Interacting Systems

Now we want to generalize to interacting systems. This primarily consists of adding sites with an \otimes, not an \oplus.

Most of the DMRG procedure outlined before needs little change. The main question:
How do we project out a state for a block from a state of the entire lattice? Problem: the projection is many-valued.

Let $|i\rangle$ be the states of the block, and $|j\rangle$ be the states of the rest of the lattice. A state of the entire lattice can be written as

$$
|\psi\rangle = \sum_{ij} \psi_{ij} |i\rangle |j\rangle
$$

In general, there is no way to pick states $|\tilde{i}\rangle$ and $|\tilde{j}\rangle$ so that

$$
|\psi\rangle = |\tilde{i}\rangle |\tilde{j}\rangle
$$

Example: if the block has an average of N particles, it can still fluctuate into states with $N \pm 1$, $N \pm 2$, particles. Need at least one state for each number of particles. (A state without a definite N, such as the BCS wavefunction, doesn’t help, either.)

We will need an *approximate* projection. What is the best projection? It comes from the density matrix.
Density Matrices

Let $|i\rangle$ be the states of the block (the *system*), and $|j\rangle$ be the states of the rest of the lattice (the rest of the *universe*). If ψ is a state of the entire lattice,

$$|\psi\rangle = \sum_{ij} \psi_{ij} |i\rangle |j\rangle$$

The reduced density matrix for the system is

$$\rho_{ii'} = \sum_j \psi_{ij}^* \psi_{ij'}$$

An operator A which acts only on the system can be written as

$$A = \sum_{ii'j} A_{ii'} |\varphi_i\rangle |j\rangle \langle \varphi_i| \langle j| = \sum_{ii'} A_{ii'} |\varphi_i\rangle \langle \varphi_i| \otimes 1_j$$

The expectation value of A can be written in terms of the density matrix

$$\langle A \rangle = \sum_{ii'j} A_{ii'} \psi_{ij}^* \psi_{ij'} = \sum_{ii'} A_{ii'} \rho_{ii'} = \text{Tr} \rho A$$

A nice way of representing ρ is through its eigenstates $|v_\alpha\rangle$ and eigenvalues $w_\alpha \geq 0$ ($\sum_\alpha w_\alpha = 1$)

$$\rho = \sum_\alpha w_\alpha |v_\alpha\rangle \langle v_\alpha|$$

The $|v_\alpha\rangle$ provide the best way to project out important states of the block. We can argue several ways. Notice that

$$\langle A \rangle = \sum_\alpha w_\alpha \langle v_\alpha | A | v_\alpha \rangle$$

If for a particular α, $w_\alpha \approx 0$, we make no error in $\langle A \rangle$ if we discard $|v_\alpha\rangle$.

Thus projection with density matrix ρ, i.e., $\text{Tr} \rho$, keep in most probable eigenvalue w_α.

\[\sum_{ij} \psi_{ij}^* \psi_{ij'} = 1\]
Key DMRG Idea

Both the Block and the Environment are represented by a reduced basis. We will find a new reduced basis for the Block.

Procedure

1. Diagonalize H_{system} to get ground state ψ (Lanczos or Davidson).

2. Calculate density matrix

\[\rho_{ii'} = \sum_j \psi_{ij} \psi_{i'j} \]

3. Diagonalize $\rho_{ii'}$ to get eigenstates v^{α}.

4. New basis is most probable m v^{α}'s. Change basis with $\tilde{H} = \tilde{A} H \tilde{A}^T$, etc.
DMRG Algorithm

The basic DMRG step generates a new reduced basis for a block that is one site larger than the previous block.
Entanglement

Entanglement is a property of a state divided into 2 parts — how quantum-correlated are the two parts?

Example: Two $S=\frac{1}{2}$'s. Which state is more entangled?

(a) $|\uparrow\downarrow> + |\uparrow\uparrow> + |\downarrow\downarrow> + |\downarrow\uparrow>$

(b) $|\uparrow\uparrow> + |\downarrow\downarrow>$

Answer: (b) is perfectly entangled,
(a) is unentangled

$(|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle) \text{ product state}$

$n |x\rangle \otimes |x\rangle$

In general, how do you tell?

$|\Psi\rangle = \sum_{ij} t_{ij} |i\rangle |j\rangle$

$2 |i\rangle |j\rangle \text{ like a matrix}$

Singular Value Decomposition — Matrix Factorization

- works for any matrix

$Y = UDV$

$m \times n \text{ } m \times m \text{ } m \times n \text{ } m \times m \text{ }$ rows are orthogonal
0 has diagonal, ≥ 0 - singular value

QI: Schmidt decomposition

Unentangled: only one sig. value $\neq 0$

Normalisation: $\sum_{\alpha} \lambda_{\alpha} = 1$ $\lambda_{\alpha} = \text{prob. of state}

\rho = \psi \psi^T = U \rho_U (U^T \rho^T U')

= U \rho U^T \text{ diag. form}

So $\omega_{\alpha} = \lambda_{\alpha}$ density matrix $\text{idea same as Schmidt - decorr.}$

DMRG is very natural from QI point of view -

DMRG = Low entanglement approximate algorithm
Matrix Product State

First transform

\[|\alpha_2\rangle = \sum_{\alpha_1} O_2[\epsilon_{\alpha_2}] |\alpha_1\rangle \quad |\alpha_1\rangle = |5,\rangle \]

Second

\[|\alpha_3\rangle = \sum_{\alpha_2} O_3[\epsilon_{\alpha_3}] |\alpha_2\rangle \quad |\alpha_2\rangle = |5,\rangle \]

\[= \sum_{\alpha_2} O_3[\epsilon_{\alpha_3}] O_2[\epsilon_{\alpha_2}] |\alpha_3\rangle \quad |\alpha_3\rangle = |5,\rangle \]

All the way across (at step ...)

\[|\psi\rangle = \sum_{\alpha_2} O_4[\epsilon_{\alpha_4}] \cdots O_2[\epsilon_{\alpha_2}] |\alpha_4\rangle \cdots |\alpha_3\rangle \]

This is a matrix product state:

\[Y(\epsilon_{s_2}, -\epsilon_{s_2}) = A_1[\epsilon_{\alpha_4}] \cdots A_5[\epsilon_{\alpha_3}] \]

1st + last A's = Vectors

Rest = Matrices

Specify \(s_2, -s_2 \), multiply matrices, get number that is \(Y(s_2, -s_2) \)

Another form

\[Y(s_2, -s_2) = Tr \sum A_1[\epsilon_{s_1}] \cdots A_5[\epsilon_{s_3}] \cdots \]
Diagrams

Let $A[A_1 \cdots A_{d-1}] \leftrightarrow A[\sum_{s_1} \cdots \sum_{s_d}]$

This is a very general notation for tensor networks. We contract over internal lines, and intersections/vertices represent the matrices/tensors.

Then $|14\rangle \leftrightarrow \sum_{s_1, s_2} A_1 A_2 |s_1, s_2\rangle$

The diagrams are much easier to work with than the algebraic notation!

Contracts $\langle \phi | 14 \rangle$ Both MPS's

But algebraically, this is a mess:

$$\sum_{s_1, \ldots, s_L} \phi(s_1, \ldots, s_L) = \sum_{s_1, s_2} (A_1 \cdots A_{d-1})(B_1 \cdots B_{d-1})$$

$$= \sum_{s_1, s_2} A_{11} A_{21} \cdots B_{11} B_{21} \cdots$$
Operators

Single Site e.g. \[S_{\uparrow}^z \sim S_{\uparrow}^z \{ S_{\uparrow}, S'_{\uparrow} \} \]

\[\langle \uparrow | S_{\uparrow}^z | \uparrow \rangle \rightarrow \]

\[\begin{array}{c}
\begin{array}{c}
\vdots
\end{array}
\end{array} \]

Two Site

\[\begin{array}{c}
\begin{array}{c}
\vdots
\end{array}
\end{array} \]

Matrix Product Basis: (New term)

\[\begin{array}{c}
\begin{array}{cccc}
S_{1} & S_{2} & S_{3} & S_{4}
\end{array}
\end{array} \]

\[|15,7\rangle \]

\[\{ |x\rangle \} = \text{set of states, regard as basis} \]

\[\text{We'd like them to be orthonormal:} \]

\[\Omega = \begin{array}{c}
\begin{array}{c}
\vdots
\end{array}
\end{array} \]

\[\text{Want } \Omega |x\rangle = |x\rangle \]

The DMRG algorithm produces orthonormal bases

\[\begin{array}{c}
\begin{array}{c}
\vdots
\end{array}
\end{array} \]

\[L \quad \text{DMRG with } R \]

\[1 = \begin{array}{c}
\begin{array}{c}
\vdots
\end{array}
\end{array} \]
DMRG steps with diagrams

More general form allowed during Davidson/Lanczos

New m

New $A_l[s]$

New $A_{l+1}[s]$

Not orthogonal