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4.1 Erdös-Rényi Random Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Random Recursive Tree (RRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Preferential Attachment Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



Chapter 2

ADSORPTION

This chapter is concerned with the kinetics of adsorption in which gas molecules impinge upon and then
adsorb on a surface, or substrate. What is the rate at which adsorbed molecules fill the substrate? If the
incident molecules are monomers that permanently attach to single adsorption sites on the surface and if
there are no interactions between adsorbed monomers, then the fraction ρ of occupied sites increases at a
rate proportional to the density of vacancies,

dρ

dt
= (1 − ρ),

where we set the an intrinsic adsorption rate to 1 without loss of generality. The solution to this rate equation
is ρ(t) = 1−e−t, so that vacancies disappear exponentially in time. However, if each arriving molecule covers
multiple substrate sites, then an unfilled region that is smaller than the molecule size can never be filled.
The system reaches a jammed state in which the substrate cannot accommodate additional adsorption, even
though it is not completely filled. What is the filling fraction of this jammed state? What is the rate at
which this final fraction is reached? These are basic questions of adsorption kinetics.

2.1 Random Sequential Adsorption in One Dimension

Dimer adsorption

A simple example that exhibits non-trivial collective behavior is the irreversible and random sequential
adsorption of dimers — molecules that occupy two adjacent sites of an infinite one-dimensional lattice
(Fig. 2.1). We model the steady influx of molecules by adsorption attempts occurring one at a time at
random locations on the substrate. An adsorption attempt is successful only if a dimer is incident onto two
adjacent empty sites. If a dimer lands on either two occupied sites or on one occupied and one empty site,
the attempt fails. That is, multilayer adsorption is forbidden, so that each site is either empty or contains 1
particle, but no more. The dimer coverage grows with time and eventually only isolated vacancies remain.
When this occurs, the substrate is jammed and no further adsorption is possible.

Figure 2.1: Irreversible dimer deposition. The dimer on the left successfully adsorbs onto two adjacent
vacant sites, while the dimer on the right does not adsorb.

For dimer adsorption, a jammed state consists of strings with an even number of occupied sites (•) that
are separated by isolated vacant sites (◦), as illustrated by:
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CHAPTER 2. ADSORPTION 18

Figure 2.2: A jammed configuration in random sequential adsorption of dimers.

In principle, the fraction of occupied sites in the jammed state, ρjam ≡ ρ(t=∞), can have any value between
2/3 and 1, with the two extreme limits achieved by the respective configurations:

Figure 2.3: Minimum-density and maximum-density jammed dimer configurations.

A beautiful result, first derived by Flory, is that the value of ρjam in random sequential dimer adsorption is

ρjam ≡ ρ(t = ∞) = 1 − e−2 = 0.864 664 . . . (2.1)

Flory’s original derivation was based on enumerating all possible jammed configurations directly. Here we
adopt a kinetic viewpoint and determine the time evolution of the coverage. The final coverage will then
emerge as a natural consequence.

To determine the evolution of the substrate coverage, we need, in principle, the probabilities P (= {nj}, t)
for the occupation state of each lattice site. Here nj = 1 if the jth site is occupied, and nj = 0 if this site is
empty. However these probabilities contain more information than necessary. What we really need are the
empty interval probabilities, namely, the probability that a string of m consecutive sites are empty:

Em ≡ prob(×◦ · · · ◦
︸ ︷︷ ︸

m

×) ≡ P[◦ · · · ◦
︸ ︷︷ ︸

m

]

Here the symbol × signifies that the state of the sites on the periphery of the m-interval are unspecified;
they could be either occupied or empty. Consequently, Em is also the probability to find an empty interval
of length m or greater. In particular, E1 is the density of empty sites and ρ(t) = 1 − E1 is the density of
occupied sites. Thus from the empty interval probabilities, we can obtain the particle density. This is one
reason why the empty interval probabilities are so useful.

Figure 2.4: Changes in the empty interval probability Em for m = 4, with an adsorption event in the interior
of the interval (left) and at the edge of the interval (right).

For irreversible dimer adsorption, the master equations that describe the evolution of the empty interval
probabilities Em are:

dEm

dt
= −(m − 1)Em − 2Em+1 m ≥ 1. (2.2)

The first term on the right side accounts for the loss of an m-interval due to the adsorption of dimers inside
the interval. The factor m − 1 counts the m − 1 distinct locations at which the dimer can adsorb such that
it lies entirely within the interval (Fig. 2.4). The second term accounts for the two adsorption events in
which one end of the incident dimer is outside the m-interval. For these latter events, the empty interval
must contain at least m + 1 empty sites to accommodate this absorption of a dimer on the periphery of the
m-interval; hence the factor Em+1. Notice that (2.2) contains only loss terms. This feature is a consequence
of using the empty interval probabilities Em as the basic dynamical variables. Pictorially, we are looking
at the substrate through eyes that see only m consecutive sites at a time and Em is merely the fraction of
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these intervals that are empty. In this representation, there is no way to create an empty interval of length
≥ m by the adsorption of a dimer onto a still-larger empty interval.

It might seem more natural to write master equations for the void densities

Vm ≡ P[• ◦ · · · ◦
︸ ︷︷ ︸

m

•],

defined as the probability to find m consecutive empty sites that are bounded on either side by an occupied
site. The master equations for the evolution of the void densities Vm for irreversible dimer adsorption are:

dVm

dt
= −(m − 1)Vm + 2

∞∑

j=2

Vm+j . (2.3)

The first term again accounts for the adsorption of a dimer in the interior of a void. The sum accounts for
the creation of a void of m sites by adsorbing a dimer into a void that contains ≥ m + 2 unoccupied sites.
There is a close correspondence between these master equations and those for fragmentation. There are no
hard and fast rules for which set of quantities — Em or Vm — are more useful for determining the dynamics
of these type of kinetic problems. For irreversible adsorption, the master equations for Em are typically
easier to solve and we focus on these quantities in what follows:

We now solve (2.2) for the initial condition of an initially empty system, Em(0) = 1. Because the
integrating factor for each master equation is e−(m−1)t, it suggests seeking a solution of the form

Em(t) = e−(m−1)t Φ(t), (2.4)

where Φ coincides with E1(t), and with Φ(0) = 1 to match the initial condition. In terms of the Em(t),
the density of occupied sites ρ(t) is given by E1(t) = 1 − ρ(t). This connection allows one to determine
how the surface coverage evolves. Using the ansatz of Eq. (2.4), the infinite set of master equations (2.2)
miraculously reduces to the single equation dΦ

dt = −2e−t Φ, whose solution immediately yields the empty
interval probabilities

Em(t) = e−(m−1)t−2(1−e−t). (2.5)

Empty gaps of length greater than 1 decay exponentially with time and only gaps of length 1 remain in the
final jammed state. From (2.5), the asymptotic density of such gaps is E1(∞) = e−2, so that the jamming
coverage is

ρjam ≡ ρ(t = ∞) = 1 − e−2 = 0.864 664 , . . . (2.6)

as first derived by Flory from a direct enumeration of all possible final state configurations.
We have reproduced the classic Flory result with little labor, and we also have more — the coverage

throughout the entire evolution:

ρ(t) = 1 − E1(t) = 1 − e−2(1−e−t). (2.7)

The coverage therefore approaches the jamming coverage exponentially in time, ρ(∞) − ρ(t) ≃ 2 e−(t+2), a
feature that typifies lattice models of irreversible adsorption.

Irreversible car parking

The limit of k-mer adsorption with k → ∞ defines the car parking problem. In this limit, the position of an
adsorbed k-mer becomes continuous and one can think of unit-length “cars” that irreversibly park anywhere
along a one-dimensional curb (no marked parking spots) and then are abandoned. The only constraint is
that cars cannot overlap; however a car can fit into a parking spot that is infinitesimally larger than the
car itself. For this parking problem, Rényi obtained a jamming coverage of 0.747597 . . .; this result is the
k → ∞ limit of the jamming coverage for k-mers.

We again solve this parking problem by the master equation approach. The length of a car is immaterial
if we seek the fraction of the line that is covered, and for convenience we set the car length to be 1. The
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appropriate dynamical variable is now E(x, t), the probability that a randomly-chosen interval of length x
is empty. As in the discrete case, this region may be part of an even longer empty interval. When the rate
at which cars park equals 1, the master equation for E(x, t) is

∂E(x, t)

∂t
=







−(x − 1)E(x, t) − 2

∫ x+1

x

E(y, t) dy x > 1

−(1 − x)E(1, t) − 2

∫ x+1

1

E(y, t) dy x < 1.

(2.8)

For x > 1, the first term on the right in Eq. (2.8) accounts for adsorption events that lie completely within
the interval, while the second term accounts for adsorption events that partially overlap the interval. A
similar correspondence also applies for the second line of (2.8).

As an pedagogical digression, we write the master equations for the void density V (x, t)

∂V (x, t)

∂t
=







−(x − 1)V (x, t) + 2

∫ ∞

x+1

V (y, t) dy x > 1

+2

∫ ∞

x+1

V (y, t) dy x < 1,

(2.9)

to appreciate the correspondence with the master equation for the empty interval probabilities. For x > 1
the first term accounts for adsorption in the interior of an interval of length x and it has the same form as in
Eq. (2.8). The second term accounts for the creation of an x void by the “fragmentation” of an (x + 1)-void
by adsorption inside this larger void. There are exactly 2 locations for this adsorption event to give rise to
an x-void. For x < 1, there is no loss term because adsorption cannot occur inside such a short void, but
there still a gain term due to the fragmentation of a void of length x + 1 or greater.

To solve this master equation for E(x, t), consider first the regime x > 1. As in the discrete case, we seek
a solution of the form E(x, t) = e−(x−1)t E(1, t). Substituting this expression into the first of Eqs. (2.8), the
x-dependent terms cancel, and integrating the resulting equation for E(1, t) gives

E(1, t) = exp

[

−2

∫ t

0

1 − e−u

u
du

]

, (2.10)

which immediately gives E(x, t) for x > 1. From the second of Eqs. (2.8), we have ∂E(0,t)
∂t = −E(1, t), from

which the coverage ρ(t) = 1 − E(0, t) is

ρ(t) =

∫ t

0

exp

[

−2

∫ v

0

du
1 − e−u

u

]

dv. (2.11)

For t → ∞, numerical evaluation of this integral gives the jamming coverage ρ(∞) = 0.747597 . . ..
A qualitative new feature of continuum car parking is that the approach to jamming is slower than for

adsorption of discrete molecules. Let’s examine how the deviation from the asymptotic coverage, ρ(∞)−ρ(t),
vanishes as t → ∞:

ρ(∞) − ρ(t) =

∫ ∞

t

exp

[

−2

∫ v

0

du

u
(1 − e−u)

]

dv

∼
∫ ∞

t

exp

[

−2

∫ v

1

du

u

]

dv

∼
∫ ∞

t

dv

v2
=

1

t
. (2.12)

The simplification in the second line results by replacing the smooth cutoff function 1− e−u by a step cutoff
that equals 0 for u < 1 and equals 1 for u > 1. Then the integral in the exponent is elementary and the
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asymptotic behavior follows straightforwardly. More precisely, the asymptotic behavior of the integral in
Eq. (2.10) is

∫ t

0

du
1 − e−u

u
= ln t + γ + t−1e−t + . . . ,

where γ = 0.577215 . . . is Euler’s constant. Thus

ρ(∞) − ρ(t) → t−1 e−2γ t → ∞;

the approach to jamming is slower on continuous substrates than on discrete substrates.

2.2 Adsorption in Higher Dimensions

Most applications of irreversible adsorption involve two-dimensional substrates. It is natural to begin with the
adsorption of elementary objects such as disks, squares, rectangles, and sticks as a prelude to real systems,
such as proteins and latex particles. To get a feeling for numbers, the jamming coverages for random
sequential adsorption of various elementary objects in two dimensions are listed in Table 2.1. An exact
analysis of adsorption is generally not possible in higher dimensions, and one has to resort to approximations
and numerical simulations. Nevertheless, the evolution of the coverage in arbitrary dimensions has the same
qualitative features as in one dimension. Namely, relaxation to the jamming density is exponential in time
on discrete substrates and algebraic on continuous ones. Moreover, fluctuations in the number of adsorbed
particles are extensive, i.e., proportional to the area, while different jammed configurations are realized with
different likelihoods and the dynamics is non ergodic.

object substrate ρjam

unoriented dimers square lattice 0.9068
2 × 2 squares square lattice 0.74788
(aligned) squares continuum 0.562009
disks continuum 0.5472

Table 2.1: Jamming coverages for various objects in two dimensions.

Discrete substrates

Adsorption is exactly soluble for one special high-dimensional substrate — the Bethe lattice, in which
each site is connected to exactly z other sites in a tree structure (Fig. 2.5). For dimer adsorption on the
Bethe lattice, the fundamental quantities are not the empty intervals of length ≥ m, but rather empty
connected clusters of ≥ m sites that we again write as Em. Because these clusters have a tree structure, it
is straightforward to count the “boundary” configurations that enter into the master equations for Em.

The probability Em that all sites in an m-cluster remain vacant during dimer adsorption satisfies the
master equation [compare with Eq. (2.2)]

dEm

dt
= −(m − 1)Em − [(z − 2)m + 2]Em+1, (2.13)

for m ≥ 1, with the initial conditions Em(0) = 1. The first term on the right accounts for deposition events
in which the dimer lands somewhere within the cluster. The number of available locations for such “interior”
adsorption events is just the number of bonds in the cluster. Since any cluster has a tree topology, its number
of bonds is m − 1. The second term accounts for adsorption events in which the dimer lands with one site
in the cluster and one site outside. The number of ways that such an event can occur equals the number of
cluster perimeter sites — sites that adjoin the cluster, but are not part of the cluster itself (Fig. 2.5). An
important feature is that the number of perimeter size to an m-cluster is always zm− 2(z − 1), independent
of the topology of the cluster. This fact can be understood inductively: for a cluster of 2 sites, the number
of perimeter sites is 2(z − 1). When a site is added to the cluster, one perimeter site is lost, but (z − 1)
perimeter sites are gained. Continuing this counting for a cluster of m sites, the number of perimeter sites
is zm − 2(z − 1).
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Figure 2.5: (Left) First three generations of a Bethe lattice with coordination number z = 4. (Right)
Counting perimeter sites (circles) starting with a connected cluster of m = 2 and 3 sites (dots).

A second look at exponential solutions (continued from page 5, Sec. 1.1)

Consider a master equation of the generic form

dEm

dt
= λ(m + α)Em + µ(m + β)Em+1, (2.14)

that encompasses Eq. (2.13). Again, the exponential ansatz provides an easy route to the solution.
Let’s assume that Em has the form

Em = Φ(t)[ϕ(t)]m. (2.15)

Substituting into Eq. (2.14) and then dividing by Em gives

Φ̇

Φ
+ m

ϕ̇

ϕ
= λ(m + α) + µ(m + β)ϕ.

This result shows the utility of the ansatz (2.15), as the above equation divides naturally into terms
linear in m and terms independent of m.

From the terms linear in m, we have
ϕ̇

ϕ
= λ + µϕ, (2.16)

from which we obtain ϕ(t). The m-independent terms give

Φ̇

Φ
= λα + µβϕ, (2.17)

which then gives Φ(t), after which the original problem is solved.

The essential point is that the factor ϕm in the original ansatz separates the initial set of equations
(2.15) into two equations: one linear in m and one independent of m.

To solve the master equation (2.13), we again apply the exponential ansatz Em(t) = [ϕ(t)]m−1 Φ(t) with
ϕ(0) = Φ(0) = 1 to match the initial condition (see the box on the next page). With this ansatz, the
hierarchy of rate equations reduces to the pair of coupled differential equations

dϕ

dt
= −ϕ − (z − 2)ϕ2 dΦ

dt
= −z ϕΦ,

whose solutions are ϕ = e−t[(z − 1)− (z − 2)e−t]−1 and Φ(t) = [(z − 1)− (z − 2)e−t]−z/(z−2). Consequently,
the empty cluster probabilities are

Em(t) = e−(m−1)t
[
(z − 1) − (z − 2) e−t

]−m−2/(z−2)
. (2.18)

The approach to the jamming coverage is exponential in time, with the jamming coverage equal to

ρjam = 1 − (z − 1)−z/(z−2). (2.19)

In the limit z ↓ 2, the one-dimensional result, ρjam = 1 − e−2, is recovered, while for large z, the uncovered
fraction is inversely proportional to the coordination number, 1 − ρjam ∼ z−1. Amusingly, the Bethe lattice
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provides a good approximation for ρjam for a regular lattice with the same coordination number. For
example, when z = 4, dimer adsorption on the Bethe lattice gives ρjam = 8/9, while for the square lattice,
ρjam ≈ 0.9068.

For discrete substrates in arbitrary spatial dimension, we can give only a heuristic argument that the
relaxation to the jamming coverage decays exponentially in time

ρjam − ρ(t) ∼ e−λt . (2.20)

As a concrete example, consider dimer adsorption on the square lattice. At long times, the available spaces
that can accommodate additional dimers are few and far between. These “target” regions are small continu-
ous clusters of unoccupied sites: dimers, trimers (both linear and bent), 2×2 squares, etc. To determine the
rate at which these “lattice animals” get filled, we need the probabilities that these various configurations
are empty. A basic fact is that the probability to find a vacant cluster on the substrate rapidly decreases
with its size at long times. Thus only the smallest empty lattice animals persist and their asymptotic decay
is dominated by the adsorption of dimers inside the animal. Thus for dimer adsorption on the square lattice,
the probabilities of the lowest-order configurations (dimers, trimers, and 2 × 2 squares) evolve according to

d

dt
P [◦◦] ∼ −P [◦◦], d

dt
P [◦ ◦ ◦] ∼ −2 P [◦ ◦ ◦], d

dt
P
[◦◦◦◦
]
∼ −4 P

[◦◦◦◦
]
.

Here, we use the shorthand P [ · ] to denote the likelihood of a configuration, and the numerical prefactor
counts the number of ways that a dimer can adsorb within the cluster. The time dependence of these
configurations therefore evolve as

P [◦◦] ∼ e−t , P [◦ ◦ ◦] ∼ e−2t , P
[◦◦◦◦
]
∼ e−4t. (2.21)

Generally, the probability that a given lattice animal is empty decays exponentially in time, P (t) ∼ e−λt,
where λ counts the number of ways that a dimer can adsorb within a particular lattice animal. In particular,
the coverage is determined by the rate equation dρ/dt ∼ −2P [◦◦], so that

ρjam − ρ(t) ∼ e−t. (2.22)

A similar exponential relaxation arises for the adsorption of arbitrarily-shaped objects on discrete substrates
in any dimension.

Continuous substrates

On continuous substrates, gaps between adjacent adsorbed objects can be arbitrarily small, and this feature
leads to a slower algebraic relaxation of the density to the jamming density, in which ρjam − ρ(t) ∼ t−σ. For
car parking in one dimension, we already demonstrated that σ = 1 at the end of Sec. 2.1. Let’s derive the
corresponding decay for the adsorption of disks in two dimensions. As the substrate approaches jamming,
there will be only a few tiny and independent “target zones” within which the center of another disk can
adsorb. To characterize these target zones, notice that around each disk there is an “exclusion zone” whose
radius is twice that of the disk. An incident disk whose center lies within the exclusion zone of any already
adsorbed disk cannot adsorb. The target zones are therefore the complement of the exclusion zones on the
substrate (Fig. 2.6). In a jammed configuration, no target zones remain even though the adsorbed particles
do not completely cover the substrate.

Let c(ℓ, t) be the density of target zones of linear size ℓ. Because the area of such a target zone is quadratic
in ℓ, the density of targets of linear size ℓ obeys dc/dt ∼ −ℓ2c, leading to the exponential decay

c(ℓ, t) ∼ e−ℓ2t. (2.23)

Since each disk has the same area, the deviation of the substrate coverage from its jamming value is just
proportional to the area fraction of the target zones:

ρjam − ρ(t) ∼
∫ ∞

0

c(ℓ, t) dℓ ∼
∫ ∞

0

e−ℓ2t dℓ ∼ t−1/2. (2.24)
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Figure 2.6: Two target areas (white), the exclusion zones (shaded), and the adsorbed disks (dark) near
jamming. In the long-time limit only arc-triangular target areas, such as the tiny one on the left, remain.

Because target zones can be arbitrarily small, a power-law decay arises after rescaling the integral. Although
the probability to find a target zone of a given size vanishes exponentially with time, the average over the
sizes of all target zones leads to a power-law tail. This heuristic approach can be straightforwardly extended
to arbitrary spatial dimension d. Now the area of a target zone of linear dimension ℓ scales as ℓd, and the

corresponding, the density of target zones of linear dimension ℓ scales as c(ℓ, t) ∼ e−ℓdt. The analog of
Eq. (2.24) then gives ρjam − ρ(t) ∼ t−1/d in d dimensions.

2.3 Extensions and Applications

Thus far, we’ve focused on irreversible adsorption — once a particle adsorbs, it is immobile. Furthermore,
we tacitly assumed that the only interaction is geometrical exclusion in which the adsorption probability
depends only on the existence of sufficient empty space to accommodate an incoming particle, and not on
the distance to previously-adsorbed particles. Both of these assumptions are idealizations of reality, however,
and we now study physically-motivated extensions in which these assumptions are relaxed.

Reversible car parking

In reality, an adsorbed molecule has a finite binding energy to the substrate. If a fixed density of molecules
is maintained in a gas phase above the substrate, then reversible adsorption-desorption occurs: molecules
adsorb with a rate k+ and desorb with a rate k− that depends on the ratio of the binding energy to the
temperature. It is fun to think of the monomers as cars that are trying to park at non-specific positions along
a one-dimensional curb (Fig. 2.7) because we all know it is hard to find a good parking spot. If the rate at
which cars leave (desorb) is small, the probability to find a parking spot also becomes small. The surprising
aspect of parking is that the car density approaches the limit of complete packing as the desorption rate
goes to zero, whereas the coverage is significantly less than complete for no desorption.

Figure 2.7: Adsorption-desorption of cars. Desorption attempts are always allowed, while the adsorption
attempt shown fails because of insufficient parking space.

A physical motivation for studying reversible adsorption is its connection to granular compaction. Sup-
pose that identical glass beads are placed randomly into a jar one at a time. The density of filled space in
this bead packing — approximately 0.58 — is known as the random packing density. If this bead-filled jar is
then vibrated vertically at a suitable intensity and frequency, the density will slowly increase and eventually
reach the random close-packing density of approximately 0.68. The vibrations lead to occasional collective
re-arrangements that allows a bead to “park” within an empty interstitial space that previously too small to
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accommodate the bead. As the density increases, re-arrangements involve progressively larger regions and
become rarer. The time scale over which this compaction occurs can be as long as months! This random
close packing-density is still smaller than the maximal density of π/

√
18 ≈ 0.7405 for a face-centered cubic

lattice packing of spheres.
As we now discuss, this slow compaction can be captured in terms of reversible car parking. As a

preliminary, consider the trivial example of monomers that adsorb onto and desorb from single sites on the
substrate. The density of adsorbed particles ρ satisfies the Langmuir equation

dρ

dt
= −k−ρ + k+(1 − ρ), (2.25)

i.e., adsorption proportional to the vacancy density and desorption proportional to the adsorbate density.
The time dependence of the density is

ρ(t) = ρ∞ + (ρ0 − ρ∞) e−t/τ , (2.26)

with relaxation time τ = (k+ + k−)−1 and final coverage ρ∞ = k+/(k+ + k−). Notice that when h ≡
k+/k− → ∞, the asymptotic coverage is ρ∞ ≈ 1 − h−1 is reached in a time τ ≃ h−1.

For the master equation for reversible car parking, it is more convenient to work with the density of voids
of length x at time t, V (x, t), rather than the density of empty intervals E(x, t). These master equations are
(compare with Eq. (2.9)):

∂V (x, t)

∂t
=







−k+(x−1)V (x, t) + 2k+

∫ ∞

x+1

V (y, t) dy

−2k−V (x, t) +
k−

∫∞
0 V (x, t) dx

∫ x−1

0

V (y, t)V (x−y−1, t) dy x > 1;

+2k+

∫ ∞

x+1

V (y, t) dy − 2k−V (x, t) x < 1.

(2.27)

The adsorption terms are just as previously written in Eq. (2.9) for irreversible adsorption. The term
−2k−V (x, t) accounts for the loss of an x-void because of the desorption of a car at either end of the void.
The last term for x > 1 accounts for the creation of an x-void when a unit-length car leaves a parking spot
that has an empty space of length y at one end of the car and a space x−y−1 at the other end. The correct
way to express the probability for this composite event is through a 3-body correlation function. However,
this description is not closed, as the void evolution is coupled to a 3-body function, and then the evolution
of the 3-body correlation function involves higher-body correlations, ad infinitum. To break this hierarchy in
the simplest manner, we invoke the mean-field assumption that the 3-body correlation function for a car to
be flanked by voids of length y and x− y−1 is the product of single-void densities. The factor

∫∞
0 V (x, t) dx

in the denominator properly normalizes the probability that the neighbor of a y-void has length x − y − 1.
It is not feasible to solve the master equations (2.27) directly, but we can glean the most interesting

results by physical reasoning and judicious approximations. First, since there is a one-to-one correspondence
between voids and adsorbed particles, the density of voids of any size equals the car density; consequently
∫∞
0 V (x, t) dx = ρ. Also, any point on the line is either occupied by a car or is part of a void; thus

1 =
∫∞
0

, (x + 1)V (x, t) dx. Because each adsorption and desorption event changes the overall density by the
same amount, the rate equation for the total density is

∂ρ

∂t
= −k−ρ + k+

∫ ∞

1

(x − 1)V (x, t) dx. (2.28)

The interpretation of this generalization of the Langmuir equation (2.25) is straightforward: with rate k−ρ, a
parked car desorbs, thereby decreasing the density, while the second term accounts for the increase in density
by the parking of a car in a space of length x > 1; this same equation can also be obtained by integrating
the master equations (2.27) over all lengths.
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Let’s now determine the steady-state coverage. For x < 1, the steady-state master equation (2.27) relates
the void density to its spatial integral suggests the exponential solution V (x) = Ae−αx. Using this ansatz
in the master equation for x < 1 gives

h ≡ k+

k−
= α eα. (2.29)

The normalization condition
∫
(x+1)V (x) dx = 1 then gives the amplitude A = α2/(α+1). Thus the parked

car density is

ρ =

∫

V (x) dx =
α

α + 1
, (2.30)

and eliminating α in favor of ρ, the probability to find a parking space of length x is

V (x) =
ρ2

1 − ρ
e−ρx/(1−ρ) . (2.31)

From Eqs. (2.29) and (2.30), the steady-state density has the following limiting behaviors:

ρ(h) ≈
{

h h → 0;

1 − [lnh]−1 h → ∞.
(2.32)

When desorption dominates over adsorption, plenty of parking spaces are available and the density of parked
cars is simply proportional to the adsorption rate. Conversely, for a large adsorption rate exclusion dominates
because parking places are typically too small to accommodate another car. Even though most parking
attempts fail, the limiting behavior is ρ → 1 as h → ∞ (albeit quite slowly), because a small desorption
rate eventually allows wasted space to be filled. However, analogous to the previous example of cooperative
monomer adsorption, the behavior in the limit h → ∞ is different than that when h = ∞ at the outset.
For the latter case, there is no mechanism to utilize too-small parking spaces and the jamming density is
ρjam = 0.747597 . . ..

Finally, let’s study how the time dependence of the density of parked cars for large h (or k− → 0). This
is the desorption-controlled limit in which any vacated parking space is immediately refilled and only the
voids are altered. Thus desorption is effectively canceled out. Because of their rapid re-arrangement, voids
are nearly in the steady state. Thus we use the steady-state void density (2.31) in the rate equation (2.28)
to obtain the following effective equation for the evolution of the parked car density

dρ

dt
≈ k+(1−ρ) e−ρ/(1−ρ). (2.33)

To solve this equation, we write g = 1/(1 − ρ) to give by dg/d(k+t) ≈ e−g to lowest order, whose solution
gives the logarithmic decay law

ρ(t) ∼ 1 − (ln k+t)−1. (2.34)

Comparing with Eq. (2.28), the factor e−ρ/(1−ρ) can be viewed as an effective sticking probability. We
can understand its meaning by the following heuristic argument. For a nearly-full system, we may write the
density as ρ = 1/(1 + 〈x〉) where 〈x〉 ≪ 1 represents the small average distance between neighboring parked
cars. On a time scale of the order of 1/k− a car leaves a parking space and is typically immediately refilled.
However, on a much larger time scale, the departure of parked car can lead to 2 spots opening up. Such a
happy event occurs by a collective re-arrangement of N = 〈x〉−1 = ρ

1−ρ parked cars: the first moves forward

by 〈x〉, the second by 2〈x〉, the third by 3〈x〉, etc., until a space of length one is generated. The probability
of this cooperative rearrangement decays exponentially in the number of cars, so that the effective sticking
probability S ∼ e−N ∼ e−ρ/(1−ρ). The essential point is that the collective nature of the rearrangements are
responsible for the slow relaxation of the density.

Assisted Polymer Translocation

A particularly appealing application of adsorption kinetics is to assisted translocation of a polymer through
a small pore in a membrane. By diffusion alone, any biologically-relevant polymer would pass through a
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pore too slowly to be relevant for cellular processes. One way to speed up translocation is to rectify diffusive
fluctuations so that backwards motion is inhibited. As we now discuss, chaperone-assisted translocation
provides a simple example of this rectification mechanism.

Consider a straight polymer chain of length L that passes through a pore in a membrane. By thermal
fluctuations the polymer diffuses isotropically along its length with diffusion coefficient D. The medium on
the right side of the membrane contains a fixed density of special molecules — “chaperones” — that adsorb
irreversibly onto unoccupied adsorption sites of the polymer with rate λ. A chaperone is sufficiently large
that it cannot pass through the pore. As a result, the chaperones rectify the polymer diffusion so that it
passes through the pore at a non-zero speed V . The goal is to calculate this translocation speed as function
of D and λ.

We can understand the dependence of V on the control parameters λ heuristically. Let τ be the typical
time between adsorption events within the leftmost chaperone-free segment of the polymer (Fig. 2.8). The
polymer diffuses a distance ℓ ∼

√
Dτ during this time. On the other hand, the time between adsorption

events in this leftmost segment is τ ∼ 1/(λℓ). Combining these two relations, we have τ ∼ (Dλ2)−1/3 and
ℓ ∼ (D/λ)1/3. On dimensional grounds, the translocation speed should therefore scale as

V ∼ ℓ

τ
∼ D2/3 λ1/3 . (2.35)

(c)

(a) (b)

m

Figure 2.8: Illustration of chaperon-assisted translocation. (a) The polymer can hop in either direction.
(b) The polymer can hop only to the right because an adsorbed chaperone (large dot) is next to the pore
(gap in the barrier) and too large to enter. (c) Adsorption of a new chaperone (shaded) within the leftmost
chaperone-free segment.

We can calculate V precisely in terms of the dynamics of the leftmost chaperone-free segment [1, m] of
the polymer. The length m of this segment can: (i) change by ±1 due to polymer hopping (with a reflecting
constraint at m = 1), or (ii) m can equiprobably change to any value in [1, m − 1] due to adsorption
(Fig. 2.8). Consequently, the polymer advances only when a chaperone is at the site next to the pore and
diffuses isotropically otherwise. The speed is therefore equal to the probability Q1(λ, t) that the closest
chaperone is adjacent to the pore at time t. However, to compute Q1(λ, t), we need the infinite set of
probabilities

Qj(λ, t) = Prob{| ◦ . . .◦
︸ ︷︷ ︸

j−1

•}

that the leftmost chaperone is a distance j from the pore; the symbol | denotes the pore, ◦ an empty site,
and • an occupied site. These probabilities evolve according to

dQ1

dt
= Q2 − Q1 + λ

∑

k>1

Qk

dQj

dt
= Qj−1 + Qj+1 − 2Qj + λ

∑

k>j

Qk − λ(j − 1)Qj j > 1. (2.36)
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Here the hopping rate has been set to 1, corresponding to a diffusion coefficient D = 1
2 . In the first line, the

factor Q2 accounts for the gain in Q1 due to the polymer hopping to the left with the leftmost chaperone
at m = 2, while the factor −Q1 accounts for the loss of Q1 when the polymer hops to the right with the
leftmost chaperone at m = 1. The last term accounts for the gain in Q1 due to chaperone adsorption at the
site next to the pore. In the second line, the first three terms account for changes in Qj due to hopping,
while the next two terms account for changes due to adsorption. The last term accounts for the j − 1 ways
that adsorption can occur within an interval of length j, thereby decreasing Qj.

In the long-time limit, a steady state is reached and the left-hand sides of (2.36) vanish. To simplify the
equation for Qj with j > 1, we sum it over all j. After simple steps, these two equations reduce to the single
equation

Qm−1 − Qm − λ(m − 1)
∑

j≥m

Qj = 0 , (2.37)

for all m. In keeping with our introductory discussion of section 2.1, we instead work with the empty interval
probabilities

Em = Prob{| ◦ . . .◦
︸ ︷︷ ︸

m

} ,

that are related to the segment probabilities Qm by Em =
∑

j>m Qj. In term of the Em, Eq. (2.37) become

Em−1 + Em+1 − (2 + mλ)Em = 0 . (2.38)

We should solve this equation subject to the normalization requirement E0 =
∑

j≥1 Qj = 1 and then extract
the speed from V = Q1 = 1 − E1.

Equation (2.38) is the discrete analog of an Airy equation and it admits a compact solution in terms of
Bessel functions. We start with the well-known identity for the Bessel functions:

Jν−1(z) + Jν+1(z) − 2ν

z
Jν(z) = 0 .

Comparing with Eq. (2.38), we must have

2ν

z
Jν(x) = (2 + mλ)Em(λ) = 2

m + 2/λ

2/λ
Em(λ).

Thus we identify ν = m + 2/λ and z = 2/λ. While there is ostensibly one condition to fix ν and z, the
choice is unique because the difference between two successive indices must be an integer. Finally, requiring
E0 = 1 gives the solution:

Em =
Jm+2/λ(2/λ)

J2/λ(2/λ)
, (2.39)

from which the translocation speed is

V = 1 − E1 = 1 − J1+2/λ(2/λ)

J2/λ(2/λ)
. (2.40)

The limiting behaviors of this translocation speed are instructive. In the small-λ limit, we use the
asymptotic formula that relates the Bessel function to the Airy function:

Ja(a + x) =

(
2

a

)1/3

Ai(0) −
(

2

a

)2/3

Ai′(0)x + . . . a → ∞ , (2.41)

where Ai(0) =
[
32/3Γ(2/3)

]−1
and Ai′(0) = −

[
31/3Γ(1/3)

]−1
, to give

V ≃ −Ai′(0)

Ai(0)
λ1/3 =

31/3Γ(2/3)

Γ(1/3)
λ1/3 . (2.42)

Conversely, for large λ, V → 1.




