What is the genetic basis of phenotypic variation?

Genetics of gene expression

Why study genetics of gene expression?

Regulatory variation is source of intraspecific differences and evolutionary change between species

- Genetic architecture as model for other quantitative traits
- Genetics as tool to probe regulatory networks

Transcript variation in a yeast cross

correlate genotype with transcript abundance

H
TH
TIME OF THE PARTY
¥
TITLE A REPORT
The same process of the same second s
ALL THE REPORT OF THE PARTY OF
18
NUMBER OF THE OWNER OF THE OWNER
*
CONTRACTOR OF A CONTRACTOR OF
THE CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTIONO
and the second se
THE REPORT OF A DESCRIPTION OF A DESCRIP
······································
-
Contraction of the second se
and the second se

Comparison of gene expression in two strains

Isolate RNALabelHyb vs. reference

Isolate RNA Label Hyb vs. reference

arrays cover all yeast genes ~6000

compare using Wilcoxon-Mann-Whitney rank test

2932 genes differ at FDR = 0.05

Science 2002

Genotyping by hybridization to oligo arrays

Affymetrix yeast chips contain 134, 175 oligos (25 bp) from lab strain

~3000 reproducible differences: lower bound one change per 1000 bp

Genetic map: 3312 markers; >99% genome coverage

I 			
II 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
IV 			
V 			
VI II NI N			
VII T in 11 n i anna 1 na 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
VIII 111		DV	
IX I IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	_	BY	
×			
IX I de la companya da la companya da la companya da companya da companya da comp	-	RM	
IIX MARINI AN AND AND AND AND AND AND AND AND AND			
XIII T TANNA MARAA ATA ATA ATA ATA ATA ATA ATA ATA ATA			
XIV 			
XV 11 1000 11 1000 100 101 101 101 101 101			
YX 			

Genotypes of 4 segregants from one tetrad

100 kb

Genotyping and phenotyping segregants

Testing for linkage in segregants

2984 genes link at FDR = 0.05

Science 2002

Example of mRNA linkage

Variance explained by detected loci

PNAS 2005

Estimating genetic complexity

Assumption: genetics controlled by additive loci of equal effect

Single-locus genetics:4-5% of transcriptsMore than 2 loci:75% or moreMore than 4 loci:50% or moreMore than 8 loci:20% or more

Best-fit model: 60% of transcripts controlled by 1-10 loci 40% of transcripts more complex

Complexity I: multiple additive loci of same sign

729 traits pass at FDR = 0.05

PNAS 2005

Complexity II: transgressive segregation

most segregants fall outside parent means

developed formal test with high power to detect transgression (21 seg ≥ 2 SD outside)

1716 traits pass at FDR = 0.05

Two-locus inheritance with transgression

Complexity III: interacting loci

segregant mean differs from mid-parent mean

835 traits pass at FDR = 0.05

PNAS 2005

Local regulatory variation

1431 transcripts (25%) link to marker closest to encoding gene

Testing allele-specific expression

diploid hybrid

44 of 77 self-linkers show ASE at p < .052 of 16 trans-linkers show ASE at p < .05

PLoS Genet 2005

Allele-specific expression of TIP1

Genome Res 2005

More SNPs in regulatory regions of self-linkers

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

PLoS Genet 2005

What are the regulatory polymorphisms?

Fraenkel Lab - Yeast regulatory map

Trans-acting regulatory variation

3055 messages link to 100-250 distinct loci Is the distribution of linkages random?

Genomewide distribution of trans linkages

Science 2002

Positional cloning of AMN1

shows linkage

recombinants narrow region to a single gene: AMN1 BY allele of AMN1 carries missense mutation at conserved site

		RM	DNFLLRLSQS	I PNLKHL <mark>D</mark>	LR	ACDNVSDSGV	VCIALNCPKL	KTFNIGRHRR
		BY	DNFLLRLSQS	I PNLKHL <mark>V</mark>	LR	ACDNVSDSGV	VCIALNCPKL	KTFNIGRHRR
S .	para	doxı	IS	D				
S.	mika	tae		D				
S.	baya	nus		D				
S .	serv	azzi	ii	D				
Zyg	gosac	chai	romyces roux	cii <mark>D</mark>				
Klı	iyver	omyc	ces lactis	D				
Pic	chia	angı	ısta	<mark>ם</mark>				

AMN1: negative regulator of mitotic exit network

Colman-Lerner et al. Cell 107:739-750 2001

Wang et al. Cell 112:697-709 2003

Molecular proof of effect of AMN1

gene	ORF	BY:RM ^a	segregants ^b	RMamn1:RM ^c
SCW11	YGL028C	18.0	12.2	16.2
DSE 1	YER124C	21.4	18.0	32.9
DSE2	YHR143W	48.2	26.0	40.6

Effect on gene expression

Effect on clumpy growth

RM

RM $\triangle AMN1$

Nat Genet 2003

ΒY

Positional cloning of GPA1

GPA1 maps to region of linkage and encodes a G protein alpha subunit coupled to pheromone receptors

BY allele of GPA1 carries missense mutation at conserved site

451 KFVLSAVTDL IIQQNLKK<mark>I</mark>G II* 451 KFVLSAVTDL IIQQNLKK<mark>S</mark>G II*

S. ParadoxusSS. MikataeSS. BayanusSS. bayanus var uvarumSS. KlyuveriSK. thermotoleransSKlyuveromyces lactisSDedaromyces hanseniiSCandida tropicalisS

Nat Genet 2003

Role of GPA1 in pheromone response

Effect of GPA1 S469I on pheromone response genes

gene	ORF	BY:RM ^a	segregants ^b	replacement ^c
GPA1	YHR005C	1.1	1.4	1.4
FAR1	YJL157C	1.1	1.7	1.8
KAR5	YMR065W	1.4	1.4	1.4
KAR4	YCL055W	1.5	1.6	1.6
FUS1	YCL027W	2.5	3.4	3.5
AGA1	YNR044W	6.2	3.7	3.8
SST2	YLR452C	2.4	2.2	1.9

Two-dimensional clustering of linkages

PLoS Biol 2005; Nature 2005

Epistasis between MAT and GPA1 in segregants

Epistasis between MAT and GPA1 in isogenic strains

Nature 2005

Are trans-regulatory loci transcription factors?

"This project is very creative but I'm afraid it does not make sense ... why not simply use a set of knockouts for every yeast transcription factor?"

-Anonymous NIH reviewer

Analysis of trans-acting loci by molecular function

				Chi
GO Molecular Function	Number of Genes ^a	Observed ^{^D}	Expected ^c	Squared ^a
Binding				
cytoskeleton protein binding	59	20	21.1	0.06
ATP binding	160	58	56.3	0.05
guanyl nucleotide binding	67	30	24.4	1.29
RNA binding	334	127	120.1	0.39
Chaperone	68	23	24.5	0.09
Enzyme				
Transferase				
transferase, 1 carbon	63	22	23.1	0.05
transferase, phosphorus	298	105	107.6	0.06
transferase, glycosyl	87	33	30.2	0.27
Kinase	216	74	77.9	0.20
Nuclease	90	28	31.3	0.34
Ligase	112	38	39.7	0.07
Isomerase	43	13	14.4	0.14
Oxidoreductase	227	88	80.5	0.70
Hydrolase				
hydrolase, acting on ester bonds	206	66	72.4	0.56
hydrolase, acting on acid anhydrides	s 217	86	76.0	1.30
hydrolase, acting on glycosyl bonds	59	18	14.1	1.05
peptidase	103	39	37.1	0.10
Enzyme Regulator	101	35	36.5	0.06
Signal Transducer				
receptor	31	12	11.0	0.09
receptor signaling protein	78	30	27.9	0.15
Structural Molecule	335	116	116.9	0.01
Transporter				
protein transporter	39	8	14.1	2.61
amino acid transporter	26	11	9.2	0.36
carbohydrate transporter	31	6	10.1	1.65
ion transporter	99	35	34.9	0.00
carrier	164	59	56.5	0.11
Translational regulator	59	20	20.9	0.04
Triplet codon adaptor	300	101	109.1	0.60
Transcriptional regulator				
transcription cofactor	35	16	10.6	2.78
transcription factor	53	19	18.5	0.01
RNA polymerase II transcription factor	116	40	42.1	0.11

Nat Genet 2003

Comparison of whole genomes at nucleotide resolution using Affymetrix[™] yeast tiling microarrays OR Genome resequencing without a genome center

5' - CTGAATATGCATTGAAATAAGATCC ATATGCATTGAAATAAGATCCAAAC GCATTGAAATAAGATCCAAACAGCT TGAAATAAGATCCAAACAGCTAAGA ATAAGATCCAAACAGCTAAGAACAG GATCCAAACAGCTAAGAACAGGAAA

probes

3'-GACTTATACGTAACTTTATTCTA**T**GTTTGTCGATTCTTGTCCTTT

sample

Hybridization efficiency is acutely sensitive to mismatches when oligonucleotides are short

Maskos and Southern, NAR (1992)

Affymetrix Yeast tiling arrays provide complete and redundant coverage of the yeast genome

5'-CTGAATATGCATTGAAATAAGATCC ATATGCATTGAAATAAGATCCAAAC GCATTGAAATAAGATCCAAACAGCT TGAAATAAGATCCAAACAGCTAAGA ATAAGATCCAAACAGCTAAGAACAG GATCCAAACAGCTAAGAACAGGAAA

3'-GACTTATACGTAACTTTATTCTA**T**GTTTGTCGATTCTTGTCCTTT sample

Comparison of two genomes to model decrease in hybridization due to SNPs

Nonpolymorphic strain

S288C

- Reference sequence
 represented on array
- Hybridization intensities reflect maximal binding of complementary DNA

Polymorphic strain

RM11-1A

- High quality sequence of wild strain
- 24,848 isolated SNPs overlapped by 123,016 probes
- Hybridization intensities
 reflect effect of mismatch
 on maximal binding

Hybridization decrease in presence of SNP is related to position within probe

Model decrease in hybridization due to SNP at Probe(*i*)

•Position in SNP (*j*)

•PM-MM for reference sequence

•GC content

•Local sequence context (*t*)

$$D_{ijt} = \alpha_{ij} + \beta_{ij} (GC_i) + \gamma_{ij} (PM_i - MM_i) + \delta_{ij} PM_i + I_{ijt}$$

Model decrease in hybridization due to SNP

Model inputs

- position of SNP in probe
- PM minus MM intensity for reference sequence
- probe GC content
- local sequence context

Use model to call polymorphic sites

A positive SNP prediction is associated with a region of elevated signal

GACTTATACGTAACTTTATTCTATGTTGTCGATTCTTGTCCTTT

Analysis of sequenced strain YJM789 identifies >90% of 30,690 known SNPs

Collection of independent spontaneous mutants

YPD

3mM D-His +1.5mM D-Ser

→ CAN1

60mg/L canavanine

→*FCY1*

1mM 5-fluorocytosine

A positive signal prediction at *CAN1* for four CAN^R mutants

Chromosomal coordinate

Selection of spontaneous mutants associated with small number of additional SNPs genome-wide

Mutant	Prediction at expected locus	Confirmed Mutation	Genome-wide predictions	Rank of known mutation	Sequence confirmed mutations
Can1- 1001	chrV:32,758 (62)	chrV:32,758G→C	5	1	3
Can1- 1002	chrV:32,929 (4.5)	chrV:32,924ET	5	-	2
Can1- 1003	chrV:31,844 (55.6)	chrV:31,844G→A	3	1	3
Can1- 1004	chrV:32066 (65)	chrV:32,064C→G	4	1	3
Gap1- 1002	chrXVI:514,919 (105)	chrXI:514,919C→G	4	1	2
Fcy1- 1001	chrXVI:677,256 (178)	chrXVI:677,256C→T	120	5	2

CEN.PK CAN^R mutants have unique mutations and common SNPs in CAN1

Chromosomal coordinate

Small number of predictions genome-wide for mutants in non-reference background

Strain	Prediction at CAN1	Confirmed mutation	Predictions genome-wide	Rank of known mutation
Can1-2003	chrV:32,486 (0.66)	chrV:32,487G→T	0	-
Can1-2004	chrV:32,119 (38.5)	chrV:32,119G→T	16	1
Can1-2005	chrV:33,168 (28.1)	chrV:33,169G→A	4	2
Can1-2007	chrV:32,579 (8.4)	chrV:32,580C→G	5	1
Can1-2008	chrV:32,308 (8.2)	chrV:32,304C→A	3	-
Can1-2009	chrV:32,814 (7.3)	chrV:32811ΔC	5	5
Can1-2010	chrV:32,072 (17.3)	chrV:32,077T→C	15	-
Can1-2011	chrV:31,195 (13.6)	chrV:32195C→A	2	1
Can1-2013	chrV:33040 (8.2)	chrV:33043G→A	56	10
Can1-2014	chrV:32843 (22.9)	chrV:32842+T	556	3

Genome-wide mutation detection aids positional cloning

Respiratory growth defect locus localized near centromere on chromosome XVI using S98 array

Brauer et al., 2006

Two candidate SNPs identified in 100kb critical region

Deleterious mutation in AEP3 in mutant strain

Strain	Phenotype	Sequence in AEP3
FY3	Acetate+	ÉTTCAAATGGGTG AACAÉ
CP1AB	Acetate-	ÉTTC CAATGGGTGAACAÉ

Spontaneous mutation supresses amn1

RM11	AMN1	$DSE\downarrow$	clumpy
BY4716	amn1	DSE ↑	not clumpy
RM11 <i>amn1</i> ∆		DSE ↑	not clumpy
S288c <i>amn1</i> ∆		DSE ↑	not clumpy
BY4716 <i>amn1</i> ∆	(YEF1695)	$DSE\downarrow$	clumpy
BY4716 <i>amn1</i> ∆	(YEF 1703)	DSE 1	not clumpy
BY4724 <i>amn1</i> ∆	(YEF 1706)	DSE ↑	not clumpy

Detection of ACE2 deletion on a tiling array

Yeast life cycle

Heterothallic strains

Landry et al. Molecular Ecology 15:575-591.

Do diverse yeast strains mate in nature?

- Mating shuffles polymorphisms via recombination
- Ancestral recombination events can be detected
- Three S. cerevisiae strains with sequenced genomes
 - S288C, lab strain, progenitor isolated from rotting fig
 - RM11-1a, haploid segregant from vineyard isolate
 - YJM789, originally isolated from the lung of an AIDS patient
- Sequence of *S. paradoxus* defines ancestral state

Detection of ancestral recombination

Distribution of shared segment lengths

Estimating effective recombination rate

Yeast population history

- Population mutation parameter θ = 0.0058
- Population recomb. parameter R = 0.0022
- $\theta = 2 \ G_T \ \mu$ $\mu = 1.84 \times 10^{-10}$ $G_T = 1.58 \times 10^7$
- $R = 2 G_0 r$ $r = 3.5 \times 10^{-6}$ $G_0 = 314$
- One outcrossing event every 50,000 cell divisions!
- If yeast divide once per day in nature, any pair of strains diverged 43,000 years ago, with <1 outcrossing per century
- Outcrossing may be underestimated due to population structure

Correlation in polymorphism decays over kilobases

Summary

- Large fraction of genome is differentially expressed between strains
- Mapped over a thousand loci that affect expression
- Most differences are due to multiple loci
- 25% of genes have local regulatory variation
- Find *trans*-acting polymorphisms with widespread effects
- Identify genetic interactions
- Use tiling arrays for accurate polymorphism detection in yeast
- Use multiple sequenced strains to infer population history
- Diverse yeast strains mate in nature, albeit infrequently
- Recombination shuffles genomes into segments measured in kilobases

Acknowledgments

Lab Alumni Current Lab Members **Douglas Ruderfer** Rachel Brem Gael Yvert Joseph Schacherer Erin Smith James Ronald QuickTime[™] and a Jacqueline Whittle (Uncompressed) decompressor are needed to see this picture. Collaborators Stephen Pratt **Eric Foss** David Gresham Josh Akey David Botstein **Becky Clinton** Maitreya Dunham Rachel Mackelprang **Donna Storton**

John Storey

Lewis-Sigler Institute for Integrative Genomics, Princeton