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statistical systems biology: agenda

1. challenges to keep in mind

2. microarrays / regulation
3. networks

4. final thoughts



statistical systems biology: challenges

1. statistics
2. modeling
3. validation
4. Interpretation



microarrays + transcriptional regulation

1. biological questions
2. history/context
3. methods

» “unsupervised”: cluster first, ask
questions later

» “supervised”: predicting methods



biology as told by a theorist




biology as told by a biologist

28 THE MASTER ELEMENTS OF CONTROL
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Figure 1.24. The effect of Cro. Cro first abolishes synthesis of repressor from Py, and then turns
off synthesis of its own gene as well,

ptashne’s “a genetic switch”



what is to be measured?

1. "expression” via RNA abundance

Northern blot

From Wikipedia, the free encyclopedia

The northern blot is a technigue used in molecular biology research to study gene expression. It takes its name from the similarity of the procec
Southern blot procedure, named for biologist Edwin Southern, used to study DNA, with the key difference that RNA, rather than DNA, is the sub
being analyzed by electrophoresis and detection with a hybridization probe. This technique was developed in 1977 by James Alwine and colle
Stanford University.[1]

A notable difference in the procedure (as compared with the Southern blot) is the addition of formaldehyde in the agarose gel, which acts as a
denaturant.

As in the Southern blot, the hybridization probe may be made from DNA or RNA.

A variant of the procedure known as the reverse northern blot was occasionally (although, infrequently) used. In this procedure, the substrate
acid (that is affixed to the membrane) is a collection of isolated DNA fragments, and the probe is RNA extracted from a tissue and radioactively |

The use of DNA microarrays that have come into widespread use in the late 1990s and early 2000s is more akin to the reverse procedure, in th
involve the use of isolated DNA fragments affixed to a substrate, and hybridization with a probe made from cellular RNA. Thus the reverse proci
though originally uncommon, enabled the one-at-a-time study of gene expression using northern analysis to evolve into gene expression profil
which many (possibly all) of the genes in an organism may have their expression monitored.



what is to be measured?

2. regulatory sequence

>YLRO81W GAL2
CEN
AGGTTGCAATTTCTTTTTCTATTAGTAGCTAAAAATGGGTCACGTGATCT -451
GAL4
ATATTCGAAAGGGGCGGTTGCCTCAGGAAGGCACCGGCGGTCTTTCGTCC -401
GTGCGGAGATATCTGCGCCGTTCAGGGGTCCATGTGCCTTGGACGATATT -351
GAL4

AAGGCAGAAGGCAGTATCGGGGCGGATCACTCCGAACCGAGATTAGTTAA -301
GCCCTTCCCATCTCAAGATGGGGAGCAAATGGCATTATACTCCTGCTAGA -251
AAGTTAACTGTGCACATATTCTTAAATTATACAACATTCTGGAGAGCTAT -201
TGTTCAAAAAACAAACATTTCGCAGGCTAAAATGTGGAGATAGGATAAGT -151
TTTGTAGACATATATAAACAATCAGTAATTGGATTGAAAATTTGGTGTTG -101
TGAATTGCTCTTCATTATGCACCTTATTCAATTATCATCAAGAATAGTAA -51
TAGTTAAGTAAACACAAGATTAACATAATAAAAAAAATAATTCTTTCATA -1

ATGGCAGTTGAGGAGAACAATATGCCTGTTGTTTCACAGCAACCCCAAGC +50



GeneChip(R): “late 80's”

Affymetrix' GeneChip® technology was invented in the late 1980's by
a team of scientists led by Stephen P.A. Fodor, Ph.D. The theory
behind their work was revolutionary - a notion that semiconductor
manufacturing techniques could be united with advances in
combinatorial chemistry to build vast amounts of biological data on a
small glass chip. This technology became the basis of a new
company, Affymetrix, formed as a division of Affymax, N.V. in 1991.
Affymetrix began operating independently in 1992.

Circa 1888 - The world's first microarray prototype built
using a microscope slide.

Affymetrix has headquarters in Santa Clara, California with offices



cDNA “spot” arrays: 1995
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Vol. 270. no. 5235, pp. 467 - 470
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REPORTS

Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA
Microarray

Mark Schena (1), Dari Shalon (1), Ronald W. Davis (2), Patrick O. Brown (3)

A high-capacity system was developed to monitor the expression of many genes in parallel. Microarrays
prepared by high-speed robotic printing of complementary DNAs on glass were used for quantitative
expression measurements of the corresponding genes. Because of the small format and high density of
the arrays, hybridization volumes of 2 microliters could be used that enabled detection of rare transcripts
in probe mixtures derived from 2 micrograms of total cellular messenger RNA. Differential expression
measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color fluorescence
hvbridization.



the hope
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other relevant innovation:
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World Series %@ tiestans LOS ANGELES weekly Picks

(‘search ) Options

Yellow Pages - People Search - City Maps -- Stock Quotes - Sports Scores

shared data.



microarrays + transcriptional regulation

3. methods

» “unsupervised”: cluster first, ask
questions later

» “supervised”: predicting methods



< cdc28  Elutriation
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Spellman et al., Molecular Biology of the Cell 1998 Dec;9(12):3273-97

* “unsupervised” (no input-output relation)



descriptive "models” of regulation:
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microarrays + transcriptional regulation

» “supervised”: predicting methods



REDUCE: regression

in © 2001 Nature Publishing Group http:/genetics.natul

Regulatory element detection using
correlation with expression

Harmen J. Bussemaker!?, Hao Li! & Eric D. Siggia'
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REDUCE: why 77

Minor Major
groove groove

Figure 2.4. An a-helix in a major groove. The side chains that protrude from the a-helix, not
shown here, would extend to the extremities of the DNA major groove.

ptashne’s “a genetic switch”



learning networks from biology
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“learning networks”: learn network-shaped f




GENECLASS: predict expression as class

» complex enough to learn from data
* simple enough
— to generalize
(predict on “held out” experiments)
— and to be interpretable
(based on biological rules)
» will exploit 3 tricks



trick #1: base on biological rules

parents - "motifs” - children

e 10M-dimensional feature space
e approx 100*6000 examples
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trick #2: predict expression as class

build a theory of 3's?



1-slide summary of classification

e banana or orange?

height

length

large deviation theory:
‘maximum margin’



1-slide summary of classification

e banana or orange?

boosting (1997)
SVMs (1990s)




1-slide summary of classification

e up- or down- regulated?

“cat” & gene 11 up?

“gataca” &

gene 37 down? “acgt” & gene 45 down?

“onen” & learn predictive
gaga

“tag,, &
gene 3184 up?  teatures from data

gene 34 up?



t ¢
model framework: Ag _ f (Mgv @ )
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g Parent states
8 Pﬂ'e = {_17071}
—oo— Feature vector: l
- motif-parent pairs
QF——s : Tge = 1 MugPre}pn
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Ao Motifs \
motifs experiments



1-slide summary of classification

e up- or down- regulated?

T g g

“gataca” &
gene 37 down?

. learn predictive
gaga” &
gene 3184 up?  teatures from data



"boosting"?

e Anachronistic observation:

1. p(+|7)

<€_UB(f)> minimized by B(#) = = In

p(—|Z)
e Therefore approximate

(e "B@)Y n 7 = Ze—aszk%ws)

e Coordinate descent

e Interpretations: Ckp — Ck +

— Add weight to hard examples
— Greedily add 1 rule per iteration
— learn predictive features from data.



trick #3: boosted alternating decision trees

e One tree: control logic all genes, all expts

1 interaction -~ " USVI up and TIS up and
~-TAAACA- present? A G
Y Y,
quantify requlation """ ~—y @ @
A\ - 174 ' USYI up and ACAl up and
e play "20 questions LTI At Ch present? | | T .o orTT presents

o output log(p(+)/p(-)) & ‘
e highly interpretable (oass) (Cozen)

[ADTs: Freund & Mason 1999]



gene-centric vs. expt-centric vs. integrative

Regulators

Learn requlatory program that makes genome-
wide, context-specific predictions for differential
(up/down) expression of target genes



Gasch et al. (2000) dataset, 173 microarrays,
13 environmental stresses

~5500 target genes, 475 requlators (237 TF+ 250 SM)
500bp upstream promoter sequences

Binning into +1/0/-1 expression levels based on wildtype
VS.

S A
S S

Intensity specific
distribution of noise

T\

1Y)
o ol p=
)

log(R/G)

NO0Z 2 R
M=
S

Wil Lo

A = 0.5*(log(R)+log(G))



basic notions: fitting vs. overfitting

e “10-fold cross-validation” yields test loss of 13.6%

Predicted Bins
Down  Baseline Up

Down 16.5% 8.9% 1.5%
True Bins  Baseline | 9.3% 32.4% 6.3%
Up 2.8% 9.9% 12.0%

Iog2(expression)

1 1
-15 -10 s 10 15

-5 1}
prediction scare

e Empirical estimate of generalization error
e not chi squared (not training data, and not normal)



basic notions: mining vs. understanding

o Test LOSS vs. “boosting iteration”=number of edges

045
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o
—_

005 1 1 1 1 1 1 1 1 1 ]
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iteration

e establish a baseline via randomizing



4th trick: learn

redictive “f"+ motifs ab initio

Use boosting to iteratively combine predictive
regulators and motifs into a tree-structure

Alternating decision tree = margin-based
generalization of decision trees

Learn motifs ab initio from
promoter sequences

Lower nodes are
conditionally dependent on

2

USVI1 up and

-TAAACA. present?

TIS11 up and
N i

* 4. x present?

Y

3

S

higher nodes = can
possibly reveal

A 11 Acar (A present?

USV1 up and
|

e

ACAl up and
oG eIl present?

combinatorial interactions




binding sites + "motif discovery”

Learning problems:

e Understand which
regulators control
which target genes

Nuclear membrane

Binding site/motif _ i
CCG_ CCG e Discover motifs

«— representing
"kamCC* regulatory elements

rFNmT Lo R ®O



MEDUSA: why dimers?

36 PROTEIN-DNA INTERACTIONS AND GENE CONTROL

Figure 2.6. Lambda repressor bound 1o an operator site. A pair of repressor amino domains fits
on a 17 base pair operator site

ptashne’s “a genetic switch”



MEDUSA's individual interactions

Is AGCTATG present and USV1 up?
Is AGCTATG present and USV1 down?
Is GCTATGC present and USV1 up?
Is GCTATGC present and TPK1 up? ...
try all motif-requlator
pairs as individual interactions

minimize boosting loss
=> selected interaction

L CTLiT C S .Crar_e present and USV1 @
- 5 C Is  [lc1. presentand USV1 up?

s b presentand USVA up? ...

uuuuuuuu



hierarchical sequence agglomeration

* Avoids masking of correlated individual interactions
* Improves prediction accuracy on test data

PSSM p(x1, ..., x,) = I pi(x;), 2, € {A,C,G, T}

score S = Y"1 In(p;(x;)/p8(x5))

2 PSSMs p and ¢
d(p, q) = minegsets |W1 D r(p||wip + waq) + waDicr(q||wip + weq)],

GCTATGC z
GCAATGC °

GGTATGC —— ey CW AT

PSSMs

CCTAAGC ———— “celbrll

GCTATTT 2 2_
el - ceflrie

nnnnnnn

GGTATGG



MEDUSA: summary

1. Iintegrate sequence+
expression to learn a

global regulatory (074 )
program; .

[Freund & Mason 1999]

TIS11 up and

2- aVOid Overfitting .T,::-s_Z::.:ia:(:esenf? M_os. 1AA A G & present?

3. learn functional y v

regulators-motif
combos \ (o

4. learn binding site sV up and ACAL up and
. A TTr Acaa (A present? TOC. .o axlT present?
motifs, and thresholds,
directly from sequence

without seeding (o oz

Y b4



reminder: fitting vs. overfitting

e “10-fold cross-validation” yields test loss of 13.6%

Predicted Bins
Down  Baseline Up

Down 16.5% 8.9% 1.5%
True Bins  Baseline | 9.3% 32.4% 6.3%
Up 2.8% 9.9% 12.0%

Iog2(expression)

1 1
-15 -10 s 10 15

-5 1}
prediction scare

e Empirical estimate of generalization error
e not chi squared (not training data, and not normal)



basic notions: fitting vs. overfitting

« 10-fold cross-validation (held-out experiments), ~60,000
(gene,experiment) training examples, 700 iterations

* (NimerstNaimerstNpssms) Nreg 2 ~= 10/ possible individual
Interactions at every node

« MEDUSA's motifs give a better prediction accuracy on
held-out experiments than database motifs

test-loss
MEDUSA 13.4%
AlignACE (Pilpel et al. 2001) | 16.1%
TRANSFAC 20.8%




basic notions: fitting vs. overfitting

« Large-scale results: yeast ESR data set, ~170 microarrays,
5-fold cross-validation (held-out experiments), ~60,000
(gene,experiment) training examples, 700 iterations

« MEDUSA's motifs give a better prediction accuracy on
held-out experiments than database motifs

test error -

TRANSFAC motifs + 31.3% :
nearest neighbor

TRANFAC motifs + 20.8%

r
1

o gz(express:ion)

ADT .
AlignACE motifs + ADT |16.1% . _
MEDUSA 13.4% :

I
s 10

1
-10

'
jary
w

-5 1}
prediction scare



MEDUSA: ab initio PSSM discovery

TF MEDUSA Pattern matched Database
name logo
MSN2/4 .i- A AGGGG TRANSFAC
....... Sites
HSF1 ‘; o NGAANNTTCN YPD
GIS1 3 ! AAGGGAT YPD
YAPI ; cmc AAGCCAC YPD
RAPI1 ,  TAC ATGTACGGATG YPD
RAPI N C A CCC&'« ACACCCATACAT YPD




yeast ESR: biological validation

| TFNAME | DB-MOTIF [ MOTIF | DBNAME | d(pq) |

CBF1 CACGTG m ; L‘" YPD 0.032635

CGG everted repeat CGGN*CCG PR YPD 0.032821

MSN2 LA FERSSSSSE | TRANSFAC | 0.085626

HSF1 TTCNNNGAA T B R SCPD 0.102410
L0 | LI

WEpl | mEeewes | beEseEeses TRANSFAC | 0.140561

STE12 LTAAA R, TRANSFAC | 0.256750
TobeT. | I TICTE,

GONdE | 2 Fretwme | oy SCPD 0.292221
wle | L

mPAC | TR i A (I AlignACE | 0.552493

mRRPE |  “TTTTTTYT O AlignACE | 0.630740

<+«— STRE element

<+— Heat shock factor



yeast ESR: biological validation

Important requlators identified by MEDUSA

# of weak rules | regulator

96 TPK Cellular localization
f MSN2/4
57 AFRI1

Segal et al. 2003
43 XBPD R

19 ATGI \ Universal stress repressor
15 ETRI1
15 SDS22
14 CINS
12 PDR3

12 GPA2



conclusions

motif discovery + learning transcriptional regulation
using large-margqin classification

earn binding sites ab initio

PSSMs predictive on test data

earn model of transcriptional regulation for all genes
and all experiments

simultaneous discovery of important requlators
no gene clustering, no initialization
open source:

http://www.cs.columbia.edu/compbio/medusa




agenda

e Theme: a predictive network model
e predict expression
e learn binding sites ab initio

e Breakdown: prediction? y=f(x)
e Variation: predicting evolution

e validating models
e letting the data decide



only important slide:

e task: learn predictive e tool:
network from microarray y=f(x)
and sequence data, w/o

prior sequence annotation

o task: predict evolution e tool:
from topology y=f(X)




what's so great about y=f(x)???1?21?21??

1. nothing up my sleeve:
cv: yv = fr(zv)?

sig. yy = [r(zy)? Yyv = fr(zr)?

2. which x matter?

I A




statistical network physics: definition

statistical analysis to reveal the mechanism
responsible for an observed network topology

what information is in




agenda

o statistical network physics
e pseudohistory
e the problem

e statistical learning

e biological networks



statistical network physics: pseudohistory

1999-2001:

1. measure p(k) for real networks
2. posit models/mechanisms:

1. Erdos-Renyi p(w) ~ 1
2. Yule/Simon/Barabasi-Albert pr = f[kap(k)]

3. calculate P@ / dwp(z|w)p(w)

4. select model which better agrees



statistical physics: cartoon

1800s-:

1. measure p(x) (or <x>)
2. posit models, e.q.:

p(w) ~ e
3. calculate p(z) = dwp(z|w)p(w)

wel)
4. select model which best agrees

—E(w)/kBT



statistical network physics: measure

k ]OO T T T T T 1
p(k) _1
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10 10
0 (f) protein
10 1 0-2 | 0-3 interactionls
107 e 1 10
(d) Internet \j
4
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| 10 100 1000
10°
(c) World-Wide Web § Newman SIAM Review 2003
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the problem:

10"%
: e
@
10 . C DMR
@ RDG
&}
@
~ °
(n 10” 59
s
OCD
107
lar7))
10 = :
10 Ilo 0
0
DMR RDG
(C) [26107*4+£1810% | 54 10~5+£3.710*
(L) 10.4 4+ 0.1 9.6+ 0.04

informative statistics?



statistical network physics: history

1999-2001; 2001-2005

1. measure p(k) for real networks
2. posit models/mechanisms:

1. Erdos-Renyi  p(w) ~ 1
2. Yule/Simon/Barabasi-Albert px = f[k,p(k)]

. calculate [p(z) = dwp(z|w)p(w)

. mega) e

. select model which better agrees

. overuniversality: almost all models can agree

o1~



. DMC

(Vazquez, Flammini, Maritan, Vespignani,2003)

. DMR

(Sole, Pastor-Satorras, Smith, Kepler, 2002)

. RDS

(Erdos, Renyi,1959)

. RDG

(Callaway, Hopcroft, Kleinberg, Newman, Strogatz,2001)

. LPA

(Barabasi, Albert 1999)

. AGV

(Klemm, Eguiluz, 2002)

. SMW

(Watts, Strogatz 1998)



statistical network physics: problem

" First, power law distributions are neither new nor

rare;
e second, fitting available data to such distributions is

suspiciously easy;

e third, even when the fit is robust, it adds little if
anything to our knowledge of the actual architecture
of the network (many different architectures can give
rise to the same power laws)”

- Revisiting "Scale-Free” Networks, E.F.Keller



inferring design in the presence of
overuniversality for a target network

algorithm:

o forget your favorite design.

o forget your favorite feature.

o forget the target network.

 define a system for feature-generation.

e build a classifier to discriminate proposed designs.

e classify the target network.




1-slide summary of classification

e banana or orange?

boosting (1997)
SVMs (1990s)




1-slide summary of classification

e \Watts or Barabasi? *t«

;
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1-slide summary of classification

e \Watts or Barabasi?

e learn predictive

(not “overrepresented”)
features from data;

e no null model assumed;
e no distribution assumed:;




calculate discriminative features

10

E. coli genetic network classification using subgraph census

+  Kumar-pc

+ Kim

«  Tripartite-Random
Bipartite-Random

«  Kumar-c

+ Grindrod

+ Erdos

¥ E. coli genetic network

(and let the data decide which is best model) ‘



agenda

e statistical network physics
e the problem
e probability
e statistics
e statistical learning
e biological networks: predicting evolution
e validating models
e letting the data decide



systematic enumeration of network

—2Y>-CMdLIC SNUMETation of NSTWOrR Tedt

» Subgraph census
- exploit sparseness (“walks™)
- use a pre-processed hash-table
for subgraph isomorphisms
- 148 subgraphs shown,
can easily do 181 subgraphs
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NetBoost: 20 questions

DMC: -0.89
DMR: -0.89
RDG: -0.89
LPA: -0.89
AGV: -0.89

e play “20 questions”
e output

log(p(model)/p(not)) "
e highly interpretable: -

DMC: -0.65

DMC: 0.49 DMC: 0.62
DMR: 0.58 DMR: -3.64 DMR: 0.19
RDG: 0.56 RDG: -3.82 RDG: 0.24

LPA: -3.94 LPA: -4.25 LPA: 0.99
AGV: -3.94 AGV: -0.03 AGV: 0.05
SMW: -3.94 SMW: 0.29 SMw: -3.92

RDS: 0.30 RDS: -3.94

RDS: -2.90

!
'6: 549 « ZO3.0I

DMC: -0.21
DMR: -0.44

DMC: 0.04
DMR: -0.75

RDG: -1.63 RDG: -0.94
LPA: -2.46 LPA: -1.40
[ADTs: Freund & Mason 1999] AGV: -0.30 AoV 13

RDS: -3.14

RDS: 0.65

DMC: 0.65
DMR:

AGV: 0.05

-

3 S1<1LS

DMC: -1.78
DMR: 0.12

RDS: 0.03

'
l4: 527 « 2761,5J

DMC: -3.48
DMR: 2.38

-0.57

-1.60 RDG: 0.00
-0.00 LPA: 5.90
AGV: -0.03
SMW: -3.15

RDS: 0.86

DMC: 4.41
DMR:

RDG: 0.10 RDG:
LPA: -0.01 LPA:
AGV: 0.01 AGV:
SMW: 0.02 SMW:

RDS:

-3.50
-3.51
-1.70
-2.80
-2.94
-3.01




conditionally important subgraphs
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high accuracy (fit vs. overfit ; test-loss)

Table 1. Prediction accuracy (%) for tested networks using
fivefold cross-validation (13)

Prediction
Truth DMR DMC AGV LPA SMW RDS RDG
DMR 99.3 0.0 0.0 0.0 0.0 0.1 0.6
DMC 0.0 99.7 0.0 0.0 0.3 0.0 0.0
AGV 0.0 0.1 84.7 13.5 1.2 0.5 0.0
LPA 0.0 0.0 10.3 89.6 0.0 0.0 0.1
SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0
RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0
RDG 0.9 0.0 0.0 0.1 0.0 0.0 99.0

e Empirical estimate of generalization error
e not chi squared (not normal, too many parts=parameters)



now look @ target: robust predictions

Dup/ [ —N" " __Erdss
Mut/ S| — own \\ p=1-10° ﬁ r

Comper-

prediction score

0 o01 02 03 04 05 06 07 08 09 1
fraction of edges replaced




© duplicated node
— new edge
X mutation

Before

After After

(scenarlo 1) / \ (scenario 2)

4__ Square only '/

Square and —}
Triangles

(from Rice, Kershenbaum, Stolovitzky's Commentary)



rank scores
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not just for flies: yeast P-P network

RAMNK CLASS SCORE
1 DMC | 13.1+20
2 AGV | —=9443.0
3 SMW | —=11.5+£3.2
+ RDS | =143+ 26
S | RDG | -152+4138
6&  DMR | =17.14+4+3
7 LPA | =181+ 26

data courtesy O. Troyanskaya




why subgraphs?

be



subdgraph census: history

sz s
R g g

eTriad Census to test for transitivity,
Holland and Leinhardt, 1970

‘FFL' = b = '030T triad



subdgraph census: problems

e Number of isomorphism classes grows rapidly with graph size
(Haray, 1955)

3 dyads
16 triads
218 tetrads
9608 pentads

e Census sensitive to density, clustering, degree distributions
e Traditional algorithms limited to n=3 or n=4
e Larger structures require tailored, parameterized algorithms



sxstematic enumeration of network features

e Subgraph census
- exploit sparseness (“walks™)
- use a pre-processed hash-table
for subgraph 1somorphisms
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can easily do 181 subgraphs

\.L

or

* Adjacency matrix functionals (“words”) (Ziv et al. cond-mat/0306610)
- more efficient than subgraph census for denser networks
- up to 4670 features tested



-+ functionalc 8 I

e 030T (FFL) signature

A:

)
(001 1)

0 0 1]:diag(A*A") =
\0 0 0}

o O =
o OO

Path operators
— A = adjacency; (walking down the graph)
— AT = transpose; (walking up the graph)
— D = diag; (restriction to closed walks)
— U = I-D; (restriction to open walks)

o O O



sparse matrix functionals

In other words ...

Number of FFLs =

“sum D(A2AT)"”

Example 1: S(D(A2AT)) = 40 = the number of FFLs in the
E. coli network

Example 2: nnz(D(A%AT)) = 10
16 of 40 FFLs associated with gene csgBA

sum => number of distinct paths between all pairs of endpoints
nnz => number of distinct paths between unique pairs of endpoints



computational efficiency

10°

I
[| —— Scalars Algorithm
|| —— Subgraph Census

I
0.2

I
0.4

I
0.6

I
0.8

I Tunable, preferential-
| attachment (PA)

1 parameter

1 eBarabasi and Albert,
1 Science 99

Scalars perform
better for networks
that are dense,
clustered, or
networks with
long-tailed degree
distributions




NetClass: predict mechanism as class

E. coli genetic network classification using subgraph census
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q-bio/0402017; BMC Bioinformatics 2004, 5:181



NetClass: E. coli Transcriptional Network

Kumar-C wins

(words)
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E. coli genetic network classification using words
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NetClass: E. coli Transcriptional Networ

Kumar-C wins

5

10 +  Kumar-pc
(walks) o
| + Tripartite-Random
Bipartite-Random

E. coli genetic network classification using subgraph census

+  Kumar-c
Grindrod
+ Erdos

¥ E. coli genetic network
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NetClass: C. elegans Neural Network

C. elegans classification

\\MZII WInS 12\“0 ....... —

: . Krapivsky-Bianconi |
,,,,, S . Erdos

(hewmodel) .| =

Grindrod
Kumar
Middendorf-Ziv
C elegans

g

sum U(AUTA)

x 10°
nnz D(AUAUA) sum D(AAUAUAA)

o N
\ 19

N

N=306; m=2359; d=2.5%; r=.97



what is important? let the data decide
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Fig. 1. Discriminating similar networks. Ten graphs of two different mechanisms exhibit similar average geodesic lengths and almost identical degree
distribution and clustering coefficients. (a) Cumulative degree distribution p(k = kg), average clustering coefficient {C} and average geodesic length (¢}, all
quantities averaged over a set of 10 graphs. (b) Prediction scores for all 10 graphs and all five cross-validated (13) ADTs. The two sets of graphs can be perfectly
separated by our classifier, even though none of these graphs is used in the classifier training.



statistical systems biology: agenda

4. final thoughts



things to watch out for:

1. methods / how to read

2. different data, same issues
3. "prediction”

4. validation



how to read/write a comp. sys. bio. paper:

. background

. Intuition

. question to be answered, in words
. question to be answered, in math:
. algorithm [9 =  argmin L(D,v;\)
. validation ¥ € ()

A U1 A W N =




“prediction”

1. overfitting

2. feature ranking / hypothesis generation
(“qualitative predictions™)

3. predicting unseen data



validation, closely related to prediction

1. in literature / by friends
2. statistical validation (e.g., CV)
3. experiment



different data, same issues

1. RNAI

2. ChIP-chip
3. PPi

4. image data
5. ...



learning networks from biology

e thanks:

Freund, Kundaje, Leslie,
Middendorf, + Shah ’

e for more info:
« RECOMB, ISMB

e funding: \
o t t
NIH NCBC Ag _ f(,ugp - )

e Open source.




learning biology from networks

e thanks: d{bB

Middendorf, Ziv
e for more info: -
e BMC Bioinfo, PNAS
e funding:
e NSF/NIH/DOE

e Open source:
e sourceforge.net




