4
AAGGCAGAAGGCAGTATCGGGGCGGATCACTCCGAACCGAGATTAGTTAA      -301
GCCCTTCCCATCTCAAGATGGGGAGCAAATGGCATTATACTCCTGCTAGA      -251
AAGTTAACTGTGCACATATTCTTAAATTATACAACATTCTGGAGAGCTAT      -201
TGTTCAAAAAACAAACATTTCGCAGGCTAAAATGTGGAGATAGGATAAGT      -151
TTTGTAGACATATATAAACAATCAGTAATTGGATTGAAAATTTGGTGTTG      -101
TGAATTGCTCTTCATTATGCACCTTATTCAATTATCATCAAGAATAGTAA      -51
TAGTTAAGTAAACACAAGATTAACATAATAAAAAAAATAATTCTTTCATA      -1
ATGGCAGTTGAGGAGAACAATATGCCTGTTGTTTCACAGCAACCCCAAGC      +50



GeneChip(R): “late 80’s”



cDNA “spot” arrays: 1995



the hope

?



other relevant innovation:

shared data.



microarrays + transcriptional regulation

1. biological questions

2. history/context

3. methods

• “unsupervised”: cluster first, ask
questions later

• “supervised”: predicting methods



descriptive “models” of regulation:

Spellman et al., Molecular Biology of the Cell 1998 Dec;9(12):3273-97

• “unsupervised” (no input-output relation)



descriptive “models” of regulation:

• “unsupervised” (no input-output relation)



microarrays + transcriptional regulation

1. biological questions

2. history/context

3. methods

• “unsupervised”: cluster first, ask
questions later

• “supervised”: predicting methods



REDUCE: regression



REDUCE: why 7?

ptashne’s “a genetic switch”



learning networks from biology



“learning networks”: learn network-shaped f



Geneclass: predict expression as class

• complex enough to learn from data
• simple enough

– to generalize
 (predict on “held out” experiments)
– and to be interpretable

(based on biological rules)
• will exploit 3 tricks



trick #1: base on biological rules

parents - “motifs” - children
• 10M-dimensional feature space
• approx 100*6000 examples
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trick #2: predict expression as class

build a theory of 3’s?



1-slide summary of classification

length

height

large deviation theory:
“maximum margin”

 

• banana or orange?



1-slide summary of classification

length

height

pricesmell

time of purchase

• large deviation
theory suggests
expecting the
worst

boosting (1997)
SVMs (1990s)

• banana or orange?



1-slide summary of classification

“acgt” & gene 45 down?

“cat” & gene 11 up?

“gaga” &
gene 3184 up?

“tag” &
gene 34 up?

“gataca” &
gene 37 down?

learn predictive
features from data

“gaga” &
gene 3184 up?

“gataca” &
gene 37 down?

• up- or down- regulated?



model framework:

Label

Motifs

Parent states

Feature vector:
motif-parent pairs
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1-slide summary of classification

“gaga” &
gene 3184 up?

“gataca” &
gene 37 down?

learn predictive
features from data

“gaga” &
gene 3184 up?

“gataca” &
gene 37 down?

• up- or down- regulated?



"boosting"?
• Anachronistic observation:

                         minimized by

• Therefore approximate

• Coordinate descent

• Interpretations:
–  Add weight to hard examples
–  Greedily add 1 rule per iteration
–  learn predictive features from data.



• One tree: control logic all genes, all expts

1 interaction

quantify regulation

[ADTs: Freund & Mason 1999]

• play “20 questions”
• output log(p(+)/p(-))
• highly interpretable

trick #3: boosted alternating decision trees



gene-centric vs. expt-centric vs. integrative

Learn regulatory program that makes genome-
wide, context-specific predictions for differential
(up/down) expression of target genes



yeast environmental stress response

• Gasch et al. (2000) dataset, 173 microarrays, 
13 environmental stresses

• ~5500 target genes, 475 regulators (237 TF+ 250 SM)
• 500bp upstream promoter sequences
• Binning into +1/0/-1 expression levels based on wildtype

vs.
wildtype noise



• “10-fold cross-validation” yields test loss of 13.6%

basic notions: fitting vs. overfitting

• Empirical estimate of generalization error
• not chi squared (not training data, and not normal)



basic notions: mining vs. understanding

• Test Loss vs. “boosting iteration”=number of edges

• establish a baseline via randomizing



• Use boosting to iteratively combine predictive
regulators and motifs into a tree-structure

• Alternating decision tree = margin-based
generalization of decision trees

• Learn motifs ab initio from
promoter sequences

• Lower nodes are
conditionally dependent on
higher nodes ⇒ can
possibly reveal
combinatorial interactions

4th trick: learn predictive “f”+ motifs ab initio



binding sites + “motif discovery”

Nuclear membrane

Binding site/motif
CCG__CCG

• Understand which
regulators control
which target genes

• Discover motifs
representing
regulatory elements

Learning problems:



MEDUSA: why dimers?

ptashne’s “a genetic switch”



MEDUSA’s individual interactions

Is AGCTATG present and USV1 up?
Is AGCTATG present and USV1 down?
Is GCTATGC present and USV1 up?
Is GCTATGC present and TPK1 up? …

try all motif-regulator 
pairs as individual interactions …

minimizes boosting loss

Is GCTATGC present and USV1 up?
Is GCAATGC present and USV1 up?
Is TCTATGC present and USV1 up?
Is GCTTTGC present and USV1 up?
…
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g
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hierarchical
sequence

agglomeration …

PSSMs
Is                   present and USV1 up?

Is                present and USV1 up?

Is                present and USV1 up? …

minimize boosting loss  
⇒ selected interaction

…AGCTATGCCATCGACTGCTCCAGTCGCACACACAAAGATTTGAG
GCTATAGCTACTTTATAAAGGGGCTACGGCAAATT…

k-mers (k≤7)
AGCTATG
GCTATGC
CTATGCC

Regulator expression
dimers (gapped elements)
TTT_AAA
GCTA_GCTA



hierarchical sequence agglomeration

GCTATGC
GCAATGC
GGTATGC
CCTAAGC
GCTATTT

…

…

GGTATGG

…

PSSMs

…

• Avoids masking of correlated individual interactions
• Improves prediction accuracy on test data



[Freund & Mason 1999]

MEDUSA: summary

1. integrate sequence+
expression to learn a
global regulatory
program;

2. avoid overfitting
3. learn functional

regulators-motif
combos

4. learn binding site
motifs, and thresholds,
directly from sequence
without seeding



• “10-fold cross-validation” yields test loss of 13.6%

reminder: fitting vs. overfitting

• Empirical estimate of generalization error
• not chi squared (not training data, and not normal)



• 10-fold cross-validation (held-out experiments), ~60,000
(gene,experiment) training examples, 700 iterations

• (Nk-mers+Ndimers+NPSSMs)*Nreg*2 ~= 107 possible individual
interactions at every node

• MEDUSA’s motifs give a better prediction accuracy on
held-out experiments than database motifs

basic notions: fitting vs. overfitting



• Large-scale results: yeast ESR data set, ~170 microarrays,
5-fold cross-validation (held-out experiments), ~60,000
(gene,experiment) training examples, 700 iterations

• MEDUSA’s motifs give a better prediction accuracy on
held-out experiments than database motifs

13.4%MEDUSA

16.1%AlignACE motifs + ADT

20.8%TRANFAC motifs +
ADT

31.3%TRANSFAC motifs +
nearest neighbor

test error

basic notions: fitting vs. overfitting



MEDUSA: ab initio PSSM discovery



yeast ESR: biological validation

STRE element

Heat shock factor



yeast ESR: biological validation

Important regulators identified by MEDUSA

Cellular localization
of MSN2/4

Segal et al. 2003

Universal stress repressor



• motif discovery + learning transcriptional regulation
using large-margin classification

• learn binding sites ab initio
• PSSMs predictive on test data
• learn model of transcriptional regulation for all genes

and all experiments
• simultaneous discovery of important regulators
• no gene clustering, no initialization
• open source:

conclusions

http://www.cs.columbia.edu/compbio/medusa



agenda

• Theme: a predictive network model
• predict expression
• learn binding sites ab initio

• Breakdown: prediction? y=f(x)

• Variation: predicting evolution
• validating models
• letting the data decide



only important slide:

• task: learn predictive
network from microarray
and sequence data, w/o
prior sequence annotation

• tool:
 y=f(x)

• task: predict evolution
from topology

• tool:
 y=f(x)



what's so great about y=f(x)???!?!?!??

1. nothing up my sleeve:

2. which x matter?

CV: 

sig.



statistical network physics: definition

a definition:

statistical analysis to reveal the mechanism
responsible for an observed network topology

what information is in                      ?



agenda

• statistical network physics
• pseudohistory
• the problem
• proatistics

• statistical learning

• biological networks: predicting evolution
• validating models
• letting the data decide



1. measure p(k) for real networks
2. posit models/mechanisms:

1. Erdos-Renyi

2. Yule/Simon/Barabasi-Albert

3. calculate
4. select model which better agrees
5. problem:

statistical network physics: pseudohistory

1999-2001:



statistical physics: cartoon

1800s-:

1. measure p(x) (or <x>)
2. posit models, e.g.:

3. calculate

4. select model which best agrees



Newman SIAM Review 2003

statistical network physics: measure



the problem:

informative statistics?



1. measure p(k) for real networks
2. posit models/mechanisms:

1. Erdos-Renyi

2. Yule/Simon/Barabasi-Albert

3. calculate p(k)=\int p(k|omega)p(o
4. mega)
5. select model which better agrees
6. overuniversality: almost all models can agree

statistical network physics: history

1999-2001; 2001-2005



proliferation of models (+metrics)

1. DMC
(Vazquez, Flammini, Maritan, Vespignani,2003)

2. DMR
(Sole, Pastor-Satorras, Smith, Kepler, 2002)

3. RDS
(Erdos, Renyi,1959)

4. RDG
(Callaway, Hopcroft, Kleinberg, Newman, Strogatz,2001)

5. LPA
(Barabasi, Albert 1999)

6. AGV
(Klemm, Eguiluz, 2002)

7. SMW
(Watts, Strogatz 1998)



statistical network physics: problem

•“ First, power law distributions are neither new nor
rare;
• second, fitting available data to such distributions is
suspiciously easy;
• third, even when the fit is robust, it adds little if
anything to our knowledge of the actual architecture
of the network (many different architectures can give
rise to the same power laws)”

- Revisiting “Scale-Free” Networks, E.F.Keller



inferring design in the presence of
overuniversality for a target network
algorithm:

• forget your favorite design.

• forget your favorite feature.

• forget the target network.

• define a system for feature-generation.

• build a classifier to discriminate proposed designs.

• classify the target network.



1-slide summary of classification

• banana or orange?

• large deviation theory suggests expecting the
worst

length

height

pricesmell

time of purchase

• large deviation
theory suggests
expecting the
worst

boosting (1997)
SVMs (1990s)



1-slide summary of classification

• Watts or Barabasi?



1-slide summary of classification

• Watts or Barabasi?

• learn predictive
(not “overrepresented”)
features from data;
• no null model assumed;
• no distribution assumed;



calculate discriminative features

(and let the data decide which is best model)



agenda

• statistical network physics
• the problem
• probability
• statistics

• statistical learning
• biological networks: predicting evolution

• validating models
• letting the data decide



• Subgraph census
- exploit sparseness (“walks”)
- use a pre-processed hash-table
for subgraph isomorphisms
- 148 subgraphs shown,
can easily do 181 subgraphs

or

• Adjacency matrix functionals (“words”) (Ziv et al. cond-

mat/0306610)
- more efficient than subgraph census for denser

networks
- up to 4670 features tested

systematic enumeration of network features



NetBoost: 20 questions

• play “20 questions”
• output
log(p(model)/p(not))
• highly interpretable

[ADTs: Freund & Mason 1999]



conditionally important subgraphs



high accuracy (fit vs. overfit ; test-loss)

• Empirical estimate of generalization error
• not chi squared (not normal, too many parts=parameters)



now look @ target: robust predictions

Dup/
Mut/
Comp

Erdös



DMC?

(from Rice, Kershenbaum, Stolovitzky’s Commentary)



rank scores



not just for flies: yeast P-P network

data courtesy O. Troyanskaya



why subgraphs?



subgraph census: history

•Triad Census to test for transitivity,
Holland and Leinhardt, 1970

‘FFL’ =                           =  ‘030T’ triad



subgraph census: problems

• Number of isomorphism classes grows rapidly with graph size
(Haray, 1955)

3 dyads
16 triads
218 tetrads
9608 pentads

• Census sensitive to density, clustering, degree distributions
• Traditional algorithms limited to n=3 or n=4
• Larger structures require tailored, parameterized algorithms



• Subgraph census
- exploit sparseness (“walks”)
- use a pre-processed hash-table
for subgraph isomorphisms
- 148 subgraphs shown,
can easily do 181 subgraphs

or

• Adjacency matrix functionals (“words”) (Ziv et al. cond-mat/0306610)
- more efficient than subgraph census for denser networks
- up to 4670 features tested

systematic enumeration of network features



matrix functionals & graphs

• 030T (FFL) signature

 Path operators 
– A  = adjacency; (walking down the graph) 
– AT = transpose; (walking up the graph)
– D  = diag; (restriction to closed walks) 
– U  = I-D; (restriction to open walks)



In other words …

Number of FFLs =

“sum D(A2AT)”

Example 1: S(D(A2AT)) = 40 = the number of FFLs in the
        E. coli network

Example 2: nnz(D(A2AT)) = 10
        16 of 40 FFLs associated with gene csgBA

sum => number of distinct paths between all pairs of endpoints
nnz => number of distinct paths between unique pairs of endpoints

sparse matrix functionals



computational efficiency

Tunable, preferential-
attachment (PA)
parameter
•Barabasi and Albert,
Science ‘99

Scalars perform
better for networks
that are dense,
clustered, or
networks with
long-tailed degree
distributions



NetClass: predict mechanism as class

q-bio/0402017; BMC Bioinformatics 2004, 5:181 



NetClass: E. coli Transcriptional Network

Kumar-C wins
(words)

N=324; m=519; d=.3%; r=1.0



NetClass:  E. coli Transcriptional Network

Kumar-C wins
(walks)



NetClass:  C. elegans Neural Network

“MZ” wins
(new model)

N=306; m=2359; d=2.5%; r=.97



what is important? let the data decide



statistical systems biology: agenda

1. challenges to keep in mind

2. microarrays / regulation

3. networks

4. final thoughts



things to watch out for:

1. methods / how to read

2. different data, same issues

3. “prediction”

4. validation



how to read/write a comp. sys. bio. paper:

1. background

2. intuition

3. question to be answered, in words

4. question to be answered, in math:

5. algorithm

6. validation



“prediction”

1.  overfitting

2.  feature ranking / hypothesis generation
(“qualitative predictions”)

3.  predicting unseen data



validation, closely related to prediction

1.  in literature / by friends

2.  statistical validation (e.g., CV)

3.  experiment



different data, same issues

1. RNAi

2. ChIP-chip

3. PPi

4. image data

5. ...



learning networks from biology
 

• thanks:
Freund, Kundaje, Leslie,
Middendorf, +  Shah

• for more info:
• RECOMB, ISMB

• funding:
• NIH NCBC

• open source.



learning biology from networks
  

• thanks:
Middendorf, Ziv

• for more info:
• BMC Bioinfo, PNAS

• funding:
• NSF/NIH/DOE

• open source:
• sourceforge.net


