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1. INTRODUCTION
Some of the most fascinating problems in all fields of science involve multiple spatial or
temporal scales: Processes that occur at a certain scale govern the behavior of the system
across several (usually larger) scales. The notion and practice of multiscale modeling can be
traced back to the beginning of modern science (see, e.g., the discussion in [1]). In many
problems of materials science, this notion arises quite naturally: The ultimate microscopic
constituents of materials are atoms, and the interactions among them at the microscopic
level (on the order of nanometers and femtoseconds) determine the behavior of the material
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2 Overview of Multiscale Simulations of Materials

at the macroscopic scale (on the order on centimeters and milliseconds and beyond), with
the latter being the scale of interest for technological applications. The idea of performing
simulations of materials across several characteristic length and timescales has, therefore,
obvious appeal as a tool of potentially great effect on technological innovation [2–4]. The
advent of ever-more-powerful computers that can handle such simulations provides further
argument that such an approach can address realistic situations and can be a worthy partner
to the traditional approaches of theory and experiment.
In the context of materials simulations, one can distinguish four characteristic length levels:

1. The atomic scale (∼10−9/m or a few nanometers), in which the electrons are the players,
and their quantum-mechanical state dictates the interactions among the atoms.

2. The microscopic scale (∼10−6/m or a few micrometers), where atoms are the players
and their interactions can be described by classical interatomic potentials (CIP) that
encapsulate the effects of bonding between them, which is mediated by electrons.

3. The mesoscopic scale (∼10−4/m or hundreds of micrometers), where lattice defects such
as dislocations, grain boundaries, and other microstructural elements are the players.
Their interactions are usually derived from phenomenological theories that encompass
the effects of interactions between the atoms.

4. The macroscopic scale (∼10−2/m or centimeters and beyond), where a constitutive law
governs the behavior of the physical system, which is viewed as a continuous medium.
In the macroscale, continuum fields such as density, velocity, temperature, displacement
and stress fields, and so forth are the players. The constitutive laws are usually formu-
lated so that they can capture the effects on materials properties from lattice defects
and microstructural elements. Phenomena at each length scale typically have a corre-
sponding timescale that, in correspondence to the four length scales mentioned above,
ranges roughly from femtoseconds to picoseconds, to nanoseconds, to milliseconds and
beyond.

At each length and timescale, well-established and efficient computational approaches
have been developed over the years to handle the relevant phenomena. To treat electrons
explicitly and accurately at the atomic scale, methods known as quantum Monte Carlo
(QMC) [5] and quantum chemistry (QC) [6] can be employed, which are computationally too
demanding to handle more than a few tens of electrons. Methods based on density-functional
theory (DFT) and local density approximation (LDA) [7, 8] in its various implementations,
although less accurate than QMC or QC methods, can be readily applied to systems contain-
ing several hundred atoms for static properties. Dynamical simulations with DFT methods
are usually limited to timescales of a few picoseconds. For materials properties that can be
modeled reasonably well with a small number of atoms (such as bulk crystal properties or
point defects), the DFT approach can provide sufficiently accurate results. Recent progress
in linear scaling electronic structure methods [9] has enabled DFT-based calculations to deal
with a few thousand atoms (corresponding to sizes of a couple of nanometers on a side) with
adequate accuracy. Finally, the semiclassical tight-binding approximation (TBA), although
typically not as accurate as DFT methods, can extend the reach of simulations to a few
nanometers in linear size and a few nanoseconds in timescale for the dynamics [10].
For material properties at the microscopic scale, molecular dynamics (MD) and Monte

Carlo (MC) simulations are usually performed employing CIP, which can often be derived
from DFT calculations [11, 12]. Although not as accurate as the DFT and TBA methods, the
classical simulations are able to provide insight into atomic processes involving considerably
larger systems, reaching up to ∼109 atoms [13]. The timescale that MD simulations based
on CIP can reach is up to a microsecond.
At the mesoscopic scale, the atomic degrees of freedom are not explicitly treated, and only

larger-scale entities are modeled. For example, in what concerns the mechanical behavior of
solids, dislocations are the objects of interest. In treating dislocations, recent progress has
been concentrated on the so-called dislocation dynamics (DD) approach [14–17], which has
come to be regarded as one of the most important developments in computational materials
science and engineering in the last two decades [18]. Such DD models deal with the kinetics
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of dislocations and can study systems a few tens of microns in size and with a maximum
strain ∼0�5% for a strain rate of 10 sec−1 in bcc metals [19].
Finally, for the macroscopic scale, finite-element (FE) methods [20] are routinely used to

examine the large-scale properties of materials considered an elastic continuum [21]. For
example, FE methods have been brought to bear on problems of strain-gradient plasticity,
such as geometrically necessary dislocations [22]. Continuum Navier–Stoke equations are
also often used to study fluids.
The challenge in modern simulations of materials science and engineering is that real

materials usually exhibit phenomena on one scale that require a very accurate and com-
putationally expensive description, and phenomena on another scale for which a coarser
description is satisfactory and, in fact, necessary to avoid prohibitively large computations.
Because none of the methods above alone would suffice to describe the entire system, the
goal becomes to develop models that combine different methods specialized at different
scales, effectively distributing the computational power where it is needed most. It is the
hope that a multiscale approach is the answer to such a quest, and it is by definition an
approach that takes advantage of the multiple scales present in a material and builds a
unified description by linking the models at the different scales. Figure 1 illustrates the
concept of a unified multiscale approach that can reach the length and timescale that indi-
vidual methods, developed to treat a particular scale accurately, fail to achieve. At the same
time, the unified approach can retain the accuracy that the individual approaches provide in
their respective scales, allowing, for instance, for very high accuracy in particular regions of
the systems as required. As effective theories, multiscale models are also useful for gaining
physical insight that might not be apparent from brute force computations. Specifically, a
multiscale model can be an effective way to facilitate the reduction and analysis of data,
which sometimes can be overwhelming. Overall, the goal of multiscale approaches is to pre-
dict the performance and behavior of materials across all relevant length and timescales,
striving to achieve a balance among accuracy, efficiency, and realistic description.
Conceptually, two categories of multiscale simulations can be envisioned, both sequential

and concurrent. The sequential methodology attempts to piece together a hierarchy of com-
putational approaches in which large-scale models use the coarse-grained representations
with information obtained from more detailed, smaller-scale models. This sequential model-
ing approach has proven effective in systems in which the different scales are weakly coupled.
The characteristic of the systems that are suited for a sequential approach is that the large-
scale variations decouple from the small-scale physics, or the large-scale variations appear
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Figure 1. A schematic illustration of spacial and temporal scales achievable by various simulation approaches. The
scales are in centimeters for the length dimension and seconds for the time dimension, both logarithmic. QMC,
quantum Monte Carlo; DFT, density-functional theory; TBA, tight-binding approximation; CIP, classic interatomic
potentials.



4 Overview of Multiscale Simulations of Materials

homogeneous and quasi-static from the small-scale point of view. Sequential approaches
have also been referred to as serial, implicit, or message-passing methods. The vast majority
of multiscale simulations that are actually in use is sequential. Examples of such approaches
abound in literature, including almost all MD simulations whose underlying potentials are
derived from electronic structure theory [23, 24], usually ab initio calculations [11, 12]. One
frequently mentioned [25, 26] example of sequential multiscale simulations is the work of
Clementi et al. [27], who used QC calculations to evaluate the interaction of several water
molecules; from this database, an empirical potential was parameterized for use in MD sim-
ulations; the MD simulations were then used to evaluate the viscosity of water from atomic
autocorrelation functions; and finally, the computed viscosity was employed in computational
fluid dynamics calculations to predict the tidal circulation in Buzzard’s Bay of Massachusetts.
The second category of multiscale simulations consists of the so-called concurrent, paral-

lel, or explicit approaches. These approaches attempt to link methods appropriate at each
scale together in a combined model, where the different scales of the system are considered
concurrently and communicate with some type of hand-shaking procedure. This approach
is necessary for systems that are inherently multiscale; that is, systems whose behavior at
each scale depends strongly on what happens at the other scales. In contrast to sequen-
tial approaches, the concurrent simulations are still relatively new, and only a few models
have been developed to date. In a concurrent simulation, the system is often partitioned
into domains characterized by different scales and physics. The challenge of the concurrent
approach lies at the coupling between the different regions treated by different methods; a
successful multiscale model seeks a smooth coupling between these regions.
In principle, multiscale simulations could be based on a hybrid scheme, using elements

from both the sequential and the concurrent approaches. We will not examine this type of
approach in any detail, as it involves no new concepts other than the successful combination
of elements underlying the other two types of approaches.
There already exist a few review papers and special editions of articles on multiscale sim-

ulation of materials in the literature [2, 3, 28–32]. A mathematic perspective of multiscale
modeling and computation is also available [33]. The present overview does not aim to
provide another collection of various multiscale techniques but, rather, to identify the char-
acteristic features and classify multiscale simulation approaches into rational categories in
relation to the problems where they apply. We select a few illustrative examples for each cat-
egory and try to establish connections between these approaches whenever possible. Because
almost all interesting material behavior and processes are time dependent, we will address
both the issue of length scales and the issue of timescales integration in materials modeling.
The examples presented in this overview to some extent reflect our own research interests,

and they are by no means exhaustive. Nevertheless, we hope that they give a satisfactory
cross section of the current state of the field and that they can serve as inspiration for further
developments in this exciting endeavor.

2. SEQUENTIAL MULTISCALE APPROACHES
Two ingredients are required to construct a successful sequential multiscale model: first, it
is necessary to have a priori and complete knowledge of the fundamental processes at the
lowest scale involved. This knowledge or information can then be used for modeling the
system at successively coarser scales. Second it is necessary to have a reliable strategy for
encompassing the lower-scale information into the coarser scales. This is often accomplished
by phenomenological theories, which contain a few key parameters (these can be functions),
the value of which is determined from the information at the lower scale. This message-
passing approach can be performed in sequence for multiple-length scales, as in the example
cited in the introduction [27]. The key attribute of the sequential approach is that the sim-
ulation at a higher level critically depends on the completeness and the correctness of the
information gathered at the lower level, as well as the efficiency and reliability of the model
at the coarser level.
To illustrate this type of approach, we will present two examples of sequential multiscale

approaches in some detail. The first example concerns the modeling of dislocation properties



Overview of Multiscale Simulations of Materials 5

in the context of the Peierls–Nabarro (P-N) phenomenological model, where the lower scale
information is in the form of the so-called generalized stacking fault energy surface (also
referred to as the �-surface) and the coarse-grained model is a phenomenological continuum
description. The second example concerns the modeling of coherent phase transformations
in the context of the phase-field approach, where the lower scale knowledge is in the form
of ab initio free energies and the coarse-grained model is again a continuum model.

2.1. Peierls–Nabarro Model of Dislocations

Dislocations are central to our understanding of mechanical properties of crystalline solids.
In particular, the creation and motion of dislocations mediate the plastic response of a
crystal to external stress. Although continuum elasticity theory describes well the long-range
elastic strain of a dislocation for length scales beyond a few lattice spacings, it breaks down
in the immediate vicinity of the dislocation core. There has been a great deal of interest
in accurately describing the dislocation core structure on an atomic scale because the core
structure to a large extent dictates the dislocation properties [34, 35]. So far, direct atomistic
simulation of dislocation properties based on CIP has not been satisfactory because the CIP
is not always reliable, or may even not be available for the material of interest, especially
when the physical system involves several types of atoms. However, ab initio calculations are
still computationally expensive for the study of dislocation core properties, particularly for
that of dislocation mobility. Recently, a promising approach based on the framework of the
P-N model has attracted considerable interest in the study of dislocation core structure and
mobility [36–47]. This approach, when combined with ab initio calculations for the energetics,
represents a plausible alternative to the direct ab initio simulations of dislocation properties.
The P-N model is an inherently multiscale framework, first proposed by Peierls [48] and

Nabarro [49] to incorporate the details of a discrete dislocation core into a framework that is
essentially a continuum. Consider a solid with an edge dislocation in the middle (Fig. 2): the
solid containing this dislocation is represented by two elastic half-spaces joined by atomic-
level forces across their common interface, known as the glide plane (dashed line). The goal
of the P-N model is to determine the slip distribution on the glide plane, which minimizes the
total energy. The dislocation is characterized by the slip (relative displacement) distribution

f�x� = u�x� 0+�− u�x� 0−� (1)

which is a measure of the misfit across the glide plane; u�x� 0+� and u�x� 0−� are the dis-
placement of the half-spaces at position x immediately above and below the glide plane.

Y

X

Linear elastic
halfspaces

interplanar
potential

Nonlinear

Figure 2. A schematic illustration showing an edge dislocation in a lattice. The partition of the dislocated lattice
into a linear elastic region and a nonlinear atomistic region allows a multiscale treatment of the problem.
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The total energy of the dislocated solid includes two contributions: the nonlinear potential
energy resulting from the atomistic interaction across the glide plane, and the elastic energy
stored in the two half-spaces associated with the presence of the dislocation. Both energies
are functionals of the slip distribution f�x�. Specifically, the nonlinear misfit energy can be
written as

Umisfit =
∫ �

−�
��f�x�	 dx (2)

where ��f� is the generalized stacking fault energy surface (the �-surface) introduced by
Vitek [50]. The nonlinear interplanar �-surface can, in general, be determined from atomistic
calculations. For systems in which CIP are not available or not reliable (e.g., it is exceedingly
difficult to derive reliable potentials for multicomponent alloys), ab initio calculations can
be performed to obtain the �-surface. However, the elastic energy of the dislocation can
be calculated reasonably from elasticity theory: The dislocation may be thought of as a
continuous distribution of infinitesimal dislocations whose Burgers vectors integrate to that
of the original dislocation [51]. Therefore, the elastic energy of the original dislocation is
just the sum of the elastic energy caused by all the infinitesimal dislocations (from the
superposition principle of linear elasticity theory), which can be written as

Uelastic =
�

2��1− �

∫
dx

∫
dx′ ln

L

�x − x′�
df�x�
dx

df�x′�
dx′

(3)

where � and  are the shear modulus and Poisson’s ratio, respectively. The variable L is
an inconsequential constant introduced as a large-distance cutoff for the computation of
the logarithmic interaction energy [52]. Note that the Burgers vector of each infinitesimal
dislocation is the local gradient in the slip distribution df�x�/dx. The gradient of f�x� is
called dislocation (misfit) density, denoted by ��x�. Because the P-N model requires that
atomistic information (embodied in the �-surface) be incorporated into a coarse-grained
continuum framework, it is a sequential multiscale strategy. Thus, the successful application
of the method depends on the reliability of both �-surface and the underlying elasticity
theory, which is the basis for the formulation of the phenomenological theory.
In the current formulation, the total energy is a function of misfit distribution f�x� or,

equivalently, ��x�, and it is invariant with respect to arbitrary translation of ��x� and f�x�.
To regain the lattice discreteness, the integration of the �-energy in Eq. (2) was discretized
and replaced by a lattice sum in the original P-N formulation

Umisfit =
�∑

i=−�
��fi��x (4)

with xi the reference position and �x the average spacing of the atomic rows in the lattice.
This procedure, however, is inconsistent with evaluation of elastic energy [Eq. (3)] as a con-
tinuous integral. Therefore, the total energy is not variational. Furthermore, in the original
P-N model, the shape of the solution f�x� is assumed to be invariant during dislocation
translation, a problem that is also associated with the nonvariational formulation of the total
energy.
To resolve these problems, a so-called semidiscrete variational P-N (SVPN) model was

recently developed [43] that allows for the first time the study of narrow dislocations, a
situation that the standard P-N model can not handle. Within this approach, the equilibrium
structure of a dislocation is obtained by minimizing the dislocation energy functional

Udisl = Uelastic + Umisfit + Ustress +Kb2lnL (5)

where

Uelastic =
∑
i� j

1
2
�ij

[
Ke

(
�
�1�
i �

�1�
j + �

�2�
i �

�2�
j

)+Ks�
�3�
i �

�3�
j

]
(6)
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Umisfit =
∑
i

�x�3�fi� (7)

Ustress = −∑
i� l

x2i − x2i−1
2

(
�
�l�
i �

�l�
i

)
(8)

with respect to the dislocation misfit density. Here, ��1�i , ��2�i , and �
�3�
i are the edge, verti-

cal, and screw components of the general interplanar misfit density at the ith nodal point,
respectively, and �3�fi� is the corresponding three-dimensional �-surface. The components
of the applied stress interacting with the ��1�i , ��2�i , and �

�3�
i are ��1� = �21, ��2� = �22, and

��3� = �23, respectively. The variables K, Ke, and Ks are the prelogarithmic elastic energy
factors [52]. The dislocation density at the ith nodal point is �i = �fi − fi−1�/�xi − xi−1�,
and �ij is the elastic energy kernel [43].
The first term in the energy functional Uelastic is now discretized to be consistent with

the discretized misfit energy, which makes the total energy functional variational. Another
modification in this approach is that the nonlinear misfit potential in the energy functional
Umisfit is a function of all three components of the nodal misfit f�xi�. Namely, in addition to
the misfit along the Burgers vector, lateral and even vertical misfits across the glide plane
are also included. This allows the treatment of straight dislocations of arbitrary orientation
in arbitrary glide planes. Furthermore, because the misfit vector f�xi� is allowed to change
during the process of dislocation translation, the energy barrier (referred to as the Peierls
barrier) can be significantly lowered compared to the corresponding value taken from a rigid
translation. The response of a dislocation to an applied stress is achieved by minimization
of the energy functional with respect to �i at the given value of the applied stress, ��l�i .
An instability is reached when an optimal solution for �i no longer exists, which is manifested
numerically by the failure of the minimization procedure to converge. The Peierls stress is
defined as the critical value of the applied stress that gives rise to this instability.
The SVPN model has been applied to study various interesting material problems related

to dislocation phenomena [45–47]. One study involved the understanding of hydrogen-
enhanced local plasticity (HELP) in Al. HELP is regarded as one of three general
mechanisms responsible for H embrittlement of metals [53]. There was overwhelming exper-
imental evidence in support of HELP, but a theoretical foundation was lacking. To gain an
understanding of the physics behind the HELP mechanism, Lu et al. carried out ab initio
calculations for the �-surface of Al with H impurities placed at the interstitial sites [45].
The �-surfaces for both pure Al and the Al + H systems are shown in Fig. 3. Comparing
the two �-surfaces, one finds an overall reduction in �-energy in the presence of H, which
is attributed to the change of atomic bonding across the glide plane, from covalent-like to
ionic-like [54].

(a)

0
0.1
0.2
0.3
0.4
0.5

[112]

[110]

(b)

0
0.1
0.2
0.3
0.4
0.5

[112]

[110]

Figure 3. The �-surface (J/m2) for displacements along a (111) plane for (a) pure Al and (b) Al+H systems. The
corners of the plane and its center correspond to identical equilibrium configurations (i.e., the ideal lattice). The
two surfaces are displayed in exactly the same perspective and on the same energy scale to facilitate comparison of
important features.
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The core properties of four different dislocations, screw (0�), 30�, 60�, and edge (90�)
have been studied using the SVPN model combined with the ab initio–determined �-surface.
It was found that the Peierls stress for these dislocations is reduced by more than an order
of magnitude in the presence of H [45], which is compatible with the experimental findings
that support the HELP mechanism [53]. Moreover, to address the experimental observation
for H trapping at dislocation cores and H-induced slip planarity, the H-binding energy to
the dislocation cores was calculated [45]. These calculations showed that there is strong
binding between H and the dislocation cores; that is, H is attracted (trapped) to dislocation
cores, which lowers the core energies. More important, the binding energy was found to be a
function of dislocation character, with the edge dislocation having the greatest and the screw
dislocation having the lowest binding energies. For a mixed dislocation, the binding energy
increases with the amount of edge component of the Burgers vector. These results indicate
that in the presence of H, it costs more energy for an edge dislocation to transform into a
screw dislocation to cross-slip, as the edge dislocation has almost twice the binding energy
of the screw dislocation [45]. In the same vein, it costs more energy for a mixed dislocation
to transfer its edge component to a screw component for cross-slip. Therefore, the cross-slip
process is suppressed because of the presence of H, and the slip is confined to the primary
glide plane, exhibiting the experimentally observed slip planarity.
A similar approach was applied to the study of the vacancy lubrication effect on dislocation

motion in Al. From this analysis, it was shown that the role of vacancies is crucial in rec-
onciling the results of Peierls stress measured from different experimental techniques [46].
Very recently, a multiple-plane P-N model has been developed to study dislocation phenom-
ena involving more than one glide plane, such as dislocation constriction and cross-slip [47].
Finally, we should point out that the P-N model is just one example of more-general cohesive
surface models that are built on the idea of limiting all constitutive nonlinearity to certain
privileged interfaces, while the remainder of the material is treated via more conventional
continuum theories [1]. The same strategy can also be applied to the study of fracture and
dislocation nucleation from a crack tip [55].
It is interesting to note that the analysis of �-surface can provide a qualitative under-

standing of even more complex mechanical properties of materials. For example, Rice and
coworkers [56] formulated powerful criteria for the brittle behavior of materials by extending
the Peierls analysis to geometries involving cracks. Based on this framework, Waghmare et al.
[57, 58] were able to predict which alloying elements could improve the ductility of MoSi2
by analyzing the ab initio–determined �-surface of the alloys and comparing the changes
induced by alloying to key features of the �-surface to the induced changes of the surface
energy �s . Remarkably, certain predictions of this relatively simple theoretical modeling were
borne out by subsequent experiments [59].
We have devoted some attention to the description of the P-N model and its imple-

mentation using ab initio �-surfaces because it is an ideal case of a sequential multiscale
model: It consists of a well-motivated phenomenological framework, within which the set of
atomistically derived quantities is well defined and complete (in this case, the �-surface).
In this sense, it fulfills all the requirements for a coherent and complete multiscale model.
There are, no doubt, limitations to the model, arising from the range of validity of the phe-
nomenological theory, but within this range there are no other ambiguities in constructing
the multiscale model. Perhaps its successes, some of which we presented above, are owed to
this complete character of the model.

2.2. Phase-Field Model of Coherent Phase Transformations

The structure–properties paradigm is one of the principal pillars in materials science. The
term structure here refers to structures at many different scales, including the atomic-scale
geometry determined by the crystalline arrangement of atoms, the structure of the defects
that exist in a material, and the structure that emerges as a result of the organization of these
defects into what is referred to as microstructure. Among these structures, the microstructure
on the scale of micrometers is often directly tied to the mechanical properties of materials,
and it has therefore attracted great interest in terms of both scientific understanding and
practical applications [60–64].
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Recently, a powerful sequential multiscale approach has been put forward for modeling
the precipitate microstructure and its evolution in multicomponent alloys [65, 66], materials
that appear in many technological applications. The approach is based on the continuum
phase-field model whose driving forces (free energies) are obtained from combined ab initio
calculations and the mixed-space cluster expansion technique. One interesting application of
this approach concerned the study of precipitation of the �′(Al2Cu) phase in Cu–Al alloys
during thermal aging [66].
In the phase-field multiscale approach, the nature of phase transformation as well as the

microstructures that are produced are described by a set of continuous order–parameter
fields [67, 68]. The temporal microstructure evolution is obtained from solving field kinetic
equations that govern the time-dependence of the spatially inhomogeneous order–parameter
fields. Within the diffuse-interface description, the thermodynamics of a phase transforma-
tion and the accompanying microstructure evolution are modeled by a free energy that is
a function of the order–parameter field, or phase field. For a structural transformation, the
total free energy can be written as

�tot = �bulk + �inter + �elast (9)

where �bulk is the bulk free energy, �inter is the interfacial free energy, and �elast is the
coherency elastic-strain energy arising from the lattice accommodation along the coherent
interfaces in a microstructure. For a microstructure described by a composition field c and
a set of structural order–parameters  1� � � � �  p, the first two terms of Eq. (9) are given by

�bulk + �inter =
∫
V
#f �c�r��  p�r�	+

$

2
�%c�r��2 + 1

2

∑
p

&ij�p�%i p�r�%j p�r�' dV (10)

where f �c�  p� is the local free-energy density [69] and $ and &ij�p� are the gradient
energy coefficients that control the width of the diffuse interface. The elastic-strain energy
is obtained from elasticity theory using the homogeneous modulus approximation [70]. With
the total free energy of an inhomogeneous system written as a function of order–parameter
fields, the temporal evolution of microstructures during a phase transformation can be
obtained by solving the coupled Cahn–Hilliard equation for a conserved field c, and the
time-dependent Ginzburg–Landau equation for a nonconserved field  p [71, 72].

(c

(t
=M% 2

(
(f

(c
− $% 2c

)
(11)

( p

(t
= −Lp

+�tot

+ p
(12)

where M is related to atom mobility and Lp is the relaxation constant associated with the
order–parameter  p. As the above equations illustrate, the continuum phase-field method-
ology depends on three input energies: bulk free energies of solid solution and precipi-
tate phases, precipitate–matrix interfacial free energies, and precipitate–matrix lattice elastic
energies. Experimental determination of these quantities can be difficult and problematic.
Therefore, a physically motivated method for accurately determining these quantities is of
critical importance for predicting the microstructure evolution of interest. In particular, if
the quantities can be determined from ab initio calculations, the goal of an ab initio modeling
of alloy microstructure evolution would be, to a great extent, achieved [73, 74].
Because direct ab initio calculations of free energies are either impractical or impos-

sible with the currently available computational power, a useful method has been devel-
oped to extend the ab initio energetics to thermodynamic properties of alloy systems with
hundreds of thousands of atoms [75], referred to as the mixed-space cluster expansion
(CE). In this scheme, energetics from ab initio calculations for a number of small–unit cell
(∼10 atoms) structures are mapped onto a generalized Ising-like model for a particular
lattice type, involving two-, three-, and four-body interactions plus coherency strain ener-
gies [76]. The Hamiltonian can be incorporated into mixed-space Monte Carlo simulations
of N ∼ 105 atoms, effectively allowing one to explore the complexity of 2N configurational
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space. As demonstrated by Vaithyanathan et al. [66] the bulk free energy can be obtained
from Monte Carlo simulations coupled with thermodynamic integration techniques. The
precipitate–matrix interfacial free energies can be determined from similar Monte Carlo sim-
ulations or from low-temperature expansion techniques. The elastic strain energies are of
precisely the same form as the coherency strain energy used to generate the mixed-space CE.
Hence, from a combination of ab initio calculations, a mixed-space CE approach, and Monte
Carlo simulations, one can obtain all the driving forces needed as input to the continuum
phase-field model. The incorporation of these energetic properties, obtained from atomistics,
into a continuum microstructural model represents a bridge between these two length scales
and opens the path toward predictive modeling of microstructures and their evolution.
To illustrate the use of the method, we mention briefly the work of Vaithyanathan

et al. [66], who studied the problem of precipitation of the �′ (Al2Cu) phase in Cu–Al
alloys. The free energy of the �′ phase is obtained from ab initio calculations of the energy
at T = 0 K, coupled with the calculated vibrational entropy of this phase. The bulk free
energies of matrix and precipitate phases are then fit to the local free energy as a function
of order–parameter fields in the phase-field model. From supercell calculations, T = 0 K
interfacial energies are determined, both for the coherent interface and for the incoherent
interface. The anisotropy of these interfacial energies is large and has been incorporated in
the phase-field model. Elastic energy calculations for the coherent strain of Al/Al2Cu (�′)
and the calculated lattice parameters of each phase determine the elastic driving force in this
system. Having determined all the necessary thermodynamic input, Vaithyanathan et al. [66]
were able, for the first time, to clarify the physical contributions responsible for the observed
morphology of �′ precipitate microstructure. The agreement between the calculated and the
experimentally observed microstructures of �′ in the Al–Cu alloys was excellent, confirming
the validity of the approach.
Although the phase-field model is able to predict complex microstructure evolution during

phase transformations, it requires, as input, phenomenological thermodynamic and kinetic
parameters. For binary systems, ab initio calculations can provide these parameters for the
phase-field model, but it is unrealistic to assume that such calculations can be used to deter-
mine all the thermodynamic information for systems beyond ternary. Therefore, semiempir-
ical methods, such as CALPHAD (calculated phase-diagram) will remain a useful tool in
such an endeavor [77–79].

2.3. Other Sequential Approaches

Kinetic Monte Carlo (KMC) simulations, coupled with atomistically determined kinetic
energy barriers, represent a powerful class of sequential multiscale approaches. For example,
a large body of research has been carried out into surface-growth phenomena with KMC
simulations whose kinetic energy barrier parameters for relevant elemental processes are
supplied by ab initio calculations [80, 81]. In an altogether different field, Cai et al. [82]
have used the KMC method to study dislocation motion in Si based on the well-established
double-kink mechanism. In their approach, the dislocation is represented by a connected
set of straight-line segments that move as the cumulative effect of a large number of kink
nucleation and migration processes. The rate of these processes is calculated from transition
state theory, with the transition energy barrier having contributions from both atomistically
determined energetics (double-kink formation and migration energy) and elastic interactions
with other dislocation segments, as well as from the externally applied stress.
An example of a multiscale approach, in which KMC is a key component, employs the

so-called level-set method [83, 84] for the largest (macroscopic) scale. This approach is par-
ticularly well suited for the study of epitaxial growth, a subject of great importance in micro-
electronics and optoelectronics applications. In the level-set method, growth is described
by the creation and subsequent motion of island boundaries. The model treats the growing
film as a continuum in the lateral direction but retains atomistic discreteness in the growth
direction. In the lateral direction, continuum equations representing the field variables can
be coupled to growth through island evolution by solving the appropriate boundary-value
problem for the field and using local values of this field to determine the velocity of the
island boundaries. The central idea behind the level-set method [85] is that any boundary
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curve . , such as a step or the boundary of an island, can be represented as the set of values
/ = 0 (the level-set) of a smooth function /. For a given boundary velocity v, the equation
for / is

(/

(t
+ v · %/ = 0 (13)

Growth is naturally described by the smooth evolution of /, determined by this differential
equation. In the case of multilayer growth, the boundaries .k�t� of the islands are defined as
the set of spatial points x for which /�x� t� = k for k = 0� 1� 2, and so on. The evolution of
the level-set function / can be obtained by numerically solving Eq. (13) using nonoscillatory
methods [86]. The key parameters entering the model are diffusion constants (the terrace
and island-edge diffusion constants) that can, in principle, be supplied from atomistic calcu-
lations through the following procedure (see Fig. 4): first, the atomistic processes that are
responsible for terrace or island-edge diffusion are identified and their energetics analyzed
using atomistic (possibly ab initio) calculations; next, the energy barriers for the atomistic
processes are incorporated in a KMC model that provides the means for coarse-graining the
atomistic degrees of freedom to a few mesoscopic degrees of freedom, describing the evo-
lution of surface features (the island step edges); finally, the results of the KMC model are
coarse-grained to provide the input to the level-set equations—that is, they define the values
of the boundary velocity v, which depends on the local surface morphology. The coarse-
graining between scales eliminates degrees of freedom that are not essential, making the
passage to the next scale feasible. For example, in the illustration shown in Fig. 4, the small-
est step width in the KMC scale corresponds to a two-atom-wide region at the microscopic
scale, a situation that is relevant to the Si(100) surface and possibly to other semiconductor
surfaces (such as III–V compound surfaces). In these cases, surface atoms tend to be bound
to dimer pairs, which is the essential unit that determines the step structure, even though the
underlying dynamics may be determined by the motion of individual atoms. Thus, the KMC
simulation need only take into account structures consisting of dimer units, the dynamics
of which determine the step-edge motion needed for the level-set simulation. The middle
terrace in Fig. 4(b) is shown as a grid of squares, each representing a four-atom cluster and
being the minimal unit relevant to step motion at the KMC scale in this example, assum-
ing that only steps of width equal to two atoms in each direction are stable. The level-set
method is a manifestly multiscale approach, combining information from three different

(c)(b)(a)0

1

2

Figure 4. Illustration of the three different levels of simulation in the level-set multiscale approach of surface
growth. (a) The macroscopic scale, in which island borders are continuous lines separating heights at different levels
(the levels along a particular cross section are shown schematically, labeled 0, 1, and 2); this scale is treated with
the level-set method. (b) The mesoscopic scale, where the features of the island edges contain some information
about the underlying atomic lattice, indicated here as the small straight lines that define step directions consistent
with atomic positions; this scale is treated with the kinetic Monte Carlo approach. (c) The microscopic scale, where
the individual degrees of freedom are explicitly included. The step is determined by the positions of atoms in two
terraces, with the ones on the upper terrace shown as white larger circles and the ones on the lower terrace shown
as shaded smaller circles; this scale is treated by atomistic (possibly ab initio) methods. All views in this schematic
representation are top views (see text for details).



12 Overview of Multiscale Simulations of Materials

regimes (atomistic, mesoscopic, and continuum) into a neatly integrated scheme. Recently,
the level-set method has also been applied to study dislocation dynamics in alloys [87].
Yet another sequential multiscale approach has been successfully applied to the study of

crystal plasticity. This is the DD method mentioned earlier, which incorporates dislocation
motion at the macroscopic scale—the mechanism ultimately responsible for crystal plastic-
ity. To predict the mechanical properties of materials using DD simulations, a connection
between micro-to-meso scales must be established because dislocation interactions at close
range (when the cores intersect, for instance) are totally beyond the reach of continuum
models. Along these lines, Bulatov et al. were able to study dislocation reactions and plas-
ticity in fcc metals [88] that compare well with deformation experiments by integrating the
local rules derived from atomistic simulation of dislocation core interactions into the DD
simulations. The same idea has been further explored by Rhee et al. in a study of the stage I
stress–strain behavior of bcc single crystals [19].

3. CONCURRENT MULTISCALE APPROACHES
Broadly speaking, a concurrent multiscale approach is more general in scope than its sequen-
tial counterpart because the concurrent approach does not rely on any assumptions (in the
form of a particular coarse-graining model) pertaining to a particular physical problem. As a
consequence, a successful concurrent approach can be used to study many different prob-
lems. For example, dislocation core properties, grain boundary structure, and crack propa-
gation could all be modeled individually or collectively by the same concurrent approach,
as long as it incorporates all the relevant features at each level. What is probably most
appealing, however, is that a concurrent approach does not require a priori knowledge of
the physical quantities or processes of interest. Thus, concurrent approaches are particu-
larly useful when exploring problems about which little is known at the atomistic level and
about their connection to larger scales, and when discovering new phenomena. We discuss
below three instances of concurrent approaches in some detail and mention some additional
examples more briefly.

3.1. Macroscopic Atomistic Ab Initio Dynamics

Fracture dynamics is one of the most challenging problems in materials science and solid
mechanics. Despite nearly a century of study, several important issues remain unsolved.
In particular, there is little fundamental understanding of the brittle-to-ductile transition
as a function of temperature in materials, there is still no definitive explanation of how
fracture stress is transmitted through plastic zones at crack tips, and there is no complete
understanding of the disagreement between theory and experiment regarding the limiting
speed of crack propagation. These difficulties stem from the fact that fracture phenomena
are governed by processes occurring over a wide range of length scales that are all connected
and that all contribute to the total fracture energy [89]. In particular, the physics on different
length scales interacts dynamically; therefore, a sequential coupling scheme would not be
adequate for the study of fracture dynamics.
To address these challenges, Abraham, Broughton, Bernstein, and Kaxiras developed a

concurrent multiscale modeling approach that dynamically couples different length scales
[25, 26]. This multiscale methodology aims at linking the length scales ranging from the
atomic scale, treated with a quantum-mechanical tight-binding approximation method;
through the microscale, treated via the classical molecular dynamics method; and finally to
the mesoscale/macroscale, treated via the finite element method in the context of contin-
uum elasticity. These authors applied this unified approach, termed macroscopic-atomistic–
ab initio dynamics (MAAD), to the study of the dynamical fracture process in Si, a typical
brittle material. In traditional studies of fracture, only the continuum mechanics level
(employing, for instance, the FE method) is usually invoked to account for the macroscopic
behavior. However, as there is no natural small-length cutoff present in the continuum
mechanics approach, any important aspect of the atomic-scale mechanisms for fracture is
completely missed. This can be remedied by introducing classical MD to the simulations.
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In particular, the MAAD approach employed the Stillinger–Weber [90] interatomic empir-
ical potential for Si to perform MD calculations at the atomistic level for a large region
of the material near a crack tip. However, the treatment of formation and the breaking
of covalent bonds at the atomic scale is not reliable with any empirical potential, because
bonds between atoms are an essentially quantum mechanical phenomenon arising from the
sharing of valence electrons. However, small deviations from ideal bonding arrangements
can be captured accurately by empirical potentials because they are, to first approximation,
harmonic, a feature that is easily incorporated in empirical descriptions of the interac-
tion between atoms. Therefore, it was deemed necessary to include a quantum mechanical
approach in the simulations of a small region in the immediate neighborhood of the crack
tip, where bond breaking is prevalent during fracture, whereas further away from this region
the empirical potential description is adequate. The particular methodology chosen to model
the immediate neighborhood of the crack tip, a semiempirical nonorthogonal TB scheme
[91], describes well the bulk, amorphous, and surfaces properties of Si. Figure 5 shows the
spatial decomposition of the computational cell into five different dynamic regions of the
simulation: the continuum FE region at the far-field, where the atomic displacements and
strain gradients are small; the atomistic MD region around the crack, with large strain gra-
dients but with no bond breaking; the quantum mechanical region (labeled TB because of
the use of the tight-binding method) right at the crack tip, where atomic bonds are being
broken and formed; the FE/MD handshaking region; and the MD/TB handshaking region.
The total Hamiltonian Htot for the entire system was written as

Htot = HFE�#u� u̇' ∈ FE�+HMD�#r� ṙ' ∈MD�+HTB�#r� ṙ' ∈ TB�

+HFE/MD�#u� u̇� r� ṙ' ∈ FE/MD�+HMD/TB�#r� ṙ ∈MD/TB�

The degrees of freedom of the Hamiltonian are atomic positions r and velocities ṙ for the
TB and MD regions and displacements u and their time rates of change u̇ for the FE regions.
Equations of motion for all the relevant variables in the system are obtained by taking
appropriate derivatives of this Hamiltonian. All variables can then be updated in lock-step as

FE MD

MD

(c)(b)(a)

TB

Figure 5. Geometrical decomposition of a Si slab with a small crack into different dynamic regions in a macrosopic-
atomistic–ab initio dynamics simulation: (a) The system at the macroscopic scale, which is modeled as a continuum
using finite elements (FEs), except for the region near the crack, outlined in dashed line. (b) The mesoscopic scale,
treated atomistically with interatomic potentials and molecular dynamics (MD), with the atoms indicated by green
circles, except for the region in the immediate neighborhood of the crack, which is outlined in a dashed line. (c) The
microcopic scale, treated atomistically with forces derived from quantum mechanical calculations, with the atoms
indicated by red circles. The handshaking regions between FE and MD and between MD and tight binding (TB)
are also shown schematically (see text for details).
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a function of time using the same integrator. Thus, the entire time history of the system may
be obtained numerically, given an appropriate set of initial conditions. Following trajectories
dictated by this Hamiltonian leads to evolution of the system with conserved total energy,
which ensures numerical stability.
The individual approaches at each level (FE, MD, and TB) are well-established and tested

methods. What was much more important in this study was the seamless handshaking of
the different methods at the interface of the respective domains; namely, the handshaking
algorithms between the FE and MD regions and between the MD and TB regions. We
present here the main ideas behind the coupling of the different regions.

3.1.1. FE/MD Coupling
To achieve the FE/MD handshaking, the FE mesh spacing is scaled down to atomic dimen-
sions at the interface of the two regions. In Fig. 5, the FE nodes are indicated as small open
circles connected by thin lines. Moving away from the FE/MD region and deep into the
continuum, one can expand the mesh size. In this way, the atomistic simulation is embed-
ded in a large continuum solid, indicated by a green-colored region in Fig. 5a. FE cells
contributing fully to the overall Hamiltonian (unit weight) are marked with thin solid lines,
whereas cells contributing to the handshake Hamiltonian (half weight) are represented by
thin dashed lines. Interactions between the atoms on the MD side, which are represented
by an interatomic potential, carry full weight when fully inside the MD region (thick solid
lines joining neighboring atoms) and half weight (thick dashed lines) when they cross the
boundary, with one of the neighbors effectively represented by a node in the FE region.
The FE/MD interface is chosen to be far from the fracture region. Hence, the atoms of the
MD region and the displacements of the FE lattice can be unambiguously mapped onto one
another. The assignment of weights equal to unity within each region and equal to one-half
at the interface is arbitrary and can be generalized by the introduction of a smooth step
function.

3.1.2. MD/TB Coupling
At this interface, the atoms treated quantum mechanically are shown in red and those
treated classically are shown in green. The dangling bonds at the edge of the TB region
are terminated with pseudo-hydrogen atoms. The Hamiltonian matrix elements of these
pseudo-hydrogen atoms are carefully constructed to tie off a single Si bond and to ensure
the absence of any charge transfer when that atom is placed in a position commensurate
with the Si lattice. In other words, the TB-terminating atoms are fictitious monovalent atoms
forming covalent bonds with the strength and length of bulk Si bonds. These fictitious atoms
are called “silogens”: They behave mechanically just like Si, but chemically like H. The TB
Hamiltonian including silicon–silicon and silicon–silogen matrix elements is then diagonal-
ized to obtain electronic energies and wavefunctions, from which the total energy can be
computed. Thus, at the perimeter of the MD/TB region, there are silogens sitting directly
on top of the atoms of the MD region, which are shown as the smaller red circles on top
of the green circles in Fig. 5. On one side of the TB/MD interface, the bonds to an atom
are derived from the TB Hamiltonian, and are shown as shaded regions in Fig. 5, to indi-
cate the electronic distribution responsible for the formation of the covalent bonds. On the
other side of the interface, the bonds are derived from the interatomic potential of the MD
simulation. The MD atoms of the interface have a full complement of neighbors, including
neighbors whose positions are determined by the dynamics of atoms in the TB region; these
are shown as small green circles on top of the red circles in Fig. 5. As before, the TB code
updates atomic positions in lockstep with its FE and MD counterparts.
The MAAD approach was employed to study the brittle fracture of Si in a geometry con-

taining a small crack (notch) within an otherwise perfect solid, with the exposed notch face in
the (100) plane and the notch pointed in the �010 direction. The system consisted of 258,048
mesh points in each FE region, 1,032,192 atoms in the MD region, and approximately 280
unique atoms in the TB region (for computational reasons, the entire region modeled by the
TB method was broken into smaller, partially overlapping regions, each assigned to a differ-
ent processor in a parallel implementation). The lengths of the MD region are 10.9 Å for
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the slab thickness along the front of the crack, 3649 Å in the primary direction of propaga-
tion, and 521 Å in the direction of pull (before pulling). Periodic boundary conditions were
imposed at the slab faces normal to the direction of the crack propagation (along the front
of the crack). The wall-clock time for a TB force update was 1.5 s, that for the MD update
was 1.8 s, and that for the FE update was 0.7 s. The TB region was relocated after every
10 time steps to ensure that it remained at the very tip of the propagating crack. The com-
putational slab was initialized at zero temperature, and a constant strain rate was imposed
on the outermost FE boundaries defining the opposing horizontal faces of the slab. Further-
more, a linear velocity gradient was applied within the slab, which results in an increasing
internal strain with time. It was observed that the Si solid failed in a brittle fashion at the
notch tip when the material was stretched by ∼1.5%. The limiting speed of crack propaga-
tion was found to be 85% of the Rayleigh speed with the chosen computational setup. In
the course of the simulation, the straight-ahead brittle cleavage of the Si slab left behind a
rough surface, with increased roughening as a function of crack distance. On the basis of
these results, the authors suggested that the roughening surface is the result of the spawning
of dislocations with low mobility on the timescale of the crack motion.
A general problem associated with domain decomposition, as in the MAAD simulations,

is the spurious reflection of elastic waves (phonons) at the domain boundaries because of the
changes in system description across the boundaries. For example, such effects have been
observed in the atomistic modeling of dislocation motion [92], crack propagation [93–96],
and energetic particle–solid collisions [97, 98], all of which involved some domain coupling
scheme. Because the MAAD method involves domain decomposition into the TB, MD, and
FE regions, the quality of coupling between different regions needs to be examined. In a
subsequent paper, Broughton et al. reported that there was no visible reflection of phonons
at the FE/MD interface and no obvious discontinuities at the MD/TB interface [26]. Thus,
in this scheme the coupling between the various domains is indeed performed in a seam-
less manner, closely mimicking the actual behavior of the physical system under investiga-
tion. Overall, the MAAD approach represents state-of-the-art current multiscale simulation
strategies. It is a finite-temperature, dynamic, and parallel algorithm that, at least as far as
general computational aspects are concerned, is applicable to any type of material.
Ongoing efforts are exploring the possibility of applying the MAAD strategy to study-

ing chemical effects on mechanical properties of metallic alloys, such as impurity effects
on dislocation motion, crack nucleation, and propagation in various metals. There is an
important qualitative difference between such systems and the study of the brittle fracture
of Si mentioned above: The nature of bonds in metallic systems is very different from the
simple covalent bonds in Si. This makes necessary the development of a different way of
coupling the quantum mechanical to the classical atomistic region, because it is no longer
feasible to terminate the bonds at the boundary of the quantum region by simply saturat-
ing them with fictitious atoms such as the silogens. In such endeavors, other more efficient
and versatile quantum mechanical formulations are desirable. One candidate is the linear-
scaling real space kinetic energy functional method [99]. This method approximates the
noninteracting kinetic energy of DFT as a functional of electron density, and electronic
wave-functions are thus eliminated from calculations; therefore, the method is termed as
orbital-free density-functional theory (OFDFT). As a consequence, no diagonalization of
the electronic Hamiltonian and no sampling of reciprocal space are necessary, making the
method computationally efficient [100]. In particular, the explicit real space feature of this
approach makes it naturally suitable for domain coupling within the MAAD framework.
Although efforts to construct a fully functioning scheme along these lines are continuing, we
believe this is a promising method with great potential for applications in metallic systems,
which are difficult to handle with other techniques.

3.2. Quasicontinuum Model

One observation from many large-scale atomistic simulations is that only a small subset of
atomic degrees of freedom do anything interesting. The great majority of the atoms behave
in a way that could be described by effective continuum models like the elasticity theory.
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The computation and storage of the uninteresting degrees of freedom—necessary for a
fully atomistic calculation—consume a large proportion of computational resources. This
observation calls for novel multiscale approaches that can reduce the number of degrees
of freedom in atomic simulations [101, 102]. One such approach, proposed by Tadmor,
Ortiz, and Phillips, is particularly promising and has yielded considerable success in many
applications [103]. This concurrent multiscale approach is called the quasicontinuum method,
and it seamlessly couples the atomistic and continuum realms. The chief objective of the
approach is to systematically coarsen the atomistic description by the judicious introduction
of kinematic constraints. These kinematic constraints are selected and designed so as to
preserve full atomistic resolution where required—for example, in the vicinity of lattice
defects—and to treat collectively large numbers of atoms in regions in which the deformation
field varies slowly on the scale of the lattice. Variants of the quasicontinuum model have been
developed and applied in different situations [103–114]. The essential building blocks of the
static quasicontinuum model are the constrained minimization of the atomistic energy of the
solid, the use of summation rules to compute the effective equilibrium equations, and the use
of adaptation criteria to tailor the computational mesh to the structure of the deformation
field. An extension of the method to finite temperature has also been proposed [115].
The quasicontinuum model starts from a conventional atomistic description, which com-

putes the energy of the solid as a function of the atomic positions. (A web site with
useful information related to the quasicontinuum method can be found at http://www.
qcmethod.com, where the quasicontinuum codes are also available to download.) The config-
uration space of the solid is then reduced to a subset of representative atoms. The positions
of the remaining atoms are obtained by piecewise linear interpolations of the representa-
tive atom coordinates, much in the same manner as displacement fields are constructed in
the FE method. The effective equilibrium equations are then obtained by minimizing the
potential energy of the solid over the reduced configuration space. A direct calculation of
the total energy in principle requires the evaluation of sums that are extended over the full
collection of atoms; namely

Etot =
N∑
i=1

Ei (14)

where N is the total number of atoms in the solid. The full sums may be avoided by the
introduction of approximate summation rules. For example, the lattice quadrature analog of
Eq. (14) can be written as

Etot ≈
Nr∑
i=1

ni�Ei (15)

where ni is the quadrature weight that signifies how many atoms a given representative atom
stands for in the description of the total energy and �Ei is the energy of ith representa-
tive atom. Note that in this case the sum is over the Nr representative atoms only. In the
quasicontinuum approach, the FE method serves as the numerical tool for determining the
displacement fields, whereas an atomistic calculation is used to determine the energy of a
given displacement field. The positions of the coarse-grained atoms are needed because the
energy of the representative atoms depends on them. This approach is in contrast to stan-
dard FE schemes, in which the constitutive law is introduced through a phenomenological
model. The selection of the representative atoms may be based on the local variation of
the deformation field. For example, near dislocation cores and on planes undergoing slip,
full atomistic resolution is attained with adapted meshing. Far from defects or other highly
stressed regions, the density of representative atoms rapidly decreases, and the collective
motion of very large numbers of atoms is dictated without appreciable loss of accuracy by a
small number of representative atoms.
The quasicontinuum method has been applied to a variety of problems, including dis-

location structures [103, 104], interactions of cracks with grain boundaries [105], nanoin-
dentations [110, 112, 114], dislocation junctions [108], atomistic-scale fracture process [106],
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and so forth. By way of example, Shenoy et al. applied the method to study the interac-
tion of dislocations with grain boundaries (GBs) in Al [105]. In particular, they considered
a reformulation of the quasicontinuum model that allows for the treatment of interfaces,
and therefore of polycrystalline solids. As the first test of the model, they computed the
GB energy and atomic structure for various symmetric tilt GBs in Au, Al, and Cu, using
both direct atomistic calculations and the model calculations. They found excellent agree-
ment between the two sets of calculations, indicating the reliability of the model for their
purpose. In the study of Al, they used nanoindentation-induced dislocations to probe the
interaction between dislocations and GBs. Specifically, they considered a block oriented so
that the (111) planes are positioned to allow for the emergence of dislocations, which then
travel to the 5 21(2̄41) GB located at ∼200 Å beneath the surface (see Fig. 6a). First, the
energy minimization is performed to obtain the equilibrium configuration of the GB, then a
mesh is constructed accordingly, as shown in Fig. 6a. The region that is expected to partic-
ipate in the dislocation–GB interaction is meshed with full atomistic resolution, whereas in
the far fields the mesh is coarser. The displacement boundary conditions at the indentation
surface are then imposed onto this model structure, and after the critical displacement level
is reached, dislocations are nucleated at the surface. With the EAM potential [12] supplying
the atomistic energies in the quasicontinuum approach, the authors observed closely spaced
(15 Å) Shockley partials nucleated at the free surface. As seen from Fig. 6b, the partials are
subsequently absorbed at the GB with the creation of a step at the GB, and no evidence of
slip transmission into the adjacent grain is observed. The resultant structure can be under-
stood based on the concept of the displacement shift complete lattice [116] associated with
this symmetric-tilt GB. As the load is increased, the second pair of Shockley partials is nucle-
ated. These partials are not immediately absorbed into the GB, but instead form a pile-up
(Fig. 6b). The dislocations are not absorbed until a much higher load level is reached. Even
after the second set of partial dislocations is absorbed at the GB, there is no evidence of
slip transmission into the adjacent grain, although the GB becomes much less ordered. The
authors argued that their results give hints for the general mechanism governing the absorp-
tion and transmission of dislocations at GBs. The same work also studied the interaction
between a brittle crack and a GB and observed stress-induced GB motion (the combination
of GB sliding and migration). In this example, the reduction in the computational effort
associated with the quasicontinuum thinning of degrees of freedom is significant. For exam-
ple, the number of degrees of freedom associated with the mesh of Fig. 6a is about 104,
three orders of magnitude smaller than what would be required by a full atomistic simulation
(107 degrees of freedom).
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Figure 6. Example of a multiscale simulation using the quasicontinuum method. (a) Finite-element mesh used to
model dislocation-grain boundary interaction. The surface marked AB is rigidly indented to generate dislocations
at A (distance in Amstroms). (b) Snapshots of atomic positions at different stages in the deformation history.
Absorption of the first pair of dislocations at the GB results in a step, while the second pair form a pileup.
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Recently, the quasicontinuum model has been extended to complex Bravais lattices [117],
whereby more complicated materials can be handled [114]. However, because of the expres-
sion for the total energy adopted in Eqs. (14) and (15), the actual atomistic methods that
can be implemented in the quasicontinuum model are limited to ones that can be easily cast
in such a form, if one insists on having the ability to resolve the FE nodes all the way to
the atomic scale. This limit is often referred to in the literature as the “nonlocal” regime of
the quasicontinuum method. In contrast, the “local” limit refers to the case in which each
FE node represents a very large number of atomistic degrees of freedom, which is modeled
as corresponding to an infinite solid homogeneously deformed according to the local strain
at the node. In this limit, it is advantageous to employ effective Hamiltonians to compute
energetics for the representative atoms. Such Hamiltonians can be constructed from ab initio
calculations and may include physics that atomistic simulations based on classical interatomic
potentials (such as EAM) are not able to capture. For example, by constructing an effec-
tive Hamiltonian parametrized from ab initio calculations, Tadmor et al. were able to study
polarization switching in piezoelectric material PbTiO3 in the context of the quasicontinuum
model in the local limit [118]. This particular Hamiltonian includes the following terms: the
elastic energy of the lattice, the coupling between strain and atomic displacement, harmonic
and anharmonic phonon energy contributions, the interaction of atomic displacement with
the applied electric field, and the electrostatic energy. With this effective Hamiltonian, it
was shown that the behavior of a large-strain ferroelectric actuator under the application of
competing external stress and electric fields can be modeled successfully, reproducing, for
example, all the important features of the experimental strain versus the electric field curve
for the actuator. The advantage of these simulations is that they also provide insight into
the microscopic mechanisms responsible for the macroscopic behavior, making possible the
improvement of design of the technologically useful materials.
One pitfall of the quasicontinuum model is the so-called “ghost force” at the interface

between the local region, identified with slow variation of the deformation gradient, and
the nonlocal region, identified with rapid variation of the deformation gradient [109]. The
error arises from the fact that different energy formulations are used for local and nonlocal
regions, and Newton’s third law is not satisfied across the local–nonlocal interfaces. Care
must be taken to correct these “ghost forces” [109]. Finally, we should point out that the
quasicontinuum approach also shares certain features with sequential approaches; namely,
the constitutive equation for the FE nodes is drawn from atomistic calculations (akin to
message-passing in sequential approaches). The reason we categorize it as a concurrent
multiscale approach is that the atomistic and FE calculations are performed concurrently
rather than in sequence, as the range of deformations encountered in various parts of the
system are not known beforehand. Moreover, some sort of domain partitioning (meshing) is
involved in the quasicontinuum approach.

3.3. Coarse-grained Molecular Dynamics

Mesoscopic elastic systems, and in particular nano-electro-mechanical systems (NEMS),
recently have captured a great deal of attention and research interest as nanoscale machines
and devices. However, there is serious concern regarding their mechanical integrity and sta-
bility in applications because these nanoscale devices are so minuscule that structural defects
and surface effects could have a large effect on their performance. However, the compu-
tational study of the mechanical properties of the NEMS has turned out to be extremely
difficult because they are too small in size for FE simulations (at the limit at which con-
tinuum elasticity theory may be no longer valid), but too large for atomistic simulations.
To resolve this problem, a concurrent multiscale simulation strategy called coarse-grained
molecular dynamics (CGMD) has been developed by Rudd and Broughton [119, 120]. This
approach bears some resemblance to the quasicontinuum model, yet there exist important
differences between the two.
The CGMD approach is based on a statistical coarse-graining prescription. In particular,

the model aims at constructing scale-dependent constitutive equations for different regions in
a material. In general, the material of interest can be partitioned into cells, whose size varies
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so that in important regions a mesh node is assigned to each equilibrium atomic position,
whereas in other regions the cells contain many atoms, and the nodes need not coincide with
atomic sites. The CGMD approach produces equations of motion for a mean displacement
field defined at the nodes by defining a conserved energy functional for the coarse-grained
system as a constrained ensemble average of the atomistic energy under fixed thermodynamic
conditions. The key point of this effective model is that the equations of motion for the nodal
(mean) fields are not derived from the continuum model but from the underlying atomistic
model. The nodal fields represent the average properties of the corresponding atoms, and
equations of motion (in this particular case Hamilton’s equations) are constructed to describe
the mean behavior of underlying atoms that have been integrated out.
One important underlying principle of CGMD is that the classical ensemble must obey the

constraint that the position and momenta of atoms are consistent with the mean displace-
ment and momentum fields. To be specific, let the displacement of atom � be u� = x� − x�0,
where x�0 is its equilibrium position. The displacement of mesh node j is an average of the
atomic displacements

uj =
∑
�

fj�u� (16)

where fj� is a weighting function, a microscopic analog of the FE interpolating functions.
Note that Latin indices j and k denote mesh nodes and the Greek indices � and  denote
atoms. A similar relation holds for the momenta p�. Because the nodal displacements
are fewer or equal to the atomic positions in number, fixing the nodal displacements and
momenta does not necessarily entirely determine the atomic positions. Therefore, some sub-
space of phase space remains not sampled, which corresponds to the degrees of freedom
that are missing from the mesh points. The coarse-grained energy is defined as the average
energy of the canonical ensemble on this constrained phase space

E�uk� u̇k� = �HMDuk� u̇k
=

∫
dx�dp�HMDe

−&HMD�/Z�

� = ∏
j

+

(
uj −

∑
�

u�fj�

)
+

(
u̇j −

∑
�

p�fj�
m�

)
(17)

where & = 1/�kBT � is the inverse temperature and Z is the partition function. The three-
dimensional delta functions +�u� enforce the mean field constraint [Eq. (16)].
When the mesh nodes and the atomic sites are identical, the CGMD equations of motion

agree with the atomistic equations of motion. As the mesh size increases, some short-
wavelength degrees of freedom are not supported by the coarse mesh, but these degrees of
freedom are not neglected entirely, because their thermodynamic average effect has been
retained. This approximation is expected to be good if the system is initially in thermal equi-
librium and the missing degrees of freedom only produce adiabatic changes to the system.
The Hamiltonian was derived originally for a monoatomic harmonic solid but can be eas-
ily generalized to polyatomic solids [119]. After deriving the equations of motion from the
assumed Hamiltonian for a particular system, one can perform the CGMD for the nodal
points.
As proof of principle, the method was applied to one-dimensional chains of atoms with

periodic boundary conditions, where it was shown that the CGMD gives better results for
the phonon spectrum of the model system compared to two different FE methods [119].
A variety of other calculations have also been performed with the CGMD to validate its
effectiveness [120, 121].
Although the CGMD has proven to be reliable in the description of lattice statics and

dynamics, the implementation of the model varies from system to system. This is because
different approximations have to be made to the Hamiltonian that represents a particular sys-
tem. However, such approximations can be estimated and controlled in the CGMD method.
This advantage makes the CGMD method a good candidate for replacing the FE method
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in the MAAD approach when a high quality of FE/MD coupling is required. As we alluded
earlier, the CGMD approach resembles the quasicontinuum model in the sense that both
approaches adopt an effective field model, an idea rooted in the renormalization group the-
ory for critical phenomena. In both approaches, less important (long-wavelength) degrees of
freedom are removed while the effective Hamiltonian is derived from the underlying fine-
scale (atomistic) model. Although both approaches are developed to couple FE and atomistic
models, the quasicontinuum method is mainly applicable to zero-temperature calculations,
whereas the CGMD is designed for finite-temperature dynamics. The quasicontinuum model
has shown its success in many applications, but the CGMD approach has yet to show its
wider applicability and versatility.

3.4. Other Works

Recently, a more general model for the dynamics of coarse-grained multiscale systems was
proposed by Curtarolo and Ceder [122]. The model is similar to the Migdal–Kadanoff
approach in the renormalization group theory [123], in which the system is coarse-grained
through a bond-moving process. The new potentials are constructed to ensure that the par-
tial partition function of the system remains unchanged. The information removed from the
coarse-graining process can be quantified by the entropy contribution of each step. Although
the model is shown to produce excellent results for mechanical and thermodynamical prop-
erties compared to the non-coarse-grained system, so far it is limited to two-dimensional
systems, and its generalization to three dimensions is yet to be achieved and tested.
Another interesting approach has been developed by Shilkrot, Miller, and Curtin, aimed at

linking an atomistic region to a “defected” dislocation dynamics region [124]. In this coupled
atomistic and discrete dislocation (CADD) method, the fully atomistic region is directly
coupled to a linear elastic continuum region containing dislocations that are modeled as
continuum elastic line defects. The dislocations at the continuum region are treated with
the standard discrete dislocation method [125], and the atomistic region may have any kind
of atomic scale defects. The key aspect of the CADD method is that the dislocations can
pass between the atomistic and continuum regions smoothly. Two developments have been
made to achieve this goal: first, the detection of the dislocation near the atomic–continuum
interface, and second, a procedure for moving the “right” dislocations across the interface.
So far, this approach has only been implemented in two-dimensional systems, but it has been
shown to agree quite well with the two-dimensional atomistic calculations for Al.
Some other concurrent approaches are similar to the MAAD method but concentrate on

linking two different length scales rather than three. For example, Bernstein and Hess [126]
have simulated brittle fracture of Si by dynamically coupling empirical-potential MD and
semiclassical TB approaches. In a similar vein, Lidorikis et al. have studied stress distribu-
tion in Si/Si3N4, using a hybrid MD and FE approach [127]. More recently, a first-principles
Green’s function boundary condition method has been developed to self-consistently cou-
ple the strain field produced by a line defect to the long-range elastic field of the host
lattice [128].
Concurrent multiscale ideas have also been applied to the modeling of polymers [129]

and biomolecules. In particular, the hybrid quantum mechanical and molecular mechanical
(QM/MM) methods have been gaining ground in the study of proteins and enzymes in which
the small part of a molecule (active site) is modeled by ab initio methods while the rest of
the molecule can be dealt with by a more approximate classical force field theory [130]. One
particular implementation [131] of the QM/MM strategy is to combine the quantum mechan-
ical self-consistent-charge density-functional-based TB method [132] with the CHARMM
molecular force fields [133]. This approach has been used to study the reactions catalyzed
by triosephosphate isomerase and the dynamics of small peptide helices in water [131].
Finally, we wish to comment that many concurrent models such as the ones discussed

above are designed for covalently bonded systems. These methods take advantage of the
localized electron bonding across the domain interface (between TB/MD and between
QM/MM) and partition the bonding energy approximately, with a certain degree of empiri-
cism. For metallic systems, however, the bonds are not localized or associated with a dis-
tinct pair of atoms; therefore, the concept of “bonding energy partition” across the domain
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interface becomes invalid, and new concepts are needed. Recently, several groups have
exploited the idea of “embedding potential” in simulations in which a region (I) with a
more accurate description of the physics is embedded into another region (II) with a less
accurate description. The influence of region II on region I is described by the “embed-
ding potential,” which corresponds to a local one-electron operator in the framework of the
DFT [134–137]. For example, in an effort to improve the LDA/DFT description of molec-
ular adsorption on surfaces, a coupling method was developed in which a more accurate
(quantum chemical) region (I) was embedded in a less accurate LDA/DFT region (II) [134,
135, 137]. The “embedding potential” is defined as the functional derivative of the coupling
energy with respect to the electron density �I�r� in region I. The total electron density
�tot = �I + �II , where �II is the electron density in the LDA/DFT region, can be obtained
by just LDA/DFT calculations for the entire system because the electron density is usually
well represented by LDA/DFT. �tot is then held fixed during the subsequent calculations. By
employing the OFDFT method [100] for the coupling energy, the “embedding potential” can
be explicitly evaluated for any given �I�r�. The “embedding potential” as an effective local
one-electron operator can in turn be added to the Hamiltonian of region I, and the new
electron density �I�r� is thus determined. In this way, �I�r� can be updated self-consistently
for the given �tot. The same “embedding potential” idea can be applied to the coupling
between two different DFT regions, or between two regions, where one is treated with DFT,
and the other is treated classically, for instance, with EAM.
This last approach, currently under development in our group, deserves some elaboration.

This approach strives to combine quantum mechanics via OFDFT, classical mechanics via
EAM, and continuum mechanics via the quasicontinuum method in a unified description for
metallic systems. Because the electron density defined in the EAM potential along with the
EAM nuclei could generate an “embedded potential” that the OFDFT electrons experience,
the coupling energy between OFDFT and EAM regions can be explicitly calculated. Fur-
thermore, the EAM atomistic region can be easily coupled to the continuum region based
on the nonlocal description of the quasicontinuum framework.

4. EXTENDING TIMESCALES

4.1. Accelerated Dynamics

As we have seen, MD plays a critical role in the modeling of materials problems because
MD simulations can follow the actual dynamical evolution of the system without assuming
any mechanism or pathway for the dynamics, in contrast to, say, Monte Carlo or molecular
statics simulations. However, MD is typically limited to a timescale of nanoseconds because
standard MD simulations follow the individual vibrations of all the atoms, whose vibration
frequencies are on the order of 1014 s−1. This is particularly troublesome for the complex sys-
tems whose dynamics are characterized by the occurrence of rare but important events, such
as chemical reactions, diffusion processes, and conformational changes. In these systems, the
existence of energetic barriers much larger than kBT that separate the initial from the final
state leads to reaction times far greater than those that can be currently accessed computa-
tionally. The other reason for extending timescales is that time is a sequential object, and
the current progress in parallel computing has little effect on solving the problem. There-
fore, algorithms that could address the timescale problem could revolutionize the field of
computational materials science and engineering.
In the past few years, significant progress has been made in accelerating MD simula-

tions. A class of accelerated dynamics methods, including hyperdynamics, parallel replica
dynamics, and temperature-accelerated dynamics, has been developed by Voter and cowork-
ers [138–140]. Although each method accomplishes this acceleration in a different way,
transition-state theory (TST) provides the common theoretical foundation. TST is an elegant
theory with extensive applications in materials science [141–146]. In TST theory, a state-to-
state transition rate constant (KTST ) is approximated as the flux through a dividing surface in
the phase space separating the initial and final states. A common and useful approximation
to TST is the harmonic TST, in which one assumes that the potential energy surface (PES)
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near the minimum can be expanded with the harmonic approximation. Thus, the TST rate
constant (the flux through the saddle plane) becomes

KHTST = 0 exp�−E/kBT � (18)

where

0 =
∏3N

i i∏3N−1
i ′i

(19)

Here E is the activation energy (energy difference between the minimum and the saddle
point), i is the ith normal mode frequency at the minimum, and ′i is the nonimaginary nor-
mal model frequency at the saddle point [146]. The analytic integration over the whole phase
space yields the well-known Arrhenius temperature dependence. It is worthwhile pointing
out that although the exponent depends only on the barrier height, there is no assumption
that the trajectory passes exactly through the saddle point. For systems in which there is
no recrossing of the dividing surface and the modes are truly harmonic, the rate [Eq. (18)]
is exact. The underlying concept in the accelerated dynamics methods is that the system
trajectory is simulated to find an appropriate pathway for escape from an energy well by a
process that takes place much faster in the simulation than it would with direct MD. We
provide below an elementary description of this concept.
The general formulation of TST rests on two assumptions to treat infrequent events: first,

it is known in advance what the different equilibrium states of the system will be, and second,
it is possible to construct a reasonable dividing surface along the boundaries between initial
and final states (or, equivalently, all the saddle points can be identified). Unfortunately, the
knowledge of states through which a system may evolve in most cases (especially in complex
systems) is incomplete. The hyperdynamics method [139, 140] is designed to accelerate MD
simulations without any advance knowledge of either the location of the dividing surface or
the states through which the system may evolve. Based on TST, Voter has shown that it is
possible to modify the PES of the system in such a way that a simulation on this modified
surface exhibits the correct relative probabilities of transitions, but with enhanced overall
transition rates for the system escaping from one equilibrium state to the various nearby
equilibrium states. The key of this approach is to construct a bias potential to raise the
energy of the system in regions other than at the dividing surfaces. Dynamical evolution with
the biased potential leads to accelerated transition from one equilibrium state to another
equilibrium state, whereas the elapsed time is related to statistical properties of the system.
More precisely, the total time advance for a hyperdynamics simulation after n integration
steps is

thyper =
n∑
j=1

�tMDe
�V �r�tj ��/kBT (20)

where �tMD is the time advance for a regular MD trajectory, �V �r� is the bias potential,
and T is the temperature. The overall computational speed-up is given by the average boost
factor (thyper/tMD) divided by the extra computational cost of calculating the bias potential
and its derivatives. The evolution of hyperdynamics from state to state is correct because the
bias potential does not change the relative TST rates for different escape paths from a given
state. The long-time dynamics of the simulations are exact to the extent that the dynamical
corrections to the TST are negligible. Recently, Voter has shown that the bias potential and
its derivatives can be computed in O(N) fashion without ever constructing the Hessian [140].
Thus, the implementation of the hyperdynamics method requires only first derivatives of the
interatomic potential, as for normal MD simulations.
To demonstrate the effectiveness of the method, Voter has studied the diffusion of an

Ag adatom on the Ag (100) surface at 400 K using an EAM potential for the energetics.
He found that a 3�7 × 106 steps of hyperdynamics run gave an average boost of 1356, for a
total time of 9�89± 0�5 �s. Each hyperdynamics step required ∼30 times the computational
time of a direct MD step; therefore, the net computational boost was a factor of 45. The
rate constants obtained from the calculations are in agreement with the full harmonic rate.
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For a more complex system with a 10-atom Ag cluster on the Ag (111) surface at 300 K,
he achieved an average boost of 8310 with a hyperdynamics run for 221.2 �s. With this
approach, one should be able to observe novel diffusion mechanisms that can not be accessed
by normal MD simulations.
To take advantage of recent advances in parallel computation, Voter proposed the so-

called parallel replica dynamics method [147] to treat infrequent events. For a system in
which successive transitions are uncorrelated, running a number of independent MD trajec-
tories in parallel gives the exact dynamical evolution between the states. For a system with
correlated crossing events, the state-to-state transition sequence is still correct, but care must
be taken to eliminate or reduce the error associated with the simulation time. The parallel
replica method represents the simplest and most accurate of the accelerated dynamics tech-
niques, with the only assumption being that of infrequent events obeying first-order kinetics.
To be more specific, the probability distribution for the waiting time before the next escape
is assumed to be

p�t� = K exp�−Kt� (21)

where K is the rate constant for finding the next escape path from the current state. In
a system that exhibits no correlated crossing events, K is exactly the TST rate constant
(KTST). In a more general case, in which correlated crossings occur, K < KTST. For an
N -atom system in a particular equilibrium state (potential energy basin), the entire system is
replicated on each of M available parallel or distributed processors. After a short dephasing
stage, during which momenta are periodically randomized to eliminate correlations between
replicas, each processor carries out an independent constant-temperature MD trajectory for
the entire N -atom system, thus exploring the phase space within the particular basinM times
faster than a single trajectory would. Whenever a transition is detected on any processor,
all processors are alerted to stop. The simulation clock is advanced by the accumulated
trajectory time summed over all replicas (i.e., the total time spent exploring phase space
within the basin before the escape pathway is found). The parallel replica method also
correctly accounts for correlated dynamical events in which TST is no longer valid. This is
accomplished by allowing the trajectory that made the transition to continue on its processor
for a further amount of time �tcorr, during which recrossings or follow-on events may occur.
The simulation clock is then advanced by �tcorr, the final state is replicated on all processors,
and the whole process is restarted. This overall procedure then gives exact state-to-state
dynamical evolution because the escape times obey the correct probability distribution [138].
With this approach, significant extensions of MD timescales can be achieved. For example, in
MD simulations of vacancy diffusion on the Cu(100) surface at 500 K, a 15-processor parallel
computer can give a 14-fold increase in simulation time per wall-clock time. Moreover, the
parallel replica method can be combined with other accelerated dynamics methods, such as
hyperdynamics, to give a multiplicative effect in the MD timescale gain [147].
In the temperature-accelerated dynamics (TAD) method, the transition from state to state

is accelerated by the increasing temperature [148]. The transitions that should not have
occurred at the original temperature are then filtered out. The TAD method is more approx-
imate than the previous two methods because it relies on the harmonic TST approximation,
but it often gives substantially bigger boost than the hyperdynamics or the parallel replica
dynamics in systems in which the approximation is justified. Consistent with the acceler-
ated dynamics concept, the trajectory in TAD is allowed to wander on its own to find each
escape path, so that no prior information is required about the nature of the reaction mecha-
nisms [138]. Like hyperdynamics, TAD can also be combined with the parallel replica method
to achieve an even higher acceleration on parallel computers.

4.2. Finding Transition Pathways

As stated earlier, the problem of finding transition pathways for infrequent events between
two known equilibrium (stable or metastable) states is of considerable interest. The accel-
erated dynamics methods are designed to find the real dynamic pathways via effective MD
simulations. Other methods requiring no preconceived mechanism or transition state have
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also been developed to locate transition pathways. For example, Elber and Karplus [149]
developed a method to find the transition pathway by minimizing the average value of the
potential energy along the path rather than trying to find the path with the lowest barrier.
A more popular approach, similar in spirit to the Elber–Karplus method, is the so-called
nudged elastic band (NEB) approach [150, 151], which focuses on the global character of
the path rather than on local properties of the PES.
The NEB method is based on the “chain-of-states” idea, where a number of images (or

replicas or “states”) of the system are connected together between the endpoint configura-
tions to trace out a transition pathway [150]. If the images are connected with springs of
zero natural length, one can define the object function for the so-called plain elastic band
(PEB) method in the following

SPEB� �R1� � � � � �RP−1� =
P∑
i=0

� � �Ri�+
P∑
i=1

Pk

2
� �Ri − �Ri−1�

2 (22)

where vector �R represents the coordinate of the system, � is the potential energy of the
system, and k is the spring constant. The spring is introduced to ensure that the images
are evenly spaced along the path. One would envision finding the transition pathway by
minimizing the object function in Eq. (22) with respect to the intermediate images while
keeping the endpoint images �R0 and �RP fixed. The force acting on the image i is

�Fi = −%� � �Ri�+ �F s
i (23)

where

�F s
i = ki+1� �Ri+1 − �Ri�− ki� �Ri − �Ri−1� (24)

However, as demonstrated by Jónsson et al., the PEB method fails to provide the transition
pathway in most situations [150]. For example, if ki is too large, the elastic band becomes
too stiff, and the transition path would then “cut the corner” and thus miss the saddle
point region. In contrast, if ki is small, the elastic band comes closer to the saddle point,
but the images slide down from the energy barrier (and avoid the saddle point), therefore
reducing the resolution of the path in the most critical region. Furthermore, by noticing the
analogy between the object function in the continuum limit and the action of a classical
particle of unit mass moving on the inverted PES, Jónsson et al. argued that the particle
would move through the saddle point region with a finite velocity affected by the force
component perpendicular to the curved path. In other words, the images would deviate
from the minimum energy path (MEP). The problem with “corner cutting” is caused by the
component of the spring force that is perpendicular to the path, which tends to pull images
off the MEP. The problem with sliding down results from the component of the potential
force or of the true force, %� � �Ri� that is parallel to the path. The distance between images
becomes uneven, so that the net spring force can balance the parallel component of the true
potential force. To cure these problems, the NEB method projects out the perpendicular
component of the spring force and the parallel component of the potential force relative to
the path. The force on image i becomes

�F 0
i = −%� � �Ri��⊥ + �F s

i · �̂��̂� (25)

where �̂� is the unit tangent to the transition path and %� � �Ri��⊥ = %� � �Ri�− %� � �Ri� · �̂��̂�.
These force projections (“nudging”) decouple the dynamics of the path itself from the dis-
crete representation of the path. The spring force thus does not interfere with the relaxation
of the images perpendicular to the path, and the relaxed configuration of the images satisfies
%� � �Ri��⊥ = 0 (i.e., they lie on the MEP).
The implementation of the NEB in a MD program is quite simple. First, the energy and

its gradient are evaluated for each image in the elastic band, using some description of the
energetics (ab initio or empirical force fields). Then, for each image, the local tangent to the
path is estimated and the force defined in Eq. (25) is evaluated for an initial guess of the path.
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The subsequent minimization for the magnitude of the forces with respect to the coordinates
of the intermediate images can be carried out with the velocity Verlet algorithm [152].
Recently, several improvements of the original NEB have been proposed [151, 153, 154].
The NEB method has found a wide range of applications in materials problems, including
a cross-slip of screw dislocations in metals [155], diffusion and atomic exchange processes
at metal and semiconductor surfaces [156, 157], dissociative adsorption of molecules on
surfaces [158], and contact formation of metal tips on surface [159]. The NEB method has
been implemented in many empirical potential and ab initio atomistic approaches [150, 151].
One drawback of the NEB method is the difficulty in choosing appropriate spring constants.
A large spring constant requires a small time step in the evolution of states (i.e., more images
along the path). A small spring constant, however, may fail to achieve the desired uniformity
of the images along the path and, hence, may reduce the accuracy for the energy barrier.
Furthermore, like other methods in this category, the NEB method becomes less efficient
or even inapplicable to systems with very rough energy landscapes.
Realizing the importance of real dynamical pathways, Chandler and collaborators have

recently proposed methods for statistically sampling dynamical paths (MC sampling of MD
trajectories) that do not require the assumption of TST or the existence of a single, well-
defined transition state or transition path [160, 161]. In particular, no reaction coordinate
is needed to study the dynamics or kinetics of rare transitions [162] with these methods.
In a sense, the transition path-sampling methods are metaphorically akin to throwing ropes
over rough mountain passes in the dark: “throwing ropes” corresponds to shooting short
real dynamical trajectories, and “in the dark” implies that the high-dimensional systems are
so complex that it is generally impossible to visualize the topography of relevant energy
surfaces. Although these methods are extremely powerful for treating complex systems with
rough energy landscapes, they are usually computationally demanding. In particular, their
efficiency usually hinges on the ability to produce new accepted paths from old ones; thus,
they have found limited application so far.
Recently, an alternative finite temperature string method was proposed that represents

transition paths by their intrinsic parameterization to efficiently evolve and sample paths in
the path space [163]. The string method performs a constrained sampling of the equilibrium
distribution of the system in hyperplanes normal to the transition pathways of a coarse-
grained potential that need not be determined beforehand. The collection of the hyperplanes
is parametrized by a string that is updated self-consistently until it approximates locally the
correct coordinate associated with the reaction event. The region in these planes in which
the equilibrium distribution is concentrated determines a transition tube in the configuration
space in which a transition takes place with high probability. The string method naturally
overcomes the spring constant problem in the NEB method because of the intrinsic param-
eterization of the string, and the distribution of the replicas along the chain is automatically
uniform. The method, however, rests on the assumption that the equilibrium distribution
must be localized on the iso-surfaces of the reaction coordinate and that these iso-surfaces
can be locally approximated by the hyperplanes. If the effective transition tube is highly
curved in configuration space, this approach may have to be modified.
A method for efficiently generating classical trajectories with fixed initial and final bound-

ary conditions has recently attracted attention because of its conceptual and computational
simplicity [164]. The approach developed by Passerone and Parrinello addresses a very gen-
eral problem: Given an initial and a final configuration, what are the dynamical paths that
connect them? Given a classical dynamical system described by a set of coordinates q, its
trajectory q�t� with boundary conditions q�0� = qA and q��� = qB is determined by locating
the stationary point of the action �

� =
∫ �

0
��q�t�� q̇�t�� dt� (26)

where � is the Lagrangian � = � − � and � and � are the kinetic and potential
energy, respectively. Following the work of Gillilan and Wilson [165], the action � can be
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discretized as

� =
N−1∑
j=0

�

[
1
2

(
qj − qj+1

�

)2

− � �qj�

]
(27)

where q0 = qA, qN = qB; � = �/N is the time interval and the mass is taken as unitary [164].
The stationary solution of this action is the discretized Euler–Lagrangian equation, and the
corresponding trajectory is identical to the well-known Verlet trajectory. The novel part of
this method is supplementing the action with a penalty function that favors the energy-
conserving trajectories

A�qj � E� = � + �
N−1∑
j=0

�Ej − E�2 (28)

Here � determines the strength with which the energy conservation is enforced, Ej is the
instantaneous energy given by

Ej = �qj − qj+1�
2/�2�2�+ � �qj �

and E is its target value. This is motivated by the fact that the physical trajectories have to
conserve total energy. In all the systems studied, it was found that there exists a rather large
interval of � values such that A has a minimum close to the Verlet trajectories. To minimize
the A function more efficiently, Passerone et al. make the transformation

qj = qA + j�

�
�qB − qA�+

N∑
i=1

ai sin
(
�i
j�

�

)
(29)

thus automatically satisfying the boundary conditions. The advantage of using ai over qj is
that ai has a global character. In practice, A is first optimized with respect to a relatively
small number of ai, thus capturing the global features of the trajectory, and then higher
frequency terms are added. Each time, a standard conjugate gradient algorithm is used to
minimize A with only the evaluation of the forces. The computational scaling is therefore
linear in the number of degrees of freedom, rather than quadratic, as in other approaches
involving the Hessian matrix.
To illustrate the performance of the method, Passerone et al. studied a few simple sys-

tems. For a one-dimensional double-well potential, they found that their solutions agree very
well with the Verlet trajectory, but without the calculation of the Hessian matrix. The sec-
ond example was a minimization of a trajectory in a two-dimensional configurational space;
namely, in the Mueller potential [166]. Again, the authors found a satisfactory result; namely,
that the trajectories pass exactly through the saddle point and that the overall behavior of the
trajectories is physical. The last example was to look at a process in which the central atom
of a seven-atom, two-dimensional Lennard–Jones cluster migrates to the surface. In this
case, Passerone et al. claim that their calculations reproduce the results from the more elab-
orate method, which involves transition path-sampling procedure [167]. Finally, the authors
pointed out that their method can be easily implemented within the Car–Parrinello MD
approach [168], offering a powerful tool for the study of problems in chemistry and materials
science. The main advantages of this method are the fact that it requires only the calculation
of the forces, its numerical stability, and the quality of the trajectories. Furthermore, the
method lends itself to very efficient parallelization, and it can include naturally the multiple
timescale approaches [169].

4.3. Escaping Free-Energy Minima

For many systems, the free-energy surface (FES) may have multiple local minima separated
by large barriers; therefore, the timescale that typical MD and MC simulations can reach is
severely limited. Examples of such systems include conformational changes in solution, pro-
tein folding, and many chemical reactions. A large number of methods have been developed
to overcome the problem, some of which were already mentioned in Sections 4.1 and 4.2
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(see, e.g., the accelerated dynamics approach [138] or the dynamical transition path sampling
method [160]).
Recently, a novel and powerful method for exploring the properties of multi-dimensional

FES of complex systems was proposed by Laio and Parrinello [170]. This method combines
the ideas of coarse-grained dynamics on the FES [171, 172] with those of adaptive bias
potential methods [173, 174]. The method allows the system to escape from local minima
in the FES and at the same time achieves a quantitative determination of the FES through
the integrated process. This method assumes that there exist a finite number of relevant
collective coordinates si, i = 1� n, where n is a small number, and that the free energy � �s�
depends on these parameters. The exploration of the FES is guided by the generalized
forces F t

i = −(� /(sti . To estimate the forces more efficiently, an ensemble of P replicas of
the system is introduced, each obeying the constraint that the collective coordinates have
a preassigned value si = sti . The coarse-grained dynamics of the collective coordinates is
defined as follows:

�t+1
i = �t

i + +�
Bt
i

�Bt� (30)

where �t
i = sti /�si and B

t
i = F t

i �si are the scaled collective coordinates and forces, respec-
tively. The variable �si is the estimated size of the FES well in the direction si, �Bt� is the
modulus of the nth dimensional vector Bt

i , and +� is a dimensionless stepping parameter.
After the collective coordinates are updated using Eq. (30), a new ensemble of replicas of
the system with values �t+1

i is prepared, and new forces F t+1
i are calculated for the next iter-

ation. At the same time, the driving forces are evaluated from the microscopic Hamiltonian
in short, standard microscopic MD runs. To explore the FES more efficiently, the forces in
Eq. (30) are replaced by a history-dependent term

Bi → Bi −
(

(�i
W

∑
t′≤t

∏
i

e
− ��i−�t

′
i
�2

2�+��2 (31)

where the height and the width of the Gaussian, W and +� , are chosen to provide a rea-
sonable balance between accuracy and efficiency in exploring the FES. The component of
the forces coming from the Gaussian will discourage the system from revisiting the same
spot and will encourage an efficient exploration of the FES. As the system diffuses though
the FES, the Gaussian potentials accumulate and fill the FES well, allowing the system to
migrate from well to well. After a while, the sum of the Gaussian terms will almost exactly
compensate the underlying FES well [170].
A typical example of this behavior can be seen in Fig. 7, in which the dynamics in Eq. (30)

are used to explore a one-dimensional PES � �s� with three wells. The dynamics start from
a local minimum that is filled by the Gaussians in ∼20 steps. Then the dynamic escapes
from the well from the lowest-energy saddle point, filling the second well in ∼80 steps. The
second-highest saddle point is reached in ∼160 steps, and the full PES is filled in a total of
∼320 steps. Hence, in the case of this example, because the form of the potential is known,
it can be verified that for large t and small +�

−∑
t′≤t

We
− ��−�t′ �2

2�+��2 → � �s� (32)

modulo an additive constant. Laio and Parrinello also suggest that Eq. (32) holds for a FES,
and the free energy can be estimated from Eq. (32) for large t [170]. The efficiency of the
method in filling a well in the PES or the FES can be estimated by the number of Gaussians
that are needed to fill the well. This number is proportional to �1/+��n, where n is the
dimensionality of the problem. Hence, the efficiency of the method scales exponentially with
the number of dimensions involved. A judicious choice of �si, W , and +� will ensure the
right balance between accuracy and sampling efficiency, and the optimal height and width
of the Gaussians can be determined by the typical variations of the FES.
The method has been applied to the study of dissociation of a NaCl molecule in water and

of the isomerization of alanine dipeptide in water [170]. Overall, the method is very efficient
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Figure 7. Time evolution of the sum of a one-dimensional model potential V ��) and the accumulating Gaussian
terms of Eq. (31). The dynamic evolution (thin lines) is labeled by the number of dynamical iterations in Eq. (30).
The starting potential (thick line) has three minima, and the dynamics are initiated in the second minimum.

in exploring the FES of complex systems if the collective coordinates are chosen judiciously.
In particular, the topology of a FES can usually be determined by a few coarse-grained
dynamics steps using “large” Gaussians. Subsequently, the qualitative knowledge of the FES
can be improved using “smaller” Gaussians, effectively reducing the dimensionality of the
problem by exploiting the topological information obtained with “large” Gaussians. As we
alluded earlier, the current method assumes that the free energy � �si� depends on a small
number of collective coordinates si. However, it is not always obvious or possible to identify
such collective coordinates for complex systems a priori. In the example of isomerization of
alanine dipeptide in water, Laio et al. chose the dihedral angles D and E as the collective
coordinates to explore the FES. These authors recognized that the dihedral angles alone do
not provide the complete description of the dialanine isomerization reaction and that the real
reaction coordinates should include the solvent degrees of freedom. However, their results
seemed to reproduce the essential features of the FES; therefore, the authors concluded
that the neglected degrees of freedom, although relevant for determining the reaction coor-
dinates, are associated with small free-energy barriers and are sampled efficiently during the
microscopic dynamics of the dihedral angles D and E . Despite the success of this particular
example, identifying a small number of collective coordinates a priori remains challenging
within this approach. Moreover, the exploration of the FES would be more efficient if an
adaptive way of determining the parameters of Gaussians could be developed.

4.4. Other Methods

For systems with a natural disparity in inherent timescales, various multiple-time-step inte-
gration algorithms have been developed to deal with them more efficiently [175–177]. One
well-known example of such strategy is the Born–Oppenheimer approximation, in which the
electron motion is separated from that of the nuclei because of the large disparity between
their masses. In general, the separation of timescales occurs when some subset of forces
present in the system is much stronger compared to the rest of the forces, while the masses
of the constituents are about the same. For example, in the simulations of the polyatomic
liquids with flexible bonds, the bond vibrations usually occur at a much faster rate than
bond translation and rotations. In such systems, the configuration space can be divided into
fast and slow degrees of freedom, with the force also being separated into fast and slow
components. This separation yields a set of coupled equations of motion for the evolution
of the fast and slow degrees of freedom. Instead of solving this set of equations simultane-
ously, multiple-time-step integration uses a small time step +t to advance the fast degrees
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of freedom n steps holding the slow variables fixed. The slow degrees of freedom are then
updated using a time step n+t. The variable n can be chosen typically between 5 and 10 steps
in MD simulations of molecules that can be described in this way. Furthermore, if an ana-
lytic solution of high-frequency motion can be found, this solution can be incorporated into
an integration scheme for the whole system, such that a time-step characteristic of the slow
degrees of freedom can be used and the system simulated effectively with a much smaller
number of cycles [177].
Recently, a method based on optimization of the action functional was proposed to extend

the timescale of MD simulations by several orders of magnitude [178]. In this method,
instead of parameterizing the trajectory as a function of time, the trajectory is parametrized
as a function of length. Instead of solving the Newton equations in MD simulations, an
action term (stochastic difference equation with respect to time) is optimized. For activated
processes, the method eliminates the “incubation time,” and has proven to be very efficient
in the simulations of biomolecules. It remains to be seen, however, whether the method can
be applied to problems in materials science.

5. CONCLUSIONS
In this chapter we have attempted to provide a comprehensive, if not exhaustive, overview
of the current status of multiscale simulations methods and their applications in materials
science. We divided the methods that address multiscale problems in the spatial regime into
sequential and concurrent methods.
The sequential multiscale modeling techniques are, in general, more efficient computa-

tionally, but they depend on a priori knowledge of physical quantities of interest, such as the
�-surface in the P-N model, the free energies in the phase–field model, and atomistic local
laws for mesoscopic DD simulations. The relevance of these quantities to the coarse-grained
models needs to be carefully examined before the application of the methods. Further-
more, these approaches should only be pursued when phenomenological theories (such as
the P-N model or the phase–field model) are well established; therefore, the methods are
restricted in their range of application. In particular, these phenomenological models are
often associated with the assumption of locality (both in space and time). The example of
a local approximation in the phase–field model is embodied in Eq. (10), which assumes
that part of the energetics of an inhomogeneous system can be written in terms of quan-
tities obtained for homogeneous systems [1]. Similarly, in the P-N model, the �-energy is
assumed to be constant within �x distance [see Eq. (7)] to evaluate the total misfit energy.
The static approximation (locality in time) for dynamic properties is also widely used in
phenomenological models. The coupling between different scales in a sequential approach
is usually implicit. A successful sequential simulation depends equally on the reliability of
the phenomenological model and on the accuracy of the relevant parameters entering the
model.
The concurrent multiscale approaches are much more complicated and computationally

demanding, but they do not require a priori knowledge of physical quantities supplied from
distinct, lower-scale simulations. Furthermore, concurrent approaches do not depend on any
phenomenological models; therefore, they are of more general applicability. Although con-
current approaches are more desirable and appealing, the actual problem to be attacked
must be carefully posed to make the method practical. The problems that may arise in a
concurrent approach are usually associated with the partition of domains in the system.
For example, one needs to dynamically track the domain boundaries in the MAAD simula-
tions and to adapt the FE meshes in the quasicontinuum simulations, both of which require
additional care and computational resources. More important, in contrast to a sequential
method, a “good” handshaking in a concurrent approach between different domains is both
challenging and critical. Although some interesting ideas have been proposed to remedy the
problems of coupling between different domains, such as the reflection of phonons at the
domain interface [179–181], there is no general consensus on what a proper coupling of
domains is. A general criterion that measures the quality of handshaking between domains
would therefore be desirable. There is plenty of room for innovative research on the issue
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of domain coupling. General mathematical formulations of multiscale problems, including
error estimation, may turn out to be very useful for practical simulations [172, 182]. In
our view, a successful concurrent approach usually has to satisfy three conditions. First,
solve the coupled problem (Hamiltonian) accurately and efficiently by using ideas such as
coarse-graining, “bonding energy partition,” or “embedding potential.” Second, the sepa-
rate models employed in different domains of the system ought to be compatible (i.e., the
physical description of the system resulting from the distinct models should be as close as
possible). Third, at each level, the individual model should provide a good description of its
assigned domain. We wish to emphasize the importance of the second condition that is not
in general well recognized. The first condition usually guarantees a “smooth” handshaking
across two domains (e.g., the electron density distribution or the displacement field varies
smoothly across the interface), but nonphysical charge transfer or atomic relaxation at the
interface could occur if the second condition is not satisfied. Therefore, a “smooth” hand-
shaking does not constitute a “good” handshaking, and a successful concurrent approach
relies on handshakings that are both mathematically accurate and physically consistent.
In this overview, we have also described a number of approaches that strive to extend the

temporal scale in the modeling and simulation of material properties. We categorized these
approaches to methods for accelerating the dynamics, methods for finding transition paths
between equilibrium structures, and methods for escaping free-energy minima. Although
these approaches represent very significant developments in the field, the problem of linking
the timescale of atomic motion and vibrations (on the order of order femtoseconds) to scales
at which interesting physical phenomena are typically studied (microseconds and beyond) is
still wide open in many respects.
Because of the tremendous and continuing progress in multiscale strategies, this review is

by no means exhaustive. We hope that we have conveyed the message that multiscale model-
ing is a truly vibrant enterprise of multidisciplinary nature. It combines the skills of physicists,
materials scientists, chemists, mechanical and chemical engineers, applied mathematicians,
and computer scientists. The marriage of disciplines and the concomitant dissolution of tra-
ditional barriers between them represent the true power and embody the great promise
of multiscale approaches for enhancing our understanding of, and our ability to control,
complex physical phenomena.
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