Robustness in Neurons & Networks

Mark Goldman



Firing Rate (spikes/sec)

Many-neuron Patterns of Activity Represent Eye Position

Activity of 2 neurons
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Line Attractor Picture of the Neural Integrator

Geometrical picture
of eigenvectors:

Axes = firing rates
of 2 neurons

Decay along direction
of decaying eigenvectors

No decay or growth along direction
of eigenvector with eigenvalue =1

“Line Attractor” or “Line of Fixed Points”



Examples

Q: Can you guess what input pattern |
will be amplified most?
(.e. eigenvector with largest 1)

Which will be compressed most?
(.e. eigenvector with smallest 1)

A: [1 1] is amplified most - amplifies common input
[1 -1] i1s compressed most - attenuates differences



Effect of Bilateral Network Lesion

Bilateral Lidocaine:
Control - Remove Positive Feedback
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Unstable Integrator

Human with unstable integrator:
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Issue: Robustness of Integrator

Integrator equation: _
Tblo =-1r+wr + |

@ _ Thio
| — Tnetwork = | 1— Wl

Experimental values:

Single isolated neuron: 7., ~100 ms

Integrator circuit: T ~10sec

network

- Synaptic feedback w must be tuned to accuracy of:

|1 w|=—2o 104

z-network




Weakness: Robustness to Perturbations

Imprecision in accuracy of feedback connections severely
compromises performance (memory drifts: leaky or unstable)

Model: 10% decrease in synaptic feedback
(Seung et al., 2000) A 60 . - r | 1 ; :

0 0.5 1 1.5 2 2.5 3 3.5 4
time (sec)



Robustness in Dynamical Systems

Robustness refers to:
A. Low sensitivity of a system to perturbations
< B. Ability to recover, over time, from a perturbation (e.g. plasticity, drug tolerance) —

Issues to consider:
1) Time scale for robust behavior

2) What perturbations is a system robust against?
-Design systems to resist the most common perturbations

3) What features of a system’s output are robust to a particular perturbation?

4) What are the signatures of a system exhibiting various
robustness mechanisms?



Learning to Integrate

How accomplish fine tuning of synaptic weights?

I—* IDEA: Synaptic weights w learned from “image slip”
(Arnold & Robinson, 1992)

E.g. leaky integrator:

Need to turn up feedback wep |AW oc — ——




Experiment. Give Feedback as if Eye iIs Leaky or Unstable

planetarium

velocity planetarium
controller
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Integrator Learns to Compensate for Leak/Instability!

Control (in dark):

Give feedback . .
as if unstable — Leaky:

Give feedback |
as if leaky — Unstable:

20 degrees

5 sec



Previous Example:
Error signal to tune network is due to sensory error
(image slip on retina)

Question:

* Might systems have intrinsic monitors of activity
to accomplish tuning?

« What might be the signatures of a system that utilizes
such a mechanism?



Pattern Generating Network:
Stomatogastric ganglion (STG) of crab/lobster stomach

Controls digestive rhythm using
recurrent inhibitory network:




Conductance-based neuron models

Electrical circuit model of neuron:

( Outside of cell

" :/D ...........

N—= V — C—— %gNa éng
T "Na T Ekd
Inside of cell

dv
C "4t = Z Imaxii Popen,(V) (Ei-V)

| = conductance type = Na, Ca, A, KCa, Kd
popen(V) = probability channel is open

Inward currents Outward currents
(increase V) (decrease V)
Na (fast) Kd (fast)
Ca (slower) A (slower)

KCa (slowest)



Vi (MV)

Sample of Firing States Observed
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|dentified neurons, yet different conductances

Identified neurons:

>Same location, morphology, function
>Traditional view:

- Same conductances

- Each conductance has unique role

Data:
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(Crab IC neuron; Golowasch et al., 1999)

Can different conductances give similar firing?



Single Conductances Do Not Determine Firing State
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Similar firing, different conductances:

Vm (mV)
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Different firing, similar conductances:

Vm (mV)
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Firing State Diagram:
Combinations of Conductances Better Determine Firing State

# of spikes/burst

c @ Silent d within bursting region
® Tonic = :
® Bursting -




Real Data

ImaxCa  ImaxA(nS)

1 v {
b PP N oo 251600
-25 -2000
2
>
3 l \ \ \ +75 -800
>
+100 -1200
4
>

> P Npntre iAot +50  -800

d,naxKCa(ns)

" MIAAAANS
-850

+850

| 20mV

2 sec

Dynamic clamp g455A (NS)

2000 -

[ERN
o
o
o

o

-1000 -

-2000 -

e o o o o o °
e o o o o °

e o o o o o o o
e o o o o o o
® °

e o o o o o o o
e o o o o o o

e o o o o o o o
e o o o o o o

e o o o o o o o

e o o o o o o o

e O o o o o o o

e o o o o o

e o o o o o o o

e o o o o o o

® o o o o o o o

-75 50 -25 0 25 50 75 100

Dynamic clamp g,55Ca (nS)




Neurons regulate firing to achieve rhythmic pattern

Change in firing during development:
(Turrigiano et al., 1995)

® Silent

® Tonic

® Bursting

O Cultured cell




Homeostatic learning rule to recover activity

ldea: Cell may have target levels of activity on different
l time scales

1. Monitor Ca++ entry on:
Day 2 uu a) fast (action potential) time scale
b) medium (burst) time scale
c) slow (average voltage) time scale

2. Feed back the error from target onto:
Day 4 : : :
a) fast (action potential-generating) channels
b) Medium time-scale generating channels
c) Burst rate-controlling channels

Day 1




Extra slides: Models for Robustness of the Integrator



Geometry of Robustness
& Hypotheses for Robustness on Faster Time Scales

Plasticity on slow time scales:
Reshapes the trough to make it flat

1) Extrinsic Perturbations (in external inputs to system):
-Only input component along integrating mode persists
-Strategy: make integrating mode orthogonal to perturbations

2) Intrinsic Perturbations (in weights):
-Need eigenvalue of integrating mode = 1:
Many different network structures can obey this condition.
Goal: find structures that resist common perturbations in weights



Geometry of Robustness

3a) Add “friction” by effectively “putting system in viscous fluid”
-Sliding friction: if a separate circuit monitors integrator slip,
it can feed back an opposing input:

W| d r d restimate
external Thio 3, — —F+WI+ I - A
! dt dt
input ~ ~
dr
(7, + A)—=—-T+wWr+1
d dt

Control theory: Integral feedback can make perfect adaptation/derivative
Derivative feedback can make perfect integrator

But....how does one make a perfect derivative???



Geometry of Robustness

Trough of energy function:
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3b) Add “friction” by “roughening” energy surface



Need for fine-tuning in linear feedback models

Fine-tuned model: r |
T peuron 9 wr +external input W
external
decay feedback input_l
L eaky behavior Unstable behavior
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IDEA: Can bistability add robustness to persistent neural activity?

+» Bistability in firing rate relationships
-=> Jumps in firing rate not observed experimentally

¢ Dendritic bistability distributed across multiple independent dendrites

Integrator neuron: %\

/




Evidence for dendritic bistability & independence

1) Dendritic bistability has been observed experimentally
- due to the self-sustaining properties of NMDA, NaP, or Ca** channels:

10

Model compartment I-V curve

(Adapted from spinal motoneuron
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2) Anatomically realistic models suggest that different dendritic branches
may behave approximately independently (Koch et al., 1983; Poirazi et al., 2003)



Simplified analytic model

Dendrite dynamics:

- db(r,t)
dt

D(r,t)+ h(r)

where

r = presynaptic input firing rate
D(r, t) = dendritic compartment activation

h(r) = steady-state dendritic compartment activation

h(r)

1

7,oc = time scale for dendrite to reach steady state activation




Network with bistable dendrites

Network of N neurons, each with N identical dendrites:
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Result 1: Firing rate is linear in eye position

Simplify weight matrix to 1-D (rank 1) form: W, = &7,
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Graphical solution of balanced leak and feedback
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Fixations Are Robust to Mistuning of Feedback

Comparison with no-hysteresis models:

10% Mistuning, No Hysteresis 10% Mistuning, with Hysteresis
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Biophysical Model

Network of 20 recurrently connected neurons, each with: (Simulations by Joseph Levine)
»Spiking model soma
=Calcium plateau mediated bistability
=Soma and dendrites ohmically coupled
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