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Eyes everywhere…



Modeling  fly phototransduction:



Limits of modeling?

• vertebrate phototransduction (rods, cones)

• insect phototransduction

• olfaction,  taste,  etc…

Comparative systems biology?



Fly photo-transduction

• About the phenomenon

• Molecular mechanism

• Phenomenological Model

• Predictions and comparisons with 
experiment.

Outline:



Compound eye
of the fly



Fly photoreceptor cell 
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Microvillus

Rhodopsin



Single photon response in Drosophila: 
a Quantum Bump

Low
light

Dim
flash

“All-or-none”
response

Henderson and Hardie, 
J.Physiol. (2000) 524, 179



Comparison of a fly with a toad.

From Hardie and Raghu, Nature 413, (2001)

Single photon response:

Note
different scales 
directions of current!!



Linearity of macroscopic response

hv

Linear
summation
over microvillae



Average QB wave-form

A miracle fit:

Henderson and Hardie, 
J.Physiol. (2000) 524, 179

QB aligned at tmax



QB variability
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Multi-photon response

QB 
waveform

Convolution
with latency
distribution

Macroscopic response
= average QB

Latency distribution
determines the average
macroscopic response

!!! Fluctuations control the mean !!!



Advantages of Drosophila 
photo-transduction as a model 

signaling system:

• Input:  Photons
• Output: Changes in membrane potential
• Single receptor cell preps
• Drosophila genetics



Molecular mechanism of
fly phototransduction



Response initiation

IP3 + DAGPIP2

PKCGαβγ
GDP PLCβ

Trp

Low [Na+], [Ca++]

High [Na+], [Ca++]

Ca pump

*GTP
GDP

Gα

GTP Trp*

Na+, Ca++

DAG

Cast:  Rh = Rhodopsin;  Gαβγ = G-protein
PIP2 = phosphatidyl inositol-bi-phosphate
DAG = diacyl glycerol
PLCβ = Phospholipase C -beta ; 
TRP = Transient Receptor Potential Channel

DAG Kinase

Rh

hv

*Rh*



Positive Feedback

PKC

Na+, Ca++

PLCβ

PIP2 IP3 + DAG

hv

*Gαβγ
GDP GTP

GDP

Gα

GTP Trp

Rh

High [Ca++]

Intermediate [Ca++]

DAG

Trp*
**

Intermediate [Ca] facilitates opening of Trp channels
and accelerates Ca influx.

Ca pump



Negative feedback and inactivation

PKC

Na+, Ca++

PLCβ

PIP2 IP3 + DAG

*Gαβγ
GDP GTP

GDP

Gα

GTP

Rh* **

Cast:  Ca++ acting directly and indirectly 
e.g. via  PKC = Protein Kinase C
and Cam = Calmodulin
Arr = Arrestin (inactivates Rh* )

High [Ca++]

High [Ca++]

**
Cam ??

Arr

Ca pump

Trp*



Comparison of early steps

From Hardie and Raghu, Nature 413, (2001)

Vertebrate Drosophila

2nd messengers

cGMP
DAG



…and another cartoon
c.

d

a.

b.

From Hardie and Raghu, Nature 413, (2001)



InaD signaling complex

InaD
PDZ domain
scaffold

From Hardie and Raghu, Nature 413, (2001)



Speed and space:  the issue of 
localization and confinement.

Order of magnitude estimate of activation rates:

G* ~ PLC* ~  k [G] ~  10μm2/s  100 / .3 μm2  > 1 ms-1

Diffusion limit on
reaction rate 

Protein 
(areal) density 

! Fast
Enough !

~ 1μm2/s  10 / .3 μm2  =.03ms-1 << 1 ms-1

Possible role for InaD scaffold !

However if:
! Too
Slow !



How “complex” should the model

of a complex network be?



A naïve model

“Input” TRP channel Ca2+

( G*, PLCβ*, DAG)

low

high



Kinetic equations:
Activation stage ( G-protein; PLCβ; DAG ):

d
dt

A A IA= − +−τ 1

QB “generator” stage ( Trp, Ca++ ):

d
dt

Trp A F Ca Trp F Ca Trp

d
dt

Ca Trp Ca Ca Ca Ca

n
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# open channels Positive and negative feedback

Ca++ influx via Trp* Ca++ outflow/pump

Input (Rh activity)



Feedback Parameterization

F Ca g Ca K
Ca K

D
m

D
mα α

α

α

α

α
( ) ([ ] / )

([ ] / )
= +

+
1

1

Parameterized by the “strength” gα (~ ratio at high/low [Ca])

Characteristic concentration   KDα

and Hill constant  mα

Note: this has assumed that feedback in instantaneous…



Null-clines and fixed points
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Problems with the simple model

Model Experiment

• In response to a step of Rh* activity (e.g. in Arr mutant ) 
QB current relaxes to zero 

• Ca dynamics is fast  rather than slow         no “overshoot”

• Long latency is observed

“High”

fixed point



Order of magnitude estimate of Ca fluxes

[Ca]dark  ~ .2μM

[Ca]peak  ~ 200μM

1 Ca ion / microvillus

1000  Ca ion / microvillus

30% of 10pA Influx  104 Ca2+ / ms

Hence, Ca is being pumped out very fast ~ 10 ms-1

[Ca] is in a quasi-equilibrium

Note: μ−villus volume ~ 5*10-12 μl



Microvillus as a Ca compartment

Compare 10 ms-1 with diffusion rate across the microvillus:     

τ -1 ~ Dca / d2 ~ 1 μm2/ms  / .0025 μm2 = 400 ms -1

But diffusion along the microvillus:

τ -1 ~ 1 μm2/ms  / 1 μm2 = 1 ms -1 is too slow
compared to 10ms-1

50nm

1-2 um

Hence it is decoupled from the cell.

Note:  microvillae could not be > .3μm in diameter,
i.e it is possible the diameter is set by diffusion limit

Ca++



Slow negative feedback

Assume negative feedback is mediated 
by a Ca-binding protein (e.g. Calmodulin??)

d
dt

B k Ca B Bx x
* *[ ]= − −τ 1

F B g B K
B K

D
m

D
m− −

−

−

= +
+

−

−
( *) ([ *] / )

([ *] / )
1

1

Slow relaxation



A more ‘biochemically correct’ model:
d
dt

G* ...=

d
dt

PLC* ...=

d
dt

DAG[ ] ...=

d
dt

Trp* ...=

d
dt

Ca[ ] ...=

d
dt

B[ *] ...= Delayed
Ca negative feedback

F+

F-

Feedback

Cascade
d
dt

Rh* ...=



Stochastic effects

Gillespie, 1976, J. Comp. Phys. 22, 403-434
see also 
Bort,Kalos and Lebowitz, 1975, J. Comp. Phys. 17, 10-18

Numbers of active molecules are small !
e.g.       1 Rh*,  1-10 G* & PLC*,   10-20 Trp*

Chemical kinetics 

Master equation

Numerical simulation

Reaction “shot” noise.



Stochastic simulation
Event driven Monte-Carlo simulation
a.k.a. Gillespie algorithm

Gillespie, 1976, J. Comp. Phys. 22, 403-434
see also 
Bort,Kalos and Lebowitz, 1975, J. Comp. Phys. 17, 10-18

Numbers of molecules (of each flavor) #Xa(t) are updated

#Xa(t)      #Xa(t) +/- 1 at times  ta,i

distributed according to independent Poisson processes 
with transition rates  Γa,+/− . Simulation picks the 
next “event” among all possible reactions.

Note: simulation becomes very slow if some of the 
Reactions are much faster then others. Use a “hybrid” method.



The model is phenomenological…

Many (most?) details are unknown:

e.g. Trp activation may not be directly by DAG,
but via its breakdown products;
Molecular details of Ca-dependent feedback(s)
are not known;
etc, etc

there’s much to be explained on a qualitative and
quantitative level…

BUT



Identifying “submodules”
d
dt

G* ...=

d
dt

PLC* ...=

d
dt

DAG[ ] ...=

d
dt

Trp* ...=

d
dt

Ca[ ] ...=

d
dt

B[ *] ...= Delayed
Ca negative feedback

F+

F-

Feedback

Cascade
d
dt

Rh* ...=

Key
dynamical
variables
define
“Submodules”



Rephrased in a “Modular” form: 
the “ABC model”

“Input” Channel

B

( Rh*, G*)

Activator
(PLCβ∗, Dag)

(TRP)

(Ca-dependent inhibition)

Ca++

Ca++

Activator – Buffer – Ca-channel



Quantum Bump generation
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What about null-cline analysis?
Problems:

• 3 variables  A,B,C
• Stochasticity

• Discreteness
C

B1 2 3 40

“Ghost”
fixed point

dX
dt

x x x x= → → + = → −0 1 1   Prob ( Prob () )

Generalized “Stochastic Null-cline”



Can one calculate anything?
E.g. estimate the threshold  for QB generation:

A-1             A            A+1
PLC*

C =    0              1              2

PLC*

Am Am f([Ca])
Positive feedback
kicks in once 
channels open

Threshold A = AT  such  that  

Prob (AT -> AT +1) = Prob (C=0  ->  C=1) 

NOTE:  Better still to formulate as a “first passage” problem



Condition for QB generation

PLC*

[Ca]

1
2

3

4

0

[Ca]

A

Prob (C=1       C=2)  > Prob (C=1      C=0) 

Amax~ PLC*

*
AT

AT  > AQB ([Ca])

AQB ([Ca])

Bistable region/
Bimodal response

Reliable QB
generation



Quantum Bump theory versus reality

Model Experiment
Latency
histogram

Average QB
profile



Fitting the data: QB wave-form
Tr

p*
/T

rp
to

t

Time (arbs)

There is a manifold
of parameter values
providing good fit
for < QB > shape !!



So what ???
“With 4 parameters I can
fit an elephant and with 
5 it will wiggle its trunk.”

E. Wigner



Non-trivial “architectural” constraints

Despite multiplicity of fits, certain constraints emerge:

• Trp activation must be cooperative
• Activator intermediate must be relatively stable:

“integrate and fire” regime.
• Negative feedback must be delayed
• Multiple feedback loops are needed

Etc,  …
Furthermore:
Fitting              certain relation between parameters:

“phenotypic manifold”
- the manifold in parameter space 
corresponding to the same quantitative 
phenotype.



Many more features to explain 
quantitatively!



Constraining the parameter regime…

Help from the data on G-protein hypomorph flies:

• # of G-proteins reduced by ~100
• QB “yield” down by factor of 103

• Increased latency (5-fold)
• Fully non-linear QB with amplitude   

reduced about two-fold



G-protein hypomorph
Model: Experiment:

• Single G* and PLC* can evoke a QB !!
• Reduced yield explained by PLC* deactivating

before A reaches the QB threshold
• Relation between yield reduction and 

increased latency.  # PLC* ~ 5 for WT



What happens in response to 
continuous activation ?
e.g. if Rh* fails to deactivate



Persistent Rh* activity
Relaxation Oscillator 
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QB trains: theory versus experiment

Qualitative but not quantitative agreement so far…

Model:
Arrestin mutant 
(deficient in Rh* inactivation):



Predicted [Caex] dependence 



Observed external [Ca2+] dependence

[Caext] mM
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Peak current

Henderson and Hardie, J.Physiol. (2000) 524.1, 179



What does one learn from the model?

e.g. Mechanisms/parameters controlling:
Threshold for QB generation.
QB amplitude fluctuations.
Latency.
Yield (or response failure rate)
Latency distribution.

Functional dependences:
e.g. dependence of everything on [Ca++ ]ext



Modeling methodology questions

• Need an intelligent method of searching the parameter space
and of characterizing the parameter manifold  ??? How does
Evolution search the parameter space?

• Characterizing the “space of models”??

• “Convergence proof”??  
Given a model that fits N measurements can we 
expect that it will fit N+1 (even with additional parameters)?

• How accurate should a prediction be for us 
to believe that the model is correct ?? Unique??



Summary and Conclusion
A phenomenological model can explain 
observations and make numerous falsifiable 
predictions (especially for the 
functional dependence on parameters).

Insight into HOW the system works from understanding
the most relevant parameters and processes.

?????
Can one get any insight into WHY the system is 
constructed the way it is (e.g. vertebrate versus insect)

?????
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