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Many-neuron Patterns of Activity Represent Eye Position

Activity of 2 neurons



Line Attractor Picture of the Neural Integrator

Decay along direction
of decaying eigenvectors

No decay or growth along direction 
of eigenvector with eigenvalue = 1

Axes = firing rates 
of 2 neurons

“Line Attractor” or “Line of Fixed Points”

Geometrical picture
of eigenvectors:
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Q: Can you guess what input pattern I
will be amplified most?
(i.e. eigenvector with largest λ)

Which will be compressed most?
(i.e. eigenvector with smallest λ)

A: [1  1]  is amplified most  amplifies common input
[1  -1]  is compressed most  attenuates differences



Effect of Bilateral Network Lesion

Bilateral Lidocaine:  
Remove Positive FeedbackControl



Unstable Integrator

Human with unstable integrator:
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Issue: Robustness of Integrator
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Weakness: Robustness to Perturbations
Imprecision in accuracy of feedback connections severely 

compromises performance (memory drifts: leaky or unstable)

10% decrease in synaptic feedbackModel:
(Seung et al., 2000)



Robustness in Dynamical Systems

Robustness refers to:
A. Low sensitivity of a system to perturbations
B. Ability to recover, over time, from a perturbation (e.g. plasticity, drug tolerance)

Issues to consider:

1) Time scale for robust behavior

2) What perturbations is a system robust against?
-Design systems to resist the most common perturbations

3) What features of a system’s output are robust to a particular perturbation?

4) What are the signatures of a system exhibiting various
robustness mechanisms?



Learning to Integrate

How accomplish fine tuning of synaptic weights?

IDEA: Synaptic weights w learned from “image slip” 

E.g. leaky integrator:

Eye slip 0dE
dt

<

Image
slip = dE
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−

w Need to turn up feedback w dE
dt

Δ ∝ −

(Arnold & Robinson, 1992)



Experiment:  Give Feedback as if Eye is Leaky or Unstable

Magnetic coil
measures

eye position

E(t)

Compute 
image slip −

that would result
if eye were

leaky/unstable
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Integrator Learns to Compensate for Leak/Instability!

Control (in dark):

Give feedback
as if unstable Leaky:

Give feedback
as if leaky Unstable:



Previous Example:
Error signal to tune network is due to sensory error

(image slip on retina)

Question:
• Might systems have intrinsic monitors of activity 

to accomplish tuning?
• What might be the signatures of a system that utilizes

such a mechanism?



Pattern Generating Network:
Stomatogastric ganglion (STG) of crab/lobster stomach

Controls digestive rhythm using 
recurrent inhibitory network:



Conductance-based neuron models

ENa
=V C

Outside of cell

Na+

Kd+

Inside of cell

gNa gKd

EKd

Electrical circuit model of neuron:

C      = Σ gmax,i popen,i(V)  (Ei - V)
dV
dt

i = conductance type  = Na, Ca, A, KCa, Kd
popen(V) = probability channel is open

i

Inward currents
(increase V)

Na (fast)

Ca (slower)

Outward currents
(decrease V)

Kd (fast)

A (slower)

KCa (slowest)
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Model of crustacean STG neurons
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Sample of Firing States Observed



Identified neurons: 
>Same location, morphology, function 
>Traditional view:  

Data:
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Can different conductances give similar firing?

(Crab IC neuron; Golowasch et al., 1999)

3 outward K+ conductances

- Same conductances
- Each conductance has unique role

Identified neurons, yet different conductances
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Similar firing, different conductances:
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# of spikes/burst
within bursting region

Firing State Diagram:
Combinations of Conductances Better Determine Firing State
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Day 1

Day 4

Day 2

Silent
Tonic
Bursting
Cultured cell

Neurons regulate firing to achieve rhythmic pattern

Change in firing during development:
(Turrigiano et al., 1995)



Day 1

Day 4

Day 2

Homeostatic learning rule to recover activity

Idea: Cell may have target levels of activity on different
time scales

1. Monitor Ca++ entry on:
a) fast (action potential) time scale
b) medium (burst) time scale
c) slow (average voltage) time scale

2. Feed back the error from target onto:
a) fast (action potential-generating) channels
b) Medium time-scale generating channels
c) Burst rate-controlling channels



Extra slides: Models for Robustness of the Integrator



Geometry of Robustness
& Hypotheses for Robustness on Faster Time Scales

Plasticity on slow time scales:
Reshapes the trough to make it flat

1) Extrinsic Perturbations (in external inputs to system):
-Only input component along integrating mode persists
-Strategy: make integrating mode orthogonal to perturbations

2) Intrinsic Perturbations (in weights):
-Need eigenvalue of integrating mode = 1:

Many different network structures can obey this condition.
Goal: find structures that resist common perturbations in weights



Geometry of Robustness

3a) Add “friction” by effectively “putting system in viscous fluid”
-Sliding friction: if a separate circuit monitors integrator slip, 

it can feed back an opposing input:
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Control theory: Integral feedback can make perfect adaptation/derivative
Derivative feedback can make perfect integrator

But….how does one make a perfect derivative???



Geometry of Robustness

Trough of energy function:

3b) Add “friction” by “roughening” energy surface



W

r(t)external
input

w

Need for fine-tuning in linear feedback models

Fine-tuned model:
wneuron rdr external inpur t

dt
τ = +− +

decay feedback

Leaky behavior Unstable behavior

r

r (decay)
wr (feedback)

dr/dt
r

r (decay)
wr (feedback)
dr/dt

time time



IDEA: Can bistability add robustness to persistent neural activity?

Bistability in firing rate relationships  
Jumps in firing rate not observed experimentally

Integrator neuron:

Dendritic bistability distributed across multiple independent dendrites



1) Dendritic bistability has been observed experimentally
- due to the self-sustaining properties of NMDA, NaP, or Ca++ channels:

Evidence for dendritic bistability & independence

Ca++ channels
activate

Ca++ channels
inactivate

decreasing I

incre
asin

g I

Model compartment I-V curve (Adapted from spinal motoneuron
model of Booth & Rinzel, 1995)

2) Anatomically realistic models suggest that different dendritic branches
may behave approximately independently (Koch et al., 1983; Poirazi et al., 2003)
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Simplified analytic model

( , ) ( , ) ( )rec
dD r t D r t h r
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Dendrite dynamics:

r = presynaptic input firing rate

D(r, t) = dendritic compartment activation

onr r

h(r)

1

where

τrec = time scale for dendrite to reach steady state activation

h(r) = steady-state dendritic compartment activation



Network of N neurons, each with N identical dendrites:
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Result 1:  Firing rate is linear in eye position
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Simplify weight matrix to 1-D (rank 1) form:  



Graphical solution of balanced leak and feedback
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Fixations Are Robust to Mistuning of Feedback

Comparison with no-hysteresis models:

Ê

decay > feedback

Ê

decay within feedback band



Biophysical Model
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(Simulations by Joseph Levine)

Spiking model soma
Calcium plateau mediated bistability
Soma and dendrites ohmically coupled

Network of 20 recurrently connected neurons, each with:
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