Mechanical properties of cells and tissues

J.F. Joanny

Physico-Chimie Curie Institut Curie

Boulder Summer school, July 2015

1 Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis

1) Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis
- 2 Mechanics and growth of tissues
 - Macroscopic theory of tissues
 - Fluidization by cell division and apoptosis

Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis
- 2 Mechanics and growth of tissues
 - Macroscopic theory of tissues
 - Fluidization by cell division and apoptosis
- 3 Multicellular spheroids
 - Tissue surface tension
 - Spheroid growth

Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis

2) Mechanics and growth of tissues

- Macroscopic theory of tissues
- Fluidization by cell division and apoptosis

Multicellular spheroids

- Tissue surface tension
- Spheroid growth

Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis

Mechanics and growth of tissues

- Macroscopic theory of tissues
- Fluidization by cell division and apoptosis

Multicellular spheroids

- Tissue surface tension
- Spheroid growth

Organelles and Cytoskeleton

Joanny (Institut Curie)

Mechanics

Actin polymerization

Actin monomers

- o molecular weight 45kDa
- size $\delta = 5.5$ nm
- ATP binding pocket
- polar monomer

Actin polymers

 right-handed helix, 72nm pitch, 24 monomers per turn

Mechanics

Actin in vivo

Actin interacting proteins

Revenu et al.

Joanny (Institut Curie)

Molecular motors

Motor proteins

- Muscle contraction (myosin II)
- Cilia and axonemes (Dynein)
- Mitosis
- Intracellular transport
- Inner ear hair cells (Myosin 1c)
- Rotating motors

General properties

- Motors consume ATP
- Processive and non-processive motors

Motor structure

Cytoskeleton mechanics

Actomyosin gel

Treadmilling

Polar filament with + and - end

Violation of the fluctuation dissipation theorem

Fluctuations of acto-myosin networks

- Microrheology experiment: active and passive
- Similar experiment with cells

Red blood cells

- Spectrin network needs to be prestressed
- Non-equilibrium reaction: binding and unbinding of spectrins to the membrane

Active Systems

- Tissues
- Bacterial colonies Kessler, Goldstein
- Vibrated granular materials Menon et al.
- Active colloids, Active nematics Ramaswamy et al.
- Bird flocks, Fish shoals Vicsek, Toner, Chaté, Carere

Marchetti et al, Rev.Mod.Phys. 2013

Cell Cortex

Optical Imaging

Charras

- Actomyosin layer
- Polymerization from the surface (formins)
- \circ Treadmilling time \sim 30s
- Cortex tension

Electron microscopy

Medalia

- Dense actin layer
- \circ Thickness \sim 1 μ m
- Filaments parallel to the cell surface

Cell instabilities associated to cortical layer

Blebs Paluch

Cell oscillations Pullarkat

- Detachments of the membrane form the cortical layer
- Bleb lifetime 30s

- Oscillations depend on actin contractility
- Oscillations depend on calcium (threshold density)

Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis

Mechanics and growth of tissues

- Macroscopic theory of tissues
- Fluidization by cell division and apoptosis

Multicellular spheroids

- Tissue surface tension
- Spheroid growth

Final stages of cell division von Dassow

Final stage of cell division

- Separation between daughter cells
- See urchin

Myosin contractility

- Ring closure due to actin contractility
- Local enhancement of myosin activity due to astral microtubules

Active gel theory of Cytokinesis

- Cytokinesis driven by myosin contractility in the actin cortical layer
- Excess of contractility at the equator of the cell.
- Actin cortical layer described by active gel theory
 - Constant density in cortical layer
 - Ignore polarization effects
 - Viscoelastic actin layer
 - Active stress $\zeta \Delta \mu$ non homogeneous, increases at the equator
- Cortical flow due to active stress gradient
- Numerical solution of active gel equations, using Lagrangian coordinates
- Impose cylindrical symmetry of the cell

Dynamics of Cytokinesis

Cytokinesis completion

- Critical value of activity for cytokinesis completion
- Low activity of the ring: cytokinesis failure
- Large activity of the ring: cytokinesis success

Kinetics of ring closure

- Quasi-linear furrow constriction
- Rate of constriction increases with amplitude and width of input signal
- If $w \sim R_0 \frac{dR}{dt} \sim R_0$, Closure time $T_c \sim \eta/\zeta \Delta \mu$ independent of R_0
- Good agreement with experiments

Qualitative interpretation

Discontinuous closure transition

- Cell tension $T = \frac{e\zeta \Delta \mu}{2}$
 - Line tension $\lambda = \int ds(T(s) - T_p) \sim w \delta T$
- Dimensionless number $\kappa \sim \lambda/(2T_pR_0)$

• Linear constriction if dissipation dominated by cortical flow

Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis

2) Mechanics and growth of tissues

- Macroscopic theory of tissues
- Fluidization by cell division and apoptosis

Multicellular spheroids

- Tissue surface tension
- Spheroid growth

Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis

2 Mechanics and growth of tissues

- Macroscopic theory of tissues
- Fluidization by cell division and apoptosis

Multicellular spheroids

- Tissue surface tension
- Spheroid growth

Multicellular spheroids

Nature Reviews | Molecular Cell Biology

Intestinal epithelia

Epithelial tissues

Epithelial structure

- Dividing cells
- Differentiated cells
- Apoptotic cells

Tissue mechanics

- Solid-like behavior
- Liquid-like behavior
- Viscoelastic liquid, relaxation time T
- Plastic behavior

Homeostatic pressure

- Membrane permeable to interstitial fluid
- Steady State ($k_d = k_a$) defines homeostatic density
- Homeostatic pressure

Cell proliferation and stress Cheng et al.

Competition between two tissues

Moving Compartment Wall

- Tissue with larger homeostatic pressure invades the other one
- Final state: homeostatic density
- Numerical simulation of tissue invasion

Joanny (Institut Curie)

Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis

2) Mechanics and growth of tissues

- Macroscopic theory of tissues
- Fluidization by cell division and apoptosis

Multicellular spheroids

- Tissue surface tension
- Spheroid growth

Stress relaxation in a tissue Ranft, Julicher

Force dipoles induced by division and apoptosis

- Dividing or apoptotic cells exert a force dipole $f_{\alpha}d_{\beta}$
- Force dipole density $Q_{\alpha\beta} = \sum d^{i}_{\alpha\beta} \delta(\mathbf{r} \mathbf{r}_{i})$
- Force balance $\partial_{\beta}\sigma^{el}_{\alpha\beta} + \sum f^{i}_{\alpha}\delta(\mathbf{r}-\mathbf{r}_{i}) = \mathbf{0}$
- Total stress $\sigma_{\alpha\beta} = \sigma_{\alpha\beta}^{el} Q_{\alpha\beta}$ so that $\partial_{\beta}\sigma_{\alpha\beta} = 0$

Internal stress in a tissue $\sigma^{in}_{lphaeta} = - {\cal Q}_{lphaeta}$

- Change in internal stress due to division and apoptosis
- Cell division coupled to stress Fink, Cuvelier

$$\begin{array}{lll} \displaystyle \frac{d}{dt}\sigma^{\mathrm{int}} &=& -\rho p_d k_d - \rho p_a k_a \\ \displaystyle \frac{d}{dt}\tilde{\sigma}^{\mathrm{int}}_{\alpha\beta} &=& -\rho \tilde{p}_d k_d < n_\alpha n_\beta - \frac{1}{3}\delta_{\alpha\beta} > = -\frac{1}{\tau_a}\tilde{\sigma}_{\alpha\beta} \end{array}$$

Joanny (Institut Curie)

3

Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis

2) Mechanics and growth of tissues

- Macroscopic theory of tissues
- Fluidization by cell division and apoptosis

Multicellular spheroids

- Tissue surface tension
- Spheroid growth

Multicellular spheroids

Nature Reviews | Molecular Cell Biology

Tissue spheroids in micropipettes Guevorkian, Brochard

Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis

2) Mechanics and growth of tissues

- Macroscopic theory of tissues
- Fluidization by cell division and apoptosis

3 Multicellular spheroids

- Tissue surface tension
- Spheroid growth

Surface tension of Tissues

Relaxation measurements Steinberg et al., F. Montel

Relaxation measurements Steinberg et al. Neural Retina relaxation

Interfacial tension

Interfacial tension between tissues Steinberg

Adhesion between cells

- Interfacial tension depends on adhesion molecules <u>Steinberg</u>
- depends on actomyosin cytoskeleton and contractility

• Laplace law
$$P_h^c - P_h^h = \frac{2\gamma}{r}$$

Joanny (Institut Curie)

Metastatic Inefficiency

Cell Mechanics

- Acto-myosin cytoskeleton
- Dynamics of cytokinesis

2) Mechanics and growth of tissues

- Macroscopic theory of tissues
- Fluidization by cell division and apoptosis

3 Multicellular spheroids

- Tissue surface tension
- Spheroid growth

Spheroid growth F.Montel, M.Delarue

Growth experiments A day 0 dav 3 day 7 dav 10 R C ----- P = 0 Pa medium + Dextran $P \neq 0 P_{2}$ Mouse colon MCS X+ V carcinoma (CT26) visualization 4 Time (day) Mouse sarcoma Human breast Vormalized Volu (AB6) cancer Time (day) 10 Time (day) Mouse Schwann Human colon Normalized Volume cells (EHI) (HT29) 4 Time (day) Time (dav

- Indirect experiments
 - Dialysis bag
 - Pressure exerted by dextran
- Direct experiments
 - Spheroid in contact with dextran solutions
 - No penetration of dextran in spheroid

Surface growth

- Nutrient effect
- Crowding effect
- Negative homeostatic pressure Elgeti

Joanny (Institut Curie)

Cell flow

Injection of fluorescent nano-particles

Joanny (Institut Curie)

Particle distribution

- Transport by cell flow $\partial_t \rho + \nabla v \rho = 0$
- Negligible diffusion

Volume change after a pressure step

- Growing spheroid with no applied pressure
- Pressure step 5000 Pa after 4 days
- Volume and anisotropy from correlations between nuclei position

Joanny (Institut Curie)

Hydrodynamic calculation

Isotropic liquid Spheroid

- Constant pressure both in outer dividing layer and in inner layer
- Pressure jump, larger pressure in the outer layer
- Upon pressure jump, cell contraction in the outer layer

Cell orientation

- Viscoelastic spheroid. Elastic short time response
- Active stress because of cell orientation $\sigma^{a}_{\alpha\beta} = \zeta \Delta \mu p_{\alpha} p_{\beta}$
- Active stress depends on pressure

Active hydrodynamics of tissues

- Radially polarized cell cells
- Active gel hydrodynamics with active stress depending on pressure
- Power law decay of density $\frac{\delta n}{n} = \frac{\Delta P(3+\beta_e)}{3K} \left(\frac{r}{R_0}\right)^{\beta_e}$

Joanny (Institut Curie)

Volume decrease and cell division

- Decrease in cell division rate, no change in apoptosis
 - Decrease in cell diameter at center after 5 min.
 - P27 Overexpression after 1 day
 - Decrease in cell division after 4 days
 - Cell proliferation arrest in G1 phase

•

Curie Theory Group

Morgan Delarue

C. Erlenkamper

Alexandre Mamane