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ABSTRACT

Polymer simulations can be performed at many different length scales by

using techniques ranging from quantum chemistry to finite element via a

hierarchy of coarser and coarser particle or field-based methods. Recent years

have seen many efforts to connect simulations at different levels to 1) indi-

rectly predict large-scale properties starting from fundamental models and

2) to accelerate the equilibration at more fundamental levels via the detour of

coarse-grained levels. It is the purpose of the present synopsis to review some

of the recent methodological advances concerning the systematic and, where

available, automatic bridging between different levels of polymer simulation.
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THE PURPOSE OF MULTISCALE SIMULATIONS

Polymers, as many other systems, can be described at different levels of detail,

or synonymously: different length scale, resolution, or granularity, retaining relevant

degrees of freedom. When we describe quantitatively chemical systems, it is useful

to use the appropriate level of detail. For example, to study the reaction of oxygen

and hydrogen to give water, it is necessary to consider the change in the electronic

wavefunction. To describe the solvation of a compound by water molecules, one can

use an empirical potential energy surface (vulgo force field), in which the electrons

are included only implicitly, and the molecular positions and orientations now

become the pertinent degrees of freedom. For the flow of bulk water, even the

molecules are disregarded. Water is treated as a continuum, characterized by certain

thermodynamic, mechanical, and dynamic properties. The basic building block is

now a volume element. Depending on the problem investigated, simulations of

water can take place anywhere in the hierarchy electrons-molecules-volume elements,

the techniques being quantum chemistry, molecular simulation, and computational

fluid dynamics. Using the appropriate level guarantees efficiency, accuracy, and ease

of understanding.

This example of water illustrates the concept of systematic coarse graining (or

mapping or scale bridging or multiscale simulation). It is one of the more fortunate

cases in which we know—at least in principle—the connections between the levels.

Quantum chemistry can be used not only to form a water molecule but also to generate

the potential energy surface for molecular dynamics simulations. The quantum-

chemical potential energy surface may then be fitted by the more efficient mathe-

matical form of a force field (although there might be better ways to obtain a force

field). Therefore, a rigorous path exists from the costly, more fundamental model to the

cheaper coarse-grained model. The transfer is done by taking the output results of the

calculation of the more detailed model and converting them into the input parameters

of the Hamiltonian of the less detailed model. This is a general concept in many scale-

bridging approaches.

Two general points can be noted in the water example. First, scale bridging can

also take us from the molecule level to the next level, namely, liquid water as a

continuum. A molecular dynamics simulation produces the properties of liquid water—

equation of state, mechanical, dielectric, and dynamic properties—that are the ne-

cessary input for the continuum description of water. The machinery that provides the

connection is statistical mechanics. Hence, through the use of a hierarchy of simulation

methods with rigorous links between them, it is indeed possible to predict indirectly

from first principles the macroscopic flow behavior of water, which would have been

impossible to predict directly in a first-principles simulation. The indirect prediction of

large-scale, long-time quantities from short-ranged, slow methods is the first objective

of multiscale simulation.

Second, a good coarse-graining method also allows the reverse process, de-

noted as fine-graining or reverse mapping. It is obvious how to go from an atomistic

description of an assembly of water molecules to a quantum-chemical description:

keep the atom positions and reinsert basis functions and electrons. This is neces-

sary to calculate electronic properties such as the polarizability of a water ag-

gregate after structural relaxation. Remapping leads to a second use of multiscale
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simulation. The coarse-grained model is used as a computational route to faster

generate samples for fine-grained analysis. This sometimes demanding detour would

not be worth taking if it did not lead over the high-speed motorway of the coarse-

grained description.

WHY ARE MULTISCALE SIMULATIONS SO DIFFICULT
TO DO FOR POLYMERS?

Fig. 1 illustrates a few scales and methods that are being used to simulate

polymers. The scales range from Ångströms and subpicoseconds for the vibrations of

atomic bonds to millimetres and seconds for crack propagation in polymer composites.

There are many computational tools. They include quantum chemistry, atomistic force

field simulations, continuous or lattice-based simplified models, soft fluid models, or

continuum, such as finite-elements methods. All these methods and many others have

been applied independently of each other to polymers, for many years and with some

success. Until recently, however, solid bridges between the different scales have been

few and far between.

The reason is the connectivity of polymer molecules that enforces an in-

terdependence between features on different scales. As a consequence, the choice of

where one building block ends and the next one begins is not unique, and it is not

obvious how to abstract from a fundamental degree of freedom and use it in an implicit

way in a coarser-grained model. Yet, it would be highly desirable to have multiscale

methods available, despite the conceptual and technical difficulties associated with

them. Many polymer properties cannot be viewed on one length scale alone. An

illustrative example is the temperature dependence of the viscosity of bisphenol-A

Figure 1. Length scales, associated time scales, and computational methods in polymer

simulation (reproduced with permission).

Scale-Hopping in Computer Simulations 3
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polycarbonate melts:[1] Reducing the processing temperature from 500 to 470 K

increases the viscosity by a factor of 10. This increase could also be brought about by

a suitable modification of the monomer with a resulting increase in the activation

energy equivalent to a temperature decrease of 30 K. This would correspond to a local

change of the chemical nature of the polymer. The same viscosity increase can also be

achieved by changing the global structure of the polymer leaving its chemical nature

intact. In the present case, doubling the length of the linear polymer also increases

the viscosity by a factor of 10, because the viscosity is proportional to MW3.4, with

MW the molecular weight of a polymer chain. This example shows that both

detailed material-specific information of the chemical composition and generic chain

length and connectivity information are necessary for a complete view on the melt

viscosity. The first needs to be described by an accurate atomistic model to capture the

subtleties of the interactions. The latter must be treated by a more mesoscopic model to

cover the length scales and time scales inherent in the shearing process. An ideal mul-

tiscale ansatz would combine the advantages of both approaches. There are many more

polymer properties, for which a combined approach is necessary. A few examples of how

architectural features on different length scales influence polymer properties are col-

lected in Fig. 2.

Considerable progress has been made in recent years in systematically linking

simulation methods belonging to different length scales. It is the purpose of this review

to highlight some of this work. The older literature has already been adequately

covered (e.g., Refs. [2–4]). Here we focus on methods that use models of different

scales sequentially (i.e., that perform a fine-grained simulation, use its results to sys-

tematically define a coarse-grained model, simulate the coarse-grained model, and, if

need be, remap to the fine-grained model for local analysis[5,6]). We exclude methods

that treat a part of the system by a fine-grained model and simultaneously embed this

part into an environment treated by a coarse-grained model (e.g., the quantum-me-

chanical/molecular-mechanical hybrid methods[7,8] or solutes embedded into some

effective or coarse-grained solvent[9–11]). We also exclude the multitude of coarse-

grained protein models termed statistical or low-resolution force fields,[12] inasmuch as

they are usually developed for different goals by using a different methodology. Fi-

nally, we exclude what is the oldest and best-documented example of systematic coarse

graining, namely, the derivation of atomistic potentials with the help of quantum-

chemical calculations.[4,13]

A HIERARCHY OF POLYMER MODELS

To avoid ambiguities, it is necessary to classify the hierarchy of polymer models

by the nature of the basic building block or degree of freedom, as shown for example

in Fig. 3. Presently, terms, such as ‘‘coarse-grained’’ or ‘‘mesoscopic,’’ are used in-

discriminately and can mean different things, depending on the point of reference. For

example, ‘‘mesoscopic’’ falls between ‘‘microscopic’’ and ‘‘macroscopic.’’ If mic-

roscopic signifies atomic resolution and macroscropic signifies the micron range, then

mesoscopic might be equivalent to a typical polymer coil diameter of, say, 100 Å. If

microscopic signifies ‘‘visible in a microscope,’’ viz. micrometers, and macroscopic
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Figure 2. Structure on different scales can influence the macroscopically observed behavior

of polymers.
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refers to the dimensions of a product, then mesoscopic might be the millimeter scale.

Therefore, we try to avoid the terms mesoscopic and mesoscale altogether. The terms

‘‘coarse-graining’’ and ‘‘fine-graining’’ are used, without reference to specific dimen-

sions, to denote generically the passage from a higher-resolution to a lower-resolution

model and vice versa. The scales are denoted as follows:

Level 1: Electrons

The basic degree of freedom is the electron or the molecular electronic wave

function. Electronic structure methods are used: quantum chemistry, molecular density-

functional methods, solid-state electronic structure methods.

Figure 3. Scale-bridging concept in polymer simulation. Traditionally, simulations have been

performed at different levels independently (vertical black arrows): The models have taken

different amounts of experimental information in their parameterisation. The simulations (say

atomistic force field) have been run, they have been analyzed at the same level (say for inter-

atomic distances) and have been compared with experiments at the same level (say NMR

results). In contrast, scale bridging involves hopping between levels (horizontal red arrows):

output from simulations at the lower level (say level 2) is used to parameterize the model at a

higher level (say level 3); level 3 is then simulated; the simulations are used 1) for direct

analysis of properties on the inherent length scale of level 3 (say viscosity) and 2) the equi-

librated coarse-grained structures may also be used, after reintroduction of the atoms and maybe

postequilibration, to calculate atom-based properties and to compare to experiments that probe

the atomistic scale.
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Level 2: Atoms

The fundamental degree of freedom is the atom. Every atom present in nature is

modeled as a separate interaction center. The interactions between atoms are modeled

as accurately as possible. Techniques are labeled atomistic and can be as diverse as

molecular mechanics, molecular dynamics, Monte Carlo, etc.

Level 2.1: United Atoms

A variant of atomistic models where a small number of real atoms are collected

into one interaction center. Typical united atoms are CH, CH2 and CH3 groups.

Level 3: Superatoms, Monomers, or Residues

One interaction center (sometimes referred to as ‘‘bead’’) contains of the order of

10 real non-hydrogen atoms or approximately one chemical repeat unit. Examples are

as follows: a styrene unit in polystyrene, an amino acid in a protein, four methylene

groups in polyethylene, half a monomer of bisphenol-A polycarbonate. A polymer

described at level 3 still retains some of its chemical identity. In contrast to the lower

levels, lattice models may be used as well as continuous models. Equations of motion

can be stochastic dynamics or Monte Carlo.

Level 3.5: Near Generic

The model (continuous or lattice) is simple in its nonbonded interaction (e.g.,

excluded-volume only). However, the distance between basic interaction centers is

smaller than the Kuhn length, so that the chain has a finite stiffness.

Level 4: Generic

One interaction center (referred to as ‘‘bead’’ or ‘‘blob’’) comprises a stochastic

segment of a polymer chain (i.e., at least one Kuhn segment). The resulting polymer

chain is fully flexible and behaves as a Gaussian coil. At the intramolecular level, there

is no chemical identity (i.e., all polymers are modeled alike). The interaction between

polymers of different type may be described by simple intermolecular potentials.

Models can be continuous, lattice, or analytical.

Level 5: Soft Fluid

One interaction center incorporates an entire polymer chain or at least a

substantial fraction of a chain. The objects can interpenetrate (‘‘soft’’) and/or deform.

The interaction between polymers of different type may be described by simple inter-

molecular potentials. Models are mainly continuous.

Scale-Hopping in Computer Simulations 7
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Level 6: Density Fields

In contrast to all previous models, this level is not particle based. The basic degrees

of freedom are concentrations of components in volume elements. These elements have

a typical size of 100 Å (i.e., roughly the same as the objects of level 5). The interaction

between polymers of different type may be described by simple potentials. The

pertinent equations of motion (Fick, Fourier, etc.) are solved numerically on a lattice.

Level 7: Micromechanical

Micron-sized volume elements form the basic degree of freedom. Their size and

shape may vary in a simulation, but not their composition.

Level 8: Macroscopic

Anything visible with the naked eye. Typically solved by using finite-element

methods.

ATOMS TO MONOMERS (LEVEL 2 TO LEVEL 3)

Reproducing Structure and Thermodynamics

So far, the ‘‘essential’’ features chosen to be reproduced by level 3 models have

been structural, thermodynamic, or both. We do not know of any coarse-graining

scheme that has tried to tune a level 3 model to reproduce explicitly dynamic or elastic

properties of a polymer: In some applications, such properties may later have been

calculated with a level 3 model, but they were not included among the original target

properties against which the model was optimised.

The structure of an ensemble of polymer chains in an environment is described

by distributions of certain geometric quantities, which can be intramolecular (distances

between two adjacent superatoms, angles between three subsequent superatoms, dihed-

ral angles between four subsequent superatoms, principal values of the radius of gyra-

tion tensor, etc.) or intermolecular (distances between superatoms belonging to different

chains or being topologically distant on the same chain, distances between the centers

of mass of different chains or chain fragments, etc.). All these can be used as targets to

be reproduced by the coarse-grained model. Which ones are actually being used de-

pends on the intended purpose of the coarse-grained model. Here, choices have to be

made, because all simplifications necessarily lead to models that reproduce fewer fea-

tures of the polymer. For automatic approaches, it is essential to define some penalty

function that measures the deviation from the target distribution and that can be mi-

nimized by a suitable numerical procedure. For example, in the case of a radial dis-

tribution function (RDF), the penalty function f(p) is often an error integral of the form

f ðpÞ ¼
Z cutoff

0

wðrÞ½RDFðr; pÞ � RDFtargetðrÞ�2dr ð1Þ
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Here, both the penalty function and the actual radial distribution function RDF(r,

p) depend on the current values of the adjustable parameters p; w(r) is an optional

weight function. The target RDFtarget(r) is obtained from the simulation of the atom-

istic (level 2) model but defined in terms of the superatoms of the level 3 model.

Therefore, the RDF and other structural distributions provide the systematic link

between the two levels, and the penalty function defines a way of obtaining a super-

atom model from an atomistic model. It is minimized in the space of the adjustable

parameters by standard numerical methods such as the amoeba simplex.[14,15]

To use Eq. 1, more choices have to be made by the developer of the coarse-grained

model. First, there is the functional form of the interaction potentials with their

adjustable parameters p. Second, the degree of coarse graining needs to be chosen, or

how many real atoms are collected into one superatom. The ability of the model to

reproduce some properties depends on this choice. An example is bisphenol-A poly-

carbonate, for which schemes with two and four superatoms per chemical repeat unit are

available.[5,6,16,17] A third choice concerns the placement of the superatoms among the

real atoms. Their positions can coincide with the positions of real atoms, or they can

occupy other positions defined with respect to the real atoms such as the center of mass

or the geometrical center of a subunit. The effect of location of the superatoms on the

level 3 potential has been investigated for aqueous sodium polyacrylate solutions.[18]

Thermodynamic properties have been used as targets as well. If available, they

are taken from experiment, rather than, from atomistic simulations. Examples are the

choice of the nonbonded interactions in the second nearest neighbor diamond mo-

del[19–21] to yield zero pressure (Second Nearest Neighbor Diamond Lattice) and the

use of pressure information together with structure in the refinement of numerical

potentials.[18,22,23]

Continuous Model—Intermolecular

Many different potential forms have been tried for the intermolecular part of level

3 potentials. These are interactions between superatoms of different chains but also

between topologically distant (typical 1–5 and higher) superatoms on the same chain.

They range from excluded volume purely repulsive potentials such as the truncated

Lennard-Jones or Weeks-Chandler-Andersen potential[5,6,24,25]

VðrÞ ¼ 4e
s
r

� �12

� s
r

� �6
� �

þ e; r � s
ffiffiffi
2

6
p

¼ rcutoff

0; r > rcutoff

8<
: ð2Þ

including their nonspherical extensions,[16] to simple attractive potentials like the (full)

Lennard-Jones potential[26]

VðrÞ ¼ 4e
s
r

� �12

� s
r

� �6
� �

ð3Þ

or generalized 1/rn expansions like[26]

VðrÞ ¼ C12

r12
þ C10

r10
þ C8

r8
þ C6

r6
ð4Þ
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In several cases even these potentials were not flexible enough to capture the

intricacies of the target RDFs. More complicated potentials, such as the following

piecewise analytical function, were tried[26,27]

VðrÞ ¼

e1
s1

r

� �8

� s1

r

� �6
� �

r � s1

e2 sin
ðs1 � rÞp
ðs2 � s1Þ2

� �
s1 � r � s2

e3 cos
ðr � s2Þp
ðs3 � s2Þ

� 1

� �
� e2 s2 � r � s3

e4 � cos
ðr � s3Þp
ðs4 � s3Þ

þ 1

� �
� e2 � 2e3 s3 � r � s4 
 rcutoff

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5Þ

which has four different functional forms in four regions, and after optimizing all the e
and s, reproduces complicated RDFs very well. Polymers treated with these types of

analytical model include sodium poly(acrylic acid) in dilute aqueous solution,[18,22]

poly(vinyl alcohol) in the melt,[22,28,29] polyisoprene melts,[22,23] and various

polycarbonate melts.[5,6,17,25,30,31]

The necessesity of ugly and complicated potential functions with uninterpretable

parameters such as Eq. 5 has led to the most recent development, namely, tabulated

fully numerical potentials. They contain no parameters at all but offer the ultimate

flexibility and are usually able to reproduce structural distributions to within line

thickness (i.e., 0.1% relative deviation) in a few iterations of the optimization algo-

rithm. One method was originally used by Soper[32,33] to construct a numerical ato-

mistic force field for liquid water that reproduced OO, OH, and HH radial distribution

functions from neutron scattering (there is an early precursor to this work by

Rahman[34]). The procedure is readily adapted to the problem of coarse-graining poly-

mer models and is known as iterative Boltzmann inversion.[22,23,35] If a target radial

distribution function RDFtarget(r) is available (in the original from experiment, in

coarse-graining applications from the more fundamental simulations), one starts the

zeroth simulation with a guessed tabulated pair potential V0(r). Its simulation yields a

radial distribution function RDF0(r), which is different from RDFtarget(r). However, it

can be used to obtain a first correction to the potential

V1ðrÞ ¼ V0ðrÞ þ kT ln
RDF0ðrÞ

RDFtargetðrÞ
ð6Þ

k being Boltzmann’s constant and T temperature. This process can be iterated until the

potential Vn(r) and the RDFn(r) generated from it are self-consistent

Vnþ1ðrÞ ¼ VnðrÞ þ kT ln
RDFnðrÞ

RDFtargetðrÞ
ð7Þ

It usually takes less than 10 iterations before the coarse-grained RDF can no

longer be distinguished from the target RDF. A good choice of the starting potential
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V0(r) is the potential of mean force that is obtained by Boltzmann inversion of

RDFtarget(r)

V0ðrÞ ¼ �kT ln RDFtargetðrÞ ð8Þ

Iterative Boltzmann inversion is a local update scheme: The potential correction at the

distance r is obtained only from the deviation of RDF(r) at this distance. In the second

approach, due to Lyubartsev and Laaksonen,[36] the correction to the potential of the

n-th iteration DVn(ri) at a distance ri

Vnþ1ðriÞ ¼ VnðriÞ þ DVnðriÞ ð9Þ

is a function of the deviations of the RDF at all distances {rj}

DVnðriÞ ¼ f ðfRDFnðrjÞ � RDFtargetðrjÞgÞ ð10Þ

Because of this nonlocality, one would expect faster convergence for Lyubartsev-

Laaksonen, since in the Soper method, any deviation takes several iterations to filter

through to the point of correction. In practice, the number of iterations necessary seems

to be very similar for both methods. The Lyubartsev-Laaksonen method has not yet

been used in the context of connecting polymer models of different scales. It has been

applied to aqueous solutions of NaCl. The reference RDFs came from fully atomistic

simulations including water and were used to parameterize effective ion-ion potentials,

which would give the same ion distribution in the absence of an explicit solvent.[36]

Other uses include the development of effective ion-DNA interactions for water-free

simulations[37] and an atomistic Li + -water force field from Car-Parrinello calcula-

tions.[38] Recently, the method was combined with the equation of motion of dissi-

pative-particle dynamics.[39]

Both numerical methods share the same fundamental advantages and disadvan-

tages compared with analytical potentials. The numerical potentials achieve a match of

the corresponding RDFs or other structural distribution functions, which to all intents

and purposes is perfect. However, they lack adjustable parameters with physical in-

terpretation. In addition, there is the problem of nonuniqueness. In principle, there is a

one-to-one correspondence between a pair potential and the RDF generated by it, at

least for simple fluids. Notwithstanding, we have encountered examples where visibly

different potentials gave rise to RDFs which were identical to within line thickness.[22]

This means that these RDFs have residual deviations (< 0.1%) from the target RDF

much smaller than the accuracy of the target RDF itself. This applies in particular when

the simulations are being run at constant volume, because the volume constraint helps

to keep RDF peaks at their proper positions.

Continuous Model with Analytical Potential—Intramolecular

In addition to intermolecular nonbonded interactions, chain molecules need local

intramolecular interactions: bond stretch (two-body), angle bend (three-body), torsion

Scale-Hopping in Computer Simulations 11
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(four-body). There have been different routes to parameterizing these interactions given

atomistic distributions. The first choice is whether to (mis)use a potential of mean force

as a potential energy or not. A distribution P(x) of a degree of freedom x (say a bond

length or an angle) obtained from an atomistic simulation can always be Boltzmann-

inverted to yield a potential of mean force A(x) along x

AðxÞ � Að0Þ ¼ �kT ln
PðxÞ
Pð0Þ ð11Þ

Using A(x) as the coarse-grained potential is a very easy route. However, A(x) really is

a free energy, not a potential energy. It incorporates not only the effects from a finite

temperature but also from the neglected degrees of freedom. Strictly speaking, it

cannot be used as a potential energy function for the corresponding interaction.

Nonetheless, there have been attempts to do just that.[5,18] This approximation can be

good enough if, first, the free energy of the interaction is dominated by the energy, so

entropy can be neglected, and second, this distribution is not influenced much by other

interactions within the system. For example, a good candidate is the bond stretching

between two neighboring superatoms. This is usually a stiff interaction mediated by

real chemical bonds, which is rather unaffected by the environment of the polymer

(e.g., melt or solution).

With bond-angle and torsion interactions, the choice is less clear, because they

are softer and often do respond to changes in the environment. But there have been

approaches that use Eq. (11) also for angles and/or torsions (continuous model;[5,6]

lattice model[40,41]). In these cases, the systems were melts of apolar polymers. Thus, y
conditions were assumed, and the conformational statistics in the melt was taken to be

that of a phantom chain (chain in vacuum with only topologically close interactions

included) following the Flory argument.[42] It appears, though, that this approach is

limited to special situations. In general, an automatic optimization strategy similar to

that for the intermolecular potentials is necessary: Parameters of an analytical potential

energy function are adjusted until the relevant structural distribution P(x) is reproduced.

This philosophy has proven useful for melt as well as solvent conditions.[18,22,23]

Lattice Models

Bond Fluctuation Model

Atomistic models have been mapped to a variety of level 3 lattice models, one of

the earliest mappings being the bond-fluctuation model.[43] The underlying lattice is

cubic primitive. An excluded-volume superatom occupies eight lattice sites (four in two

dimensions). Bond distances and angles are allowed to vary between different discrete

possibilities. These possibilities are restricted in a way that different polymer chains

cannot pass through each other. Although the nonbonded interactions are typically

limited to excluded-volume interactions, the bonded terms can be parameterized by

fitting to the moments of the respective structural distributions to reflect the chemistry

of the polymer under study.[40] The bond-fluctuation model has been tried as a coarse-
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grained model for polyethylene and bisphenol-A polycarbonate already in 1991[44,45]

with considerable improvements later. Coarse graining using the bond-fluctuation mo-

del has been exhaustively reviewed elsewhere.[4,46]

Second Nearest Neighbor Diamond Lattice

Mattice et al. developed a mapping from a rotational isomeric state (RIS) des-

cription[47] of a polymer onto a lattice model suitable for polymer melts, solutions, and

surfaces. The underlying lattice is the second nearest neighbor diamond lattice that is

identical to a cubic-closed-packed or face-centered cubic (fcc) lattice.[48] The ‘‘ato-

mistic’’ RIS model serves as reference for the intramolecular interactions. It involves

rotational conformers around a single C C bond in the polyolefine backbone. The RIS

weights are derived from experimental static chain properties properties or are cal-

culated (e.g., by quantum chemistry) conformational equilibria of oligomers.[47] In a

first step, the atomistic RIS model is mapped to a slightly coarsened one involving

rotational conformers around hypothetical bonds between second nearest neighbor

backbone carbons. The resulting RIS transfer matrix is more complicated than the

atomistic one (9
 9 instead of 3
 3), but it can be obtained by enumerating the un-

derlying atomistic rotational states.[19]

The intermolecular potential of the original model for polyethylene contains

finite repulsive interactions between nonbonded superatoms occupying neighboring

lattice sites and attractive interactions for superatoms occupying second nearest neigh-

bor lattice sites. These interactions are balanced to give a second virial coefficient of

zero (y conditions). The nonbonded interactions are fine-tuned until the radius of

gyration of the chain with nonbonded interactions equals that of the unperturbed

(‘‘phantom’’) chain without nonbonded interactions.[19,20] This concept was later

refined further to link the interactions of the lattice model to atomistic information.[21]

Because a superatom on the lattice corresponds to two methylene units, the known

effective Lennard-Jones parameters e/k = 185 K and s= 0.44 nm of C2H4 are used as a

basis. Lattice neighbors are grouped into five shells according to their average dis-

tance. All members of one shell have the same interaction energy, which is mapped

from the atomistic Lennard-Jones potential. The interaction energies for the five

shells of the polyethylene model are + 12.3654, + 0.1660, � 0.5443, � 0.1219, and

� 0.0316 kJ/mol, respectively. The first shell is strongly repulsive, the second is mildly

repulsive, and the outer ones show a decreasing attraction, as in the parent Lennard-

Jones potential.

By modification of the intramolecular potential to allow for asymmetric torsions

and a longer-ranged nonbonded interaction (up to nine shells), the model accommo-

dated polypropylene also.[49,50] It was able to discriminate correctly between melts of

isotactic and syndiotactic poplypropylene, both in the static (characteristic ratio) and

dynamic behavior (decorrelation of the end-to-end vector). In addition, the known

phase separation of isotactic and syndiotactic, but not of isotactic and atactic, poly-

propylene could be qualitatively reproduced.[51] Local Monte Carlo moves of crank-

shaft type are used with this lattice model. The introduction of multiple-bead crankshaft

Monte Carlo moves led to a significant speed-up for nonsymmetric potentials.[52]
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Meanwhile, the method was extended to different topologies (diffusion of linear vs.

cyclic polyethylene[53]), geometries (polyethylene films rather than bulk[54]) and pro-

cesses (structure formation upon cooling[55]).

fcc Lattice

Another coarse-grained model using an fcc lattice has been proposed by Haire et

al.[56] for polyethylene. It differs from the Mattice et al. approach (see Second Nearest

Neighbor Diamond Lattice) in several ways: 1) The mapping is coarser: there are four,

rather than two, CH2 groups per lattice point, which leads to a lower concentration of

vacant lattice sites (10–30%, rather than 75%). 2) The nonbonded interactions are

limited to a hard core without attractions. An additional repulsion of E/k = 500 K be-

tween neighboring lattice sites is introduced ad hoc for technical reasons. 3) The in-

tramolecular interaction is limited to an angle-bending interaction, which is adjusted to

reproduce the known characteristic ratio Cn = hRee
2 i/Nl2 of C102 chains in the melt, with

N the number of monomers and l the bond distance between monomers. Although not

an atomistic quantity per se, in the present case, the value happens to originate from

atomistic literature data.[57] 4) In contrast to the implementation of the second nearest

neighbor diamond lattice, the Monte Carlo scheme allows multiple-bead moves in

addition to the standard end rotations and crankshaft moves, which are best depicted as

internal reptation of a segment of a few monomers. Such moves are local, yet efficient.

This model was compared with united-atom MD simulations of a melt of C101H204.

The diffusion of the lattice polyethylene and that of the atomistic model show the same

characteristics. Superposing the subdiffusive anomalous regimes of the mean-squared

displacements, the time scale of the lattice model could be gauged, and a diffusion coef-

ficient could be obtained. It agreed well with experimental values as well as with other,

much longer, atomistic simulations.[58] The model was subsequently used to simulate the

interdiffusion of chains across a polymer-polymer interface (polymer welding[59]).

Although the fcc lattice model was not derived systematically from an atomistic

model but from experimental information, we list it here. The a posteriori comparison

to the atomistic model showed that both have the same diffusion regimes, and it served

to map the time scale.

Back to Level 2: Reinserting the Atoms

An important purpose of level 3 models is the generation of well-equilibrated

atomistic amorphous polymer strucures. The apparently cumbersome procedure (ato-

mistic simulation ) derive coarse-grained model ) coarse-grained simulation ) reverse

mapping to atomistic model ) local relaxation of the atomistic model) is, in fact, an

efficient route to relaxed structures. This approach has been followed in the multi-

scale treatment of various polycarbonates.[5,6] Not only the behavior of chains as a

whole could be reproduced correctly: For example, the Vogel-Fulcher temperature of

short-chain bisphenol-A polycarbonate was calculated as 361 K (experiment 387 K)

and the temperature dependence of the viscosity matched that of experiment. After

threading an atomistic model through the coarse-grained chains followed by local
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relaxation during 200 ps of molecular dynamics, also ‘‘atomistic’’ properties, which

depend on the behavior of individual atoms, could be calculated. Examples are the

structure factors of differently deuterated bisphenol-A melts,[25] the diffusion of phenol

molecules through them,[60] and, after carrying the reverse mapping one step further to

the electron level, the lifetimes of ortho-positronium in cavities.[61,62] The bisphenol-A

polycarbonate reverse mapping is the most thoroughly examined example to date. It

shows that coarse graining/fine graining is a reliable method to generate atomistic

structures, at least as probed by neutrons, positronium, and small penetrants.

BEYOND LEVEL 3: SUPERATOM AND GENERIC CHAIN MODELS TO
SOFT FLUIDS AND DENSITY FIELD DESCRIPTIONS

Fig. 1 shows that for a full understanding of a polymeric material it may not be

enough to control the atomistic (level 2) and the superatom scale (level 3). There are

features that depend on longer scales (e.g., the morphology of blends and block-co-

polymers). These length scales are too large even for the superatom models. Conse-

quently, there have been attempts to systematically develop models that reach even

coarser-grained scales. At present, there are particle-based as well as field-based models.

Soft-Particle Models (Level 5): Dissipative Particle Dynamics and Related

When an entire polymer or a large fraction of it is mapped onto a single particle,

this particle has to be ‘‘soft’’: Two particles can occupy the same position and

penetrate each other. This is a consequence of the fact that the centers of mass of two

polymer chains can be at the same point, whereas two atoms or monomers cannot. This

limits the application range of these methods, because a soft-core potential does not

provide for the noncrossability of polymer chains, an essential ingredient of polymer

dynamics. Hence, the soft-core potentials are restricted to the description of static pro-

perties, unless the noncrossability is accounted for by other means.[63]

A popular model is dissipative particle dynamics (DPD),[64] originally developed

for liquids and later adapted to polymers. It consists of a momentum-conserving ther-

mostat, which has been reviewed recently[65] and is not of interest in the present

context, and a short-ranged repulsive soft-core potential, which models a collection of

liquid molecules or of monomers of a polymer as a single blob.

VðrÞ ¼
aðrDPD�cutoff � rÞ2

r � rDPD�cutoff

0 r > rDPD�cutoff

(
ð12Þ

Of the two adjustable parameters, the cutoff rDPD-cutoff is fixed by the degree of coarse

graining (i.e., by how many monomers make up one blob). Thus, only the force

constant a is left for tuning the interactions between, say, a polymer and a solvent or

two different polymers. For liquids, it may simply be adjusted to the compressibility.

For polymers, the situation is less clear, because a rigorous derivation of a from more

fundamental interactions is still amiss. Hence, it is no surprise that DPD has been used

mainly for describing the properties of generic polymers. To our knowledge, there have
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not yet been calculations on polymers with a specific chemical identity. Notwith-

standing, useful results have been obtained: the structure of a chain in solution,[66]

interfacial tension between two different polymers,[64] morphology of diblock copo-

lymers,[67] structure and dynamics of a single polymer as a function of solvent qua-

lity,[68] the aggregation of polymers and surfactants in solution,[69] and the upper and

lower critical behavior of polymer solutions.[70]

In these calculations, the repulsion parameter a for the interactions between

various species are either assumed ad hoc or they are obtained via an empirical map-

ping[64] from Flory-Huggins w interaction parameters.[71] Therefore, the DPD calcula-

tions inherit the known problems caused by the mean-field nature of the Flory-Huggins

model.[72,73] This finding has led to fixes analogous to those in the Flory-Huggins

community such as temperature and pressure-dependent a values.[70] The DPD potential

[Eq. 12] has also been used in Gibbs-ensemble Monte Carlo simulations (i.e., without

the DPD equation of motion), aimed at the phase behavior of polymer solutions.[74]

These calculations are very efficient, making use of continuum configurational bias

techniques as well as novel identity swaps between polymer and solvent.

A second family, the so-called soft ellipsoid models, reflects in the interaction

potential the fact that the underlying objects are polymer chains, rather than liquid

droplets.[75] Three assumptions are made: 1) The potential energy can be separated into

an intrachain and an interchain part. 2) The particles are ‘‘soft’’ not only in the sense

that they are interpenetrable but also because they are deformable (i.e., have internal

degrees of freedom). This follows from the energetic degeneracy of a polymer coil,

which allows it to be deformed at practically no energy cost, with the restoring force

being entropic. If one abstracts the monomer density ri(r) of chain i into its inertia

tensor Si, then the internal part of the free-energy can be written

AðSiÞ ¼ �kT ln PðSiÞ ð13Þ

where P(Si) is the probablity of finding a given Si. This probability can be assumed

from analytical models, or it may be calculated in a simulation of a detailed polymer

chain. A(Si) is then directly used as the internal potential energy for the deformation.

3) The interaction between two chains is assumed to be repulsive and proportional to

their overlap density

Vij ¼ eijðNÞ
Z

riðrÞrjðr0Þdrdr0 ð14Þ

where eij(N) is an interaction parameter that depends on the chain length N. For

efficient evaluation of the integral in Eq. 14, the monomer densities may again be

approximated by their second moments, after which Vij can be tabulated. With this

model, the phase behavior of polymer blends has been successfully studied.[75] The

model has been improved to the so-called Gaussian-ellipsoid model by first intro-

ducing self-interactions and second by approximating the monomer densities by sui-

table Gaussian expansions.[76]

The soft-ellipsoid and Gaussian-ellipsoid models have advantages over the sim-

pler DPD potential. For example, the deformability allows the prediction of chain shape

fluctuations in response to changes in the composition.[76] However, they share the

limitation of the current DPD versions to some extent, because they are also a variation
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of an off-lattice implementation of the Flory-Huggins model. In the absence of other

sources of interactions, both can only produce results as good as given by a

corresponding Flory-Huggins parameterization.

Attempts to derive soft-particle (level 5) potentials directly from chain-chain

radial distribution functions obtained by simulation of the underlying chains could

potentially overcome these problems. A first step in this direction is the numerical

procedure by Briels et al. They have coarse-grained a melt of level 4 excluded-volume

Gaussian polymer chains of 10 beads into either one or two ‘‘blobs’’ at the centers of

mass of 10 or 5 beads each.[77] As an ansatz for the potential, they used Gaussians

whose prefactor (/? interaction energy) and width (/? particle size) are the adjustable

parameters. They were optimized to reproduce radial distribution functions of the

generic bead-and-spring type (level 4) polymer chains. The optimization did not involve

the minimization of a penalty function like Eq. 1, but it was done by either extended-

system molecular dynamics with the potential parameters being dynamic variables, or

by Metropolis Monte Carlo in parameter space. They have also systematically

investigated ways to derive a Langevin-type equation of motion for the coarse-grained

model from level 4 molecular dynamics[78] and the implications of the coarse-graining

strategy for the calculated pressure.[77,79] In addition, Padding and Briels tried to combat

the known effect that the coarser the model is, the softer the bead-bead interactions

become, and the more likely it is that two polymer chains cross each other.[63]

Finally, a recent method obtains soft (level 5) potentials by an analytical in-

version of level 4 radial distribution function using the hypernetted chain closure of the

Ornstein-Zernicke equation.[80]

Field-Based Models (Level 6): Mesodyne

A method often used to study microphase separation and morphology of specific

polymers and their mixtures is a mesoscopic free-energy density functional ansatz

whose implementation on a lattice goes by the name of mesodyne. Its various aspects

have been described in detail in the literature (see, e.g., Refs. [81–89]); alternative

field-theoretical approaches were recently reviewed.[90] Here, we only discuss its con-

nections to other simulations scales. The free-energy density functional A[r] consists of

various components. The place where system-specific information enters is the the so-

called nonideal part which, for a system of two components A and B with densities

rA(r) and rB(r), is modeled as

Anon�ideal½r� ¼ 1

2

Z Z
feAAðjr � r0jÞrAðrÞrAðr0Þ þ eABðjr � r0jÞrAðrÞrBðr0Þ

þ eBAðjr � r0jÞrBðrÞrAðr0Þ þ eBBðjr � r0jÞrBðrÞrBðr0Þgdrdr0 ð15Þ

where eAB(|r� r’|), etc. are nonlocal interaction kernels for interactions between po-

lymer chains, which are taken to be Gaussian

eABðjr � r0jÞ ¼ e0
AB

3

2pa2

� 
3=2

exp � 2

2a2
ðr � r0Þ2

� �
ð16Þ

Scale-Hopping in Computer Simulations 17



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

The spatial extent of a chain (nonlocality) is related to a, the interactions between

pairs of species to the parameters eAB
0 . The latter combine into a Flory-Huggins parameter

wAB ¼ 1

vkT
ðe0

AB þ e0
BA � e0

AA � e0
BBÞ ð17Þ

with v being the volume of a statistical segment. One notes that also in the mesodyne

approach polymers show their chemical identity via a Flory-Huggins type interaction

parameter, like in the particle-based level 5 model (Soft-Particle Models (Level 5):

Dissipative Particle Dynamics and Related). In addition, there are other material-spe-

cific parameters. For example, the dynamic variant of the theory contains the monomer

diffusion coefficient, which needs to be mapped to define a time scale.

If the density-functional method is to be used for realistic polymer-solvent or

polymer-polymer mixtures, the eAB
0 have to be mapped either from experiment or

theory. In the best-studied real system, (ethylene oxide)-(propylene oxide)-(ethylene

oxide) triblock copolymers with water,[89] the coefficients for the polymer-water inter-

actions were obtained from vapor pressure measurements and for the (ethylene oxide)-

(propylene oxide) interactions from group contribution methods.[91]

In principle, there is no reason why Flory-Huggins parameters could not be cal-

culated by atomistic simulations, because they are essentially enthalpies of mixing DHm/

kT, which can be obtained rather straightforwardly from molar enthalpies of vaporization

DHmðxAÞ ¼ DH
vap
AB ðxAÞ � xADH

vap
A � ð1 � xAÞDH

vap
B ð18Þ

with xA being the mole fraction of A in a binary system. The molar enthalpies of va-

porization are calculated as the negative of the corresponding intermolecular nonbonded

energy. Alternatively, one may use the detour via the Clausius-Clapeyron equation

d ln pA

dT
� DH

vap
A

RT2
ð19Þ

and the temperature dependence of the corresponding partial pressures pA, which are

accessible through numerous free-energy techniques.[92] The reason for atomistic

approaches not being used routinely is probably the fact that DHm results from the

subtraction of large numbers. This requires very accurate calculations and places high

demands on the force fields used; for an example, see Ref. [93].

MISCELLANEOUS COARSE-GRAINING APPROACHES

Coarse Graining to the Primitive Path (Level 2 or 3 to Level 4)

The primitive path is a well-established concept in the theoretical description of

polymer melts.[94] It removes some of the loops and wiggles of a polymer chain to

yield the essential conformation. Kröger et al. proposed a projection technique to map a

chain conformation onto its primitive path.[95] Although their initial polymer is not
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truly atomistic but based on repeat unit positions, it provides a way of further reducing

the complexity of a polymer chain.

Atomistic to Near Generic (Level 2 to Level 3.5)

A study of polyisoprene melts that used atomistic molecular dynamics and Monte

Carlo simulations as well as stochastic dynamics simulations of a simplified model

(excluded-volume bead-spring chains with added stiffness) has been reported.[96,97] The

stiffness was adjusted so that the persistence length of the near-generic model matched

that of the atomistic model. The center-of-mass diffusion coefficient of decamers in the

melt simulated in both models served to determine the time unit of the near-generic

model. It is interesting to note that, with the same time scaling, the reorientation

behavior of local segments obtained by both models could be superposed as well,

whereas Rouse times differed by no more than a factor of 2. The segment dynamics

compared qualitatively to that obtained by solid-state NMR spectroscopy.[98] This

example also offers the possibility of comparing a level 3 and a level 3.5 model for

polyisoprene. The static chain properties are perceptibly different. The authors blamed

this on torsional potentials present in the level 3 model but absent in the level 3.5

model.[99]

Atomistic to Macroscopic Continuum
(Level 2, 3, or 4 to Level 7): Multiphase Systems

Multiphase materials (semicrystalline and filled polymers, polymer composites)

can be described by suitable continuum simulation techniques, such as finite differences

or finite elements, if the one-phase regions can be regarded as homogeneous and

interface effects can be neglected. If the phase morphology is known and the relevant

material constants can be obtained from atomistic, monomeric, or generic particle-

based models, they can be fed into the continuum description to yield the behavior

of the multiphase system. The finite-element machinery has been developed by

Gusev.[100,101] It has been used for predicting the elastic behavior of composites,[100]

of fiberglass,[102] of fiber-reinforced rubber,[103,104] and of semicrystalline poly

(trimethylene terephthalate).[105] In addition, the method has been applied to the thermal

expansion coefficient of talcum-reinforced, rubber-thoughened polypropylene, a three-

phase composite.[106] In addition, the effect of the geometry and packing of platelet-

shaped fillers on the barrier properties has been studied in this way,[107] as has been the

effect of voids on the dielectric properties.[101] Solving the respective Laplace equations

using finite elements is computationally faster than the use of random walkers[108,109]

and it is much more versatile than analytical approaches.

An alternative approach to the elasticity of filled elastomers is due to Sharaf

et al.[110,111] The nominal stress f * following a deformation a of the material is

given by

f * ¼ �T
@DA

@a

� 

T

ð20Þ
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where the DA is obtained from the free energy associated with an affine

deformation of a single chain of the elastomer. The free energy of a chain at a

certain end-to-end distance Ree is related to the probability of finding the chain at

this extension

DAðReeÞ ¼ AðReeÞ � AðR0Þ ¼ �kT ln
PðReeÞ
PðR0Þ

: ð21Þ

Curves of P(Ree) vs. Ree are obtained from large numbers of RIS chains,[47]

which are generated as Monte Carlo realizations in the presence of filler particles of

given size, shape, and concentration. This is the atomistic part of the calculation.

Chains that overlap with any of the filler particles are rejected. Thus, the presence of

fillers changes the chain end-to-end distribution. This affects the elastic behavior of the

two-phase composite on the mesoscale.

The strength of filled polymers has been approached in a similar spirit.[112] The

level 7 model for stress-strain relations and failure requires as input the forces ne-

cessary to stretch a polymer chain from an equilibrium coil conformation and to detach

a polymer chain from the surface of a filler particle. Both are obtained by atomistic

molecular dynamics simulations. With the model, the stress-strain behavior of po-

ly(dimethyl siloxane) filled with surface hydroxylated silica was calculated in qua-

litative agreement with experiment.

Atomistic to Analytical

In some applications, it is possible to map from the atomistic simulation to a

coarse-grained analytical theory, rather than a coarse-grained simulation model. An

example is the calculation of shear viscosities and other rheological properties of short-

chain (molecular weight MW� 2200 g/mol) polyethylene melts.[58] Such chains are

below the entanglement length, so their dynamics follows the Rouse model. The shear

viscosity of a melt of Rouse chains is given as

Z ¼ rRThR2
eei

36D � MW
; ð22Þ

where r is the mass density, and R is the gas constant. The center-of-mass diffusion

coefficient D of individual chains as well as their mean-squared end-to-end length

hR2
eei can be obtained from atomistic molecular dynamics simulations (note that

Eq. 22 is only unique for true Rouse chains[113]). The same holds for other rheological

properties such as the stress relaxation rate.[114]

Another example concerns the diffusion coefficient of polymer chains in the melt

studied in the framework of the analytical lateral-motion model. This model describes

the chain-length dependence of the diffusion coefficient and needs as input, among

other geometrical parameters, the effective monomer diameter s and the bare-monomer

(short-time) diffusion coefficient D0. For polyethylene, poly(ethylene oxide), poly(di-

methyl siloxane), and polystyrene it was shown that s can be obtained to good enough

accuracy from simple atomistic molecular mechanics calculations. The results for D0
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were not yet as reliable, so that it still must be treated as an adjustable parameter.[115] It

is not clear if the uncertainty is due to too short simulation times (� 50 ps) or to

ambiguous assumptions in the extraction of D0 from the simulations.

Small-Scale Continuum to Large-Scale Continuum
(Levels 6 and 7 to Level 8)

Multigrid schemes have a long tradition in structural mechanics. The concept has

also found its way into polymer-engineering simulation. An example is the simulation

of the crystallization of a macroscopic (2 cm
 1 cm) sample of polyethylene.[116] A

coarse grid (21
 11) is used to solve the thermal transport by finite differences. The

evaluation of the crystallization fronts is tracked on a fine grid (1000
 500). A sto-

chastic model handles the spherulite nucleation. The simulations produce the spherulite

structure of the crystallized polyethylene sample as a function of the applied tempe-

rature gradient.

Special Case: Permeation

Coarse graining of various types has been used for both the permeation of small

molecules through polymer matrices and the permeation of oligomers (usually long-

chain alkanes) through zeolites. Coarse-grained approaches of small-molecule per-

meation are variants of the transition-state theory introduced by Gusev et al.[117] who

mapped the cavities in a fully atomistic amorphous polymer onto a network of possible

penetrant residence sites. Transition probabilities between the sites are calculated from

atomistic simulations combined with transition-state theory. Finally, random-walk

Monte Carlo simulations are performed on the network. The restrictions of the original

approach to transitions that are facilitated by the positional fluctuations of relatively

few atoms have been removed by multi-dimensional variants.[118–120] Recently, it was

shown how to generate more complex sorption-site networks from the statistical infor-

mation about the sites.[121]

By describing sorption and diffusion of long n-alkanes in zeolites, one can make

use of the regular sorption-site network provided by the periodic host.[122,123] For small

rigid molecules, one can calculate transition rates between neighboring cavities directly

from atomistic simulation. In flexible molecules, however, the conformational freedom

of the penetrants must be allowed for. It can be sampled atomistically by confi-

gurational-bias Monte Carlo.

AUXILIARY COMPUTATIONAL TECHNIQUES

This section describes a collection of recently developed computational methods

that either have some bearing on the problem of coarse graining or may be potentially

useful in the context of coarse graining. Usually, they have not (yet) been applied to the

coarse-graining problem.
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Generation of Equilibrated Amorphous Polymer Structures

Methods of generating amorphous structures other than the route via coarser-

grained models followed by remapping (Back to Level 2: Reinserting the Atoms) are,

on one hand, competitive, but on the other hand, could further speed up the equilibra-

tion process, if used together with the coarse-graining concept. Some go back several

years. For example, the early Theodorou-Suter method,[124] continues to be popular

because of its commercial availability, despite known limitations. A new simulation

approach that combines rotational isomeric state information of the polymer with an

increasing window for atom-atom interactions and clever Monte Carlo moves in poly-

mer torsional space is able to generate dense amorphous packings of polyethylene and

polystyrene without the old problem of conformational statistics changing along the

chain.[125,126] Although this algorithm so far was only applied to atomistic models, there

is all reason to assume that it would speed up the coarse-grained relaxation as well.

A different line of approach could be described as ‘‘fine graining without pre-

ceding coarse graining.’’ These approaches start from a generic (level 4), rather than

specific, coarse-grained model, equilibrate it, and subsequently thread the atomistic

polymer onto the trace of the coarse-grained chains. One example is the use of Gaussian

chains on a lattice to prepare the structure of amorphous polystyrene.[127] Another one

uses the nonintersecting streamlines of a continuous vector field as a coarse-grained

scaffold, onto which atomistically detailed models of polyethylene are mapped.[4,128]

Clever Sampling Techniques

Atomistic simulations often use Newton’s equation of motion or some variant

(Brownian dynamics, Langevin dynamics, dissipative particle dynamics, etc.). These

motions mimick physical atomic motions. Complicated collective moves are often hard

to implement because of the complex topological and geometrical constraints of

detailed models. The much simpler topology of coarser models (level 3 and above)

makes it much more viable to devise and implement efficient Monte Carlo moves.

Therefore, it is no surprise that, in addition to Langevin dynamics (e.g., Ref. [5]),

pivot Monte Carlo has been used for lattice and continuous models of polymers in

solution.[22,129,130] Effective local moves, such as parallel rotation[126] or concerted

rotation,[131] are in principle possible but are waiting to be tried. Nonlocal schemes are

also possible, such as continuum configurational bias Monte Carlo[132] or the con-

nectivity-altering, end-bridging Monte Carlo.[131] The latter has mastered a number of

moderately complex atomistic polymers beyond polyethylene[133] such as trans and cis

polyisoprene.[96,134,135] A recent reformulation of end-bridging moves into configura-

tional-bias-type moves, so-called direct bridging moves, looks very promising for fur-

ther gain of efficiency.[136]

SUMMARY AND OUTLOOK

From this synopsis, it is evident that scale-bridging efforts are presently underway

at all levels of polymer simulation. It is conceivable that before long integrated si-

22 Müller-Plathe



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

mulation approaches that encompass several simulation methods for different scales

and rigorous connections between them will be available. This would change the mode

of operation for polymer simulators compared to today. Presently, many simulators

operate as method driven (i.e., they know a small number of computational techniques

and select those scientific questions that can be solved with them). With robust coarse-

graining and fine-graining techniques at hand, simulators will operate as problem dri-

ven (i.e., pick a scientifically challenging or technologically important problem and use

a hierarchy of polymer models to solve it). This will make simulations even more

useful. The desire to operate in this way is evident from the fact that scale bridging is

best developed for certain special applications, such as permeation, or for certain po-

lymers, such as polycarbonates. With the validity of the scale bridging quantitatively

proven for many polymer systems and properties, simulators will eventually be able to

avoid the dilemma of either having to study systems too small to be considered po-

lymeric (level < 3) or of having to use models too inaccurate to be problem-specific (level

3 and above). With systematic scale bridging, one can have the best of both worlds.

To establish scale bridging as a robust technology in polymer simulations, many

scientific challenges still have to be met. The existing methods have to be tried on

many more systems to establish their powers and limitations. Approaches have to be

made generally applicable (rather than limited to one polymer), tunable to specific

properties (not only polymer structure and thermodynamics but, e.g., rheology), sys-

tematic (proven coarse-graining algorithms with demonstrated capabilities), and auto-

matic (to have a coarse-grained model available in a short span of time). Obviously,

this entails much effort. Scale hopping will continue to be a research topic. However,

we are already witnessing the first examples of scale bridging being used as a re-

search tool. Problems of polymer science are being solved by simulation, and much

of the menial task of deriving the appropriately detailed model is transferred to

the computer.
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23. Reith, D.; Pütz, M.; Müller-Plathe, F. Deriving effective mesoscale potentials from

atomistic simulations. J. Chem. Phys., in preparation.

24. Grest, G.S.; Kremer, K. Molecular dynamics simulation for polymers in the

presence of a heat bath. Phys. Rev., A 1986, 33, 3628–3631.
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