Topological Mechanics

Vincenzo Vitelli Instituut-Lorentz, Leiden

Chen, Upadhyaya, Vitelli, *PNAS* (2014). Paulose, Chen, Vitelli, *Nat. Phys.* (2015). Paulose, Meussen, Vitelli, *PNAS* (2015).

videos: youtube VitelliLab

Tunable response (acoustic and failure)

Tunable response (acoustic and failure)

unit-cell geometry

(insensitive to smooth changes in material parameters)

Tunable response (acoustic and failure)

unit-cell geometry

topological invariants

unit-cell geometry

Can you have both ?

Mechanisms: propensity for motion zero modes

Rigid Miura Origami

Finite motions that obey constraint of zero stretching energy

Mechanisms: propensity for motion zero modes

Activated mechanisms: building blocks of robots

Maxwell counting

$$e_i = Q_{ij}^T u_j$$

degrees of freedom - #constraints = n_{zm}

Maxwell 1865 Calladine 1978

Maxwell counting

$$e_i = Q_{ij}^T u_j \qquad \qquad F_i = Q_{ij} t_j$$

degrees of freedom - #constraints = n_{zm} - n_{ss}

right hand side does not change unless you cut links

global

What determines motion in a structure?

8 degrees of freedom 4 constraints

#d.o.f. - #constraints = 4 = #zero modes

3 trivial (translations + rotation) 1 nontrivial

Maxwell 1865

What determines motion in a structure?

8 degrees of freedom 6 constraints

#d.o.f - #constraints = 2 = #zero modes - #states of self-stress

3 trivial zero modes (translations + rotation) 1 state of self-stress (redundant constraint)

Maxwell 1865 Calladine 1978

Maxwell counting

$$e_i = Q_{ij}^T u_j \qquad \qquad F_i = Q_{ij} t_j$$

0

degrees of freedom - #constraints = n_{zm} - n_{ss}

global

Index theorem

charge neutrality ?

Electrostatic analogy

global

Index theorem

charge neutrality ?

Polarized medium

dielectric

charge neutrality

Consider a finite patch: introduce edges

degrees of freedom - #constraints = n_{zm} - n_{ss}

Flux of polarization gives net charge

The simplest topological metamaterial

Kane and Lubensky, Nature Physics 2014

The simplest topological metamaterial

degrees of freedom = # constraints, in the bulk

Kane and Lubensky, Nature Physics 2014

The simplest topological metamaterial

 $\ell \sim 1/\bar{\theta}$

charges: constraints

Zero energy vibrational mode localized at only one edge

Kane and Lubensky, Nature Physics 2014

Linkages: ID origami

Soft motion localized at right edge chosen by P_T

Mechanical insulator within harmonic theory

What happens when we excite the zero energy mode ? go beyond linear analysis

The chain conducts mechanical energy !

An insulator at harmonic level becomes a conductor in non-linear theory

How does the edge mode move?

Zero energy kink that harbors a soft motion

Zero energy kink that harbors a soft motion

Restore springs

$$V(u) = \mathbf{k} (u^2 - \bar{u}^2)^2$$

Continuum theory

Chen, Upadhyaya, Vitelli, PNAS (2014).

initially ignore kinetic term

Topological boundary term

$$= k \int dx \left[\left(\frac{\partial u}{\partial x} \right)^2 + (u^2 - \bar{u}^2)^2 \ominus 2(u^2 - \bar{u}^2) \frac{\partial u}{\partial x} \right]$$

topological boundary term

Kink width diverges as gap closes

Anti-kinks harbour states of self-stress

degrees of freedom - #constraints = n_{zm} - n_{ss}

BPS

perfect square: enforces constraint

$$\mathcal{L} = \int \frac{1}{2} \frac{Mr^2}{r^2 - u^2} \left(\frac{\partial u}{\partial t}\right)^2 - \left|\frac{1}{2} K \frac{a^4}{4} \left(\frac{\partial u}{\partial x}\right)^2 - \frac{1}{2} K (\bar{u}^2 - u^2)^2 - K \frac{a^2}{2} (\bar{u}^2 - u^2) \frac{\partial u}{\partial x}\right| dx$$

Topological defects

1111111 + + + + + + + + + + + + + + + + 11 111 111 **+ + + + + + + / / /** 11 111 * * 1 1 1 * ` 1 \times + +1111 1 1 1 4 4 4 4 4 4 4 + + + * * * * 111 1 1 * 4 1 4 * * * * * * * * * * 4 1 * * * * * * * * * 7

Topological soft modes at topological defects

Paulose, Chen, Vitelli, Nat. Phys. (2015).

Where are the soft spots ?

d_A

dB

Paulose, Chen, Vitelli, Nat. Phys. (2015).

Rigid in the bulk

But there is one floppy spot!

Soft motion at dislocation self stress at anti-dislocation

floppy mode

state of self-stress

Mode count at dislocation:

$$\nu_T^S = \mathbf{P}_T \cdot \frac{\mathbf{d}}{V_{cell}}$$

d: dislocation dipole (perpendicular to Burgers vector) P_T : topological polarization

Mode count at dislocation:

$$\nu_T^S = \mathbf{P}_T \cdot \frac{\mathbf{d}}{V_{cell}}$$

You can insert topologically protected states of motion where you want

Lattice polarization and zero-energy mode count

Zero mode count \leftrightarrow Net "charge" in a region

Net charge = Polarization flux into region

Paulose, Chen, Vitelli, Nat Phys (in press) 2014

Zero mode count:

Electronic states in topological insulators:

Ran, Zhang, Vishwanath, *Nat Phys* 2009 Teo and Kane, *PRB* 2010

Topological control of material failure

Unit cell with topological polarization of phonon degrees of freedom

Take one of the lattices Tom described

Compression in plane of image

Side view

The road ahead

topological mechanisms

activated mechanisms robots & smart materials

molecular electronics

videos: search youtube for VitelliLab

molecular robotics

Kink costs zero energy $\begin{bmatrix} E \\ -\overline{u} \end{bmatrix} = +\overline{u}$

sign of flux of polarization

$$E = \int dx \left[\frac{\partial u}{\partial x} \int (u^2 - \bar{u}^2) \right]^2 \qquad + \bar{u} \qquad E = 0 \qquad E = 0 \qquad -\bar{u}$$
minus sign chooses kink
kink costs zero stretching energy \square

Chen, Upadhyaya, Vitelli, PNAS (2014).

anti kink suppressed

 $\mathbf{\nabla}$

Soft modes on right edge

INSTITUUT LORENTZ

Phase transition when $\bar{u} = 0$ $\begin{bmatrix} \mathsf{E} \\ & -\bar{u} \end{bmatrix}$

Kink width diverges as gap closes

sign of flux of polarization

$$E = \int dx \left[\frac{\partial u}{\partial x} \frac{1}{r} (u^2 - \bar{u}^2) \right]^2 \qquad E > 0 \quad \checkmark$$
anti-kink
needs +
kink costs zero stretching energy \checkmark

kink costs zero stretching energy

Chen, Upadhyaya, Vitelli, PNAS (2014).

anti kink suppressed

 $\mathbf{\nabla}$

sign of flux of polarization

$$E = \int dx \left[\frac{\partial u}{\partial x} \frac{1}{4} (u^2 - \bar{u}^2) \right]^2 \qquad E > 0 \quad \checkmark$$
anti-kink
needs +
kink costs zero stretching energy \bigvee

Chen, Upadhyaya, Vitelli, PNAS (2014).

anti kink suppressed

 $\mathbf{\nabla}$