Topological Mechanics

Vincenzo Vitelli

Instituut-Lorentz, Leiden

Chen, Upadhyaya, Vitelli, PNAS (2014).
Paulose, Chen, Vitelli, Nat. Phys. (2015).
Paulose, Meussen, Vitelli, PNAS (2015).
videos: youtube VitelliLab

Topological Mechanical Metamaterials

Tunable response (acoustic and failure)

Topological Mechanical Metamaterials

Tunable response (acoustic and failure)

unit-cell geometry

Topological Mechanical Metamaterials

Robust

(insensitive to smooth changes in material parameters)

Tunable response (acoustic and failure)

unit-cell geometry

Topological Mechanical Metamaterials

Robust

(insensitive to smooth changes in material parameters)

topological invariants

Tunable response (acoustic and failure)
unit-cell geometry

Topological Mechanical Metamaterials

\&
Tunable response (acoustic and failure)

Can you have both?

Mechanisms: propensity for motion zero modes

Rigid Miura Origami

Finite motions that obey constraint of zero stretching energy

Mechanisms: propensity for motion zero modes

Activated mechanisms: building blocks of robots

Maxwell counting

$e_{i}=Q_{i j}^{T} u_{j}$
\# degrees of freedom - \#constraints $=n_{z m}$

Maxwell 1865
Calladine 1978

Maxwell counting

$e_{i}=Q_{i j}^{T} u_{j}$
$F_{i}=Q_{i j} t_{j}$
\# degrees of freedom - \#constraints $=n_{z m}-n_{s s}$
global

What determines motion in a structure?

8 degrees of freedom

4 constraints

$$
\text { \#d.o.f. - \#constraints = } 4 \text { = \#zero modes }
$$

3 trivial (translations + rotation)
1 nontrivial

What determines motion in a structure?

8 degrees of freedom

6 constraints
\#d.o.f - \#constraints $=2$ = \#zero modes - \#states of self-stress

3 trivial zero modes (translations + rotation)
1 state of self-stress (redundant constraint)

Maxwell counting

$e_{i}=Q_{i j}^{T} u_{j}$
$F_{i}=Q_{i j} t_{j}$

0 \# degrees of freedom - \#constraints $=n_{z m}-n_{s s} \quad$ global

Electrostatic analogy

$$
\begin{array}{ccc}
0 & \oplus & \ominus \\
\text { \# degrees of freedom }- \text { \#constraints }= & n_{z m}-n_{s s}
\end{array} \quad \text { global }
$$

Polarized medium

$$
\mathrm{P}_{\mathrm{T}} \rightarrow
$$

dielectric

Consider a finite patch: introduce edges

-
\# degrees of freedom - \#constraints $=n_{z m}-n_{s s}$

Flux of polarization gives net charge

The simplest topological metamaterial

Kane and Lubensky, Nature Physics 2014

The simplest topological metamaterial

> vibrations gapped
> $\quad \bar{\theta} \neq 0$
> $\omega^{2}=c^{2} k^{2}+\omega_{0}^{2}$
\# degrees of freedom = \# constraints, in the bulk

Kane and Lubensky, Nature Physics 2014

The simplest topological metamaterial

Zero energy vibrational mode localized at only one edge

Kane and Lubensky, Nature Physics 2014

Linkages: ID origami

Soft motion localized at right edge chosen by P_{T}

Mechanical insulator within harmonic theory

What happens when we excite the zero energy mode ? go beyond linear analysis

An insulator at harmonic level becomes a conductor in non-linear theory

How does the edge mode move?

\qquad

Sine-Gordon

Zero energy kink that harbors a soft motion

Zero energy kink that harbors a soft motion

Restore springs

Continuum theory

spring

E cannot be zero unless $u= \pm \bar{u}$

constant

$$
\begin{gathered}
\substack{\text { potential } \\
\text { energy }} \\
\hline \mathrm{k} \int d x\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(u^{2}-\bar{u}^{2}\right)^{2}\right. \\
A^{2}+B^{2}
\end{gathered}
$$

Chen, Upadhyaya, Vitelli, PNAS (2014).

Topological boundary term

$$
\begin{gathered}
\text { BPS state } \\
E=\mathrm{k} \int d x\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(u^{2}-\bar{u}^{2}\right)^{2}\right. \\
A^{2}+B^{2} \pm 2 A B
\end{gathered}
$$

Chen, Upadhyaya, Vitelli, PNAS (2014).

Topological boundary term

$$
\begin{gathered}
\text { BPS state } \\
E=\mathrm{k} \int d x\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(u^{2}-\bar{u}^{2}\right)^{2}-2\left(u^{2}-\bar{u}^{2}\right) \frac{\partial u}{\partial x}\right] \\
\left.A^{2}+B^{2}-\frac{\downarrow}{2}\right] \\
\begin{array}{c}
\text { sign of flux of polarization } \\
\text { topological } \\
\text { boundary term }
\end{array}
\end{gathered}
$$

Chen, Upadhyaya, Vitelli, PNAS (2014).

Kink costs zero energy

Chen, Upadhyaya, Vitelli, PNAS (2014).

Kink costs zero energy

Chen, Upadhyaya, Vitelli, PNAS (2014).

Kink costs zero energy

left-leaning

$$
\begin{gathered}
E=\mathrm{k} \int d x\left[\frac{\partial u}{\partial x}-\left(u^{2}-\bar{u}^{2}\right)\right]^{\text {set to } 0 \text { gives constraint }} \quad+\bar{u} \\
\begin{array}{c}
\text { minus sign } \\
\text { chooses kink }
\end{array} \\
\text { Kink width diverges as gap closes }
\end{gathered} \quad \ell \sim 1 / \bar{u}
$$

Kink costs zero energy

$$
E=\mathrm{k} \int d x\left[\frac{\partial u}{\partial x}-\left(u^{2}-\bar{u}^{2}\right)\right]^{2} \quad \begin{aligned}
& \text { set to } 0 \text { gives constraint }
\end{aligned}
$$

plus sign
chooses antikink
kink costs zero stretching energy \square anti kink suppressed $\quad \square$

Anti-kinks harbour states of self-stress

\# degrees of freedom - \#constraints $=n_{z m}-n_{s s}$

Restore kinetic term

a: lattice spacing v: kink speed

$u=\bar{u} \tanh \left[\frac{x-x_{0}-v t}{\frac{a^{2}}{2 \bar{u}} \sqrt{1-\frac{v^{2}}{c^{2}}}}\right]$
Lorentz contraction
of the width

BPS
perfect square: enforces constraint
$\mathcal{L}=\int \frac{1}{2} \frac{M r^{2}}{r^{2}-u^{2}}\left(\frac{\partial u}{\partial t}\right)^{2}-\frac{1}{2} K \frac{a^{4}}{4}\left(\frac{\partial u}{\partial x}\right)^{2}-\frac{1}{2} K\left(\bar{u}^{2}-u^{2}\right)^{2}-K \frac{a^{2}}{2}\left(\bar{u}^{2}-u^{2}\right) \frac{\partial u}{\partial x} . ~ d x$

Topological defects

Topological soft modes at topological defects

Where are the soft spots ?

Rigid in the bulk

But there is one floppy spot!

Soft motion at dislocation self stress at anti-dislocation

floppy mode
state of self-stress

Mode count at dislocation:

$$
\nu_{T}^{S}=\mathbf{P}_{T} \cdot \frac{\mathbf{d}}{V_{\text {cell }}}
$$

$$
\begin{aligned}
& +1 \text { zm } \\
& \text { - } 1 \text { ss }
\end{aligned}
$$

d: dislocation dipole (perpendicular to Burgers vector)
P_{T} :topological polarization

Mode count at dislocation:

$$
\nu_{T}^{S}=\mathbf{P}_{T} \cdot \frac{\mathbf{d}}{V_{\text {cell }}}
$$

$$
\begin{aligned}
& +1 \mathrm{zm} \\
& \text { - } 1 \mathrm{ss}
\end{aligned}
$$

You can insert topologically protected states of motion where you want

Lattice polarization and zero-energy mode count

$$
\text { Zero mode count } \leftrightarrow \text { Net "charge" in a region }
$$

Net charge $=$ Polarization flux into region

Zero mode count:

$$
\mathbf{P}_{\mathrm{T}} \cdot \frac{\mathbf{d}}{V_{\mathrm{cell}}}
$$

Electronic states in topological insulators:
Ran, Zhang, Vishwanath, Nat Phys 2009
Teo and Kane, PRB 2010
Paulose, Chen, Vitelli, Nat Phys (in press) 2014

Topological control of material failure

Paulose, Meussen, Vitelli, PNAS (2015).

Unit cell with topological polarization of phonon degrees of freedom

Take one of the lattices Tom described

Paulose, Meussen, Vitelli, PNAS (2015).

Paulose, Meussen, Vitelli, PNAS (2015).

$$
\boldsymbol{P}_{\mathrm{T}}=\longleftarrow
$$

$$
\boldsymbol{P}_{\mathrm{T}}=\longrightarrow
$$

$$
\boldsymbol{P}_{\mathrm{T}}=\longleftarrow
$$

ไlllllllillllay

Compression in plane of image

Side view

Paulose, Meussen, Vitelli, PNAS (2015).

The road ahead

topological mechanisms

molecular electronics

activated mechanisms robots \& smart materials

molecular robotics

Kink costs zero energy

$$
\begin{aligned}
& \text { sign of flux of polarization } \\
& E=\int d x\left[\frac{\partial u}{\partial x} \frac{\downarrow}{\mu}\left(u^{2}-\bar{u}^{2}\right)\right]^{2} \\
& +\bar{u} \\
& E=0 \\
& \text { minus sign } \\
& \text { chooses kink } \\
& \text { kink costs zero stretching energy } \nabla \\
& \text { Chen, Upadhyaya, Vitelli, PNAS (2014). }
\end{aligned}
$$

Soft modes on right edge

$$
E=\int d x\left[\frac{\partial u}{\partial x}-\left(u^{2}-\bar{u}^{2}\right)\right]^{\text {sign of flux of polarization }} \underset{\substack{\text { minus sign } \\
\text { chooses kink }}}{ } \quad E=0 \underbrace{\begin{array}{c}
\text { edge } \\
\text { hides kink }
\end{array}}
$$

Phase transition when $\bar{u}=0$

$$
E=\int d x\left[\frac{\partial u}{\partial x}-\left(u^{2}-\bar{u}^{2}\right)\right]^{2} \quad E=0 \quad-\bar{u}
$$

Kink width diverges as gap closes

Anti-kink is suppressed

kink costs zero stretching energy \square
Chen, Upadhyaya, Vitelli, PNAS (2014).

No motion from the left

$$
E=\int d x\left[\frac{\partial u}{\partial x} \underset{\substack{\text { anti-kink } \\ \text { needs }+}}{-}\left(u^{2}-\bar{u}^{2}\right)\right]^{2}
$$

kink costs zero stretching energy ∇
Chen, Upadhyaya, Vitelli, PNAS (2014).

