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Different neurons select
and encode different
features in the stimulus

What are the rules
governing the encoding
and representation of
stimuli?

Are they fixed or can they
be modulated by context?

Courtesy M. Berry and J. Puchalla

Sensory encoding



Natural stimuli show complex structure in space and time

1. Huge dynamic range: variations over many orders of magnitude





















Thanks to Fred Soo!
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Shape of the I/O function
should be determined
by the distribution of
natural inputs

Optimizes information
between output and input

Efficient coding

Input/output
function



If we constrain the maximum output, the solution for the distribution of outpu
symbols is P(r) = constant = a. 
Take the output to be a nonlinear transformation on the input: r = g(s).

Fly LMC cells. 

Measured contrast in
natural scenes.

Laughlin ’81.

Adaptation of the input/output relation



Adaptation of the input/output relation

stimulus

stimulus

P(stimulus)

P(response|stimulus)

Changing the variance of the
distribution changes the slope
of the best input/output curve

One can show that  an 
input/output curve which
matches the variance of the
stimulus maximizes mutual
information between spikes
and stimulus 
(Brenner et al.2000) 



Contrast varies hugely in time. 

Should a neural system optimize
over evolutionary time or locally?

What is the appropriate timescale for adaptation?



Distribution of contrast values in an image is highly nonGaussian, with long tails

Separate local fluctuations and the local variance

Local variance has a long-tailed distribution
Normalized contrast is nearly Gaussian  

Approximate structure:
locally Gaussian, modulated by larger 
lengthscale variance envelope

Natural image statistics: Bialek and Ruderman ‘94

Gaussian distributions are maximum entropy, efficiently encoded
If a neural system can normalize out local variance it can efficiently
encode local fluctuations



Bill Bialek 
Rob de Ruyter

Naama Brenner

NEC Research Institute



Approximating a “natural stimulus”

Random stimulus whose variance varies in time



Technical digression I: measuring input/output relations

Input/output
function

r(t)

s(t)stimulus

response

What we have:

What we want:



Measuring input/output relations from data

S(t)

r(t)



Measuring input/output relations from data

We are only interested in this “relevant” component 
of each stimulus sample

For simplicity we are using only one component, the average, but
one could find multiple relevant stimulus components..



The input/output curve is the function

which we can derive from data using Bayes’ rule:

Determining the input/output function



P(s1)

P(s1|spike)

Determining the input/output function

P(spike|s1)/P(spike)



Dynamic input/output relations

For fly neuron H1,
determine the input/output
relations throughout the
stimulus presentation 



For fly neuron H1,
determine the input/output
relations throughout the
stimulus presentation 

Dynamic input/output relations



The fly is encoding motion with stimulus values that 
are locally normalized by variance

Similar results have been seen in other systems, 
e.g. retina (Kim and Rieke ‘01), and rat barrel 
cortex:

Several neural systems use variance-normalized encoding 

Picture courtesy Ras Petersen



Neurons of rat barrel cortex encoding white noise whisker vibratio

Maravall, Petersen, Fairhall, Arabzadeh and Diamond, PLoS (2006)



Temporal contrast normalization is a kind of learning

the system is “learning” about the evolving characteristics
of the stimulus statistics and adjusting its coding strategy appropriately

How long does this take?

Back to the fly..



Dynamical adaptive coding

The timescale of the rate adaptation reflects the timescale for
learning of the variance… ?



Not so!

Dynamical adaptive coding

The timescale of the rate adaptation reflects the timescale for
learning of the variance…



Find variance normalization is almost instantaneous

Dynamical adaptive coding



Determining a precise timescale for adaptation using 
information

Recall that this type of adaptation should maximize information transmission.



Technical digression II: computing information in spike trains

Represent spike train as binary words w

At every time t  throughout the stimulus
presentation, there will be a distribution 
of word ouputs

P(w;t)

The “direct method”, Strong et al., 199



Determining a precise timescale for adaptation using 
information

…….

s1

s2

s3

sn

P(w)   : prior distribution

P(w|si): stimulus-conditional distribution



Determining a precise timescale for adaptation using 
information
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The timescale for the adaptation 
of the firing rate is independent of 
the timescale of the variance
normalization

Multiple timescales of adaptation

Variance normalization occurs
as fast as is statistically possible

P(spike|stimulus) = g(s/s(t)) R[s(t)]

Normalized
input/output function

Rate modulation
envelope



•no fixed timescale
• Consistent with 

power-law adaptation

Suggests that rate behaves
like
fractional differentiation
of the log-variance envelope

Thorson and Biederman-Thorson,
Science (1974)

A. Cockroach leg mechanoreceptor, to spinal distortion
B. Spider slit sensillum, to 1200 Hz sound
C. Stretch receptor of the crayfish
D. Limulus eccentric-cell, to increase in light intensity

The rate envelope



Fractional differentiation

power-law response to a step: scaling “adaptive” response
to a square wave:

Fourier representation (iω)α : 
each frequency component scaled by ωα

and with phase shifted by a constant phase iα απ/2



Linear analysis agrees

• Stimulate with a set of sine waves
at different frequencies

• Variance envelope ~ exp[sin t/T]
for a range of frequencies 1/T 

T = 30s, 60s, 90s

phase shift



A single parameter fits multiple experiments

From sinusoid experiments, find exponent α ~ 0.2

Two-state switching Three-state switching

t, sec

t, sect, sec

t, sec

t, sec



Why a fractional differentiator?

Whitening power law structure of stimulus envelope (1/k2 visual scenes)?

Expect that exponent is related to natural stimulus statistics

LINEAR function of stimulus history which emphasizes change without
removing steady state response 

.. A general neural computation?



How are these dynamics implemented?

Two distinct forms of adaptation which both have relevance
for efficient processing of natural stimulus statistics

Feedback or feedforward?

Variance normalization: too fast for feedback?

Fractional differentiation: linear transformation



Adapting without learning

Sungho Hong 
Brian Lundstrom
Kate Tabor

• Nonlinearity of neurons ensures interaction between output
and statistics of stimulus input

• Have reproduced this behavior predictably with a simplified
generalized linear/nonlinear neural model

• Can tune parameters of a realistic neural model to find regions
of greatest “adaptability”

• How much of the adaptation we see at the systems level can be
carried out by single neurons?  Maravall et al.

• Could real neural systems have evolved so as to be maximally
adaptable?

Variance normalization as an outcome of neural nonlinearity



Multiplicity of timescales

Where do these come from?

• circuit based (potentially involving feedback) or single neurons?

• recent models (Brenner et al. 2005) involve multiple inactivation 
states of ion channels 



Time-scaling adaptation in retinal ganglion cells

Explore where in the circuit different adaptations occur 

Barry Wark and Fred Rieke

Relate to the special properties of natural images



Time-scaling adaptation in cortical pyramidal cells

Brian Lundstrom and Bill Spain

Very general phenomenon, not only at the sensory periphery

can test hypotheses of biophysical mechanism



Summary

Different types of adaptation allow neural systems to maintain high 
information rates in the presence of changing stimulus statistics

Separation of time/length scales for efficient encoding of different aspects 
of stimuli

Fast adaptation allows for contrast gain control or variance normalization

Slower adaptive processes may be responsible for whitening power-law
stimulus envelope statistics

These adaptive forms seem to be general across different systems

Testing models for precise biophysical mechanisms underlying these 
adaptive dynamics



Characterizing adaptive responses: cascade models

spike-triggering 
stimulus features

stimulus X(t)

Static nonlinearity/
decision functionx1

x2

x3

f1

f2

f3

Receptive field 
adaptation

Atick

Threshold function 
adaptation

Laughlin



stimulus features

stimulus X(t)

x1

x2

x3

f1

f2

f3

nonlinearity/
decision function

Activity dependent
changes

Cascade models with feedback



Adaptation to stimulus statistics

Have concentrated on adaptation to variance and justified
that with a connection to the properties of natural scenes 

Let’s look at some examples of adaptation to other stimulus statistics

Claim: the visual system only adapts to the first two moments
Bonin et al. (2005)



Processing of low-probability sounds by cortical neurons
Ulanovsky, Las and Nelken, Nature Neuroscience (2003)

Auditory stimulus, recording in A1:

f1 f1 f1 f2 f1 f1 f1 f2 f2 rare
f2 f2 f2 f1 f2 f2 f2 f1 f1 rare
f1 f2 f1 f2 f1 f2 f1 f2 neither rare

Adaptation to stimulus frequency



Dynamic predictive coding by the retina, Hosoya et al., Nature (2005)

Adaptation to arbitrary spatio-temporal correlations



Dynamic predictive coding by the retina, Hosoya et al., Nature (2005)

Adaptation to arbitrary spatio-temporal correlations



Adaptive filtering enhances information transmission in visual cortex,
Sharpee, Sugihara, Kurgansky, Rebrik, Stryker and Miller, Nature (2006)

Receptive fields
determined from
STA and from
maximally informative
dimension

Compare receptive
fields obtained
with noise
and with natural inputs

Adaptation to natural stimulus statistics



Adaptive filtering enhances information transmission in visual cortex,
Sharpee, Sugihara, Kurgansky, Rebrik, Stryker and Miller, Nature (2006)

Filter spectrum Stimulus spectrum Filtered output

Red = white noise
Blue = natural statistics

Adaptation to natural stimulus statistics



Adaptive filtering enhances information transmission in visual cortex,
Sharpee, Sugihara, Kurgansky, Rebrik, Stryker and Miller, Nature (2006)

Adaptation to natural stimulus statistics
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