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Resolving Singular Forces in Cavity Flow: Multiscale Modeling from Atomic to Millimeter Scales
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Flow driven by moving a wall that bounds a fluid-filled cavity is a classic example of a multiscale
problem. Continuum equations predict that every scale contributes roughly equally to the total force on the
moving wall, leading to a logarithmic divergence, and that there is an infinite hierarchy of vortices at the
stationary corners. A multiscale approach is developed that retains an atomistic description in key regions.
Following the stress over more than six decades in length in systems with characteristic scales of up to
millimeters and milliseconds allows us to resolve the singularities and determine the force for the first
time. We find a universal dependence on the macroscopic Reynolds number, and large atomistic effects
that depend on wall velocity and interactions.
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FIG. 1. Geometry and streamlines for cavity flow at Re �
�UL=� � 6400. (a) The square cavity has edge L � 106��
0:3 mm in the x-y plane, the top wall moves to the right at speed
U, the flow is independent of z, and the natural time scale to
reach steady state flow is �40 ms. Solid (dash-dotted) stream-
lines indicate clockwise (counter-clockwise) flow. In (b), (c), (d),
flow near each corner is magnified by the indicated factor. The
coupling of different resolutions is illustrated in (b). The coarser
solution provides boundary conditions along the outer boundary
of the finer grid (dashed lines) and obtains them along the dotted
lines. In (d), dotted lines indicate the boundaries of the �12�
wide regions that are treated atomistically.
Processes that span a wide range of length scales pose
profound theoretical challenges [1,2]. The different length
scales must be followed with different time resolutions
and may require qualitatively different descriptions of mat-
ter. For example, discrete atomistic effects may be im-
portant in regions of high stress or rapid spatial varia-
tion, while other regions are most naturally and efficiently
modeled as a continuous medium. Important examples of
such problems include adhesion and friction [3,4], defor-
mation of crystalline solids [5,6], distribution and flow of
charges at biological interfaces, flow near solid surfaces
[7], and the many cases where continuum equations lead to
singularities.

Several innovative paradigms for bridging between
atomistic and macroscopic scales have been proposed in
recent years, and tested against purely atomistic simula-
tions in small idealized systems [8–15]. A few have been
applied to specific problems with a large range of scales.
Notable examples include calculations of crack propaga-
tion in silicon that include electronic structure near the
crack tip [16], and calculations of indentation with the
quasicontinuum method [17]. However, these applications
have only reached micrometer length and nanosecond time
scales, and the main effect of large scales is to provide
appropriate boundary conditions for the atomistic region.

In this Letter we consider a classic problem in fluid
mechanics where all length scales contribute equally: the
force on a moving boundary of a fluid-filled cavity. Using
different spatial and temporal resolutions in different re-
gions allows us to treat cavities with dimensions on the
order of millimeters and characteristic times of tens of
milliseconds. Our multiscale approach accelerates the cal-
culation by more than 14 orders of magnitude compared to
brute force atomistic simulations. Spanning many decades
in length scale allows us to build a simple scaling relation
for the total force F that captures both atomistic effects and
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the influence of the only parameter in continuum theory,
Reynolds number.

Cavity flow has intrigued scientists because of singular-
ities that cannot be resolved by purely continuum methods.
Figure 1(a) illustrates the cavity geometry. The top wall is
displaced to the right at fixed velocity U and the other walls
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are stationary. The traditional continuum approach to this
problem uses the Navier-Stokes (NS) equations and no-slip
boundary conditions at the walls [18–21]. The no-slip
condition requires that the fluid velocity u vanishes near
static walls, and equals U at the moving wall. The discon-
tinuity in boundary condition at corners between moving
and fixed walls causes the stress to diverge as the inverse of
the distance from the corner, r. The total force on the wall
is the integral of the stress. Since each factor of 2 in r gives
the same contribution to F, it diverges logarithmically in
continuum theory.

Koplik and Banavar pioneered the use of molecular
dynamics (MD) to study the stress singularities in cavity
flow at atomistic scales [22]. They observed a breakdown
of the no-slip boundary condition within atomic distances
from the corner, and a corresponding saturation of the
stress. Similar effects cut off stress singularities in the
closely related problem of spreading fluids [23,24]. The
purely atomistic approach used by Koplik and Banavar
limited the cavity length to L � 17�, where �� 0:3 nm
corresponds to a molecular diameter. We recently extended
L to 250�� 75 nm using a hybrid method that treated
singular regions atomistically and the remainder of the
cavity as a continuum. This approach allowed us to analyze
the breakdown of the continuum boundary conditions over
a wider range of U, and to determine its microscopic
origins [25]. The stress deviates from the singular contin-
uum solution for r < S�U�. At low U, the intrinsic dis-
creteness of atomic fluids leads to S� �. At large U, the
interfacial stress is high enough to produce non-Newtonian
effects [7], and S rises linearly with U.

Despite the success of this previous work, there has been
no study of the total force on the moving wall. This is
because determining F over a significant range ofU and Re
requires study of cavities with dimensions up to the milli-
meter scale. To make this possible, two major improve-
ments must be made on previous work. The first is to vary
the resolution in the continuum region to efficiently de-
scribe the rapid increase in velocity gradients near the
singular corners. We chose to do this using a local refine-
ment approach [26]. The second is to span the wide range
of time scales associated with different spatial resolutions.
While the motion of atoms near the corner must be fol-
lowed with time steps of order 10�14 s, the time for flows
to equilibrate on millimeter scales, �100L=U, may be on
the order of seconds. To overcome this obstacle we use the
optimum time step to obtain the steady state flow at each
spatial scale, and then enforce self-consistency between
scales.

The details of our approach and a sample flow field are
illustrated in Fig. 1. At the continuum scale the flow is
independent of z, and satisfies the NS equations with
vicosity �, fixed density �, and no-slip boundary condi-
tions. At each scale the NS equations are discretized on a
square grid of cells with width h, and the steady state flow
is obtained using an artificial compressibility method [27]
with time step of 1

4 – 1
2 h=U. On the coarsest scale h �
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L=256. This resolution is inadequate near the corners,
where h is decreased by successive factors of two using
an iterative refinement scheme.

At each stage of the iteration, solutions at two resolu-
tions provide boundary conditions for each other. The
geometry is illustrated in Fig. 1(b). Both resolutions use
a 64 by 64 array of square cells. The finer grid lies in the
inner quarter of the coarse grid (dashed lines), and receives
boundary conditions on its outer edge. It in turn provides
boundary conditions for the coarser grid along the dotted
lines. The overlap region between dashed and dotted lines
prevents discontinuities due to sudden changes in resolu-
tion [9,10,12].

This refinement scheme is iterated until the overlap
region reaches nanometer scales. There the finest resolu-
tion results are obtained from MD simulations that can be
extended all the way into the corner [Fig. 1(d)]. At the
outer edge of the MD region the mean atomic velocity is
constrained to follow the finest continuum solution (h �
0:95�) and particles are added or removed to match the
continuum flux [9,25]. Average MD velocities provide
boundary conditions for the continuum solution along an
inner square whose edge is 6 cells long. A global steady
state solution is obtained by iterating from coarsest to finest
scale and then back until all boundary conditions are con-
sistent. This typically requires 10 to 20 iterations, depend-
ing on the desired accuracy.

To obtain a smooth solution, the continuum model must
accurately describe the atomistic behavior at the outer
boundary of the MD region. This requires consistent
choices of � and molecular interactions. Following pre-
vious work [22,25], we consider fluid atoms of mass m
interacting with a Lennard-Jones (LJ) potential of charac-
teristic energy � and diameter �. The potential is truncated
at rc � 2:2�, and the mass density � � 0:81m��3. The
geometry and interactions of the crystalline walls are
chosen to produce a no-slip boundary condition far from
the corner [25]. Discrete wall atoms are on the sites of a
(111) surface of an fcc crystal of lattice constant 1:204�
and interact with the fluid with a LJ potential with energy
�wf � 0:95�.

Within the MD region, the motion of particles is fully
three-dimensional. However, the mean velocities are inde-
pendent of z, and periodic boundary conditions with period
Lz are applied in this direction. The equations of motion
are integrated using the Verlet scheme with time step
0:005tLJ, where tLJ � �m�

2=��1=2 is the characteristic
time of the LJ potential. One can show that the Stokes
solution predicts a temperature rise that is independent of r
and L, and proportional to the Brinkman number Br �
�U2=T�, where � � 7:7kB=�tLJ is the thermal conduc-
tivity and kB is Boltzmann’s constant. Atomistic simula-
tions [22,25] show that the temperature rise is less than
10% for the largest velocities considered here, and that
much larger rises have negligible effect on the stress and
velocity fields [22]. We thus maintain a constant tempera-
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ture kBT � 1:1� in the MD region using a Langevin
thermostat [28] with damping rate � � 1t�1

LJ . To avoid
biasing the flow, the thermostat is only applied in the z
direction. The dynamic viscosity [10] of the LJ fluid
� � 2:14�tLJ��3 is used in the NS equations. In gen-
eral the atomistic region dominates the calculation time
(70–>99%). The continuum calculation becomes more
costly at high Reynolds number, while the atomistic cal-
culation time grows with decreasing U because the aver-
aging time or Lz must be increased in order to reduce
statistical fluctuations.

Two lengths characterize transitions in flow behavior
near each corner (Fig. 1). Inertial effects are significant
for r > rI � �=�U, while deviations from continuum be-
havior occur for r < S�U�. At intermediate scales our
results follow the analytic solution for Stokes (noninertial)
flow [18]. Near the top corners the streamlines are scale
invariant because u only depends on the angle relative to
the moving wall. The stress diverges as 1=r since u
changes by U over a length of order r. One efficient
approach for obtaining accurate velocity fields in the center
of the cavity is to subtract the Stokes singularity and
compute the nonsingular remainder on a relatively coarse
grid [21]. However, this approach does not remove the
divergent contribution to F from small r.

A series of counter-rotating vortices forms in the Stokes
regime near the bottom corners. The change in scale be-
tween panels in Fig. 1 was chosen to illustrate the predicted
self-similarity under r! r=16:4 and a change in direction
of rotation [19,29]. To our knowledge, this hierarchy of
vortices has not been observed in previous numerical stud-
ies of cavity flow. The vortices are cut off at S�0� � � by
atomistic effects, and this is responsible for the small
deviation between Figs. 1(c) and 1(d).

Figure 2(a) shows a plot of the shear stress � along the
moving wall at Reynolds number Re � �UL=� � 6400
(a) (b)

FIG. 2 (color online). Shear stress as a function of distance r
from the upper-left corner for U�0:27�=tLJ. Qualitatively simi-
lar scaling occurs near the upper-right corner. In (a) Re � 6400,
L � 6:25
 104�, rI � 9:8�, S � 2:2�, lines of alternating
color indicate continuum results from successive resolutions,
and asterisks show MD results. Results for Re � 25 to 6400
obtained by increasing L by factors of two are compared in (b).
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as a function of distance r from the upper-left corner.
Alternating colors are used for data from different resolu-
tions to illustrate the smooth matching. The asterisks are
from the force per unit area on wall atoms in the atomistic
region. At intermediate scales, the stress follows the diver-
gence predicted by the Stokes solution � � 4���2 �
4��1�U=r (straight line). At large scales the stress decays
more slowly than 1=r, and at r < S � 2:2� the stress
singularity is cut off by atomistic effects. Figure 2(b) shows
that changing Re by increasing L only changes the flow in
the outer region. At scales of order L=2 the other corners
become important, but for r� L=2 all results fall onto a
common curve. This shows that S is independent of L and
only depends on U and atomic properties.

The total shear force on the moving wall is an integral of
the shear stress along it. Figure 3 shows the force per unit
length along the z direction, F, as a function of Re. If the
Stokes solution applied, each factor of 2 in length scale
would contribute the same force and the total would di-
verge. This divergence is cut off by atomistic effects at
r < S but inertial effects enhance the force from r > rI.
To determine F, one must resolve the inertial effects
between rI and L � Re rI as well as the atomistic behavior
at the corner. Our approach enables us to span this wide
range of scales (>105) for the first time.

If atomistic effects were not important, the dimension-
less force on the wall f � F=�U would only depend on
Re. However, Fig. 3 shows that changing U at fixed Re
produces large shifts in f. A complete description of f can
be obtained by considering the separate contributions, fi,
of the three scaling regimes in the stress shown in Fig. 2.
They are well separated as long as Re � L=rI 	 1 and the
Reynolds number at molecular scales Rem � S=rI � 1.
FIG. 3. Dimensionless force per unit length on the sliding wall
F=�U as a function of Reynolds number Re � �UL=�. Results
for U � 0:27�=tLJ (circles) and U � 0:068�=tLJ (squares) fol-
low Eq. (1) (dashed lines) with S � 2:2 and 0.55, respectively.
The inset compares the calculated force vs velocity at Re � 400
(circles) to Eq. (1) (line).
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The dependence on Re comes entirely from the outer
region r > rI, which is why curves for different U in Fig. 3
are related by a constant shift. As shown in Fig. 2(b),
increasing Re extends the range of the inertial tail that
contributes to the dimensionless force, causing f3�Re� to
rise with Re. For Re> 10 our numerical results are well
described by f3 � a� bRe� with a � 3:85, b � 1:98,
and � � 0:434.

In the inner region near each corner, r < S, the stress is
determined entirely by U and atomic properties, such as
tLJ, �, �, and wall geometry [Fig. 2(b)]. For fixed inter-
actions, we can write the contribution from this regime as
f1�UtLJ=��. In fact, we find f1 has a constant value of
about 4.3. The reason is that the range of integration grows
linearly with S while the stress scales inversely with S.
Indeed, assuming the stress for r < S is equal to the Stokes
stress at S yields f1 � 8�=��2 � 4� � 4:28, which is con-
sistent with the numerical results. The value of f1 is as
much as 20% of the total wall force in Fig. 3, yet it comes
from an inner region that is never larger than a few mo-
lecular diameters. This is clear evidence of the direct effect
of atomic scales on the macroscopic force.

In the intermediate region, S < r < rI, the Stokes solu-
tion applies, and can be integrated to give f2�rI=S� �
8���2 � 4��1 ln�rI=S�. This term is responsible for the
velocity dependence in the total dimensionless force:

F
�U

� f1 �
8�

�2 � 4
ln�rI=S� � a� bRe�: (1)

The ratio S=rI reflects the range at which atomistic effects
cut off the Stokes region, and decreases as U decreases.
The inset to Fig. 3 shows that numerical results for the
velocity dependence of F are consistent with S � S0 �
kUtLJ with S0 � 0:3� and k � 7. This form for S is con-
sistent with our previous studies [25], which showed S
approached a constant of atomic scale at low velocities
and rose linearly with U at high velocities due to non-
Newtonian effects.

Our multiscale method has allowed us to span the wide
range of length scales (>105) that contribute to the drag
force on the moving wall of an ideal cavity, and to extract
a simple and accurate physical description [Eq. (1)] of
the important contributions from each scale. We have
used it to treat cavities with dimensions on the order of
millimeters and natural time scales approaching seconds,
and the approach is readily extended to still larger scales.
Its major limitation is that it assumes a steady state solu-
tion, while cavity flow becomes unsteady at Re * 8000
[30]. It may be possible to extend simulations into the
turbulent regime using ideas like the ‘‘equation-free’’ ap-
proach of Kevrekidis et al. [15]. Turbulent fluctuations
occur on the longer time scales associated with coarser
resolutions, and the finer scales can be iterated to a quasi-
static state that follows the coarse solution. This would
allow calculations with the same coarse time step that is
used in a completely continuum description, while retain-
13450
ing the crucial atomic detail. We hope that our work
encourages such efforts, as well as applications to other
important multiscale problems such as contact-line motion
and contact mechanics.

This material is based upon work supported by the U.S.
National Science Foundation under Grants No. CMS-
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