The Destructive Effect of a Magnetic Field

With decreasing size, pass through 4 regimes
1. Meissner effect
2. Orbital Pair Breaking
3. Spin Pair Breaking in Thin Films
4. Spin Pair Breaking in Nano particles

Will concentrate on type I superconductors (λ<ξ)

(remainder - in type II, magnetic vortices can penetrate)

For interesting work on small type II samples, see
A.K. Geim et al., PRL 79, 4653 (97)
Nature 330, 253 (88)

For samples smaller than ξ and λ, the distinction between type I and II is not meaningful.

References:
M. Tinkham, Intro to Superconductivity
F. Braun et al., PRL 79, 921 (97)

General Ideas

Superconductivity is based on the pairing of time-reversal symmetric energy levels
A magnetic field disrupts time-reversal symmetry - interferes with superconductivity

We will see several trade-offs of energy scales.

Ralph Lecture 3
Meissner Effect

1st ingredient - Condensation Energy

With no applied magnetic field, a superconducting state has a lower energy than the normal state, with a difference in free energy per unit volume

$$f_{\text{N}}(B=0) - f_{\text{S}}(B=0) = \frac{1}{2} g(\varepsilon F) \Delta^2$$

2nd ingredient - Add Magnetic Field - What changes?

(a) For a bulk type I superconductor (size >> \lambda) the field is expelled from the material (perfect diamagnetism) due to screening currents near the surface of the sample.

Energy cost to maintain SC state \(\frac{H^2}{8\pi} \) per unit volume

cgs. \((4 \times 10^{-6} \text{ H}^2) \)

(b) For a normal metal, the free energy is lowered slightly on account of Pauli paramagnetism.

Energy decrease in N state \(\mu_0 g(\varepsilon F) H^2 \)

\((1 \times 10^{-6} \text{ H}^2 \text{ for } \text{Ag}) \) small

Final free energy difference

$$f_{\text{N}}(B) - f_{\text{S}}(B) = \frac{1}{2} g(\varepsilon F) \Delta^2 - \mu_0 g(\varepsilon F) H^2 - \frac{1}{2} H^2$$

unchanged by B ignore for now since no field inside SC.

When \(f_{\text{N}}(B) - f_{\text{S}}(B) < 0 \), the SC state is unstable - 1st order transition to N state

\(H_{c1} = \frac{1}{2\pi} g(\varepsilon F) \Delta \approx 100 \text{ Gauss for } \text{Al} \)

Physical reason - Costs more energy to screen field than gained by remaining SC.

But things change for small samples, with at least one dimension comparable to \(\lambda \) - the magnetic field penetration depth. \((\approx 100 \text{ nm}) \)

Consider SC slab in a parallel magnetic field

Field penetrates sample now - No screening cost to pay

Critical Field can go much higher.
Next Effect - Orbital Pair Breaking

A magnetic field alters the orbits of electrons inside the S.C. - disrupts superconductivity.

Time-reversed wave functions make up Cooper pairs. An applied field produces a relative energy shift between pairs.

\[\Phi = \frac{e}{2mc} \mathbf{k} \cdot \mathbf{A} \]

In a state with wave vector \(\mathbf{k} \)

Time-reversed orbital states - e.g. \(\mathbf{k} \) and \(-\mathbf{k} \) are split

\[\Delta E \sim \frac{2e}{mc} \mathbf{k} \cdot \mathbf{A} \sim \frac{2e}{c} V \mathbf{k} \cdot \mathbf{A} \]

In a real (dirty) sample, lots of scattering. Plane wave states are not a good starting point.

Semiclassical picture - electrons do random walk in field

It's easiest to characterize the strength of pair breaking by adding up the phase difference

\[\gamma = \frac{\Delta E}{\hbar} \]

on each path segment.

(Analogy - Aharonov-Bohm)

\[\frac{d\gamma}{dt} = \frac{\Delta E}{\hbar} = \frac{2e}{mc} V \mathbf{k} \cdot \mathbf{A} \]

so on one segment, in mean free time \(\tau \)

\[\Delta \gamma \sim \frac{2e}{mc} V \mathbf{k} \cdot \mathbf{A} \]

In the course of the random walk, the phase difference grows \(\sqrt{N} \), when \(N = \# \) of segments

\[\gamma \sim \frac{\sqrt{N}}{c} \]

Total phase accumulated

\[\sim (2\pi)^{\frac{1}{2}} \frac{2e}{mc} V \mathbf{k} \cdot \mathbf{A} \]

It is conventional to characterize the strength of pair breaking by defining a parameter \(\frac{2e}{mc} \), where \(\tau_k \) is the time needed to accumulate a phase difference \(\pi \)

\[\frac{1}{\tau_k} = \frac{1}{2} \left(\frac{2e}{mc} \right)^2 \mathbf{A}^2 \sim \frac{V^2}{2} \frac{\tau_k}{c} \frac{e}{\hbar} \]

(for a thin film of thickness \(d \), in a parallel field)
The magnetic-field-induced shifts in energy levels can be seen directly in the quasiparticle density of states.

A detailed calculation shows that the critical field is determined by the condition $\frac{T}{T_c} = \frac{H}{H_c}$.

As long as the paths are sufficiently random (ergodic), the same density of states also applies for phase breaking in other geometries, due to magnetic impurities, type II, etc.

\[H_c = \frac{\hbar c^2}{4\pi^2 e^2 d^2} \sim \frac{\hbar c^2 a}{l} \]

where $l = \frac{\hbar}{e}$, normally l and d in very thin films.
Intuitive, qualitative interpretation

At the critical field, one flux quantum $\Phi_0 = \frac{\hbar \pi}{2e}$ penetrates through an area $\frac{\hbar \pi}{2e}$ thickness of film b effective coherence length $\xi \approx (\xi_0 d)^{1/4}$ where $\xi_0 = \frac{\hbar}{\pi e}$

(true of thin mean-free path $\xi = d$)

Check: $H_c \approx (\xi_0 d)^{1/4} d^d = \Phi_0$

$H_c \approx (\frac{\hbar c^2 \xi}{\sqrt{2}} \frac{1}{d^d})$

departure from orbital pair breaking theory for $d < 10 \text{nm}$.

Spin Pair Breaking (Clogston, Chandrasekhar)

For very thin films - the electron orbits are very compressed - do not intersect much field \Rightarrow little shifting by Aharonov-Bohm effect.

But we have not yet considered the effects of H on the electron spin.

Recall from discussion of Meissner Effect:

$\nu_1(H) - \nu_2(H) = \frac{1}{2} g(e^p) A^2 - \frac{1}{2} g e^p H^2 - \mu_0 g(e^p) H^2 \Rightarrow$ condensation energy cost is bulk in N state $\Rightarrow \phi_0$ for thin samples

Previouly we ignored Pauli term. But if these are no orbital effects, at high fields this term by itself may make the N state more energetically favorable than SC state:

$\nu_1(H) - \nu_2(H) < 0$ when $\frac{1}{2} g(e^p) A^2 - \mu_0 g(e^p) H^2 \Rightarrow H_c = \frac{A}{\sqrt{2} \mu_0}$

Note the density of states drops out.

1st order transition
Physical Interpretation:

At the critical field, it becomes energetically beneficial to break lots of Cooper pairs (by flipping spins), and gain the Zeeman energy in the applied magnetic field.

\[\# \text{ of broken spins} \sim \frac{\mu_0 H_c}{\delta E} = \frac{0.2 \text{ meV}}{\delta E} \sim 10^5 \]

\[\text{level spacing in sample} \]

Beautiful Experimental Confirmation - Mesarveya Tedrow

Tunneling into a thin Al sample in parallel magnetic fields

Conductance vs. voltage for increasing H

Zeeman splitting of quasi-particle states (still SC.)

Suddenly, no more SC. at predicted critical field.
Energy Levels in Superconducting Nanoparticles

Level Crossings at Large Magnetic Fields

Why does the tunneling threshold evolve continuously as a function of H?

Clogston and Chandrasekhar (1966)
Predicted a discontinuous transition under the influence of spin pair-breaking, for a continuum density of states.

Competition between the superconducting condensation energy and the Pauli paramagnetism of the normal state:

\[
\frac{\Delta^2}{2(\delta E)} \text{ vs. } \frac{(\mu_B H)^2}{\delta E}
\]

Discontinuous transition when

\[
H_c = \frac{\Delta}{\mu_B \sqrt{2}}.
\]

A discontinuous transition is expected whenever $8S > 1$ at the transition.
Why break one Cooper pair at a time in a nanoparticle?

- Need a more careful consideration of what is the ground state in a magnetic field.

1. Superconducting state with some broken pairs?

 - Can we optimize the energy by having a small (non-zero) spin, while still maintaining the superconducting condensation energy?

2. Is breaking one Cooper pair enough to destroy the pairing correlations in a nanoparticle?

Energies to take into account:

- Zeeman energy for states with unpaired spins
 \[g \mu_B H \]

- Kinetic energy for exciting states to higher orbital levels
 \[\frac{\gamma}{\hbar} \] vs. \[\frac{\gamma}{\hbar} \]

- Condensation energy including gap suppression

\[\text{New ingredient} \]

An unpaired electron suppresses the condensation energy.

Idea of Gap Suppression

Recall with no unpaired electrons, the S.C. ground state is a linear superposition of Slater determinant states with different arrangements of pairs:

\[
\psi = a_1 \frac{\Psi}{\Psi} + a_2 \frac{\Psi}{\Psi} + a_3 \frac{\Psi}{\Psi} + a_4 \frac{\Psi}{\Psi} + \ldots
\]

Allows maximum energy benefit from pair scattering

\[
\langle \psi | V_{ee} | \psi \rangle
\]

\[
V_{ee} = K S_i S_j + C_j^+ C_i^+ + C_i C_j
\]

If pairs are broken, some states are blocked from participating in the linear superposition:

\[
\psi = \frac{\Psi}{\Psi} + \frac{\Psi}{\Psi} + \frac{\Psi}{\Psi} + \ldots
\]

Blocked

\[\frac{\gamma}{\hbar} \] vs. \[\frac{\gamma}{\hbar} \]

Less "phase space" for pair scattering, smaller condensation energy.
Amusing Exercise

Consider BCS gap equation with equally spaced discrete levels

\[\Delta = \mu \sum_{i=1}^{N} \left[\Delta + (E_i - \mu)^2 \right]^{1/2} \]

In the continuum limit (\(\Delta \to 0 \)) in weak coupling (\(\frac{\Delta}{\mu} \ll 1 \)), solving the gap equation gives usual answer

\[\Delta \approx 2 \hbar w_c e^{-\frac{\Delta}{2 \hbar w_c}} \quad (\mu = \frac{\Delta}{2}) \]

To do: a) Solve gap equation with non-zero \(\Delta \)

b) Solve equation for 1 state blocked

Can see the effects of gap suppression directly (in the BCS mean-field approximation)

Variational Technique for Finding Correlated Eigenstates

For each spin s, find variational eigenstates of the form

\[|s⟩ = \prod_{j \text{ available}} \left(u_j^{(s)} + v_j^{(s)} c_j^+ c_{-j}^+ \right) |\text{Vac}⟩ \]

in the BCS framework.

For \(s = 1 \)

\[|s⟩ \text{ available} \]

As \(H \) is increased, what is \(s \) for the eigenstate whose energy crosses first below the SC ground state energy?

\[E_s - E_0 \]

\[s=1 \quad s=0 \]

Whether \(s=1 \) crosses \(s=0 \) before any \(s > 1 \) state does determines the nature of the transition.

For \(\delta E \to 0 \), (C&C limit) \(s_{\text{crit}} = \Delta / (\sqrt{2} \delta E) \).

(Exact Solution: Richardson)
The Order of Level Crossings varies with Level Spacing

\[
\begin{array}{c}
\text{Critical Field} \\
\text{\(\mu_B H_{\text{c1}}/\Delta \)} \\
\text{\(\mu_B H_{\text{c2}}/\Delta \)} \\
\Lline
\end{array}
\]

(\(1,1\) for smallest size only)

A magnetic field is not good for superconductivity

For Aluminum, critical field can range from
100 Gauss - bulk samples
to
>40,000 Gauss - thin films and small particles.

Orbital effects dominant at larger sizes,
Spin pair breaking below ~10 nm.

Further complications possible:
- Spin-orbit scattering
 True eigenstates become superpositions of \(\Gamma_1 \) and \(\Gamma_0 \)
 Zeeman spin splitting
 \(\rightarrow \) Even larger magnetic fields can be applied before Zeeman energy overcomes the condensation energy.

Conclusions:

It turns out, in general, that the state existing after the transition has the gap suppressed completely to zero. At no magnetic field is there a ground state with non-minimal \(S \) and SC correlations.

Breaking one Cooper pair is sufficient to kill superconductivity in a nanoparticle.

(All true in this simple 1 band, \(S \)-wave, variational model.)