Robustness in Neurons & Networks

Mark Goldman
Many-neuron Patterns of Activity Represent Eye Position

eye position represented by location along a low dimensional manifold ("line attractor")

(H.S. Seung, D. Lee)
Line Attractor Picture of the Neural Integrator

Geometrical picture of eigenvectors:

Axes = firing rates of 2 neurons

Decay along direction of decaying eigenvectors

No decay or growth along direction of eigenvector with eigenvalue = 1

“Line Attractor” or “Line of Fixed Points”
Q: Can you guess what input pattern \mathbf{I} will be amplified most? (i.e. eigenvector with largest λ)

Which will be compressed most? (i.e. eigenvector with smallest λ)

A: $\begin{bmatrix} 1 & 1 \end{bmatrix}$ is amplified most \rightarrow amplifies common input

$\begin{bmatrix} 1 & -1 \end{bmatrix}$ is compressed most \rightarrow attenuates differences
Effect of Bilateral Network Lesion

Control

Bilateral Lidocaine: Remove Positive Feedback
Human with unstable integrator:

\[\frac{dE}{dt} = (w - 1)E \]
Issue: Robustness of Integrator

Integrator equation:

$$\tau_{bio} \frac{dr}{dt} = -r + wr + I$$

$$\tau_{network} = \frac{\tau_{bio}}{|1 - w|}$$

Experimental values:

- Single isolated neuron: $$\tau_{bio} \sim 100 \text{ ms}$$
- Integrator circuit: $$\tau_{network} \sim 10 \text{ sec}$$

Synaptic feedback $$w$$ must be tuned to accuracy of:

$$|1 - w| = \frac{\tau_{bio}}{\tau_{network}} \sim 1\%$$
Weakness: Robustness to Perturbations

Imprecision in accuracy of feedback connections severely compromises performance (memory drifts: leaky or unstable)

Model: (Seung et al., 2000)

10% decrease in synaptic feedback
Robustness in Dynamical Systems

Robustness refers to:

A. Low sensitivity of a system to perturbations
B. Ability to recover, over time, from a perturbation (e.g. plasticity, drug tolerance)

Issues to consider:

1) Time scale for robust behavior
2) What perturbations is a system robust against?
 - Design systems to resist the most common perturbations
3) What features of a system’s output are robust to a particular perturbation?
4) What are the signatures of a system exhibiting various robustness mechanisms?
Learning to Integrate

How accomplish fine tuning of synaptic weights?

IDEA: Synaptic weights w learned from “image slip”

\[\text{Image slip} = -\frac{dE}{dt} \]

\[\text{Eye slip} \frac{dE}{dt} < 0 \]

E.g. leaky integrator:

\[\Delta w \propto -\frac{dE}{dt} \]

(Arnold & Robinson, 1992)
Experiment: Give Feedback as if Eye is Leaky or Unstable

Magnetic coil measures eye position

\[\frac{dE}{dt} = -v \]

Compute image slip \(\frac{dE}{dt} \) that would result if eye were leaky/unstable

\[v = f(E) = -\frac{dE}{dt} \]
Integrator Learns to Compensate for Leak/Instability!

Control (in dark):

Give feedback as if unstable → Leaky:

Give feedback as if leaky → Unstable:

20 degrees

5 sec
Previous Example:
 Error signal to tune network is due to sensory error
 (image slip on retina)

Question:
 • Might systems have intrinsic monitors of activity
to accomplish tuning?
 • What might be the signatures of a system that utilizes
such a mechanism?
Pattern Generating Network:
Stomatogastric ganglion (STG) of crab/lobster stomach

Controls digestive rhythm using recurrent inhibitory network:
Conductance-based neuron models

Electrical circuit model of neuron:

\[
C \frac{dV}{dt} = \sum_i g_{\text{max},i} p_{\text{open},i}(V) (E_i - V)
\]

\[i = \text{conductance type} = \text{Na, Ca, A, KCa, Kd}\]

\[p_{\text{open}}(V) = \text{probability channel is open}\]

Inward currents (increase \(V\))
- Na (fast)
- Ca (slower)

Outward currents (decrease \(V\))
- Kd (fast)
- A (slower)
- KCa (slowest)
Sample of Firing States Observed

Model of crustacean STG neurons based on data of Turrigiano et al., 1995
Identified neurons, yet different conductances

Identified neurons:
- Same location, morphology, function
- Traditional view:
 - Same conductances
 - Each conductance has unique role

Data:

Can different conductances give similar firing?

(Crab IC neuron; Golowasch et al., 1999)
Single Conductances Do Not Determine Firing State
Similar firing, different conductances:

![Graph showing voltage (Vm) and maximum conductance (gmax) over time (ms). The graph illustrates two similar firing patterns with different conductance values.]
Different firing, similar conductances:
Firing State Diagram:
Combinations of Conductances Better Determine Firing State
Real Data

Dynamic clamp g_{max}^{Ca} (nS)

<table>
<thead>
<tr>
<th>g_{max}^{Ca}</th>
<th>g_{max}^{A} (nS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25</td>
<td>-1600</td>
</tr>
<tr>
<td>-25</td>
<td>-2000</td>
</tr>
<tr>
<td>+75</td>
<td>-800</td>
</tr>
<tr>
<td>+100</td>
<td>-1200</td>
</tr>
<tr>
<td>+50</td>
<td>-800</td>
</tr>
</tbody>
</table>

Dynamic clamp g_{max}^{Ca} (nS)

Dynamic clamp g_{max}^{KCa} (nS)

<table>
<thead>
<tr>
<th>g_{max}^{KCa} (nS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-850</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>+850</td>
</tr>
</tbody>
</table>
Neurons regulate firing to achieve rhythmic pattern

Change in firing during development:
(Turrigiano et al., 1995)
Homeostatic learning rule to recover activity

Idea: Cell may have target levels of activity on different time scales

1. Monitor Ca++ entry on:
 a) fast (action potential) time scale
 b) medium (burst) time scale
 c) slow (average voltage) time scale

2. Feed back the error from target onto:
 a) fast (action potential-generating) channels
 b) Medium time-scale generating channels
 c) Burst rate-controlling channels
Extra slides: Models for Robustness of the Integrator
Geometry of Robustness & Hypotheses for Robustness on Faster Time Scales

Plasticity on slow time scales:
Reshapes the trough to make it flat

1) Extrinsic Perturbations (in external inputs to system):
 - Only input component along integrating mode persists
 - Strategy: make integrating mode orthogonal to perturbations

2) Intrinsic Perturbations (in weights):
 - Need eigenvalue of integrating mode = 1:
 Many different network structures can obey this condition.
 Goal: find structures that resist common perturbations in weights
3a) Add “friction” by effectively “putting system in viscous fluid”
- Sliding friction: if a separate circuit monitors integrator slip, it can feed back an opposing input:

\[
\tau_{bio}\frac{dr}{dt} = -r + wr + I - A \frac{dr_{estimate}}{dt}
\]

\[
(\tau_{bio} + A)\frac{dr}{dt} = -r + wr + I
\]

Control theory: Integral feedback can make perfect adaptation/derivative
Derivative feedback can make perfect integrator

But….how does one make a perfect derivative???
Geometry of Robustness

Trough of energy function:

3b) Add “friction” by “roughening” energy surface
Need for fine-tuning in linear feedback models

Fine-tuned model:

\[\tau_{\text{neuron}} \frac{dr}{dt} = -r + wr + \text{external input} \]

Leaky behavior

Unstable behavior

- \(w_r \) (feedback)
- \(r \) (decay)
- \(\frac{dr}{dt} \)

- \(w_r \) (feedback)
- \(r \) (decay)
- \(\frac{dr}{dt} \)
IDEA: Can bistability add robustness to persistent neural activity?

- Bistability in firing rate relationships
 - Jumps in firing rate not observed experimentally

- Dendritic bistability distributed across multiple independent dendrites

Integrator neuron:
1) Dendritic bistability has been observed experimentally - due to the self-sustaining properties of NMDA, NaP, or Ca++ channels:

![Model compartment I-V curve](Adapted from spinal motoneuron model of Booth & Rinzel, 1995)

2) Anatomically realistic models suggest that different dendritic branches may behave approximately independently (Koch et al., 1983; Poirazi et al., 2003)
Dendrite dynamics:

\[\tau_{\text{rec}} \frac{dD(r, t)}{dt} = -D(r, t) + h(r) \]

where

- \(r \) = presynaptic input firing rate
- \(D(r, t) \) = dendritic compartment activation
- \(h(r) \) = steady-state dendritic compartment activation
- \(\tau_{\text{rec}} \) = time scale for dendrite to reach steady state activation
Network with bistable dendrites

Network of N neurons, each with N identical dendrites:

$$r_i(t) = \left[\sum_{j=1}^{N} W_{ij} D(r_j, t) + r_{\text{ton},i} + r_{\text{com},i} \right]_+$$

- $r_{\text{ton},i}$: recurrent input
- $r_{\text{com},i}$: background input
- $r_{\text{ton},i}$: eye movement commands
Result 1: Firing rate is linear in eye position

Simplify weight matrix to 1-D (rank 1) form: \(W_{ij} = \xi_i \eta_j \)

\[
r_i(t) = \left[\xi_i \sum_{j=1}^{N} \eta_j D(r_j, t) + r_{ton,i} + r_{com,i} \right]_+
\]

Due to successive activation of dendrites w/increasing \(\hat{E} \):

\[
r_i = \left[\xi_i \hat{E} + r_{ton,i} + r_{com,i} \right]_+
\]

Activation of dendrite i
Graphical solution of balanced leak and feedback

No external input:

\[\tau_{rec} \frac{d\hat{E}}{dt} = -\hat{E} + \sum_{i=1}^{N} \eta_i h(\xi_i \hat{E} + r_{ton,i}) \]

\[\hat{E}, \sum_{i=1}^{N} \eta_i h(\xi_i \hat{E} + r_{ton,i}) \]

Hysteretic band of stability

\% mistuning tolerated \sim \frac{\text{width of band}}{\hat{E}_{\text{max}}}
Fixations Are Robust to Mistuning of Feedback

Comparison with no-hysteresis models:

- \(\hat{E} \) decay > feedback
- \(\hat{E} \) decay within feedback band
Biophysical Model

Network of 20 recurrently connected neurons, each with:

- Spiking model soma
- Calcium plateau mediated bistability
- Soma and dendrites ohmically coupled

(Simulations by Joseph Levine)