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If a body is moving in any direction, there is a force, arising from the
Earth’s rotation, which always deflects it to the right in the northern
hemisphere, and to the left in the southern.
William Ferrel, The influence of the Earth’s rotation upon the relative motion of
bodies near its surface, 1858.

CHAPTER

TWO

Effects of Rotation and Stratification

THE ATMOSPHERE AND OCEAN are shallow layers of fluid on a sphere in that their thickness
or depth is much less than their horizontal extent. Furthermore, their motion is
strongly influenced by two effects: rotation and stratification, the latter meaning that

there is a mean vertical gradient of (potential) density that is often large compared with the
horizontal gradient. Here we consider how the equations of motion are affected by these
effects. First, we consider some elementary effects of rotation on a fluid and derive the
Coriolis and centrifugal forces, and then we write down the equations of motion appropriate
for motion on a sphere. Then we discuss some approximations to the equations of motion
that are appropriate for large-scale flow in the ocean and atmosphere, in particular the
hydrostatic and geostrophic approximations. Following this we discuss gravity waves, a
particular kind of wave motion that is enabled by the presence of stratification, and finally
we talk about how rotation leads to the production of certain types of boundary layers —
Ekman layers — in rotating fluids.

2.1 THE EQUATIONS OF MOTION IN A ROTATING FRAME OF REFERENCE

Newton’s second law of motion, that the acceleration on a body is proportional to the
imposed force divided by the body’s mass, applies in so-called inertial frames of reference.
The Earth rotates with a period of almost 24 hours (23h 56m) relative to the distant stars,
and the surface of the Earth manifestly is not, in that sense, an inertial frame. Nevertheless,
because the surface of the Earth is moving (in fact at speeds of up to a few hundreds of
metres per second) it is very convenient to describe the flow relative to the Earth’s surface,
rather than in some inertial frame. This necessitates recasting the equations into a form
that is appropriate for a rotating frame of reference, and that is the subject of this section.
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52 Chapter 2. Effects of Rotation and Stratification

Fig. 2.1 A vector C rotating at
an angular velocity Ω. It ap-
pears to be a constant vector
in the rotating frame, whereas
in the inertial frame it evolves
according to (dC/dt)I = Ω×C.

λ

Ω

C⊥
m

Ω× C

C
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2.1.1 Rate of change of a vector

Consider first a vector C of constant length rotating relative to an inertial frame at a constant
angular velocity Ω. Then, in a frame rotating with that same angular velocity it appears
stationary and constant. If in a small interval of time δt the vector C rotates through a small
angle δλ then the change in C , as perceived in the inertial frame, is given by (see Fig. 2.1)

δC = |C| cosϑδλm, (2.1)

where the vector m is the unit vector in the direction of change of C , which is perpendicular
to both C and Ω. But the rate of change of the angle λ is just, by definition, the angular
velocity so that δλ = |Ω|δt and

δC = |C||Ω| sin ϑ̂mδt = Ω× C δt. (2.2)

using the definition of the vector cross product, where ϑ̂ = (π/2− ϑ) is the angle between
Ω and C . Thus (

dC
dt

)

I
= Ω× C, (2.3)

where the left-hand side is the rate of change of C as perceived in the inertial frame.
Now consider a vector B that changes in the inertial frame. In a small time δt the change

in B as seen in the rotating frame is related to the change seen in the inertial frame by

(δB)I = (δB)R + (δB)rot, (2.4)

where the terms are, respectively, the change seen in the inertial frame, the change due to
the vector itself changing as measured in the rotating frame, and the change due to the
rotation. Using (2.2) (δB)rot = Ω× Bδt, and so the rates of change of the vector B in the
inertial and rotating frames are related by

(
dB
dt

)

I
=
(

dB
dt

)

R
+Ω× B . (2.5)
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2.1 Equations in a Rotating Frame 53

This relation applies to a vector B that, as measured at any one time, is the same in both
inertial and rotating frames.

2.1.2 Velocity and acceleration in a rotating frame

The velocity of a body is not measured to be the same in the inertial and rotating frames, so
care must be taken when applying (2.5) to velocity. First apply (2.5) to r, the position of a
particle to obtain

(
dr
dt

)

I
=
(

dr
dt

)

R
+Ω× r (2.6)

or

vI = vR +Ω× r. (2.7)

We refer to vR and vI as the relative and inertial velocity, respectively, and (2.7) relates the
two. Apply (2.5) again, this time to the velocity vR to give

(
dvR
dt

)

I
=
(

dvR
dt

)

R
+Ω× vR, (2.8)

or, using (2.7)
(

d
dt
(vI −Ω× r)

)

I
=
(

dvR
dt

)

R
+Ω× vR, (2.9)

or (
dvI
dt

)

I
=
(

dvR
dt

)

R
+Ω× vR +

dΩ
dt

× r +Ω×
(

dr
dt

)

I
. (2.10)

Then, noting that
(

dr
dt

)

I
=
(

dr
dt

)

R
+Ω× r = (vR +Ω× r), (2.11)

and assuming that the rate of rotation is constant, (2.10) becomes

(
dvR
dt

)

R
=
(

dvI
dt

)

I
− 2Ω× vR −Ω× (Ω× r). (2.12)

This equation may be interpreted as follows. The term on the left-hand side is the rate
of change of the relative velocity as measured in the rotating frame. The first term on the
right-hand side is the rate of change of the inertial velocity as measured in the inertial frame
(or, loosely, the inertial acceleration). Thus, by Newton’s second law, it is equal to the force
on a fluid parcel divided by its mass. The second and third terms on the right-hand side
(including the minus signs) are the Coriolis force and the centrifugal force per unit mass.
Neither of these are true forces — they may be thought of as quasi-forces (i.e., ‘as if’ forces);
that is, when a body is observed from a rotating frame it seems to behave as if unseen
forces are present that affect its motion. If (2.12) is written, as is common, with the terms
+2Ω×vr and +Ω× (Ω× r) on the left-hand side then these terms should be referred to as
the Coriolis and centrifugal accelerations.1
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54 Chapter 2. Effects of Rotation and Stratification

Centrifugal force

If r⊥ is the perpendicular distance from the axis of rotation (see Fig. 2.1 and substitute r for
C), then, because Ω is perpendicular to r⊥, Ω× r = Ω× r⊥. Then, using the vector identity
Ω× (Ω× r⊥) = (Ω · r⊥)Ω− (Ω ·Ω)r⊥ and noting that the first term is zero, we see that
the centrifugal force per unit mass is just given by

Fce = −Ω× (Ω× r) = Ω2r⊥. (2.13)

This may usefully be written as the gradient of a scalar potential,

Fce = −∇Φce. (2.14)

where Φce = −(Ω2r 2
⊥)/2 = −(Ω× r⊥)2/2.

Coriolis force

The Coriolis force per unit mass is:

FCo = −2Ω× vR. (2.15)

It plays a central role in much of geophysical fluid dynamics and will be considered exten-
sively later on. For now, we just note three basic properties.

(i) There is no Coriolis force on bodies that are stationary in the rotating frame.
(ii) The Coriolis force acts to deflect moving bodies at right angles to their direction of

travel.
(iii) The Coriolis force does no work on a body because it is perpendicular to the velocity,

and so vR · (Ω× vR) = 0.

2.1.3 Momentum equation in a rotating frame

Since (2.12) simply relates the accelerations of a particle in the inertial and rotating frames,
then in the rotating frame of reference the momentum equation may be written

Dv
Dt

+ 2Ω× v = − 1
ρ
∇p −∇Φ, (2.16)

incorporating the centrifugal term into the potential, Φ. We have dropped the subscript R;
henceforth, unless we need to be explicit, all velocities without a subscript will be considered
to be relative to the rotating frame.

2.1.4 Mass and tracer conservation in a rotating frame

Let φ be a scalar field that, in the inertial frame, obeys

Dφ
Dt

+φ∇ · vI = 0. (2.17)

Now, observers in both the rotating and inertial frame measure the same value of φ. Further,
Dφ/Dt is simply the rate of change of φ associated with a material parcel, and therefore is
reference frame invariant. Thus,

(
Dφ
Dt

)

R
=
(

Dφ
Dt

)

I
, (2.18)
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2.2 Equations of Motion in Spherical Coordinates 55

where (Dφ/Dt)R = (∂φ/∂t)R +vR ·∇φ and (Dφ/Dt)I = (∂φ/∂t)I +vI ·∇φ and the local
temporal derivatives (∂φ/∂t)R and (∂φ/∂t)I are evaluated at fixed locations in the rotating
and inertial frames, respectively.

Further, since v = vI −Ω× r, we have that

∇ · vI = ∇ · (vI −Ω× r) = ∇ · vR (2.19)

since ∇ · (Ω× r) = 0. Thus, using (2.18) and (2.19), (2.17) is equivalent to

Dφ
Dt

+φ∇ · v = 0, (2.20)

where all observables are measured in the rotating frame. Thus, the equation for the
evolution of a scalar whose measured value is the same in rotating and inertial frames
is unaltered by the presence of rotation. In particular, the mass conservation equation is
unaltered by the presence of rotation.

Although we have taken (2.18) as true a priori, the individual components of the material
derivative differ in the rotating and inertial frames. In particular

(∂φ
∂t

)

I
=
(∂φ
∂t

)

R
− (Ω× r) ·∇φ (2.21)

because Ω× r is the velocity, in the inertial frame, of a uniformly rotating body. Similarly,

vI ·∇φ = (vR +Ω× r) ·∇φ. (2.22)

Adding the last two equations reprises and confirms (2.18).

2.2 EQUATIONS OF MOTION IN SPHERICAL COORDINATES

The Earth is very nearly spherical and it might appear obvious that we should cast our
equations in spherical coordinates. Although this does turn out to be true, the presence
of a centrifugal force causes some complications which we must first discuss. The reader
who is willing ab initio to treat the Earth as a perfect sphere and to neglect the horizontal
component of the centrifugal force may skip the next section.

2.2.1 * The centrifugal force and spherical coordinates

The centrifugal force is a potential force, like gravity, and so we may therefore define an
‘effective gravity’ equal to the sum of the true, or Newtonian, gravity and the centrifugal
force. The Newtonian gravitational force is directed approximately toward the centre of the
Earth, with small deviations due mainly to the Earth’s oblateness. The line of action of the
effective gravity will in general differ slightly from this, and therefore have a component in
the ‘horizontal’ plane, that is the plane perpendicular to the radial direction. The magnitude
of the centrifugal force is Ω2r⊥, and so the effective gravity is given by

g ≡ geff = ggrav +Ω2r⊥, (2.23)

where ggrav is the Newtonian gravitational force due to the gravitational attraction of the
Earth and r⊥ is normal to the rotation vector (in the direction C in Fig. 2.2), with r⊥ = r cosϑ.
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56 Chapter 2. Effects of Rotation and Stratification

ghoriz ≠ 0

ghoriz = 0

g
g

Fig. 2.2 Left: directions of forces and coordinates in true spherical geometry. g is
the effective gravity (including the centrifugal force, C) and its horizontal component
is evidently non-zero. Right: a modified coordinate system, in which the vertical
direction is defined by the direction of g, and so the horizontal component of g
is identically zero. The dashed line schematically indicates a surface of constant
geopotential. The differences between the direction of g and the direction of the
radial coordinate, and between the sphere and the geopotential surface, are much
exaggerated and in reality are similar to the thickness of the lines themselves.

Both gravity and centrifugal force are potential forces and therefore we may define the
geopotential, Φ, such that

g = −∇Φ. (2.24)

Surfaces of constant Φ are not quite spherical because r⊥, and hence the centrifugal force,
vary with latitude (Fig. 2.2); this has certain ramifications, as we now discuss.

The components of the centrifugal force parallel and perpendicular to the radial direction
are Ω2r cos2 ϑ and Ω2r cosϑ sinϑ. Newtonian gravity is much larger than either of these,
and at the Earth’s surface the ratio of centrifugal to gravitational terms is approximately,
and no more than,

α ≈ Ω2a
g

≈ (7.27× 10−5)2 × 6.4× 106

10
≈ 3× 10−3. (2.25)

(Note that at the equator and pole the horizontal component of the centrifugal force is zero
and the effective gravity is aligned with Newtonian gravity.) The angle between g and the
line to the centre of the Earth is given by a similar expression and so is also small, typically
around 3×10−3 radians. However, the horizontal component of the centrifugal force is still
large compared to the Coriolis force, their ratio in mid-latitudes being given by

horizontal centrifugal force
Coriolis force

≈ Ω2a cosϑ sinϑ
2Ωu

≈ Ωa
4|u| ≈ 10, (2.26)

using u = 10 m s−1. The centrifugal term therefore dominates over the Coriolis term, and
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2.2 Equations of Motion in Spherical Coordinates 57

is largely balanced by a pressure gradient force. Thus, if we adhered to true spherical
coordinates, both the horizontal and radial components of the momentum equation would
be dominated by a static balance between a pressure gradient and gravity or centrifugal
terms. Although in principle there is nothing wrong with writing the equations this way, it
obscures the dynamical balances involving the Coriolis force and pressure that determine
the large-scale horizontal flow.

A way around this problem is to use the direction of the geopotential force to define the
vertical direction, and then for all geometric purposes to regard the surfaces of constant Φ as
if they were true spheres.2 The horizontal component of effective gravity is then identically
zero, and we have traded a potentially large dynamical error for a very small geometric
error. In fact, over time, the Earth has developed an equatorial bulge to compensate for and
neutralize the centrifugal force, so that the effective gravity does act in a direction virtually
normal to the Earth’s surface; that is, the surface of the Earth is an oblate spheroid of nearly
constant geopotential. The geopotential Φ is then a function of the vertical coordinate alone,
and for many purposes we can just take Φ = gz; that is, the direction normal to geopotential
surfaces, the local vertical, is, in this approximation, taken to be the direction of increasing
r in spherical coordinates. It is because the oblateness is very small (the polar diameter is
about 12 714 km, whereas the equatorial diameter is about 12 756 km) that using spherical
coordinates is a very accurate way to map the spheroid, and if the angle between effective
gravity and a natural direction of the coordinate system were not small then more heroic
measures would be called for.

If the solid Earth did not bulge at the equator, the behaviour of the atmosphere and
ocean would differ significantly from that of the present system. For example, the surface of
the ocean is nearly a geopotential surface, and if the solid Earth were exactly spherical then
the ocean would perforce become much deeper at low latitudes and the ocean basins would
dry out completely at high latitudes. We could still choose to use the spherical coordinate
system discussed above to describe the dynamics, but the shape of the surface of the solid
Earth would have to be represented by a topography, with the topographic height increasing
monotonically polewards nearly everywhere.

2.2.2 Some identities in spherical coordinates

The location of a point is given by the coordinates (λ,ϑ, r ) where λ is the angular distance
eastwards (i.e., longitude), ϑ is angular distance polewards (i.e., latitude) and r is the
radial distance from the centre of the Earth — see Fig. 2.3. (In some other fields of study
co-latitude is used as a spherical coordinate.) If a is the radius of the Earth, then we
also define z = r − a. At a given location we may also define the Cartesian increments
(δx,δy,δz) = (r cosϑδλ, rδϑ,δr).

For a scalar quantity φ the material derivative in spherical coordinates is

Dφ
Dt

= ∂φ
∂t

+ u
r cosϑ

∂φ
∂λ

+ v
r
∂φ
∂ϑ

+w ∂φ
∂r
, (2.27)

where the velocity components corresponding to the coordinates (λ,ϑ, r ) are

(u,v,w) ≡
(
r cosϑDλ

Dt
, r Dϑ

Dt
, Dr

Dt

)
. (2.28)
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58 Chapter 2. Effects of Rotation and Stratification

Fig. 2.3 The spherical coordinate sys-
tem. The orthogonal unit vectors i,
j and k point in the direction of in-
creasing longitude λ, latitude ϑ, and
altitude z. Locally, one may apply a
Cartesian system with variables x, y
and z measuring distances along i, j
and k.

That is, u is the zonal velocity, v is the meridional velocity and w is the vertical velocity. If
we define (i, j,k) to be the unit vectors in the direction of increasing (λ,ϑ, r ) then

v = iu+ jv + kw. (2.29)

Note also that Dr/Dt = Dz/Dt.
The divergence of a vector B = iBλ + jBϑ + kBr is

∇ · B = 1
cosϑ

[
1
r
∂Bλ

∂λ
+ 1
r
∂
∂ϑ
(Bϑ cosϑ)+ cosϑ

r 2

∂
∂r
(r 2Br )

]
. (2.30)

The vector gradient of a scalar is:

∇φ = i
1

r cosϑ
∂φ
∂λ

+ j
1
r
∂φ
∂ϑ

+ k
∂φ
∂r
. (2.31)

The Laplacian of a scalar is:

∇2φ ≡ ∇ ·∇φ = 1
r 2 cosϑ

[
1

cosϑ
∂2φ
∂λ2

+ ∂
∂ϑ

(
cosϑ∂φ

∂ϑ

)
+ cosϑ ∂

∂r

(
r 2 ∂φ

∂r

)]
. (2.32)
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2.2 Equations of Motion in Spherical Coordinates 59

The curl of a vector is:

curlB = ∇× B = 1
r 2 cosϑ

∣∣∣∣∣∣∣

i r cosϑ j r k
∂/∂λ ∂/∂ϑ ∂/∂r

Bλr cosϑ Bϑr Br

∣∣∣∣∣∣∣
. (2.33)

The vector Laplacian ∇2B (used for example when calculating viscous terms in the momen-
tum equation) may be obtained from the vector identity:

∇2B = ∇(∇ · B)−∇× (∇× B). (2.34)

Only in Cartesian coordinates does this take the simple form:

∇2B = ∂2B
∂x2

+ ∂2B
∂y2

+ ∂2B
∂z2

. (2.35)

The expansion in spherical coordinates is, to most eyes, rather uninformative.

Rate of change of unit vectors

In spherical coordinates the defining unit vectors are i, the unit vector pointing eastwards,
parallel to a line of latitude; j is the unit vector pointing polewards, parallel to a meridian;
and k, the unit vector pointing radially outward. The directions of these vectors change
with location, and in fact this is the case in nearly all coordinate systems, with the notable
exception of the Cartesian one, and thus their material derivative is not zero. One way to
evaluate this is to consider geometrically how the coordinate axes change with position.
Another way, and the way that we shall proceed, is to first obtain the effective rotation
rate Ωflow, relative to the Earth, of a unit vector as it moves with the flow, and then apply
(2.3). Specifically, let the fluid velocity be v = (u,v,w). The meridional component, v ,
produces a displacement rδϑ = vδt, and this gives rise a local effective vector rotation rate
around the local zonal axis of −(v/r)i, the minus sign arising because a displacement in
the direction of the north pole is produced by negative rotational displacement around the
i axis. Similarly, the zonal component, u, produces a displacement δλr cosϑ = uδt and
so an effective rotation rate, about the Earth’s rotation axis, of u/(r cosϑ). Now, a rotation
around the Earth’s rotation axis may be written as (see Fig. 2.4)

Ω = Ω(j cosϑ + k sinϑ). (2.36)

If the scalar rotation rate is not Ω but is u/(r cosϑ), then the vector rotation rate is

u
r cosϑ

(j cosϑ + k sinϑ) = j
u
r
+ k

u tanϑ
r

. (2.37)

Thus, the total rotation rate of a vector that moves with the flow is

Ωflow = −i
v
r
+ j
u
r
+ k

u tanϑ
r

. (2.38)

Applying (2.3) to (2.38), we find

Di
Dt

= Ωflow × i = u
r cosϑ

(j sinϑ − k cosϑ), (2.39a)

Dj
Dt

= Ωflow × j = −i
u
r

tanϑ − k
v
r
, (2.39b)

Dk
Dt

= Ωflow × k = i
u
r
+ j
v
r
. (2.39c)
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60 Chapter 2. Effects of Rotation and Stratification

(a) (b)Ω Ω
y

Ω
z

Ω = Ω
z

k

k

k

Fig. 2.4 (a) On the sphere the rotation vector Ω can be decomposed into two compo-
nents, one in the local vertical and one in the local horizontal, pointing toward the
pole. That is, Ω = Ωy j+Ωzk where Ωy = Ω cosϑ and Ωz = Ω sinϑ. In geophysical
fluid dynamics, the rotation vector in the local vertical is often the more important
component in the horizontal momentum equations. On a rotating disk, (b), the
rotation vector Ω is parallel to the local vertical k.

2.2.3 Equations of motion

Mass Conservation and Thermodynamic Equation

The mass conservation equation, (1.36a), expanded in spherical co-odinates, is

∂ρ
∂t

+ u
r cosϑ

∂ρ
∂λ

+ v
r
∂ρ
∂ϑ

+w ∂ρ
∂r

+ ρ
r cosϑ

[∂u
∂λ

+ ∂
∂ϑ
(v cosϑ)+ 1

r
∂
∂r
(wr 2 cosϑ)

]
= 0.

(2.40)

Equivalently, using the form (1.36b), this is

∂ρ
∂t

+ 1
r cosϑ

∂(uρ)
∂λ

+ 1
r cosϑ

∂
∂ϑ
(vρ cosϑ)+ 1

r 2

∂
∂r
(r 2wρ) = 0. (2.41)

The thermodynamic equation, (1.108), is a tracer advection equation. Thus, using (2.27),
its (adiabatic) spherical coordinate form is

Dθ
Dt

= ∂θ
∂t

+ u
r cosϑ

∂θ
∂λ

+ v
r
∂θ
∂ϑ

+w ∂θ
∂r

= 0, (2.42)

and similarly for tracers such as water vapour or salt.

Momentum Equation

Recall that the inviscid momentum equation is:

Dv
Dt

+ 2Ω× v = − 1
ρ
∇p −∇Φ, (2.43)

where Φ is the geopotential. In spherical coordinates the directions of the coordinate axes
change with position and so the component expansion of (2.43) is

Dv
Dt

= Du
Dt

i+ Dv
Dt

j+ Dw
Dt

k+uDi
Dt
+ v Dj

Dt
+wDk

Dt
(2.44a)
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2.2 Equations of Motion in Spherical Coordinates 61

= Du
Dt

i+ Dv
Dt

j+ Dw
Dt

k+Ωflow × v, (2.44b)

using (2.39). Using either (2.44a) and the expressions for the rates of change of the unit
vectors given in (2.39), or (2.44b) and the expression for Ωflow given in (2.38), (2.44) becomes

Dv
Dt

= i
(

Du
Dt

− uv tanϑ
r

+ uw
r

)
+ j

(
Dv
Dt

+ u
2 tanϑ
r

+ vw
r

)

+ k

(
Dw
Dt

− u
2 + v2

r

)
.

(2.45)

Using the definition of a vector cross product the Coriolis term is:

2Ω× v =

∣∣∣∣∣∣∣

i j k
0 2Ω cosϑ 2Ω sinϑ
u v w

∣∣∣∣∣∣∣

= i (2Ωw cosϑ − 2Ωv sinϑ)+ j 2Ωu sinϑ − k 2Ωu cosϑ. (2.46)

Using (2.45) and (2.46), and the gradient operator given by (2.31), the momentum equation
(2.43) becomes:

Du
Dt

−
(

2Ω + u
r cosϑ

)
(v sinϑ −w cosϑ) = − 1

ρr cosϑ
∂p
∂λ
, (2.47a)

Dv
Dt

+ wv
r
+
(

2Ω + u
r cosϑ

)
u sinϑ = − 1

ρr
∂p
∂ϑ
, (2.47b)

Dw
Dt

− u
2 + v2

r
− 2Ωu cosϑ = − 1

ρ
∂p
∂r

− g. (2.47c)

The terms involving Ω are called Coriolis terms, and the quadratic terms on the left-hand
sides involving 1/r are often called metric terms.

2.2.4 The primitive equations

The so-called primitive equations of motion are simplifications of the above equations
frequently used in atmospheric and oceanic modelling.3 Three related approximations are
involved.

(i) The hydrostatic approximation. In the vertical momentum equation the gravitational
term is assumed to be balanced by the pressure gradient term, so that

∂p
∂z

= −ρg. (2.48)

The advection of vertical velocity, the Coriolis terms, and the metric term (u2 + v2)/r
are all neglected.

(ii) The shallow-fluid approximation. We write r = a+ z where the constant a is the radius
of the Earth and z increases in the radial direction. The coordinate r is then replaced
by a except where it used as the differentiating argument. Thus, for example,

1
r 2

∂(r 2w)
∂r

→ ∂w
∂z

. (2.49)
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62 Chapter 2. Effects of Rotation and Stratification

(iii) The traditional approximation. Coriolis terms in the horizontal momentum equations
involving the vertical velocity, and the still smaller metric terms uw/r and vw/r , are
neglected.

The second and third of these approximations should be taken, or not, together, the
underlying reason being that they both relate to the presumed small aspect ratio of the
motion, so the approximations succeed or fail together. If we make one approximation but
not the other then we are being asymptotically inconsistent, and angular momentum and
energy conservation are not assured (see section 2.2.7 and problem 2.13). The hydrostatic
approximation also depends on the small aspect ratio of the flow, but in a slightly different
way. For large-scale flow in the terrestrial atmosphere and ocean all three approximations
are in fact all very accurate approximations. We defer a more complete treatment until
section 2.7, in part because a treatment of the hydrostatic approximation is done most easily
in the context of the Boussinesq equations, derived in section 2.4.

Making these approximations, the momentum equations become

Du
Dt

− 2Ω sinϑv − uv
a

tanϑ = − 1
aρ cosϑ

∂p
∂λ
, (2.50a)

Dv
Dt

+ 2Ω sinϑu+ u
2 tanϑ
a

= − 1
ρa

∂p
∂ϑ
, (2.50b)

0 = − 1
ρ
∂p
∂z

− g, (2.50c)

where
D
Dt

=
( ∂
∂t
+ u
a cosϑ

∂
∂λ

+ v
a

∂
∂ϑ

+w ∂
∂z

)
. (2.51)

We note the ubiquity of the factor 2Ω sinϑ, and take the opportunity to define the Coriolis
parameter, f ≡ 2Ω sinϑ.

The corresponding mass conservation equation for a shallow fluid layer is:

∂ρ
∂t

+ u
a cosϑ

∂ρ
∂λ

+ v
a
∂ρ
∂ϑ

+w ∂ρ
∂z

+ ρ
[

1
a cosϑ

∂u
∂λ

+ 1
a cosϑ

∂
∂ϑ

(v cosϑ)+ ∂w
∂z

]
= 0,

(2.52)

or equivalently,

∂ρ
∂t

+ 1
a cosϑ

∂(uρ)
∂λ

+ 1
a cosϑ

∂
∂ϑ
(vρ cosϑ)+ ∂(wρ)

∂z
= 0. (2.53)

2.2.5 Primitive equations in vector form

The primitive equations may be written in a compact vector form provided we make a slight
reinterpretation of the material derivative of the coordinate axes. Let u = ui+ vj+ 0 k be
the horizontal velocity. The primitive equations (2.50a) and (2.50b) may be written as

Du
Dt

+ f × u = − 1
ρ
∇zp, (2.54)
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2.2 Equations of Motion in Spherical Coordinates 63

where f = fk = 2Ω sinϑk and ∇zp = [(a cosϑ)−1∂p/∂λ, a−1∂p/∂ϑ], the gradient op-
erator at constant z. In (2.54) the material derivative of the horizontal velocity is given
by

Du
Dt

= i
Du
Dt

+ j
Dv
Dt

+uDi
Dt
+ v Dj

Dt
, (2.55)

where instead of (2.39) we have

Di
Dt

= Ω̃flow × i = j
u tanϑ
a

, (2.56a)

Dj
Dt

= Ω̃flow × j = −i
u tanϑ
a

, (2.56b)

where Ω̃flow = ku tanϑ/a [which is the vertical component of (2.38), with r replaced by a.].
The advection of the horizontal wind u is still by the three-dimensional velocity v. The
vertical momentum equation is the hydrostatic equation, (2.50c), and the mass conservation
equation is

Dρ
Dt

+ ρ∇ · v = 0 or
∂ρ
∂t

+∇ · (ρv) = 0, (2.57)

where D/Dt on a scalar is given by (2.51), and the second expression is written out in full in
(2.53).

2.2.6 The vector invariant form of the momentum equation

The ‘vector invariant’ form of the momentum equation is so-called because it appears to take
the same form in all coordinate systems — there is no advective derivative of the coordinate
system to worry about. With the aid of the identity (v ·∇)v = −v ×ω+∇(v2/2), where
ω ≡ ∇ × v is the relative vorticity, the three-dimensional momentum equation may be
written:

∂v
∂t

+ (2Ω+ω)× v = − 1
ρ
∇p − 1

2
∇v2 + g. (2.58)

In spherical coordinates the relative vorticity is given by:

ω = ∇× v = 1
r 2 cosϑ

∣∣∣∣∣∣∣

i r cosϑ j r k
∂/∂λ ∂/∂ϑ ∂/∂r

ur cosϑ rv w

∣∣∣∣∣∣∣

= i
1
r

(∂w
∂ϑ

− ∂(rv)
∂r

)
− j

1
r cosϑ

(∂w
∂λ

− ∂
∂r
(ur cosϑ)

)

+ k
1

r cosϑ

(∂v
∂λ

− ∂
∂ϑ
(u cosϑ)

)
. (2.59)

Making the traditional and shallow fluid approximations, the horizontal components of
(2.58) may be written

∂u
∂t

+ (f + kζ)× u+w ∂u
∂z

= − 1
ρ
∇zp −

1
2
∇u2, (2.60)

where u = (u,v,0), f = k 2Ω sinϑ, ∇z is the horizontal gradient operator (the gradient at
a constant value of z), and using (2.59), ζ is given by

ζ = 1
a cosϑ

∂v
∂λ

− 1
a cosϑ

∂
∂ϑ
(u cosϑ) = 1

a cosϑ
∂v
∂λ

− 1
a
∂u
∂ϑ

+ u
a

tanϑ. (2.61)
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64 Chapter 2. Effects of Rotation and Stratification

The separate components of the momentum equation are given by:

∂u
∂t

− (f + ζ)v +w ∂u
∂z

= − 1
aρ cosϑ

(
1
ρ
∂p
∂λ

+ 1
2
∂u2

∂λ

)
, (2.62)

and
∂v
∂t

+ (f + ζ)u+w ∂v
∂z

= − 1
a

(
1
ρ
∂p
∂ϑ

+ 1
2
∂u2

∂ϑ

)
. (2.63)

Related expressions are given in problem 2.3, and we treat vorticity at greater length in
chapter 4.

2.2.7 Angular momentum

The zonal momentum equation can be usefully expressed as a statement about axial angular
momentum; that is, angular momentum about the rotation axis. The zonal angular momen-
tum per unit mass is the component of angular momentum in the direction of the axis of
rotation and it is given by, without making any shallow atmosphere approximation,

m = (u+Ωr cosϑ)r cosϑ. (2.64)

The evolution equation for this quantity follows from the zonal momentum equation and
has the simple form

Dm
Dt

= − 1
ρ
∂p
∂λ
, (2.65)

where the material derivative is

D
Dt

= ∂
∂t
+ u
r cosϑ

∂
∂λ

+ v
r

∂
∂ϑ

+w ∂
∂r
. (2.66)

Using the mass continuity equation, (2.65) can be written as

Dρm
Dt

+ ρm∇ · v = −∂p
∂λ

(2.67)

or

∂ρm
∂t

+ 1
r cosϑ

∂(ρum)
∂λ

+ 1
r cosϑ

∂
∂ϑ
(ρvm cosϑ)+ ∂

∂z
(ρmw) = −∂p

∂λ
. (2.68)

This is an angular momentum conservation equation.
If the fluid is confined to a shallow layer near the surface of a sphere, then we may

replace r , the radial coordinate, by a, the radius of the sphere, in the definition of m, and
we define m̃ ≡ (u+Ωa cosϑ)a cosϑ. Then (2.65) is replaced by

Dm̃
Dt

= − 1
ρ
∂p
∂λ
, (2.69)

where now
D
Dt

= ∂
∂t
+ u
a cosϑ

∂
∂λ

+ v
a

∂
∂ϑ

+w ∂
∂z
. (2.70)

Using mass continuity, (2.69) may be written as

∂ρm̃
∂t

+ u
a cosϑ

∂m̃
∂λ

+ v
a
∂m̃
∂ϑ

+w ∂m̃
∂z

= − 1
ρ
∂p
∂λ
, (2.71)

which is the appropriate angular momentum conservation equation for a shallow atmosphere.
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2.2 Equations of Motion in Spherical Coordinates 65

* From angular momentum to the spherical component equations

An alternative way of deriving the three components of the momentum equation in spherical
polar coordinates is to begin with (2.65) and the principle of conservation of energy. That
is, we take the equations for conservation of angular momentum and energy as true a
priori and demand that the forms of the momentum equation be constructed to satisfy
these. Expanding the material derivative in (2.65), noting that Dr/Dt = w and Dcosϑ/Dt =
−(v/r) sinϑ, immediately gives (2.47a). Multiplication by u then yields

uDu
Dt

− 2Ωuv sinϑ + 2Ωuw cosϑ − u
2v tanϑ
r

+ u
2w
r

= − u
ρr cosϑ

∂p
∂λ
. (2.72)

Now suppose that the meridional and vertical momentum equations are of the form

Dv
Dt

+ Coriolis and metric terms = − 1
ρr

∂p
∂ϑ

(2.73a)

Dw
Dt

+ Coriolis and metric terms = − 1
ρ
∂p
∂r
, (2.73b)

but that we do not know what form the Coriolis and metric terms take. To determine that
form, construct the kinetic energy equation by multiplying (2.73) by v and w , respectively.
Now, the metric terms must vanish when we sum the resulting equations along with (2.72), so
that (2.73a) must contain the Coriolis term 2Ωu sinϑ as well as the metric term u2 tanϑ/r ,
and (2.73b) must contain the term −2Ωu cosφ as well as the metric term u2/r . But if (2.73b)
contains the term u2/r it must also contain the term v2/r by isotropy, and therefore (2.73a)
must also contain the term vw/r . In this way, (2.47) is precisely reproduced, although the
sceptic might argue that the uniqueness of the form has not been demonstrated.

A particular advantage of this approach arises in determining the appropriate momentum
equations that conserve angular momentum and energy in the shallow-fluid approximation.
We begin with (2.69) and expand to obtain (2.50a). Multiplying by u gives

uDu
Dt

− 2Ωuv sinϑ − u
2v tanϑ
a

= − u
ρa cosϑ

∂p
∂λ
. (2.74)

To ensure energy conservation, the meridional momentum equation must contain the Coriolis
term 2Ωu sinϑ and the metric term u2 tanϑ/a, but the vertical momentum equation must
have neither of the metric terms appearing in (2.47c). Thus we deduce the following
equations:

Du
Dt

−
(

2Ω sinϑ + u tanϑ
a

)
v = − 1

ρa cosϑ
∂p
∂λ
, (2.75a)

Dv
Dt

+
(

2Ω sinϑ + u tanϑ
a

)
u = − 1

ρa
∂p
∂ϑ
, (2.75b)

Dw
Dt

= − 1
ρ
∂ρ
∂r

− g. (2.75c)

This equation set, when used in conjunction with the thermodynamic and mass continuity
equations, conserves appropriate forms of angular momentum and energy. In the hydrostatic
approximation the material derivative of w in (2.75c) is additionally neglected. Thus, the
hydrostatic approximation is mathematically and physically consistent with the shallow-fluid
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66 Chapter 2. Effects of Rotation and Stratification

approximation, but it is an additional approximation with slightly different requirements
that one may choose, rather than being required, to make. From an asymptotic perspective,
the difference lies in the small parameter necessary for either approximation to hold, namely:

shallow fluid and traditional approximations: γ ≡ H
a
≪ 1, (2.76a)

small aspect ratio for hydrostatic approximation: α ≡ H
L
≪ 1, (2.76b)

where L is the horizontal scale of the motion and a is the radius of the Earth. For hemispheric
or global scale phenomena L ∼ a and the two approximations coincide. (Requirement (2.76b)
for the hydrostatic approximation is derived in section 2.7.)

2.3 CARTESIAN APPROXIMATIONS: THE TANGENT PLANE

2.3.1 The f-plane

Although the rotation of the Earth is central for many dynamical phenomena, the sphericity
of the Earth is not always so. This is especially true for phenomena on a scale somewhat
smaller than global where the use of spherical coordinates becomes awkward, and it is
more convenient to use a locally Cartesian representation of the equations. Referring to
Fig. 2.4 we will define a plane tangent to the surface of the Earth at a latitude ϑ0, and then
use a Cartesian coordinate system (x,y, z) to describe motion on that plane. For small
excursions on the plane, (x,y, z) ≈ (aλ cosϑ0, a(ϑ − ϑ0), z). Consistently, the velocity is
v = (u,v,w), so that u,v and w are the components of the velocity in the tangent plane, in
approximately in the east–west, north–south and vertical directions, respectively.

The momentum equations for flow in this plane are then

∂u
∂t
+ (v ·∇)u+ 2(Ωyw −Ωzv) = − 1

ρ
∂p
∂x
, (2.77a)

∂v
∂t
+ (v ·∇)v + 2(Ωzu−Ωxw) = − 1

ρ
∂p
∂y

, (2.77b)

∂w
∂t

+ (v ·∇)w + 2(Ωxv −Ωyu) = − 1
ρ
∂p
∂z

− g, (2.77c)

where the rotation vector Ω = Ωxi + Ωy j + Ωzk and Ωx = 0, Ωy = Ω cosϑ0 and Ωz =
Ω sinϑ0. If we make the traditional approximation, and so ignore the components of Ω not
in the direction of the local vertical, then

Du
Dt

− f0v = −
1
ρ
∂p
∂x
, (2.78a)

Dv
Dt

+ f0u = −
1
ρ
∂p
∂y

, (2.78b)

Dw
Dt

= − 1
ρ
∂p
∂z

− g. (2.78c)

where f0 = 2Ωz = 2Ω sinϑ0. Defining the horizontal velocity vector u = (u,v,0), the first
two equations may also be written as

Du
Dt

+ f0 × u = −
1
ρ
∇zp, (2.79)
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2.4 The Boussinesq Approximation 67

where Du/Dt = ∂u/∂t+v ·∇u, f0 = 2Ω sinϑ0k = f0k, and k is the direction perpendicular
to the plane (it does not change its orientation with latitude). These equations are, evidently,
exactly the same as the momentum equations in a system in which the rotation vector is
aligned with the local vertical, as illustrated in the right-hand panel in Fig. 2.4 (on page 60).
They will describe flow on the surface of a rotating sphere to a good approximation provided
the flow is of limited latitudinal extent so that the effects of sphericity are unimportant; we
have made what is known as the f -plane approximation since the Coriolis parameter is a
constant. We may in addition make the hydrostatic approximation, in which case (2.78c)
becomes the familiar ∂p/∂z = −ρg.

2.3.2 The beta-plane approximation

The magnitude of the vertical component of rotation varies with latitude, and this has
important dynamical consequences. We can approximate this effect by allowing the effective
rotation vector to vary. Thus, noting that, for small variations in latitude,

f = 2Ω sinϑ ≈ 2Ω sinϑ0 + 2Ω(ϑ − ϑ0) cosϑ0, (2.80)

then on the tangent plane we may mimic this by allowing the Coriolis parameter to vary as

f = f0 + βy , (2.81)

where f0 = 2Ω sinϑ0 and β = ∂f/∂y = (2Ω cosϑ0)/a. This important approximation is
known as the beta-plane, or β-plane, approximation; it captures the the most important
dynamical effects of sphericity, without the complicating geometric effects, which are not
essential to describe many phenomena. The momentum equations (2.78) are unaltered except
that f0 is replaced by f0 + βy to represent a varying Coriolis parameter. Thus, sphericity
combined with rotation is dynamically equivalent to a differentially rotating system. For
future reference, we write down the β-plane horizontal momentum equations:

Du
Dt

+ f × u = − 1
ρ
∇zp, (2.82)

where f = (f0 + βy)k̂. In component form this equation becomes

Du
Dt

− fv = − 1
ρ
∂p
∂x
, Dv

Dt
+ fu = − 1

ρ
∂p
∂y

. (2.83a,b)

The mass conservation, thermodynamic and hydrostatic equations in the β-plane approxi-
mation are the same as the usual Cartesian, f -plane, forms of those equations.

2.4 EQUATIONS FOR A STRATIFIED OCEAN: THE BOUSSINESQ APPROXIMATION

The density variations in the ocean are quite small compared to the mean density, and we
may exploit this to derive somewhat simpler but still quite accurate equations of motion.
Let us first examine how much density does vary in the ocean.
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68 Chapter 2. Effects of Rotation and Stratification

2.4.1 Variation of density in the ocean

The variations of density in the ocean are due to three effects: the compression of water
by pressure (which we denote as ∆pρ), the thermal expansion of water if its temperature
changes (∆Tρ), and the haline contraction if its salinity changes (∆Sρ). How big are these?
An appropriate equation of state to approximately evaluate these effects is the linear one

ρ = ρ0

[
1− βT (T − T0)+ βS(S − S0)+

p
ρ0c2

s

]
, (2.84)

where βT ≈ 2× 10−4 K−1, βS ≈ 10−3 psu−1 and cs ≈ 1500 m s−1 (see the table on page 35).
The three effects may then be evaluated as follows.

Pressure compressibility. We have ∆pρ ≈ ∆p/c2
s ≈ ρ0gH/c2

s . where H is the depth and the
pressure change is quite accurately evaluated using the hydrostatic approximation.
Thus,

|∆pρ|
ρ0

≪ 1 if
gH
c2
s
≪ 1, (2.85)

or if H ≪ c2
s /g. The quantity c2

s /g ≈ 200 km is the density scale height of the ocean.
Thus, the pressure at the bottom of the ocean (say H = 10 km in the deep trenches),
enormous as it is, is insufficient to compress the water enough to make a significant
change in its density. Changes in density due to dynamical variations of pressure are
small if the Mach number is small, and this is also the case.

Thermal expansion. We have ∆Tρ ≈ −βTρ0∆T and therefore

|∆Tρ|
ρ0

≪ 1 if βT∆T ≪ 1. (2.86)

For ∆T = 20 K, βT∆T ≈ 4 × 10−3, and evidently we would require temperature
differences of order β−1

T , or 5000 K to obtain order one variations in density.

Saline contraction. We have ∆Sρ ≈ βSρ0∆S and therefore

|∆Sρ|
ρ0

≪ 1 if βS∆S ≪ 1. (2.87)

As changes in salinity in the ocean rarely exceed 5 psu, for which βS∆S = 5× 10−3,
the fractional change in the density of seawater is correspondingly very small.

Evidently, fractional density changes in the ocean are very small.

2.4.2 The Boussinesq equations

The Boussinesq equations are a set of equations that exploit the smallness of density varia-
tions in many liquids.4 To set notation we write

ρ = ρ0 + δρ(x,y, z, t) (2.88a)

= ρ0 + ρ̂(z)+ ρ′(x,y, z, t) (2.88b)

= ρ̃(z)+ ρ′(x,y, z, t), (2.88c)
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2.4 The Boussinesq Approximation 69

where ρ0 is a constant and we assume that

|ρ̂|, |ρ′|, |δρ|≪ ρ0. (2.89)

We need not assume that |ρ′|≪ |ρ̂|, but this is often the case in the ocean. To obtain the
Boussinesq equations we will just use (2.88a), but (2.88c) will be useful for the anelastic
equations considered later.

Associated with the reference density is a reference pressure that is defined to be in
hydrostatic balance with it. That is,

p = p0(z)+ δp(x,y, z, t) (2.90a)

= p̃(z)+ p′(x,y, z, t), (2.90b)

where |δp|≪ p0, |p′|≪ p̃ and

dp0

dz
≡ −gρ0,

dp̃
dz

≡ −gρ̃. (2.91a,b)

Note that ∇zp = ∇zp′ = ∇zδp and that p0 ≈ p̃ if |ρ̂|≪ ρ0.

Momentum equations

To obtain the Boussinesq equations we use ρ = ρ0+δρ, and assume δρ/ρ0 is small. Without
approximation, the momentum equation can be written as

(ρ0 + δρ)
(

Dv
Dt

+ 2Ω× v
)
= −∇δp − ∂p0

∂z
k− g(ρ0 + δρ)k, (2.92)

and using (2.91a) this becomes, again without approximation,

(ρ0 + δρ)
(

Dv
Dt

+ 2Ω× v
)
= −∇δp − gδρk. (2.93)

If density variations are small this becomes

Dv
Dt

+ 2Ω× v = −∇φ+ bk , (2.94)

where φ = δp/ρ0 and b = −g δρ/ρ0 is the buoyancy. Note that we should not and do not
neglect the term g δρ, for there is no reason to believe it to be small (δρ may be small, but
g is big). Equation (2.94) is the momentum equation in the Boussinesq approximation, and it
is common to say that the Boussinesq approximation ignores all variations of density of a
fluid in the momentum equation, except when associated with the gravitational term.

For most large-scale motions in the ocean the deviation pressure and density fields are
also approximately in hydrostatic balance, and in that case the vertical component of (2.94)
becomes

∂φ
∂z

= b. (2.95)

A condition for (2.95) to hold is that vertical accelerations are small compared to g δρ/ρ0,
and not compared to the acceleration due to gravity itself. For more discussion of this point,
see section 2.7.
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70 Chapter 2. Effects of Rotation and Stratification

Mass Conservation

The unapproximated mass conservation equation is

Dδρ
Dt

+ (ρ0 + δρ)∇ · v = 0. (2.96)

Provided that time scales advectively — that is to say that D/Dt scales in the same way as
v ·∇ — then we may approximate this equation by

∇ · v = 0 , (2.97)

which is the same as that for a constant density fluid. This absolutely does not allow one
to go back and use (2.96) to say that Dδρ/Dt = 0; the evolution of density is given by
the thermodynamic equation in conjunction with an equation of state, and this should
not be confused with the mass conservation equation. Note also that in eliminating the
time-derivative of density we eliminate the possibility of sound waves.

Thermodynamic equation and equation of state

The Boussinesq equations are closed by the addition of an equation of state, a thermodynamic
equation and, as appropriate, a salinity equation. Neglecting salinity for the moment, a
useful starting point is to write the thermodynamic equation, (1.116), as

Dρ
Dt

− 1

c2
s

Dp
Dt

= Q̇
(∂η/∂ρ)pT

≈ −Q̇
(
ρ0βT
cp

)
(2.98)

using (∂η/∂ρ)p = (∂η/∂T )p(∂T/∂ρ)p ≈ cp/(Tρ0βT ). Given the expansions (2.88a) and
(2.90a), (2.98) can be written to a good approximation as

Dδρ
Dt

− 1

c2
s

Dp0

Dt
= −Q̇

(
ρ0βT
cp

)
, (2.99)

or, using (2.91a),
D
Dt

(
δρ + ρ0g

c2
s
z
)
= −Q̇

(
ρ0βT
cp

)
, (2.100)

as in (1.119). The severest approximation to this is to neglect the second term in brackets
on the left-hand side, and noting that b = −gδρ/ρ0 we obtain

Db
Dt

= ḃ , (2.101)

where ḃ = gβT Q̇/cp . The momentum equation (2.94), mass continuity equation (2.97)
and thermodynamic equation (2.101) then form a closed set, called the simple Boussinesq
equations.

A somewhat more accurate approach is to include the compressibility of the fluid
that is due to the hydrostatic pressure. From (2.100), the potential density is given by
δρpot = δρ + ρ0gz/c2

s , and so the potential buoyancy, that is the buoyancy based on
potential density, is given by

bσ ≡ −g
δρpot

ρ0
= − g

ρ0

(
δρ + ρ0gz

c2
s

)
= b − g z

Hρ
, (2.102)
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2.4 The Boussinesq Approximation 71

where Hρ = c2
s /g. The thermodynamic equation, (2.100), may then be written

Dbσ
Dt

= ḃσ , (2.103)

where ḃσ = ḃ. Buoyancy itself is obtained from bσ by the ‘equation of state’, b = bσ+gz/Hρ .
In many applications we may need to use a still more accurate equation of state. In that

case (and see section 1.6.2) we replace (2.101) by the thermodynamic equations

Dθ
Dt

= θ̇, DS
Dt

= Ṡ , (2.104a,b)

where θ is the potential temperature and S is salinity, along with an equation of state. The
equation of state has the general form b = b(θ, S, p), but to be consistent with the level of
approximation in the other Boussinesq equations we replace p by the hydrostatic pressure
calculated with the reference density, that is by −ρ0gz, and the equation of state then takes
the general form

b = b(θ, S, z) . (2.105)

An example of (2.105) is (1.156), taken with the definition of buoyancy b = −gδρ/ρ0. The
closed set of equations (2.94), (2.97), (2.104) and (2.105) are the general Boussinesq equations.
Using an accurate equation of state and the Boussinesq approximation is the procedure used
in many comprehensive ocean general circulation models. The Boussinesq equations, which
with the hydrostatic and traditional approximations are often considered to be the oceanic
primitive equations, are summarized in the shaded box on the next page.

* Mean stratification and the buoyancy frequency

The processes that cause density to vary in the vertical often differ from those that cause it
to vary in the horizontal. For this reason it is sometimes useful to write ρ = ρ0 + ρ̂(z)+
ρ′(x,y, z, t) and define b̃(z) ≡ −gρ̂/ρ0 and b′ ≡ −gρ′/ρ0. Using the hydrostatic equation
to evaluate pressure, the thermodynamic equation (2.98) becomes, to a good approximation,

Db′

Dt
+N2w = 0, (2.106)

where D/Dt remains a three-dimensional operator and

N2(z) =
(

db̃
dz

− g
2

c2
s

)
= db̃σ

dz
, (2.107)

where b̃σ = b̃ − gz/Hρ . The quantity N2 is a measure of the mean stratification of the fluid,
and is equal to the vertical gradient of the mean potential buoyancy. N is known as the
buoyancy frequency, something we return to in section 2.9. Equations (2.106) and (2.107)
also hold in the simple Boussinesq equations, but with c2

s =∞.
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72 Chapter 2. Effects of Rotation and Stratification

Summary of Boussinesq Equations

The simple Boussinesq equations are, for an inviscid fluid:

momentum equations:
Dv
Dt

+ f × v = −∇φ+ bk, (B.1)

mass conservation: ∇ · v = 0, (B.2)

buoyancy equation:
Db
Dt

= ḃ. (B.3)

A more general form replaces the buoyancy equation by:

thermodynamic equation:
Dθ
Dt

= θ̇, (B.4)

salinity equation:
DS
Dt

= Ṡ, (B.5)

equation of state: b = b(θ, S,φ). (B.6)

Energy conservation is only assured if b = b(θ, S, z).

2.4.3 Energetics of the Boussinesq system

In a uniform gravitational field but with no other forcing or dissipation, we write the simple
Boussinesq equations as

Dv
Dt

+ 2Ω× v = bk−∇φ, ∇ · v = 0, Db
Dt

= 0. (2.108a,b,c)

From (2.108a) and (2.108b) the kinetic energy density evolution (cf. section 1.10) is given by

1
2

Dv2

Dt
= bw −∇ · (φv), (2.109)

where the constant reference density ρ0 is omitted. Let us now define the potential Φ ≡ −z,
so that ∇Φ = −k and

DΦ
Dt

= ∇ · (vΦ) = −w, (2.110)

and using this and (2.108c) gives
D
Dt
(bΦ) = −wb. (2.111)

Adding (2.111) to (2.109) and expanding the material derivative gives

∂
∂t

(
1
2
v2 + bΦ

)
+∇ ·

[
v
(

1
2
v2 + bΦ +φ

)]
= 0. (2.112)

This constitutes an energy equation for the Boussinesq system, and may be compared to
(1.186). (Also see problem 2.14.) The energy density (divided by ρ0) is just v2/2+ bΦ. What
does the term bΦ represent? Its integral, multiplied by ρ0, is the potential energy of the
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2.5 The Anelastic Approximation 73

flow minus that of the basic state, or
∫
g(ρ − ρ0)z dz. If there were a heating term on the

right-hand side of (2.108c) this would directly provide a source of potential energy, rather
than internal energy as in the compressible system. Because the fluid is incompressible,
there is no conversion from kinetic and potential energy into internal energy.

* Energetics with a general equation of state

Now consider the energetics of the general Boussinesq equations. Suppose first that we
allow the equation of state to be a function of pressure; the equations are motion are then
(2.108) except that (2.108c) is replaced by

Dθ
Dt

= 0, DS
Dt

= 0, b = b(θ, S,φ). (2.113a,b,c)

A little algebraic experimentation will reveal that no energy conservation law of the form
(2.112) generally exists for this system! The problem arises because, by requiring the fluid to
be incompressible, we eliminate the proper conversion of internal energy to kinetic energy.
However, if we use the approximation b = b(θ, S, z), the system does conserve an energy,
as we now show.5

Define the potential, Π, as the integral of b at constant potential temperature and salinity;
that is

Π(θ, S, z) ≡ −
∫ z

a
b dz′, (2.114)

where a is any constant, so that ∂Π/∂z = −b. Taking the material derivative of the left-hand
side gives

DΠ
Dt

=
(∂Π
∂θ

)

S,z

Dθ
Dt

+
(∂Π
∂S

)

θ,z

DS
Dt

+
(∂Π
∂z

)

θ,S

Dz
Dt

= −bw, (2.115)

using (2.113a,b). Combining (2.115) and (2.109) gives

∂
∂t

(
1
2
v2 +Π

)
+∇ ·

[
v
(

1
2
v2 +Π +φ

)]
= 0. (2.116)

Thus, energetic consistency is maintained with an arbitrary equation of state, provided the
pressure is replaced by a function of z. If b is not an explicit function of z in the equation
of state, the conservation law is identical to (2.112).

2.5 EQUATIONS FOR A STRATIFIED ATMOSPHERE: THE ANELASTIC APPROXIMATION

2.5.1 Preliminaries

In the atmosphere the density varies significantly, especially in the vertical. However de-
viations of both ρ and p from a statically balanced state are often quite small, and the
relative vertical variation of potential temperature is also small. We can usefully exploit
these observations to give a somewhat simplified set of equations, useful both for theoret-
ical and numerical analyses because sound waves are eliminated by way of an ‘anelastic’
approximation.6 To begin we set

ρ = ρ̃(z)+ δρ(x,y, z, t), p = p̃(z)+ δp(x,y, z, t), (2.117a,b)
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74 Chapter 2. Effects of Rotation and Stratification

where we assume that |δρ|≪ |ρ̃| and we define p̃ such that

∂ p̃
∂z

≡ −gρ̃(z). (2.118)

The notation is similar to that for the Boussinesq case except that, importantly, the density
basic state is now a (given) function of vertical coordinate. As with the Boussinesq case, the
idea is to ignore dynamic variations of density (i.e., of δρ) except where associated with
gravity. First recall a couple of ideal gas relationships involving potential temperature, θ,
and entropy s (divided by cp , so s ≡ logθ), namely

s ≡ logθ = logT − R
cp

logp = 1
γ

logp − logρ, (2.119)

where γ = cp/cv , implying

δs = 1
θ
δθ = 1

γ
δp
p
− δρ

ρ
≈ 1
γ
δp
p̃
− δρ

ρ̃
. (2.120)

Further, if s̃ ≡ γ−1 log p̃ − log ρ̃ then

ds̃
dz

= 1
γp̃

dp̃
dz

− 1
ρ̃

dρ̃
dz

= −gρ̃
γp̃

− 1
ρ̃

dρ̃
dz
. (2.121)

In the atmosphere, the left-hand side is, typically, much smaller than either of the two terms
on the right-hand side.

2.5.2 The momentum equation

The exact inviscid horizontal momentum equation is

(ρ̃ + ρ′)
(

Du
Dt

+ f × u
)
= −∇zδp. (2.122)

Neglecting ρ′ where it appears with ρ̃ leads to

Du
Dt

+ f × u = −∇zφ, (2.123)

where φ = δp/ρ̃, and this is similar to the corresponding equation in the Boussinesq
approximation.

The vertical component of the inviscid momentum equation is, without approximation,

(ρ̃ + δρ)Dw
Dt

= −∂ p̃
∂z

− ∂δp
∂z

− gρ̃ − gδρ = −∂δp
∂z

− gδρ. (2.124)

using (2.118). Neglecting δρ on the left-hand side we obtain

Dw
Dt

= − 1
ρ̃
∂δp
∂z

− gδρ
ρ̃
= − ∂

∂z

(
δp
ρ̃

)
− δp
ρ̃2

∂ρ̃
∂z

− gδρ
ρ̃
. (2.125)

This is not a useful form for a gaseous atmosphere, since the variation of the mean density
cannot be ignored. However, we may eliminate δρ in favour of δs using (2.120) to give

Dw
Dt

= gδs − ∂
∂z

(
δp
ρ̃

)
− g
γ
δp
p̃
− δp
ρ̃2

∂ρ̃
∂z
, (2.126)
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and using (2.121) gives

Dw
Dt

= gδs − ∂
∂z

(
δp
ρ̃

)
+ ds̃

dz
δp
ρ̃
. (2.127)

What have these manipulations gained us? Two things:

(i) The gravitational term now involves δs rather than δρ which enables a more direct
connection with the thermodynamic equation.

(ii) The potential temperature scale height (∼100 km) in the atmosphere is much larger
than the density scale height (∼10 km), and so the last term in (2.127) is small.

The second item thus suggests that we choose our reference state to be one of constant
potential temperature (see also problem 2.19). The term ds̃/dz then vanishes and the vertical
momentum equation becomes

Dw
Dt

= gδs − ∂φ
∂z

, (2.128)

where φ = δp/ρ̃ and δs = δθ/θ0, where θ0 is a constant. If we define a buoyancy by
ba ≡ gδs = gδθ/θ0, then (2.123) and (2.128) have the same form as the Boussinesq
momentum equations, but with a slightly different definition of buoyancy.

2.5.3 Mass conservation

Using (2.117a) the mass conservation equation may be written, without approximation, as

∂δρ
∂t

+∇ · [(ρ̃ + δρ)v] = 0. (2.129)

We neglect δρ where it appears with ρ̃ in the divergence term. Further, the local time
derivative will be small if time itself is scaled advectively (i.e., T ∼ L/U and sound waves do
not dominate), giving

∇ · u+ 1
ρ̃
∂
∂z
(ρ̃w) = 0. (2.130)

It is here that the eponymous ‘anelastic approximation’ arises: the elastic compressibility of
the fluid is neglected, and this serves to eliminate sound waves. For reference, in spherical
coordinates the equation is

1
a cosϑ

∂u
∂λ

+ 1
a cosϑ

∂
∂ϑ
(v cosϑ)+ 1

ρ̃
∂(wρ̃)
∂z

= 0. (2.131)

In an ideal gas, the choice of constant potential temperature determines how the reference
density ρ̃ varies with height. In some circumstances it is convenient to let ρ̃ be a constant,
ρ0 (effectively choosing a different equation of state), in which case the anelastic equations
become identical to the Boussinesq equations, albeit with the buoyancy interpreted in terms
of potential temperature in the former and density in the latter. Because of their similarity,
the Boussinesq and anelastic approximations are sometimes referred to as the strong and
weak Boussinesq approximations, respectively.
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76 Chapter 2. Effects of Rotation and Stratification

2.5.4 Thermodynamic equation

The thermodynamic equation for an ideal gas may be written

D lnθ
Dt

= Q̇
Tcp

. (2.132)

In the anelastic equations, θ = θ̃+δθ, where θ̃ is constant, and the thermodynamic equation
is

Dδs
Dt

= θ̃
Tcp

Q̇. (2.133)

Summarizing, the complete set of anelastic equations, with rotation but with no dissipation
or diabatic terms, is

Dv
Dt

+ 2Ω× v = kba −∇φ
Dba
Dt

= 0

∇ · (ρ̃v) = 0

, (2.134a,b,c)

where ba = gδs = gδθ/θ̃. The main difference between the anelastic and Boussinesq
sets of equations is in the mass continuity equation, and when ρ̃ = ρ0 = constant the two
equation sets are formally identical. However, whereas the Boussinesq approximation is a
very good one for ocean dynamics, the anelastic approximation is much less so for large-
scale atmosphere flow: the constancy of the reference potential temperature state is not a
particularly good approximation, and the deviations in density from its reference profile are
not especially small, leading to inaccuracies in the momentum equation. Nevertheless, the
anelastic equations have been used very productively in limited area ‘large-eddy simulations’
where one does not wish to make the hydrostatic approximation but where sound waves are
unimportant.7 The equations also provide a good jumping-off point for theoretical studies
and for the still simpler models of chapter 5.

2.5.5 * Energetics of the anelastic equations

Conservation of energy follows in much the same way as for the Boussinesq equations,
except that ρ̃ enters. Take the dot product of (2.134a) with ρ̃v to obtain

ρ̃ D
Dt

(
1
2
v2
)
= −∇ · (φρ̃v)+ baρ̃w. (2.135)

Now, define a potential Φ(z) such that ∇Φ = −k, and so

ρ̃DΦ
Dt

= −wρ̃. (2.136)

Combining this with the thermodynamic equation (2.134b) gives

ρ̃D(baΦ)
Dt

= −wbaρ̃. (2.137)
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2.6 Changing Vertical Coordinate 77

Adding this to (2.135) gives

ρ̃ D
Dt

(
1
2
v2 + baΦ

)
= −∇ · (φρ̃v), (2.138)

or, expanding the material derivative,

∂
∂t

[
ρ̃
(

1
2
v2 + baΦ

)]
+∇ ·

[
ρ̃v

(
1
2
v2 + baΦ +φ

)]
= 0. (2.139)

This equation has the form
∂E
∂t
+∇ ·

[
v(E + ρ̃φ)

]
= 0, (2.140)

where E = ρ̃(v2/2+ baΦ) is the energy density of the flow. This is a consistent energetic
equation for the system, and when integrated over a closed domain the total energy is
evidently conserved. The total energy density comprises the kinetic energy and a term ρ̃baΦ,
which is analogous to the potential energy of a simple Boussinesq system. However, it is not
exactly equal to potential energy because ba is the buoyancy based on potential temperature,
not density; rather, the term combines contributions from both the internal energy and the
potential energy into an enthalpy-like quantity.

2.6 CHANGING VERTICAL COORDINATE

Although using z as a vertical coordinate is a natural choice given our Cartesian worldview,
it is not the only option, nor is it always the most useful one. Any variable that has a
one-to-one correspondence with z in the vertical, so any variable that varies monotonically
with z, could be used; pressure and, perhaps surprisingly, entropy, are common choices.
In the atmosphere pressure almost always falls monotonically with height, and using it
instead of z provides a useful simplification of the mass conservation and geostrophic
relations, as well as a more direct connection with observations, which are often taken at
fixed values of pressure. (In the ocean pressure coordinates are essentially almost the same
as height coordinates, because density is almost constant.) Entropy seems an exotic vertical
coordinate, but it is very useful in adiabatic flow and we consider it in chapter 3.

2.6.1 General relations

First consider a general vertical coordinate, ξ. Any variable Ψ that is a function of the
coordinates (x,y, z, t) may be expressed instead in terms of (x,y,ξ, t) by considering
z to be function of the independent variables (x,y,ξ, t); that is, we let Ψ (x,y,ξ, t) =
Ψ (x,y, z(x,y,ξ, t), t). Derivatives with respect to z and ξ are related by

∂Ψ
∂ξ

= ∂Ψ
∂z

∂z
∂ξ

and
∂Ψ
∂z

= ∂Ψ
∂ξ

∂ξ
∂z
. (2.141a,b)

Horizontal derivatives in the two coordinate systems are related by the chain rule,
(∂Ψ
∂x

)

ξ
=
(∂Ψ
∂x

)

z
+
( ∂z
∂x

)

ξ

∂Ψ
∂z
, (2.142)

and similarly for time.
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78 Chapter 2. Effects of Rotation and Stratification

The material derivative in ξ coordinates may be derived by transforming the original
expression in z coordinates using the chain rule, but because (x,y, t,ξ) are independent
coordinates, and noting that the ‘vertical velocity’ in ξ coordinates is just ξ̇ (i.e., Dξ/Dt, just
as the vertical velocity in z coordinates is w = Dz/Dt), we can write down

DΨ
Dt

= ∂Ψ
∂t

∣∣∣∣
x,y,ξ

+ u ·∇ξΨ + ξ̇
∂Ψ
∂ξ
, (2.143)

where ∇ξ is the gradient operator at constant ξ. The operator D/Dt is physically the same
in z or ξ coordinates because it is the total derivative of some property of a fluid parcel, and
this is independent of the coordinate system. However, the individual terms within it will
differ between coordinate systems.

2.6.2 Pressure coordinates

Let us now transform the ideal gas primitive equations from height coordinates to pressure
coordinates, (x,y,p, t). In z coordinates the equations are

Du
Dt

+ f × u = − 1
ρ
∇p, ∂p

∂z
= −ρg, (2.144a)

Dθ
Dt

= 0, Dρ
Dt

+ ρ∇ · v = 0, (2.144b)

where p = ρRT and θ = T
(
pR/p

)R/cp , and pR is the reference pressure. These are
respectively the horizontal momentum, hydrostatic, thermodynamic and mass continuity
equations. The analogue of the vertical velocity is ω ≡ Dp/Dt, and the advective derivative
itself is given by

D
Dt

= ∂
∂t
+ u ·∇p +ω

∂
∂p
. (2.145)

To obtain an expression for the pressure force, now let ξ = p in (2.142) and apply the
relationship to p itself to give

0 =
(∂p
∂x

)

z
+
( ∂z
∂x

)

p

∂p
∂z
, (2.146)

which, using the hydrostatic relationship, gives

(∂p
∂x

)

z
= ρ

(∂Φ
∂x

)

p
, (2.147)

where Φ = gz is the geopotential. Thus, the horizontal pressure force in the momentum
equations is

1
ρ
∇zp = ∇pΦ, (2.148)

where the subscripts on the gradient operator indicate that the horizontal derivatives are
taken at constant z or constant p. Also, from (2.144a), the hydrostatic equation is just

∂Φ
∂p

= −α. (2.149)
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2.6 Changing Vertical Coordinate 79

The mass conservation equation simplifies attractively in pressure coordinates, if the
hydrostatic approximation is used. Recall that the mass conservation equation can be
derived from the material form

D
Dt
(ρ δV) = 0, (2.150)

where δV = δx δy δz is a volume element. But by the hydrostatic relationship ρδz =
(1/g)δp and thus

D
Dt
(δx δy δp) = 0. (2.151)

This is completely analogous to the expression for the material conservation of volume in
an incompressible fluid, (1.15). Thus, without further ado, we write the mass conservation in
pressure coordinates as

∇p · u+
∂ω
∂p

= 0, (2.152)

where the horizontal derivative is taken at constant pressure. The primitive equations in
pressure coordinates, equivalent to (2.144) in height coordinates, are thus:

Du
Dt

+ f × u = −∇pΦ,
∂Φ
∂p

= −α

Dθ
Dt

= 0, ∇p · u+
∂ω
∂p

= 0
, (2.153)

where D/Dt is given by (2.145). The equation set is completed with the addition of the ideal
gas equation and the definition of potential temperature. These equations are isomorphic to
the hydrostatic general Boussinesq equations (see the shaded box on page 72) with z ↔ −p,
w ↔ −ω, φ ↔ Φ, b ↔ α, and an equation of state b = b(θ, z) ↔ α = α(θ, p). In an ideal
gas, for example, α = (θR/pR)(pR/p)1/γ .

The main practical difficulty with the pressure-coordinate equations is the lower boundary
condition. Using

w ≡ Dz
Dt

= ∂z
∂t
+ u ·∇pz +ω

∂z
∂p
, (2.154)

and (2.149), the boundary condition of w = 0 at z = zs becomes

∂Φ
∂t

+ u ·∇pΦ −αω = 0 (2.155)

at p(x,y, zs, t). In theoretical studies, it is common to assume that the lower boundary is in
fact a constant pressure surface and simply assume that ω = 0, or sometimes the condition
ω = −α−1∂Φ/∂t is used. For realistic studies (with general circulation models, say) the fact
that the level z = 0 is not a coordinate surface must be properly accounted for. For this
reason, and especially if the lower boundary is uneven because of the presence of topography,
so-called sigma coordinates are sometimes used, in which the vertical coordinate is chosen
so that the lower boundary is a coordinate surface. Sigma coordinates may use height itself
as a vertical measure (typical in oceanic applications) or use pressure (typical in atmospheric
applications). In the latter case the vertical coordinate is σ = p/ps where ps(x,y, t) is the
surface pressure. The difficulty of applying (2.155) is replaced by a prognostic equation for
the surface pressure, derived from the mass conservation equation (problem 2.24).
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80 Chapter 2. Effects of Rotation and Stratification

2.6.3 Log-pressure coordinates

A variant of pressure coordinates is log-pressure coordinates, in which the vertical coordinate
is Z = −H ln(p/pR) where pR is a reference pressure (say 1000 mb) and H is a constant
(for example the scale height RTs/g) so that Z has units of length. (Uppercase letters are
conventionally used for some variables in log-pressure coordinates, and these are not to be
confused with scaling parameters.) The ‘vertical velocity’ for the system is now

W ≡ DZ
Dt
, (2.156)

and the advective derivative is

D
Dt

≡ ∂
∂t
+ u ·∇p +W

∂
∂Z
. (2.157)

It is straightforward to show (problem 2.25) that the primitive equations of motion in these
coordinates are:

Du
Dt

+ f × u = −∇ZΦ,
∂Φ
∂Z

= RT
H
, (2.158a)

Dθ
Dt

= 0, ∂u
∂x

+ ∂v
∂y

+ ∂W
∂Z

− W
H
= 0. (2.158b)

The last equation may be written ∇Z · u+ ρ−1
R ∂(ρRW)/∂z = 0, where ρR = exp(−z/H), so

giving a form similar to the mass conservation equation in the anelastic equations. Note that
integrating the hydrostatic equation between two pressure levels gives, with Φ = gz,

z(p2)− z(p1) =
R
g

∫ p2

p1

T d lnp. (2.159)

Thus, the thickness of the layer is proportional to the average temperature of the layer.

2.7 SCALING FOR HYDROSTATIC BALANCE

In this section we consider one of the most fundamental balances in geophysical fluid
dynamics, hydrostatic balance, and in the next section we consider another fundamental
balance, geostrophic balance. The corresponding states, hydrostasy and geostrophy, are
not exactly realized, but their approximate satisfaction has profound consequences on the
behaviour of the atmosphere and ocean. We first encountered hydrostatic balance in section
1.3.4; we now look in more detail at the conditions required for it to hold.

2.7.1 Preliminaries

Consider the relative sizes of terms in (2.77c):

W
T
+ UW

L
+ W

2

H
+ΩU ∼

∣∣∣∣∣
1
ρ
∂p
∂z

∣∣∣∣∣+ g. (2.160)

For most large-scale motion in the atmosphere and ocean the terms on the right-hand side
are orders of magnitude larger than those on the left, and therefore must be approximately
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2.7 Scaling for Hydrostatic Balance 81

equal. Explicitly, suppose W ∼ 1 cm s−1, L ∼ 105 m, H ∼ 103 m, U ∼ 10 m s−1, T = L/U .
Then by substituting into (2.160) it seems that the pressure term is the only one which could
balance the gravitational term, and we are led to approximate (2.77c) by,

∂p
∂z

= −ρg. (2.161)

This equation, which is a vertical momentum equation, is known as hydrostatic balance.
However, (2.161) is not always a useful equation! Let us suppose that the density is a

constant, ρ0 . We can then write the pressure as

p(x,y, z, t) = p0(z)+ p′(x,y, z, t), (2.162)

where
∂p0

∂z
≡ −ρ0g. (2.163)

That is, p0 and ρ0 are in hydrostatic balance. The inviscid vertical momentum equation
becomes, without approximation,

Dw
Dt

= − 1
ρ0

∂p′

∂z
. (2.164)

Thus, for constant density fluids, the gravitational term has no dynamical effect: there is
no buoyancy force, and the pressure term in the horizontal momentum equations can be
replaced by p′. Hydrostatic balance, and in particular (2.163), is certainly not an appropriate
vertical momentum equation in this case. If the fluid is stratified, we should therefore
subtract off the hydrostatic pressure associated with the mean density before we can
determine whether hydrostasy is a useful dynamical approximation, accurate enough to
determine the horizontal pressure gradients. This is automatic in the Boussinesq equations,
where the vertical momentum equation is

Dw
Dt

= −∂φ
∂z

+ b, (2.165)

and the hydrostatic balance of the basic state is already subtracted out. In the more general
equation,

Dw
Dt

= − 1
ρ
∂p
∂z

− g, (2.166)

we need to compare the advective term on the left-hand side with the pressure variations
arising from horizontal flow in order to determine whether hydrostasy is an appropriate
vertical momentum equation. Nevertheless, if we only need to determine the pressure for
use in an equation of state then we simply need to compare the sizes of the dynamical
terms in (2.77c) with g itself, in order to determine whether a hydrostatic approximation
will suffice.

2.7.2 Scaling and the aspect ratio

In a Boussinesq fluid we write the horizontal and vertical momentum equations as

Du
Dt

+ f × u = −∇φ, Dw
Dt

= −∂φ
∂z

− b. (2.167a,b)
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82 Chapter 2. Effects of Rotation and Stratification

With f = 0, (2.167a) implies the scaling

φ ∼ U2. (2.168)

If we use mass conservation, ∇z · u+ ∂w/∂z = 0, to scale vertical velocity then

w ∼ W = H
L
U = αU, (2.169)

where α ≡ H/L is the aspect ratio. The advective terms in the vertical momentum equation
all scale as

Dw
Dt

∼ UW
L

= U2H
L2

. (2.170)

Using (2.168) and (2.170) the ratio of the advective term to the pressure gradient term in the
vertical momentum equations then scales as

|Dw/Dt|
|∂φ/∂z| ∼

U2H/L2

U2/H
∼
(H
L

)2
. (2.171)

Thus, the condition for hydrostasy, that |Dw/Dt|/|∂φ/∂z|≪ 1, is:

α2 ≡
(H
L

)2
≪ 1 . (2.172)

The advective term in the vertical momentum may then be neglected. Thus, hydrostatic
balance is a small aspect ratio approximation.

We can obtain the same result more formally by non-dimensionalizing the momentum
equations. Using uppercase symbols to denote scaling values we write

(x,y) = L(x̂, ŷ), z = Hẑ, u = Uû, w = Wŵ = HU
L
ŵ,

t = T t̂ = L
U
t̂, φ = Φφ̂ = U2φ̂, b = Bb̂ = U2

H
b̂,

(2.173)

where the hatted variables are non-dimensional and the scaling for w is suggested by the
mass conservation equation, ∇z · u + ∂w/∂z = 0. Substituting (2.173) into (2.167) (with
f = 0) gives us the non-dimensional equations

Dû
Dt̂

= −∇φ̂, α2 Dŵ
Dt̂

= −∂φ̂
∂ẑ

− b̂, (2.174a,b)

where D/Dt̂ = ∂/∂t̂ + û∂/∂x̂ + v̂∂/∂ŷ + ŵ∂/∂ẑ and we use the convention that when
∇ operates on non-dimensional quantities the operator itself is non-dimensional. From
(2.174b) it is clear that hydrostatic balance pertains when α2 ≪ 1.

2.7.3 * Effects of stratification on hydrostatic balance

To include the effects of stratification we need to involve the thermodynamic equation, so
let us first write down the complete set of non-rotating dimensional equations:

Du
Dt

= −∇zφ,
Dw
Dt

= −∂φ
∂z

+ b′, (2.175a,b)
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2.7 Scaling for Hydrostatic Balance 83

Db′

Dt
+wN2 = 0, ∇ · v = 0. (2.176a,b)

We have written, without approximation, b = b′(x,y, z, t)+ b̃(z), with N2 = db̃/dz ; this
separation is useful because the horizontal and vertical buoyancy variations may scale
in different ways, and often N2 may be regarded as given. (We have also redefined φ by
subtracting off a static component in hydrostatic balance with b̃.) We non-dimensionalize
(2.176) by first writing

(x,y) = L(x̂, ŷ), z = Hẑ, u = Uû, w = Wŵ = ϵHU
L
ŵ,

t = T t̂ = L
U
t̂, φ = U2φ̂, b′ = ∆bb̂ = U2

H
b̂′, N2 = N2N̂2,

(2.177)

where ϵ is, for the moment, undetermined, N is a representative, constant, value of the
buoyancy frequency and ∆b scales only the horizontal buoyancy variations. Substituting
(2.177) into (2.175) and (2.176) gives

Dû
Dt̂

= −∇zφ̂, ϵα2 Dŵ
Dt

= −∂φ̂
∂ẑ

+ b̂′ (2.178a,b)

U2

N2H2

Db̂′

Dt̂
+ ϵŵN̂2 = 0, ∇ · û+ ϵ∂ŵ

∂ẑ
= 0. (2.179a,b)

where now D/Dt̂ = ∂/∂t̂ + û ·∇z + ϵ∂/∂ẑ . To obtain a non-trivial balance in (2.179a) we
choose ϵ = U2/(N2H2) ≡ Fr2, where Fr is the Froude number, a measure of the stratification
of the flow. The vertical velocity then scales as

W = Fr UH
L

(2.180)

and if the flow is highly stratified the vertical velocity will be even smaller than a pure aspect
ratio scaling might suggest. (There must, therefore, be some cancellation in horizontal
divergence in the mass continuity equation; that is, |∇z ·u|≪ U/L.) With this choice of ϵ
the non-dimensional Boussinesq equations may be written:

Dû
Dt̂

= −∇zφ̂, Fr2α2 Dŵ
Dt̂

= −∂φ̂
∂ẑ

+ b̂′ (2.181a,b)

Db̂′

Dt̂
+ ŵN̂2 = 0, ∇ · û+ Fr2 ∂ŵ

∂ẑ
= 0. (2.182a,b)

The non-dimensional parameters in the system are the aspect ratio and the Froude number
(in addition to N̂ , but by construction this is just an order one function of z). From (2.181b)
condition for hydrostatic balance to hold is evidently that

Fr2α2 ≪ 1 , (2.183)

so generalizing the aspect ratio condition (2.172) to a stratified fluid. Because Fr is a measure
of stratification, (2.183) formalizes our intuitive expectation that the more stratified a fluid
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84 Chapter 2. Effects of Rotation and Stratification

the more vertical motion is suppressed and therefore the more likely hydrostatic balance is
to hold. Also note that (2.183) is equivalent to U2/(L2N2)≪ 1.

Suppose we solve the hydrostatic equations; that is, we omit the advective derivative
in the vertical momentum equation, and by numerical integration we obtain u, w and b.
This flow is the solution of the non-hydrostatic equations in the small aspect ratio limit.
The solution never violates the scaling assumptions, even if w seems large, because we can
always rescale the variables in order that condition (2.183) is satisfied.

Why bother with any of this scaling? Why not just say that hydrostatic balance holds
when |Dw/Dt| ≪ |∂φ/∂z|? One reason is that we do not have a good idea of the value
of w from direct measurements, and it may change significantly in different oceanic and
atmospheric parameter regimes. On the other hand the Froude number and the aspect ratio
are familiar non-dimensional parameters with a wide applicability in other contexts, and
which we can control in a laboratory setting or estimate in the ocean or atmosphere. Still, in
scaling theory it is common that ascertaining which parameters are to be regarded as given
and which should be derived is a choice, rather than being set a priori.

2.7.4 Hydrostasy in the ocean and atmosphere

Is the hydrostatic approximation in fact a good one in the ocean and atmosphere?

In the ocean

For the large-scale ocean circulation, let N ∼ 10−2 s−1, U ∼ 0.1 m s−1 and H ∼ 1 km. Then
Fr = U/(NH) ∼ 10−2 ≪ 1. Thus, Fr2α2 ≪ 1 even for unit aspect-ratio motion. In
fact, for larger scale flow the aspect ratio is also small; for basin-scale flow L ∼ 106 m and
Fr2α2 ∼ 0.012×0.0012 = 10−10 and hydrostatic balance is an extremely good approximation.

For intense convection, for example in the Labrador Sea, the hydrostatic approximation
may be less appropriate, because the intense descending plumes may have an aspect ratio
(H/L) of one or greater and the stratification is very weak. The hydrostatic condition then
often becomes the requirement that the Froude number is small. Representative orders
of magnitude are U ∼ W ∼ 0.1 m s−1, H ∼ 1 km and N ∼ 10−3 s−1 to 10−4 s−1. For these
values Fr ranges between 0.1 and 1, and at the upper end of this range hydrostatic balance
is violated.

In the atmosphere

Over much of the troposphere N ∼ 10−2 s−1 so that with U = 10 m s−1 and H = 1 km we
find Fr ∼ 1. Hydrostasy is then maintained because the aspect ratio H/L is much less
than unity. For larger scale synoptic activity a larger vertical scale is appropriate, and with
H = 10 km both the Froude number and the aspect ratio are much smaller than one; indeed
with L = 1000 km we find Fr2α2 ∼ 0.12 × 0.12 = 10−4 and the flow is hydrostatic to a very
good approximation indeed. However, for smaller scale atmospheric motions associated with
fronts and, especially, convection, there can be little expectation that hydrostatic balance
will be a good approximation.

For large-scale flows in both atmosphere and ocean, the conceptual simplifications
afforded by the hydrostatic approximation can hardly be overemphasized.
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2.8 Geostrophic and Thermal Wind Balance 85

Variable Scaling Meaning Atmos. value Ocean value
symbol

(x,y) L Horizontal length scale 106 m 105 m
t T Time scale 1 day (105 s) 10 days (106 s)

(u,v) U Horizontal velocity 10 m s−1 0.1 m s−1

Ro Rossby number, U/fL 0.1 0.01

Table 2.1 Scales of large-scale flow in atmosphere and ocean. The choices given are
representative of large-scale eddying motion in both systems.

2.8 GEOSTROPHIC AND THERMAL WIND BALANCE

We now consider the dominant dynamical balance in the horizontal components of the
momentum equation. In the horizontal plane (meaning along geopotential surfaces) we find
that the Coriolis term is much larger than the advective terms and the dominant balance is
between it and the horizontal pressure force. This balance is called geostrophic balance, and
it occurs when the Rossby number is small, as we now investigate.

2.8.1 The Rossby number

The Rossby number characterizes the importance of rotation in a fluid.8 It is, essentially, the
ratio of the magnitude of the relative acceleration to the Coriolis acceleration, and it is of
fundamental importance in geophysical fluid dynamics. It arises from a simple scaling of
the horizontal momentum equation, namely

∂u
∂t
+(v ·∇)u+ f × u = − 1

ρ
∇zp, (2.184a)

U2/L fU (2.184b)

where U is the approximate magnitude of the horizontal velocity and L is a typical length
scale over which that velocity varies. (We assume thatW/H - U/L, so that vertical advection
does not dominate the advection.) The ratio of the sizes of the advective and Coriolis terms
is defined to be the Rossby number,

Ro ≡ U
fL

. (2.185)

If the Rossby number is small then rotation effects are important, and as the values in Table
2.1 indicate this is the case for large-scale flow in both ocean and atmosphere.

Another intuitive way to think about the Rossby number is in terms of time scales. The
Rossby number based on a time scale is

RoT ≡
1
fT

, (2.186)
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86 Chapter 2. Effects of Rotation and Stratification

where T is a time scale associated with the dynamics at hand. If the time scale is an advective
one, meaning that T ∼ L/U , then this definition is equivalent to (2.185). Now, f = 2Ω sinϑ,
where Ω is the angular velocity of the rotating frame and equal to 2π/Tp where Tp is the
period of rotation (24 hours). Thus,

RoT =
Tp

4πT sinϑ
= Ti
T
, (2.187)

where Ti = 1/f is the ‘inertial time scale’, about three hours in mid-latitudes. Thus, for
phenomena with time scales much longer than this, such as the motion of the Gulf Stream
or a mid-latitude atmospheric weather system, the effects of the Earth’s rotation can be
expected to be important, whereas a short-lived phenomena, such as a cumulus cloud or
tornado, may be oblivious to such rotation. The expressions (2.185) and (2.186) are, of
course, just approximate measures of the importance of rotation.

2.8.2 Geostrophic balance

If the Rossby number is sufficiently small in (2.184a) then the rotation term will dominate
the nonlinear advection term, and if the time period of the motion scales advectively then
the rotation term also dominates the local time derivative. The only term that can then
balance the rotation term is the pressure term, and therefore we must have

f × u ≈ − 1
ρ
∇zp, (2.188)

or, in Cartesian component form

fu ≈ − 1
ρ
∂p
∂y

, fv ≈ 1
ρ
∂p
∂x
. (2.189)

This balance is known as geostrophic balance, and its consequences are profound, giving
geophysical fluid dynamics a special place in the broader field of fluid dynamics. We define
the geostrophic velocity by

fug ≡ −
1
ρ
∂p
∂y

, fvg ≡
1
ρ
∂p
∂x

, (2.190)

and for low Rossby number flow u ≈ ug and v ≈ vg . In spherical coordinates the
geostrophic velocity is

fug = −
1
ρa

∂p
∂ϑ
, fvg =

1
aρ cosϑ

∂p
∂λ
, (2.191)

where f = 2Ω sinϑ. Geostrophic balance has a number of immediate ramifications:

⋆ Geostrophic flow is parallel to lines of constant pressure (isobars). If f > 0 the flow is
anticlockwise round a region of low pressure and clockwise around a region of high
pressure (see Fig. 2.5).
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2.8 Geostrophic and Thermal Wind Balance 87

Fig. 2.5 Schematic of geostrophic flow with a positive value of the Coriolis parameter
f . Flow is parallel to the lines of constant pressure (isobars). Cyclonic flow is
anticlockwise around a low pressure region and anticyclonic flow is clockwise around
a high. If f were negative, as in the Southern Hemisphere, (anti)cyclonic flow would
be (anti)clockwise.

⋆ If the Coriolis force is constant and if the density does not vary in the horizontal the
geostrophic flow is horizontally non-divergent and

∇z · ug =
∂ug
∂x

+ ∂vg
∂y

= 0 . (2.192)

We may define the geostrophic streamfunction, ψ, by

ψ ≡ p
f0ρ0

, (2.193)

whence

ug = −
∂ψ
∂y

, vg =
∂ψ
∂x

. (2.194)

The vertical component of vorticity, ζ, is then given by

ζ = k ·∇× v = ∂v
∂x

− ∂u
∂y

= ∇2
zψ. (2.195)

⋆ If the Coriolis parameter is not constant, then cross-differentiating (2.190) gives, for
constant density geostrophic flow,

vg
∂f
∂y

+ f∇z · ug = 0, (2.196)

which implies, using mass continuity,

βvg = f
∂w
∂z

. (2.197)
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88 Chapter 2. Effects of Rotation and Stratification

where β ≡ ∂f/∂y = 2Ω cosϑ/a. This geostrophic vorticity balance is sometimes
known as ‘Sverdrup balance’, although the latter expression is better restricted to the
case when the vertical velocity results from external agents, and specifically a wind
stress, as considered in chapter 14.

2.8.3 Taylor–Proudman effect

If β = 0, then (2.197) implies that the vertical velocity is not a function of height. In fact, in
that case none of the components of velocity vary with height if density is also constant.
To show this, in the limit of zero Rossby number we first write the three-dimensional
momentum equation as

f0 × v = −∇φ−∇χ, (2.198)

where f0 = 2Ω = 2Ωk, φ = p/ρ0, and ∇χ represents other potential forces. If χ = gz then
the vertical component of this equation represents hydrostatic balance, and the horizontal
components represent geostrophic balance. On taking the curl of this equation, the terms
on the right-hand side vanish and the left-hand side becomes

(f0 ·∇)v − f0∇ · v − (v ·∇)f0 + v∇ · f0 = 0. (2.199)

But ∇ · v = 0 by mass conservation, and because f0 is constant both ∇ · f0 and (v ·∇)f0

vanish. Thus
(f0 ·∇)v = 0, (2.200)

which, since f0 = f0k, implies f0∂v/∂z = 0, and in particular we have

∂u
∂z

= 0, ∂v
∂z

= 0, ∂w
∂z

= 0. (2.201)

A different presentation of this argument proceeds as follows. If the flow is exactly in
geostrophic and hydrostatic balance then

v = 1
f0

∂φ
∂x

, u = − 1
f0

∂φ
∂y

, ∂φ
∂z

= −g. (2.202a,b,c)

Differentiating (2.202a,b) with respect to z, and using (2.202c) yields

∂v
∂z

= −1
f0

∂g
∂x

= 0, ∂u
∂z

= 1
f0

∂g
∂y

= 0. (2.203)

Noting that the geostrophic velocities are horizontally non-divergent (∇z ·u = 0), and using
mass continuity then gives ∂w/∂z = 0, as before.

If there is a solid horizontal boundary anywhere in the fluid, for example at the surface,
then w = 0 at that surface and thus w = 0 everywhere. Hence the motion occurs in planes
that lie perpendicular to the axis of rotation, and the flow is effectively two dimensional.
This result is known as the Taylor–Proudman effect, namely that for constant density flow in
geostrophic and hydrostatic balance the vertical derivatives of the horizontal and the vertical
velocities are zero.9 At zero Rossby number, if the vertical velocity is zero somewhere in
the flow, it is zero everywhere in that vertical column; furthermore, the horizontal flow has
no vertical shear, and the fluid moves like a slab. The effects of rotation have provided a
stiffening of the fluid in the vertical.
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2.8 Geostrophic and Thermal Wind Balance 89

In neither the atmosphere nor the ocean do we observe precisely such vertically coherent
flow, mainly because of the effects of stratification. However, it is typical of geophysical fluid
dynamics that the assumptions underlying a derivation are not fully satisfied, yet there are
manifestations of it in real flow. Thus, one might have naïvely expected, because ∂w/∂z =
−∇z · u, that the scales of the various variables would be related by W/H ∼ U/L. However,
if the flow is rapidly rotating we expect that the horizontal flow will be in near geostrophic
balance and therefore nearly divergence free; thus ∇z · u≪ U/L, and W ≪ HU/L.

2.8.4 Thermal wind balance

Thermal wind balance arises by combining the geostrophic and hydrostatic approximations,
and this is most easily done in the context of the anelastic (or Boussinesq) equations, or in
pressure coordinates. For the anelastic equations, geostrophic balance may be written

−fvg = −
∂φ
∂x

= − 1
a cosϑ

∂φ
∂λ
, fug = −

∂φ
∂y

= − 1
a
∂φ
∂ϑ
. (2.204a,b)

Combining these relations with hydrostatic balance, ∂φ/∂z = b, gives

−f ∂vg
∂z

= − ∂b
∂x

= − 1
a cosλ

∂b
∂λ

f
∂ug
∂z

= − ∂b
∂y

= − 1
a
∂b
∂ϑ

. (2.205a,b)

These equations represent thermal wind balance, and the vertical derivative of the geo-
strophic wind is the ‘thermal wind’. Eq. (2.205b) may be written in terms of the zonal angular
momentum as

∂mg

∂z
= − a

2Ω tanϑ
∂b
∂y

, (2.206)

where mg = (ug +Ωa cosϑ)a cosϑ. Potentially more accurate than geostrophic balance
is the so-called cyclostrophic or gradient-wind balance, which retains a centrifugal term
in the momentum equation. Thus, we omit only the material derivative in the meridional
momentum equation (2.50b) and obtain

2uΩ sinϑ + u
2

a
tanϑ ≈ −∂φ

∂y
= − 1

a
∂φ
∂ϑ
. (2.207)

For large-scale flow this only differs significantly from geostrophic balance very close to
the equator. Combining cyclostrophic and hydrostatic balance gives a modified thermal
wind relation, and this takes a simple form when expressed in terms of angular momentum,
namely

∂m2

∂z
≈ −a

3 cos3 ϑ
sinϑ

∂b
∂y

. (2.208)

If the density or buoyancy is constant then there is no shear and (2.205) or (2.208)
give the Taylor–Proudman result. But suppose that the temperature falls in the poleward
direction. Then thermal wind balance implies that the (eastward) wind will increase with
height — just as is observed in the atmosphere! In general, a vertical shear of the horizontal
wind is associated with a horizontal temperature gradient, and this is one of the most simple
and far-reaching effects in geophysical fluid dynamics. The underlying physical mechanism
is illustrated in Fig. 2.6.
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-

-

Fig. 2.6 The mechanism of thermal wind. A cold fluid is denser than a warm fluid, so
by hydrostasy the vertical pressure gradient is greater where the fluid is cold. Thus,
the pressure gradients form as shown, where ‘higher’ and ‘lower’ mean relative to the
average at that height. The horizontal pressure gradients are balanced by the Coriolis
force, producing (for f > 0) the horizontal winds shown (⊗ into the paper, and ⊙ out
of the paper). Only the wind shear is given by the thermal wind.

Pressure coordinates

In pressure coordinates geostrophic balance is just

f × ug = −∇pΦ, (2.209)

where Φ is the geopotential and ∇p is the gradient operator taken at constant pressure. If f
if constant, it follows from (2.209) that the geostrophic wind is non-divergent on pressure
surfaces. Taking the vertical derivative of (2.209) (that is, its derivative with respect to p)
and using the hydrostatic equation, ∂Φ/∂p = −α, gives the thermal wind equation

f × ∂ug
∂p

= ∇pα =
R
p
∇pT , (2.210)

where the last equality follows using the ideal gas equation and because the horizontal
derivative is at constant pressure. In component form this is

−f ∂vg
∂p

= R
p
∂T
∂x
, f

∂ug
∂p

= R
p
∂T
∂y

. (2.211)

In log-pressure coordinates, with Z = −H ln(p/pR), thermal wind is

f × ∂ug
∂Z

= −R
H
∇ZT . (2.212)

The physical meaning in all these cases is the same: a horizontal temperature gradient, or a
temperature gradient along an isobaric surface, is accompanied by a vertical shear of the
horizontal wind.
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2.9 Static Instability and the Parcel Method 91

2.8.5 * Effects of rotation on hydrostatic balance

Because rotation inhibits vertical motion, we might expect it to affect the requirements for
hydrostasy. The simplest setting in which to see this is the rotating Boussinesq equations,
(2.167). Let us non-dimensionalize these by writing

(x,y) = L(x̂, ŷ), z = Hẑ, u = Uû, t = T t̂ = U
L
t̂, f = f0f̂ ,

w = βHU
f0

ŵ = β̂HU
L
ŵ, φ = Φφ̂ = f0ULφ̂, b = Bb̂ = f0uL

H
b̂,

(2.213)

where β̂ ≡ βL/f0. (If f is constant, then f̂ is a unit vector in the vertical direction.) These
relations are the same as (2.173), except for the scaling for w , which is suggested by (2.197),
and the scaling for φ and b′, which are suggested by geostrophic and thermal wind balance.

Substituting into (2.167) we obtain the following scaled momentum equations:

Ro
Dû
Dt̂

+ f̂ × û = −∇φ̂, Ro β̂α2 Dŵ
Dt̂

= −∂φ̂
∂z

− b̂ . (2.214a,b)

Here, D/Dt̂ = ∂/∂t̂ + û ·∇z + β̂∂/∂ẑ and Ro = U/(f0L). There are two notable aspects to
these equations. First and most obviously, when Ro ≪ 1, (2.214a) reduces to geostrophic
balance, f × u = −∇φ̂. Second, the material derivative in (2.214b) is multiplied by three
non-dimensional parameters, and we can understand the appearance of each as follows.

(i) The aspect ratio dependence (α2) arises in the same way as for non-rotating flows —
that is, because of the presence of w and z in the vertical momentum equation as
opposed to (u,v) and (x,y) in the horizontal equations.

(ii) The Rossby number dependence (Ro) arises because in rotating flow the pressure
gradient is balanced by the Coriolis force, which is Rossby number larger than the
advective terms.

(iii) The factor β̂ arises because in rotating flow w is smaller than u by β̂ times the aspect
ratio.

The factor Ro β̂α2 is very small for large-scale flow; the reader is invited to calculate
representative values. Evidently, a rapidly rotating fluid is more likely to be in hydrostatic
balance than a non-rotating fluid, other conditions being equal. The combined effects of
rotation and stratification are, not surprisingly, quite subtle and we leave that topic for
chapter 5.

2.9 STATIC INSTABILITY AND THE PARCEL METHOD

In this and the next couple of sections we consider how a fluid might oscillate if it were
perturbed away from a resting state. Our focus is on vertical displacements, and the
restoring force is gravity, and we will neglect the effects of rotation, and indeed initially
we will neglect horizontal motion entirely. Given that, the simplest and most direct way to
approach the problem is to consider from first principles the pressure and gravitational
forces on a displaced parcel. To this end, consider a fluid initially at rest in a constant
gravitational field, and therefore in hydrostatic balance. Suppose that a small parcel of the
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92 Chapter 2. Effects of Rotation and Stratification

fluid is adiabatically displaced upwards by the small distance δz, without altering the overall
pressure field; that is, the fluid parcel instantly assumes the pressure of its environment. If
after the displacement the parcel is lighter than its environment, it will accelerate upwards,
because the upward pressure gradient force is now greater than the downward gravity force
on the parcel; that is, the parcel is buoyant (a manifestation of Archimedes’ principle) and
the fluid is statically unstable. If on the other hand the fluid parcel finds itself heavier than
its surroundings, the downward gravitational force will be greater than the upward pressure
force and the fluid will sink back towards its original position and an oscillatory motion will
develop. Such an equilibrium is statically stable. Using such simple ‘parcel’ arguments we
will now develop criteria for the stability of the environmental profile.

2.9.1 A simple special case: a density-conserving fluid

Consider first the simple case of an incompressible fluid in which the density of the displaced
parcel is conserved, that is Dρ/Dt = 0 (and refer to Fig. 2.7 setting ρθ = ρ). If the
environmental profile is ρ̃(z) and the density of the parcel is ρ then a parcel displaced from
a level z [where its density is ρ̃(z)] to a level z + δz [where the density of the parcel is still
ρ̃(z)] will find that its density then differs from its surroundings by the amount

δρ = ρ(z + δz)− ρ̃(z + δz) = ρ̃(z)− ρ̃(z + δz) = −∂ρ̃
∂z

δz. (2.215)

The parcel will be heavier than its surroundings, and therefore the parcel displacement will
be stable, if ∂ρ̃/∂z < 0. Similarly, it will be unstable if ∂ρ̃/∂z > 0. The upward force (per
unit volume) on the displaced parcel is given by

F = −gδρ = g ∂ρ̃
∂z

δz, (2.216)

and thus Newton’s second law implies that the motion of the parcel is determined by

ρ(z)∂
2δz
∂t2

= g ∂ρ̃
∂z

δz, (2.217)

or
∂2δz
∂t2

= g
ρ̃
∂ρ̃
∂z

δz = −N2δz, (2.218)

where

N2 = −g
ρ̃
∂ρ̃
∂z

(2.219)

is the buoyancy frequency, or the Brunt–Väisälä frequency, for this problem. If N2 > 0 then
a parcel displaced upward is heavier than its surroundings, and thus experiences a restoring
force; the density profile is said to be stable and N is the frequency at which the fluid parcel
oscillates. If N2 < 0, the density profile is unstable and the parcel continues to ascend and
convection ensues. In liquids it is often a good approximation to replace ρ̃ by ρ0 in the
denominator of (2.219).
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2.9 Static Instability and the Parcel Method 93

Fig. 2.7 A parcel is adiabatically dis-
placed upward from level z to z + δz,
preserving its potential density, which
it takes from the environment at level
z. If z + δz is the reference level, the
potential density there is equal to the
actual density. The parcel’s stability is
determined by the difference between
its density and the environmental den-
sity [see (2.220)]; if the difference is
positive the displacement is stable, and
conversely.

2.9.2 The general case: using potential density

More generally, in an adiabatic displacement it is potential density, ρθ , and not density itself
that is materially conserved. Consider a parcel that is displaced adiabatically a vertical
distance from z to z + δz; the parcel preserves its potential density, and let us use the
pressure at level z + δz as the reference level. The in situ density of the parcel at z + δz,
namely ρ(z + δz), is then equal to its potential density ρθ(z + δz) and, because ρθ is
conserved, this is equal to the potential density of the environment at z, ρ̃θ(z). The
difference in in situ density between the parcel and the environment at z + δz, δρ, is thus
equal to the difference between the potential density of the environment at z and at z + δz.
Putting this together (and see Fig. 2.7) we have

δρ = ρ(z + δz)− ρ̃(z + δz) = ρθ(z + δz)− ρ̃θ(z + δz)
= ρθ(z)− ρ̃θ(z + δz) = ρ̃θ(z)− ρ̃θ(z + δz),

(2.220)

and therefore

δρ = −∂ρ̃θ
∂z

δz, (2.221)

where the derivative on the right-hand side is the environmental gradient of potential
density. If the right-hand side is positive, the parcel is heavier than its surroundings and the
displacement is stable. Thus, the conditions for stability are:

stability :
∂ρ̃θ
∂z

< 0

instability :
∂ρ̃θ
∂z

> 0

. (2.222a,b)

That is, the stability of a parcel of fluid is determined by the gradient of the locally-referenced
potential density. The equation of motion of the fluid parcel is

∂2δz
∂t2

= g
ρ

(
∂ρ̃θ
∂z

)
δz = −N2δz, (2.223)
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94 Chapter 2. Effects of Rotation and Stratification

where, noting that ρ(z) = ρ̃θ(z) to within O(δz),

N2 = − g
ρ̃θ

(
∂ρ̃θ
∂z

)
. (2.224)

This is a general expression for the buoyancy frequency, true in both liquids and gases. It is
important to realize that the quantity ρ̃θ is the locally-referenced potential density of the
environment, as will become more clear below.

An ideal gas

In the atmosphere potential density is related to potential temperature by ρθ = pR/(θR).
Using this in (2.224) gives

N2 = g
θ̃

(
∂θ̃
∂z

)
, (2.225)

where θ̃ refers to the environmental profile of potential temperature. The reference value
pR does not appear, and we are free to choose this value arbitrarily — the surface pressure
is a common choice. The conditions for stability, (2.222), then correspond to N2 > 0 for
stability and N2 < 0 for instability. In the troposphere (the lowest several kilometres of the
atmosphere) the average N is about 0.01 s−1, with a corresponding period, (2π/N), of about
10 minutes. In the stratosphere (which lies above the troposphere) N2 is a few times higher
than this.

A liquid ocean

No simple, accurate, analytic expression is available for computing static stability in the
ocean. If the ocean had no salt, then the potential density referenced to the surface would
generally be a measure of the sign of stability of a fluid column, if not of the buoyancy
frequency. However, in the presence of salinity, the surface-referenced potential density is
not necessarily even a measure of the sign of stability, because the coefficients of compress-
ibility βT and βS vary in different ways with pressure. To see this, suppose two neighbouring
fluid elements at the surface have the same potential density, but different salinities and
temperatures, and displace them both adiabatically to the deep ocean. Although their
potential densities (referenced to the surface) are still equal, we can say little about their
actual densities, and hence their stability relative to each other, without doing a detailed
calculation because they will each have been compressed by different amounts. It is the
profile of the locally-referenced potential density that determines the stability.

An approximate expression for stability that is sometimes useful arises by noting that in
an adiabatic displacement

δρθ = δρ − 1

c2
s
δp = 0. (2.226)

If the fluid is hydrostatic δp = −ρgδz so that if a parcel is displaced adiabatically its density
changes according to (∂ρ

∂z

)

ρθ
= −ρg

c2
s
. (2.227)
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2.9 Static Instability and the Parcel Method 95

If a parcel is displaced a distance δz upwards then the density difference between it and its
new surroundings is

δρ = −
[(∂ρ

∂z

)

ρθ
−
(
∂ρ̃
∂z

)]
δz =

[
ρg
c2
s
+
(
∂ρ̃
∂z

)]
δz, (2.228)

where the tilde again denotes the environmental field. It follows that the stratification is
given by

N2 = −g
[
g
c2
s
+ 1
ρ̃

(
∂ρ̃
∂z

)]
. (2.229)

This expression holds for both liquids and gases, and for ideal gases it is precisely the same
as (2.225) (problem 2.9). In liquids, a good approximation is to use a reference value ρ0

for the undifferentiated density in the denominator, whence (2.229) becomes equal to the
Boussinesq expression (2.107). Typical values of N in the upper ocean where the density
is changing most rapidly (i.e., in the pycnocline — ‘pycno’ for density, ‘cline’ for changing)
are about 0.01 s−1, falling to 0.001 s−1 in the more homogeneous abyssal ocean. These
frequencies correspond to periods of about 10 and 100 minutes, respectively.

* Cabbeling

Cabbeling is an instability that arises because of the nonlinear equation of state of seawater.
From Fig. 1.3 we see that the contours are slightly convex, bowing upwards, especially in the
plot at sea level. Suppose we mix two parcels of water, each with the same density (σθ = 28,
say), but with different initial values of temperature and salinity. Then the resulting parcel
of water will have a temperature and a salinity equal to the average of the two parcels,
but its density will be higher than either of the two original parcels. In the appropriate
circumstances such mixing may thus lead to a convective instability; this may, for example,
be an important source of ‘bottom water’ formation in the Weddell Sea, off Antarctica.10

2.9.3 Lapse rates in dry and moist atmospheres

A dry ideal gas

The negative of the rate of change of the temperature in the vertical is known as the
temperature lapse rate, or often just the lapse rate, and the lapse rate corresponding to
∂θ/∂z = 0 is called the dry adiabatic lapse rate and denoted Γd. Using θ = T(p0/p)R/cp
and ∂p/∂z = −ρg we find that the lapse rate and the potential temperature lapse rate are
related by

∂T
∂z

= T
θ
∂θ
∂z

− g
cp
, (2.230)

so that the dry adiabatic lapse rate is given by

Γd =
g
cp
, (2.231)

as in fact we derived in (1.134). (We use the subscript d, for dry, to differentiate it from
the moist lapse rate considered below.) The conditions for static stability corresponding to
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96 Chapter 2. Effects of Rotation and Stratification

(2.222) are thus:

stability :
∂θ̃
∂z

> 0; or −∂ T̃
∂z

< Γd

instability :
∂θ̃
∂z

< 0; or −∂ T̃
∂z

> Γd

, (2.232a,b)

where a tilde indicates that the values are those of the environment. The atmosphere is in
fact generally stable by this criterion: the observed lapse rate, corresponding to an observed
buoyancy frequency of about 10−2 s−1, is often about 7 K km−1, whereas a dry adiabatic
lapse rate is about 10 K km−1. Why the discrepancy? One reason, particularly important in
the tropics, is that the atmosphere contains water vapour.

* Effects of water vapour on the lapse rate of an ideal gas

The amount of water vapour that can be contained in a given volume is an increasing
function of temperature (with the presence or otherwise of dry air in that volume being
largely irrelevant). Thus, if a parcel of water vapour is cooled, it will eventually become
saturated and water vapour will condense into liquid water. A measure of the amount of
water vapour in a unit volume is its partial pressure, and the partial pressure of water vapour
at saturation, es , is given by the Clausius–Clapeyron equation,

des
dT

= Lces
RvT 2

, (2.233)

where Lc is the latent heat of condensation or vapourization (per unit mass) and Rv is the
gas constant for water vapour. If a parcel rises adiabatically it will cool, and at some height
(known as the ‘lifting condensation level’, a function of its initial temperature and humidity
only) the parcel will become saturated and any further ascent will cause the water vapour
to condense. The ensuing condensational heating causes the temperature and buoyancy of
the parcel to increase; the parcel thus rises further, causing more water vapour to condense,
and so on, and the consequence of this is that an environmental profile that is stable if the
air is dry may be unstable if saturated. Let us now derive an expression for the lapse rate of
a saturated parcel that is ascending adiabatically apart from the affects of condensation.

Let w denote the mass of water vapour per unit mass of dry air, the mixing ratio, and
let ws be the saturation mixing ratio. (ws = αes/(p − es) ≈ αwes/p where αw = 0.62, the
ratio of the mass of a water molecule to one of dry air.) The diabatic heating associated with
condensation is then given by

Qcond = −Lc
Dws

Dt
, (2.234)

so that the thermodynamic equation is

cp
D lnθ

Dt
= −Lc

T
Dws

Dt
, (2.235)

or, in terms of p and and T

cp
D lnT

Dt
− RD lnP

Dt
= −Lc

T
Dws

Dt
. (2.236)
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2.9 Static Instability and the Parcel Method 97

If these material derivatives are due to the parcel ascent then

d lnT
dz

− R
cp

d lnp
dz

= − Lc
Tcp

dws

dz
, (2.237)

and using the hydrostatic relationship and the fact that ws is a function of T and p we
obtain

dT
dz

+ g
cp
= −Lc

cp

[(∂ws

∂T

)

p

dT
dz

−
(
∂ws

∂p

)

T
ρg

]
. (2.238)

Solving for dT/dz , the lapse rate, Γs , of an ascending saturated parcel is given by

Γs = −
dT
dz

= g
cp

1− ρLc(∂ws/∂p)T
1+ (Lc/cp)(∂ws/∂T )p

≈ g
cp

1+ Lcws/(RT)
1+ L2

cws/(cpRT 2)
. (2.239)

where the last near equality follows with use of the Clausius–Clapeyron relation. The quantity
Γs is variously called the pseudoadiabatic or moist adiabatic or saturated adiabatic lapse
rate. Because g/cp is the dry adiabatic lapse rate Γd, Γs < Γd, and values of Γs are typically
around 6 K km−1 in the lower atmosphere; however, dws/dT is an increasing function of
T so that Γs decreases with increasing temperature and can be as low as 3.5 K km−1. For a
saturated parcel, the stability conditions analogous to (2.232) are

stability : −∂ T̃
∂z

< Γs , (2.240a)

instability : −∂ T̃
∂z

> Γs . (2.240b)

where T̃ is the environmental temperature. The observed environmental profile in convecting
situations is often a combination of the dry adiabatic and moist adiabatic profiles: an
unsaturated parcel that is is unstable by the dry criterion will rise and cool following a dry
adiabat, Γd, until it becomes saturated at the lifting condensation level, above which it will
rise following a saturation adiabat, Γs . Such convection will proceed until the atmospheric
column is stable and, especially in low latitudes, the lapse rate of the atmosphere is largely
determined by such convective processes.

* Equivalent potential temperature

Suppose that all the moisture in a parcel of air condenses, and that all the heat released goes
into heating the parcel. The equivalent potential temperature, θeq is the potential temperature
that the parcel then achieves. We may obtain an approximate analytic expression for it
by noting that the first law of thermodynamics, –dQ = T dη, then implies, by definition of
potential temperature,

−Lc dw = cpT d lnθ, (2.241)

where dw is the change in water vapour mixing ratio, so that a reduction of w via condensa-
tion leads to heating. Integrating gives, by definition of equivalent potential temperature,

−
∫ 0

w

Lcw
cpT

dw =
∫ θeq

θ
d lnθ, (2.242)
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98 Chapter 2. Effects of Rotation and Stratification

and so, if T and Lc are assumed to be constant,

θeq = θ exp

(
Lcw
cpT

)
. (2.243)

The equivalent potential temperature so defined is approximately conserved during conden-
sation, the approximation arising going from (2.242) to (2.243). It is a useful expression for
diagnostic purposes, and in constructing theories of convection, but it is not accurate enough
to use as a prognostic variable in a putatively realistic numerical model. The ‘equivalent
temperature’ may be defined in terms of the equivalent potential temperature by

Teq ≡ θeq

(
p
pR

)κ
. (2.244)

2.10 GRAVITY WAVES

The parcel approach to oscillations and stability, while simple and direct, is divorced from
the fluid-dynamical equations of motion, making it hard to include other effects such as
rotation, or to explore the effects of possible differences between the hydrostatic and non-
hydrostatic cases. To remedy this, we now use the equations of motion to analyse the motion
resulting from a small disturbance.

2.10.1 Gravity waves and convection in a Boussinesq fluid

Let us consider a Boussinesq fluid, initially at rest, in which the buoyancy varies linearly with
height and the buoyancy frequency, N , is a constant. Linearizing the equations of motion
about this basic state gives the linear momentum equations,

∂u′

∂t
= −∂φ

′

∂x
, ∂w′

∂t
= −∂φ

′

∂z
+ b′, (2.245a,b)

the mass continuity and thermodynamic equations,

∂u′

∂x
+ ∂w′

∂z
= 0, ∂b′

∂t
+w′N2 = 0, (2.246a,b)

where for simplicity we assume that the flow is a function only of x and z. A little algebra
gives a single equation for w′,

[(
∂2

∂x2
+ ∂2

∂z2

)
∂2

∂t2
+N2 ∂2

∂x2

]
w′ = 0. (2.247)

Seeking solutions of the form w′ = Re W exp[i(kx+mz−ωt)] (where Re denotes the real
part) yields the dispersion relationship for gravity waves:

ω2 = k2N2

k2 +m2
. (2.248)
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The frequency (see Fig. 2.8) is thus always less than N , approaching N for small horizontal
scales, k≫m. If we neglect pressure perturbations, as in the parcel argument, then the two
equations,

∂w′

∂t
= b′, ∂b′

∂t
+w′N2 = 0, (2.249)

form a closed set, and give ω2 = N2.
If the basic state density increases with height then N2 < 0 and we expect this state to

be unstable. Indeed, the disturbance grows exponentially according to exp(σ t) where

σ = iω = ±kÑ
(k2 +m2)1/2

, (2.250)

where Ñ2 = −N2. Most convective activity in the ocean and atmosphere is, ultimately,
related to an instability of this form, although of course there are many complicating issues
— water vapour in the atmosphere, salt in the ocean, the effects of rotation and so forth.

Hydrostatic gravity waves and convection

Let us now suppose that the fluid satisfies the hydrostatic Boussinesq equations. The
linearized two-dimensional equations of motion become

∂u′

∂t
= −∂φ

′

∂x
, 0 = −∂φ

′

∂z
+ b′, (2.251a)

∂u′

∂x
+ ∂w′

∂z
= 0, ∂b′

∂t
+w′N2 = 0, (2.251b)

where these are the horizontal and vertical momentum equations, the mass continuity
equation and the thermodynamic equation respectively. A little algebra gives the dispersion
relation,

ω2 = k2N2

m2
. (2.252)

The frequency and, if N2 is negative the growth rate, is unbounded for as k/m →∞, and the
hydrostatic approximation thus has quite unphysical behaviour for small horizontal scales
(see also problem 2.11).11
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100 Chapter 2. Effects of Rotation and Stratification

2.11 * ACOUSTIC-GRAVITY WAVES IN AN IDEAL GAS

We now consider wave motion in a stratified, compressible fluid such as the Earth’s at-
mosphere. The complete problem is complicated and uninformative; we will specialize to
the case of an isothermal, stationary atmosphere and ignore the effects of rotation and
sphericity, but otherwise we will make few approximations. In this section we will denote the
unperturbed state with a subscript 0 and the perturbed state with a prime (′); we will also
omit many algebraic details. Because it is at rest, the basic state is in hydrostatic balance,

∂p0

∂z
= −ρ0(z)g. (2.253)

Ignoring variations in the y-direction for algebraic simplicity, the linearized equations of
motion are:

u momentum: ρ0
∂u′

∂t
= −∂p

′

∂x
(2.254a)

w momentum: ρ0
∂w′

∂t
= −∂p

′

∂z
− ρ′g (2.254b)

mass conservation:
∂ρ′

∂t
+w′ ∂ρ0

∂z
= −ρ0

(∂u′
∂x

+ ∂w′

∂z

)
(2.254c)

thermodynamic:
∂θ′

∂t
+w′ ∂θ0

∂z
= 0 (2.254d)

equation of state:
θ′

θ0
+ ρ′

ρ0
= 1
γ
p′

p0
. (2.254e)

For an isothermal basic state we have p0 = ρ0RT0 where T0 is a constant, so that ρ0 =
ρse−z/H and p0 = pse−z/H whereH = RT0/g. Further, using θ = T(ps/p)κ where κ = R/cp ,
we have θ0 = T0eκz/H and so N2 = κg/H. It is also convenient to use (1.99) on page 23 to
rewrite the linear thermodynamic equation in the form

∂p′

∂t
−w′p0

H
= −γp0

(∂u′
∂x

+ ∂w′

∂z

)
. (2.254f)

Differentiating (2.254a) with respect to time and using (2.254f) leads to

(
∂2

∂t2
− c2

s
∂2

∂x2

)
u′ = c2

s

(
∂
∂z

− 1
γH

)
∂
∂x
w′. (2.255a)

where c2
s = (∂p/∂/ρ)η = γRT0 = γp0/ρ0 is the square of the speed of sound, and

γ = cp/cv = 1/(1 − κ). Similarly, differentiating (2.254b) with respect to time and using
(2.254c) and (2.254f) leads to

(
∂2

∂t2
− c2

s

[
∂2

∂z2
− 1
H

∂
∂z

])
w′ = c2

s

( ∂
∂z

− κ
H

) ∂u′
∂x

, (2.255b)

Equations (2.255a) and (2.255b) combine to give, after some cancellation,

∂4w′

∂t4
− c2

s
∂2

∂t2

(
∂2

∂x2
+ ∂2

∂z2
− 1
H

∂
∂z

)
w′ − c2

s
κg
H

∂2w′

∂x2
= 0. (2.256)
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2.11 * Acoustic-Gravity Waves in an Ideal Gas 101

If we set w′ = W(x, z, t)ez/(2H), so that W = (ρ0/ρs)1/2w, then the term with the single
z-derivative is eliminated, giving

∂4W
∂t4

− c2
s
∂2

∂t2

(
∂2

∂x2
+ ∂2

∂z2
− 1

4H2

)
W − c2

s
κg
H

∂2W
∂x2

= 0. (2.257)

Although superficially complicated, this equation has constant coefficients and we may seek
wave-like solutions of the form

W = Re W̃ei(kx+mz−ωt), (2.258)

where W̃ is the complex wave amplitude. Using (2.258) in (2.257) leads to the dispersion
relation for acoustic-gravity waves, namely

ω4 − c2
sω2

(
k2 +m2 + 1

4H2

)
+ c2

s N2k2 = 0, (2.259)

with solution

ω2 = 1
2
c2
s K2

⎡
⎣1±

(
1− 4N2k2

c2
s K4

)1/2
⎤
⎦ , (2.260)

where K2 = k2 +m2 + 1/(4H2). (The factor [1− 4N2k2/(c2
s K4)] is always positive — see

problem 2.26.) For an isothermal, ideal-gas atmosphere 4N2H2/c2
s ≈ 0.8 and so this may be

written

ω2

N2
≈ 2.5K̂2

⎡
⎣1±

(
1− 0.8k̂2

K̂4

)1/2⎤
⎦ , (2.261)

where K̂2 = k̂2 + m̂2 + 1/4, and (k̂, m̂) = (kH,mH).

2.11.1 Interpretation

Acoustic and gravity waves

There are two branches of roots in (2.260), corresponding to acoustic waves (using the plus
sign in the dispersion relation) and internal gravity waves (using the minus sign). These (and
the Lamb wave, described below) are plotted in Fig. 2.9. If 4N2k2/c2

s K4 ≪ 1 then the two
sets of waves are well separated. From (2.261) this is satisfied when

4κ
γ
(kH)2 ≈ 0.8(kH)2 ≪

[
(kH)2 + (mH)2 + 1

4

]2

; (2.262)

that is, when either mH ≫ 1 or kH ≫ 1. The two roots of the dispersion relation are then

ω2
a ≈ c2

s K2 = c2
s

(
k2 +m2 + 1

4H2

)
(2.263)

and

ω2
g ≈

N2k2

k2 +m2 + 1/(4H2)
, (2.264)

corresponding to acoustic and gravity waves, respectively. The acoustic waves owe their
existence to the presence of compressibility in the fluid, and they have no counterpart in the
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Fig. 2.9 Dispersion diagram for acoustic gravity waves in an isothermal atmosphere,
calculated using (2.261). The frequency is given in units of the the buoyancy frequency
N, and the wavenumbers are non-dimensionalized by the inverse of the scale height,
H. The solid curves indicate acoustic waves, whose frequency is always higher than
that of the corresponding Lamb wave at the same wavenumber (i.e., ck), and of the
base acoustic frequency ≈ 1.12N. The dashed curves indicate internal gravity waves,
whose frequency asymptotes to N at small horizontal scales.

Boussinesq system. On the other hand, the internal gravity waves are just modified forms
of those found in the Boussinesq system, and if we take the limit (kH,mH)→∞ then the
gravity wave branch reduces to ω2

g = N2k2/(k2 +m2), which is the dispersion relationship
for gravity waves in the Boussinesq approximation. We may consider this to be the limit of
infinite scale height or (equivalently) the case in which wavelengths of the internal waves are
sufficiently small that the fluid is essentially incompressible.

Vertical structure

Recall that w′ = W(x, z, t)ez/(2H) and, by inspection of (2.255), u′ has the same vertical
structure. That is,

w′ ∝ ez/(2H), u′ ∝ ez/(2H), (2.265)

and the amplitude of the velocity field of the internal waves increases with height. The
pressure and density perturbation amplitudes fall off with height, varying like

p′ ∝ e−z/(2H), ρ′ ∝ e−z/(2H). (2.266)
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2.11 * Acoustic-Gravity Waves in an Ideal Gas 103

The kinetic energy of the perturbation, ρ0(u′2 + w′2) is constant with height, because
ρ0 = ρse−z/H .

Hydrostatic approximation and Lamb waves

Equations (2.255) also admit to a solution with w′ = 0. We then have

(
∂2

∂t2
− c2

s
∂2

∂x2

)
u′ = 0 and

( ∂
∂z

− κ
H

) ∂u′
∂x

= 0, (2.267)

and these have solutions of the form

u′ = Re Ũeκz/Hei(kx−ωt), ω = ck, (2.268)

where Ũ is the wave amplitude. These are horizontally propagating sound waves, known as
Lamb waves after the hydrodynamicist Horace Lamb. Their velocity perturbation amplitude
increases with height, but the pressure perturbation falls with height; that is

u′ ∝ eκz/H ≈ e2z/(7H), p′ ∝ e(κ−1)z/H ≈ e−5z/(7H). (2.269)

Their kinetic energy density, ρ0u′2, varies as

KE ∝ e−z/H+2κz/H = e(2R−cp)z/(cpH)] = e(R−cv)z/(cpH) ≈ e−3z/(7H) (2.270)

for an ideal gas. (In a simple ideal gas, cv = nR/2 where n is the number of excited
degrees of freedom, 5 for a diatomic molecule.) The kinetic energy density thus falls away
exponentially from the surface, and in this sense Lamb waves are an example of edge waves
or surface-trapped waves.

Now consider the case in which we make the hydrostatic approximation ab initio, but
do not restrict the perturbation to have w′ = 0. The linearized equations are identical to
(2.254), except that (2.254b) is replaced by

∂p′

∂z
= −ρ′g. (2.271)

The consequence of this is that first term (∂2w′/∂t2) in (2.255b) disappears, as do the first
two terms in (2.256) [the terms ∂4w′/∂t4 − c2(∂2/∂t2)(∂2w′/∂x2)]. It is a simple matter to
show that the dispersion relation is then

ω2 = N2k2

m2 + 1/(4H2)
. (2.272)

These are long gravity waves, and may be compared with the corresponding Boussinesq
result (2.252). Again, the frequency increases without bound as the horizontal wavelength
diminishes. The Lamb wave, of course, still exists in the hydrostatic model, because (2.267)
is still a valid solution. Thus, horizontally propagating sound waves still exist in hydrostatic
(primitive equation) models, but vertically propagating sound waves do not — essentially
because the term ∂w/∂t is absent from the vertical momentum equation.
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104 Chapter 2. Effects of Rotation and Stratification

Fig. 2.10 An idealized boundary layer. The values
of a field, such as velocity, U , may vary rapidly
in a boundary in order to satisfy the boundary
conditions at a rigid surface. The parameter δ is
a measure of the boundary layer thickness, and
H is a typical scale of variation away from the
boundary.

2.12 THE EKMAN LAYER

In the final topic of this chapter, we return to geostrophic flow and consider the effects
of friction. The fluid fields in the interior of a domain are often set by different physical
processes than those occurring at a boundary, and consequently often change rapidly in a
thin boundary layer, as in Fig. 2.10. Such boundary layers nearly always involve one or both
of viscosity and diffusion, because these appear in the terms of highest differential order
in the equations of motion, and so are responsible for the number and type of boundary
conditions that the equations must satisfy — for example, the presence of molecular viscosity
leads to the condition that the tangential flow (as well as the normal flow) must vanish at a
rigid surface.

In many boundary layers in non-rotating flow the dominant balance in the momentum
equation is between the advective and viscous terms. In some contrast, in large-scale
atmospheric and oceanic flow the effects of rotation are large, and this results in a boundary
layer, known as the Ekman layer, in which the dominant balance is between Coriolis and
frictional or stress terms.12 Now, the direct effects of molecular viscosity and diffusion
are nearly always negligible at distances more than a few millimetres away from a solid
boundary, but it is inconceivable that the entire boundary layer between the free atmosphere
(or free ocean) and the surface is only a few millimetres thick. Rather, in practice a balance
occurs between the Coriolis terms and the forces due to the stress generated by small-scale
turbulent motion, and this gives rise to a boundary layer that has a typical depth of a few
tens to several hundreds of metres. Because the stress arises from the turbulence we cannot
with confidence determine its precise form; thus, we should try to determine what general
properties Ekman layers may have that are independent of the precise form of the friction.

The atmospheric Ekman layer occurs near the ground, and the stress at the ground itself
is due to the surface wind (and its vertical variation). In the ocean the main Ekman layer
is near the surface, and the stress at ocean surface is largely due to the presence of the
overlying wind. There is also a weak Ekman layer at the bottom of the ocean, analogous to
the atmospheric Ekman layer. To analyse all these layers, let us assume the following.

⋆ The Ekman layer is Boussinesq. This is a very good assumption for the ocean, and a
reasonable one for the atmosphere if the boundary layer is not too deep.
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2.12 The Ekman Layer 105

⋆ The Ekman layer has a finite depth that is less than the total depth of the fluid, this
depth being given by the level at which the frictional stresses essentially vanish. Within
the Ekman layer, frictional terms are important, whereas geostrophic balance holds
beyond it.

⋆ The nonlinear and time-dependent terms in the equations of motion are negligible,
hydrostatic balance holds in the vertical, and buoyancy is constant, not varying in the
horizontal.

⋆ As needed, we shall assume that friction can be parameterized by a viscous term of
the form ρ−1

0 ∂τ/∂z = A ∂2u/∂z2, where A is constant and τ is the stress. [In general,
stress is a tensor, τij , with an associated force given by Fi = ∂τij/∂xj , summing
over the repeated index. It is common in geophysical fluid dynamics that the vertical
derivative dominates, and in this case the force is F = ∂τ/∂z . We still use the word
stress for τ, but it now refers to a vector whose derivative in a particular direction (z in
this case) is the force on a fluid.] In laboratory settings Amay be the molecular viscosity,
whereas in the atmosphere and ocean it is a so-called eddy viscosity. (In turbulent flows
momentum is transferred by the near-random motion of small parcels of fluid and,
by analogy with the motion of molecules that produces a molecular viscosity, the
associated stress is approximately represented, or parameterized, using a turbulent or
eddy viscosity that may be orders of magnitude larger than the molecular one.)

2.12.1 Equations of motion and scaling

Frictional–geostrophic balance in the horizontal momentum equation is:

f × u = −∇zφ+
∂ τ̃
∂z
. (2.273)

where τ̃ ≡ τ/ρ0 is the kinematic stress and f = fk, where the Coriolis parameter f is
allowed to vary with latitude. If we model the stress with an eddy viscosity, (2.273) becomes

f × u = −∇zφ+A
∂2u
∂z2

. (2.274)

The vertical momentum equation is ∂φ/∂z = b, i.e., hydrostatic balance, and, because
buoyancy is constant, we may without loss of generality write this as

∂φ
∂z

= 0. (2.275)

The equation set is completed by the mass continuity equation, ∇ · v = 0.

The Ekman number

We non-dimensionalize the equations by setting

(u,v) = U(û, v̂), (x,y) = L(x̂, ŷ), f = f0f̂ , z = Hẑ, φ = Φφ̂, (2.276)

where hatted variables are non-dimensional. H is a scaling for the height, and at this stage
we will suppose it to be some height scale in the free atmosphere or ocean, not the height of
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106 Chapter 2. Effects of Rotation and Stratification

the Ekman layer itself. Geostrophic balance suggests that Φ = f0UL. Substituting (2.276)
into (2.274) we obtain

f̂ × û = −∇̂φ̂+ Ek
∂2û
∂ẑ2

, (2.277)

where the parameter

Ek ≡
(

A
f0H2

)
, (2.278)

is the Ekman number, and it determines the importance of frictional terms in the horizontal
momentum equation. If Ek ≪ 1 then the friction is small in the flow interior where ẑ = O(1).
However, the friction term cannot necessarily be neglected in the boundary layer because it is
of the highest differential order in the equation, and so determines the boundary conditions;
if Ek is small the vertical scales become small and the second term on the right-hand side
of (2.277) remains finite. The case when this term is simply omitted from the equation
is therefore a singular limit, meaning that it differs from the case with Ek → 0. If Ek ≥ 1
friction is important everywhere, but it is usually the case that Ek is small for atmospheric
and oceanic large-scale flow, and the interior flow is very nearly geostrophic. (In part this
is because A itself is only large near a rigid surface where the presence of a shear creates
turbulence and a significant eddy viscosity.)

Momentum balance in the Ekman layer

For definiteness, suppose the fluid lies above a rigid surface at z = 0. Sufficiently far away
from the boundary the velocity field is known, and we suppose this flow to be in geostrophic
balance. We then write the velocity field and the pressure field as the sum of the interior
geostrophic part, plus a boundary layer correction:

û = ûg + ûE, φ̂ = φ̂g + φ̂E, (2.279)

where the Ekman layer corrections, denoted with a subscript E, are negligible away from the
boundary layer. Now, in the fluid interior we have, by hydrostatic balance, ∂φ̂g/∂ẑ = 0. In

the boundary layer we still have ∂φ̂g/∂ẑ = 0 so that, to satisfy hydrostasy, ∂φ̂E/∂ẑ = 0. But

because φ̂E vanishes away from the boundary we have φ̂E = 0 everywhere. Thus, there is no
boundary layer in the pressure field. Note that this is a much stronger result than saying
that pressure is continuous, which is nearly always true in fluids; rather, it is a special result
for Ekman layers.

Using (2.279) with φ̂E = 0, the dimensional horizontal momentum equation (2.273)
becomes, in the Ekman layer,

f × uE =
∂ τ̃
∂z
. (2.280)

The dominant force balance in the Ekman layer is thus between the Coriolis force and the
friction. We can determine the thickness of the Ekman layer if we model the stress with an
eddy viscosity so that

f × uE = A
∂2uE
∂z2

, (2.281)

or, non-dimensionally,

f̂ × ûE = Ek
∂2ûE
∂ẑ2

. (2.282)
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2.12 The Ekman Layer 107

It is evident this equation can only be satisfied if ẑ ≠ O(1), implying that H is not a proper
scaling for z in the boundary layer. Rather, if the vertical scale in the Ekman layer is δ̂
(meaning ẑ ∼ δ̂) we must have δ̂ ∼ Ek1/2. In dimensional terms this means the thickness of
the Ekman layer is

δ = Hδ̂ = HEk1/2 (2.283)

or

δ =
(
A
f0

)1/2

. (2.284)

[This estimate also emerges directly from (2.281).] Note that (2.283) can be written as

Ek =
( δ
H

)2
. (2.285)

That is, the Ekman number is equal to the square of the ratio of the depth of the Ekman layer
to an interior depth scale of the fluid motion. In laboratory flows where A is the molecular
viscosity we can thus estimate the Ekman layer thickness, and if we know the eddy viscosity
of the ocean or atmosphere we can estimate their respective Ekman layer thicknesses. We
can invert this argument and obtain an estimate of A if we know the Ekman layer depth.
In the atmosphere, deviations from geostrophic balance are very small in the atmosphere
above 1 km, and using this gives A ≈ 102 m2 s−1. In the ocean Ekman depths are often 50 m
or less, and eddy viscosities are about 0.1 m2 s−1.

2.12.2 Integral properties of the Ekman layer

What can we deduce about the Ekman layer without specifying the detailed form of the
frictional term? Using dimensional notation we recall frictional–geostrophic balance,

f × u = −∇φ+ 1
ρ0

∂τ
∂z
, (2.286)

where τ is zero at the edge of the Ekman layer. In the Ekman layer itself we have

f × uE =
1
ρ0

∂τ
∂z
. (2.287)

Consider either a top or bottom Ekman layer, and integrate over its thickness. From (2.287)
we obtain

f ×ME = τT − τB, (2.288)

where

ME =
∫

Ek
ρ0uE dz (2.289)

is the ageostrophic mass transport in the Ekman layer, and τT and τB are the respective
stresses at the top and the bottom of the Ekman layer at hand. The stress at the top (bottom)
will be zero in a bottom (top) Ekman layer and therefore, from (2.288),

top Ekman layer: ME = −
1
f

k× τT

bottom Ekman layer: ME =
1
f

k× τB
. (2.290a,b)
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108 Chapter 2. Effects of Rotation and Stratification

The transport is thus at right angles to the stress at the surface, and proportional to the
magnitude of the stress. These properties have a simple physical explanation: integrated
over the depth of the Ekman layer the surface stress must be balanced by the Coriolis force,
which in turn acts at right angles to the mass transport. A consequence of (2.290) is that the
mass transports in adjacent oceanic and atmospheric Ekman layers are equal and opposite,
because the stress is continuous across the ocean–atmosphere interface. Equation (2.290a)
is particularly useful in the ocean, where the stress at the surface is primarily due to the
wind, and is largely independent of the interior oceanic flow. In the atmosphere, the surface
stress mainly arises as a result of the interior atmospheric flow, and to calculate it we need
to parameterize the stress in terms of the flow.

Finally, we obtain an expression for the vertical velocity induced by an Ekman layer. The
mass conservation equation is

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0. (2.291)

Integrating this over an Ekman layer gives

1
ρ0
∇ ·MTo = −(wT −wB), (2.292)

where MTo is the total (Ekman plus geostrophic) mass transport in the Ekman layer,

MTo =
∫

Ek
ρ0udz =

∫

Ek
ρ0(ug + uE)dz ≡Mg +ME, (2.293)

and wT and wB are the vertical velocities at the top and bottom of the Ekman layer; the
former (latter) is zero in a top (bottom) Ekman layer. Equations (2.293) and (2.288) give

k× (MTo −Mg) =
1
f
(τT − τB). (2.294)

Taking the curl of this (i.e., cross-differentiating) gives

∇ · (MTo −Mg) = curlz[(τT − τB)/f ], (2.295)

where the curlz operator on a vector A is defined by curlzA ≡ ∂xAy − ∂yAx . Using (2.292)
we obtain, for top and bottom Ekman layers respectively,

wB =
1
ρ0

(
curlz

τT
f
+∇ ·Mg

)
, wT =

1
ρ0

(
curlz

τB
f
−∇ ·Mg

)
, (2.296a,b)

where ∇ ·Mg = −(β/f)Mg · j is the divergence of the geostrophic transport in the Ekman
layer, and this is often small compared to the other terms in these equations. Thus, friction
induces a vertical velocity at the edge of the Ekman layer, proportional to the curl of the
stress at the surface, and this is perhaps the most used result in Ekman layer theory.
Numerical models sometimes do not have the vertical resolution to explicitly resolve an
Ekman layer, and (2.296) provides a means of parameterizing the Ekman layer in terms of
resolved or known fields. It is particularly useful for the top Ekman layer in the ocean, where
the stress can be regarded as a given function of the overlying wind.
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2.12 The Ekman Layer 109

2.12.3 Explicit solutions. I: a bottom boundary layer

We now assume that the frictional terms can be parameterized as an eddy viscosity and
calculate the explicit form of the solution in the boundary layer. The frictional–geostrophic
balance may be written as

f × (u− ug) = A
∂2u
∂z2

, (2.297a)

where

f(ug, vg) =
(
−∂φ
∂y

, ∂φ
∂x

)
. (2.297b)

We continue to assume there are no horizontal gradients of temperature, so that, via thermal
wind, ∂ug/∂z = ∂vg/∂z = 0.

Boundary conditions and solution

Appropriate boundary conditions for a bottom Ekman layer are

at z = 0 : u = 0, v = 0 (the no slip condition) (2.298a)

as z →∞ : u = ug, v = vg (a geostrophic interior). (2.298b)

Let us seek solutions to (2.297a) of the form

u = ug +A0eαz, v = vg + B0eαz, (2.299)

where A0 and B0 are constants. Substituting into (2.297a) gives two homogeneous algebraic
equations

A0f − B0Aα2 = 0, −A0Aα2 − B0f = 0. (2.300a,b)

For non-trivial solutions the solvability condition α4 = −f 2/A2 must hold, from which we

find α = ±(1± i)
√
f/2A. Using the boundary conditions we then obtain the solution

u = ug − e−z/d
[
ug cos(z/d)+ vg sin(z/d)

]
(2.301a)

v = vg + e−z/d
[
ug sin(z/d)− vg cos(z/d)

]
, (2.301b)

where d =
√

2A/f is, within a constant factor, the depth of the Ekman layer obtained
from scaling considerations. The solution decays exponentially from the surface with this
e-folding scale, so that d is a good measure of the Ekman layer thickness. Note that the
boundary layer correction depends on the interior flow, since the boundary layer serves to
bring the flow to zero at the surface.

To illustrate the solution, suppose that the pressure force is directed in the y-direction
(northwards), so that the geostrophic current is eastwards. Then the solution, the now-
famous Ekman spiral, is plotted in Figs. 2.11 and 2.12. The wind falls to zero at the surface,
and its direction just above the surface is northeastwards; that is, it is rotated by 45° to the
left of its direction in the free atmosphere. Although this result is independent of the value
of the frictional coefficients, it is dependent on the form of the friction chosen. The force
balance in the Ekman layer is between the Coriolis force, the stress, and the pressure force.
At the surface the Coriolis force is zero, and the balance is entirely between the northward
pressure force and the southward stress force.
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110 Chapter 2. Effects of Rotation and Stratification

Fig. 2.11 The idealized Ekman
layer solution in the lower at-
mosphere, plotted as a hodo-
graph of the wind compo-
nents: the arrows show the
velocity vectors at a partic-
ular heights, and the curve
traces out the continuous vari-
ation of the velocity. The val-
ues on the curve are of the
non-dimensional variable z/d,
where d = (2A/f)1/2, and vg
is chosen to be zero.

Transport, force balance and vertical velocity

The cross-isobaric flow is given by (for vg = 0)

V =
∫∞

0
v dz =

∫∞

0
uge−z/d sin(z/d)dz = ugd

2
. (2.302)

For positive f , this is to the left of the geostrophic flow — that is, down the pressure gradient.
In the general case (vg ≠ 0) we obtain

V =
∫∞

0
(v − vg)dz = d

2
(ug − vg). (2.303)

Similarly, the additional zonal transport produced by frictional effects are, for vg = 0,

U =
∫∞

0
(u−ug)dz = −

∫∞

0
e−z/d sin(z/d)dz = −ugd

2
, (2.304)

Fig. 2.12 Solutions for a bot-
tom Ekman layer with a given
flow in the fluid interior (left),
and for a top Ekman layer with
a given surface stress (right),
both with d = 1. On the left
we have ug = 1, vg = 0. On
the right we have ug = vg =
0, τ̃y = 0 and

√
2τ̃x/(fd) =

1.
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2.12 The Ekman Layer 111

Fig. 2.13 A bottom Ekman layer, gener-
ated from an eastward geostrophic flow
above it. An overbar denotes a vertical
integral over the Ekman layer, so that
−f ×uE is the Coriolis force on the ver-
tically integrated Ekman velocity. ME is
the frictionally induced boundary layer
transport, and τ is the stress.

and in the general case

U =
∫∞

0
(u−ug)dz = −d

2
(ug + vg). (2.305)

Thus, the total transport caused by frictional forces is

ME =
ρ0d

2

[
−i(ug + vg)+ j(ug − vg)

]
. (2.306)

The total stress at the bottom surface z = 0 induced by frictional forces is

τ̃B = A∂u
∂z

∣∣∣∣
z=0

= A
d

[
i(ug − vg)+ j(ug + vg)

]
, (2.307)

using the solution (2.301). Thus, using (2.306), (2.307) and d2 = 2A/f , we see that the total
frictionally induced transport in the Ekman layer is related to the stress at the surface by
ME = (k× τB)/f , reprising the result of the previous more general analysis, (2.296). From
(2.307), the stress is at an angle of 45° to the left of the velocity at the surface. (However,
this result is not generally true for all forms of stress.) These properties are illustrated in
Fig. 2.13.

The vertical velocity at the top of the Ekman layer, wE , is obtained using (2.306) or
(2.307). If f if constant we obtain

wE = −
1
ρ0
∇ ·ME =

1
f0

curlzτ̃B =
d
2
ζg, (2.308)

where ζg is the vorticity of the geostrophic flow. Thus, the vertical velocity at the top of the
Ekman layer, which arises because of the frictionally-induced divergence of the cross-isobaric
flow in the Ekman layer, is proportional to the geostrophic vorticity in the free fluid and is

proportional to the Ekman layer height
√

2A/f0.

Another bottom boundary condition

In the analysis above we assumed a no slip condition at the surface, namely that the velocity
tangential to the surface vanishes. This is certainly appropriate if A is a molecular velocity,
but in a turbulent flow, where A is interpreted as an eddy viscosity, the flow very close to
the surface may be far from zero. Then, unless we wish to explicitly calculate the flow in an
additional very thin viscous boundary layer the no-slip condition may be inappropriate. An
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112 Chapter 2. Effects of Rotation and Stratification

alternative, slightly more general boundary condition is to suppose that the stress at the
surface is given by

τ = ρ0Cu, (2.309)

where C is a constant. The surface boundary condition is then

A∂u
∂z

= Cu. (2.310)

If C is infinite we recover the no-slip condition. If C = 0, we have a condition of no stress at
the surface, also known as a free slip condition. For intermediate values of C the boundary
condition is known as a ‘mixed condition’. Evaluating the solution in these cases is left as an
exercise for the reader (problem 2.28).

2.12.4 Explicit solutions. II: the upper ocean

Boundary conditions and solution

The wind provides a stress on the upper ocean, and the Ekman layer serves to communicate
this to the oceanic interior. Appropriate boundary conditions are thus:

at z = 0 : A∂u
∂z

= τ̃x, A∂v
∂z

= τ̃y (a given surface stress) (2.311a)

as z → −∞ : u = ug, v = vg (a geostrophic interior) (2.311b)

where τ̃ is the given (kinematic) wind stress at the surface. Solutions to (2.297a) with (2.311)
are found by the same methods as before, and are

u = ug +
√

2
fd

ez/d
[
τ̃x cos(z/d−π/4)− τ̃y sin(z/d−π/4)

]
, (2.312)

and

v = vg +
√

2
fd

ez/d
[
τ̃x sin(z/d−π/4)+ τ̃y cos(z/d−π/4)

]
. (2.313)

Note that the boundary layer correction depends only on the imposed surface stress,
and not the interior flow itself. This is a consequence of the type of boundary conditions
chosen, for in the absence of an imposed stress the boundary layer correction is zero — the
interior flow already satisfies the gradient boundary condition at the top surface. Similar to
the bottom boundary layer, the velocity vectors of the solution trace a diminishing spiral as
they descend into the interior (Fig. 2.14, which is drawn for the Southern Hemisphere).

Transport, surface flow and vertical velocity

The transport induced by the surface stress is obtained by integrating (2.312) and (2.313)
from the surface to −∞. We explicitly find

U =
∫ 0

−∞
(u−ug)dz = τ̃y

f
, V =

∫ 0

−∞
(v − vg)dz = − τ̃

x

f
, (2.314)

which indicates that the ageostrophic transport is perpendicular to the wind stress, as noted
previously from more general considerations. Suppose that the surface wind is eastward; in
this case τ̃y = 0 and the solutions immediately give

u(0)−ug = τ̃x/fd, v(0)− vg = −τ̃x/fd. (2.315)
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Fig. 2.14 An idealized Ekman spiral in a
southern hemisphere ocean, driven by an
imposed wind stress. A northern hemi-
sphere spiral would be the reflection of
this about the vertical axis. Such a clean
spiral is rarely observed in the real ocean.
The net transport is at right angles to the
wind, independent of the detailed form of
the friction. The angle of the surface flow
is 45° to the wind only for a Newtonian
viscosity.

Therefore the magnitudes of the frictional flow in the x and y directions are equal to each
other, and the ageostrophic flow is 45° to the right (for f > 0) of the wind. This result
depends on the form of the frictional parameterization, but not on the size of the viscosity.

At the edge of the Ekman layer the vertical velocity is given by (2.296), and so is
proportional to the curl of the wind stress. (The second term on the right-hand side of
(2.296) is the vertical velocity due to the divergence of the geostrophic flow, and is usually
much smaller than the first term.) The production of a vertical velocity at the edge of
the Ekman layer is one of most important effects of the layer, especially with regard to
the large-scale circulation, for it provides an efficient means whereby surface fluxes are
communicated to the interior flow (see Fig. 2.15).

2.12.5 Observations of the Ekman layer

Ekman layers — and in particular the Ekman spiral — are generally quite hard to observe, in
either the ocean or atmosphere, both because of the presence of phenomena that are not
included in the theory, and because of the technical difficulties of actually measuring the
vector velocity profile, especially in the ocean. Ekman-layer theory does not take into account
the effects of stratification or of inertial and gravity waves (section 2.10), nor does it account
for the effects of convection or buoyancy-driven turbulence. If gravity waves are present,
the instantaneous flow will be non-geostrophic and so time-averaging will be required to
extract the geostrophic flow. If strong convection is present, the simple eddy-viscosity
parameterizations used to derive the Ekman spiral will be rendered invalid, and the spiral
Ekman profile cannot be expected to be observed in either atmosphere or ocean.

In the atmosphere, in convectively neutral cases, the Ekman profile can sometimes be
qualitatively discerned. In convectively unstable situations the Ekman profile is generally not
observed, but the flow is nevertheless cross-isobaric, from high pressure to low, consistent
with the theory. (For most purposes, it is in any case the integral properties of the Ekman
layer that is most important.) In the ocean, from about 1980 onwards improved instruments
have made it possible to observe the vector current with depth, and to average that current
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Fig. 2.15 Upper and lower Ekman layers. The upper Ekman layer in the ocean is
primarily driven by an imposed wind stress, whereas the lower Ekman layer in the
atmosphere or ocean largely results from the interaction of interior geostrophic
velocity and a rigid lower surface. The upper part of figure shows the vertical Ekman
‘pumping’ velocities that result from the given wind stress, and the lower part of the
figure shows the Ekman pumping velocities given the interior geostrophic flow.

and correlate it with the overlying wind, and a number of observations generally consistent
with Ekman dynamics have emerged.13 There are some differences between observations and
theory, and these can be ascribed to the effects of stratification (which causes a shallowing
and flattening of the spiral), and to the interaction of the Ekman spiral with turbulence
(and the inadequacy of the eddy-diffusivity parameterization). In spite of these differences,
Ekman layer theory remains a remarkable and enduring foundation of geophysical fluid
dynamics.

2.12.6 * Frictional parameterization of the Ekman layer

[Some readers will be reading these sections on Ekman layers after having been introduced to
quasi-geostrophic theory; this section is for them. Other readers may return to this section
after reading chapter 5, or take (2.316) on faith.]

Suppose that the free atmosphere is described by the quasi-geostrophic vorticity equa-
tion,

Dζg
Dt

= f0
∂w
∂z

, (2.316)

where ζg is the geostrophic relative vorticity. Let us further model the atmosphere as a
single homogeneous layer of thickness H lying above an Ekman layer of thickness d≪ H. If
the vertical velocity is negligible at the top of the layer (at z = H +d) the equation of motion
becomes

Dζg
Dt

= f0[w(H + d)−w(d)]
H

= −f0d
2H

ζg (2.317)
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using (2.308). This equation shows that the Ekman layer acts as a linear drag on the interior
flow, with a drag coefficient r equal to f0d/2H and with associated time scale TEk given by

TEk =
2H
f0d

= 2H√
2f0A

. (2.318)

In the oceanic case the corresponding vorticity equation for the interior flow is

Dζg
Dt

= 1
H

curlzτs , (2.319)

where τs is the surface stress. The surface stress thus acts as if it were a body force on the
interior flow, and neither the Coriolis parameter nor the depth of the Ekman layer explicitly
appear in this formula.

The Ekman layer is a very efficient way of communicating surface stresses to the interior.
To see this, suppose that eddy mixing were the sole mechanism of transferring stress from
the surface to the fluid interior, and there were no Ekman layer. Then the time scale of
spindown of the fluid would be given by using

dζ
dt

= A∂
2ζ
∂z2

, (2.320)

implying a turbulent spin-down time, Tturb, of

Tturb ∼
H2

A
, (2.321)

where H is the depth over which we require a spin-down. This is much longer than the
spin-down of a fluid that has an Ekman layer, for we have

Tturb

TEk
= (H2/A)
(2H/f0d)

= H
d
≫ 1, (2.322)

using d =
√

2A/f0. The effects of friction are enhanced because of the presence of a
secondary circulation confined to the Ekman layers (as in Fig. 2.15) in which the vertical
scales are much smaller than those in the fluid interior and so where viscous effects become
significant; these frictional stresses are then communicated to the fluid interior via the
induced vertical velocities at the edge of the Ekman layers.

Notes

1 The distinction between Coriolis force and acceleration is not always made in the literature.
For a fluid in geostrophic balance, one might either say that there is a balance between
the pressure force and the Coriolis force, with no net acceleration, or that the pressure
force produces a Coriolis acceleration. The descriptions are equivalent, because of Newton’s
second law, but should not be conflated.

The Coriolis forces is named after Gaspard Gustave de Coriolis (1792–1843), who introduced
the force in the context of rotating mechanical systems (Coriolis 1832, 1835). See Persson
(1998) for a historical account and interpretation.
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116 Chapter 2. Effects of Rotation and Stratification

2 Phillips (1973). There is also a related discussion in Stommel & Moore (1989).

3 Phillips (1966). See White (2003) for a review. In the early days of numerical modelling these
equations were the most primitive — i.e., the least filtered — equations that could practically
be integrated numerically. Associated with increasing computer power there is a tendency
for comprehensive numerical models to use non-hydrostatic equations of motion that do not
make the shallow-fluid or traditional approximations, and it is conceivable that the meaning
of the word ‘primitive’ may evolve to accommodate them.

4 The Boussinesq approximation is named for Boussinesq (1903), although similar approxima-
tions were used earlier by Oberbeck (1879, 1888). Spiegel & Veronis (1960) give a physically
based derivation for an ideal gas, and Mihaljan (1962) provides a somewhat more general
asymptotic derivation. Mahrt (1986) discusses applicability to the atmosphere.

5 As pointed out to me by W. R. Young.

6 Various versions of anelastic equations exist — see Batchelor (1953a), Ogura & Phillips
(1962), Gough (1969), Gilman & Glatzmaier (1981), Lipps & Hemler (1982), and Durran
(1989), although not all have potential vorticity and energy conservation laws (Bannon 1995,
1996; Scinocca & Shepherd 1992). The system we derive is most similar to that of Ogura
& Phillips (1962) and unpublished notes by J. S. A. Green. The connection between the
Boussinesq and anelastic equations is discussed by, among others, Lilly (1996) and Ingersoll
(2005).

7 A numerical model that includes sound waves must take very small timesteps in order
to maintain numerical stability, in particular to satisfy the Courant–Friedrichs–Lewy (CFL)
criterion. An alternative is to use an implicit timestepping scheme that effectively lets the
numerics do the filtering of the sound waves, and this approach is favoured by many numerical
modellers. If we make the hydrostatic approximation then all sound waves except those that
propagate horizontally are eliminated, and there is little need, vis-à-vis the numerics, to also
make the anelastic approximation.

8 The Rossby number is named for C.-G. Rossby (see endnote on page 241), but it was also
used by Kibel (1940) and is sometimes called the Kibel or Rossby-Kibel number. The notion
of geostrophic balance and so, implicitly, that of a small Rossby number, predates either
Rossby or Kibel.

9 After Taylor (1921b) and Proudman (1916). The Taylor–Proudman effect is sometimes called
the Taylor–Proudman ‘theorem’, but it is more usefully thought of as a physical effect, with
manifestations even when the conditions for its satisfaction are not precisely met.

10 Foster (1972).

11 Many numerical models of the large-scale circulation in the atmosphere and ocean do make
the hydrostatic approximation. In these models convection must be parameterized; otherwise,
it would simply occur at the smallest scale available, namely the size of the numerical grid,
and this type of unphysical behaviour should be avoided. Of course in non-hydrostatic models
convection must also be parameterized if the horizontal resolution of the model is too coarse
to properly resolve the convective scales. See also problem 2.11.

12 After Ekman (1905). The problem was posed to V. W. Ekman (1874-1954), a student of
Vilhelm Bjerknes, by Fridtjof Nansen, the polar explorer and statesman, who wanted to
understand the motion of pack ice and of his ship, the Fram, embedded in the ice.

13 For oceanic observations see Davis et al. (1981), Price et al. (1987), Rudnick & Weller (1993).
For the atmosphere see, e.g., Nicholls (1985).
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Further reading

Cushman-Roisin, B., 1994. An Introduction to Geophysical Fluid Dynamics.
Provides a compact introduction to a variety of topics in GFD.

Gill, A. E., 1982. Atmosphere–Ocean Dynamics.
A rich book, especially strong on equatorial dynamics and gravity wave motion.

Holton, J. R., 1992. An Introduction to Dynamical Meteorology.
A deservedly well-known textbook at the upper-division undergraduate/beginning graduate
level.

Pedlosky, J., 1987. Geophysical Fluid Dynamics.
A primary reference for flow at low Rossby number. Although the book requires some effort,
there is a handsome pay-off for those who study it closely.

White (2002) provides a clear and thorough summary of the equations of motion for meteorology,
including the non-hydrostatic and primitive equations.

Zdunkowski, W. & Bott, A., 2003. Dynamics of the Atmosphere: A Course in Theoretical Meteorol-
ogy.
Concentrates on the mathematical tools and equations of motion of dynamical meteorology.

Problems

2.1 Show that for an ideal gas in hydrostatic balance, changes in dry static energy (M = cpT + gz)
and potential temperature (θ) are related by δM = cp(T/θ)δθ. (The quantity cpT/θ is known
as the ‘Exner function’, and is denoted Π.)

2.2 For an ideal gas in hydrostatic balance, show that:

(a) The integral of the potential plus internal energy from the surface to the top of the
atmosphere [

∫
(P + I)dp] is is equal to its enthalpy;

(b) dσ/dz = cp(T/θ)dθ/dz, where σ = I + pα+Φ is the dry static energy;
(c) The following expressions for the pressure gradient force are all equal (even without

hydrostatic balance):

− 1
ρ
∇p = −θ∇Π = − c

2
s

ρθ
∇(ρθ), (P2.1)

where Π = cpT/θ is the Exner function.
(d) Show that item (a) also holds for a gas with an arbitrary equation of state.

2.3 Show that, without approximation, the unforced, inviscid momentum equation may be written
in the forms

Dv
Dt

= T∇η−∇(pα+ I) (P2.2)

and
∂v
∂t

+ω× v = T∇η−∇B (P2.3)

where ω = ∇× v, η is the specific entropy (dη = cp d lnθ) and B = I + v2/2+ pα where I is
the internal energy per unit mass.
Hint: First show that T∇η = ∇I + p∇α, and note also the vector identity v × (∇ × v) =
1
2∇(v · v)− (v ·∇)v.

2.4 Consider two-dimensional fluid flow in a rotating frame of reference on the f -plane. Linearize
the equations about a state of rest.

(a) Ignore the pressure term and determine the general solution to the resulting equations.
Show that the speed of fluid parcels is constant. Show that the trajectory of the fluid
parcels is a circle with radius |U|/f , where |U| is the fluid speed.

(b) What is the period of oscillation of a fluid parcel?
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118 Chapter 2. Effects of Rotation and Stratification

(c) " If parcels travel in straight lines in inertial frames, why is the answer to (b) not the same
as the period of rotation of the frame of reference? [To answer this fully you need to
understand the dynamics underlying inertial oscillations and inertia circles. See Durran
(1993), Egger (1999) and Phillips (2000).]

2.5 A fluid at rest evidently satisfies the hydrostatic relation, which says that the pressure at the
surface is given by the weight of the fluid above it. Now consider a deep atmosphere on a
spherical planet. A unit cross-sectional area at the planet’s surface lies beneath a column of
fluid whose cross-section increases with height, because the total area of the atmosphere
increases with distance away from the centre of the planet. Is the pressure at the surface
still given by the hydrostatic relation, or is it greater than this because of the increased mass
of fluid in the column? If it is still given by the hydrostatic relation, then the pressure at
the surface, integrated over the entire area of the planet, is less than the total weight of the
fluid; resolve this paradox. But if the pressure at the surface is greater than that implied by
hydrostatic balance, explain how the hydrostatic relation fails.

2.6 In a self-gravitating spherical fluid, like a star, hydrostatic balance may be written

∂p
∂r

= −GM(r)
r 2

ρ, (P2.4)

where M(r) is the mass interior to a sphere of radius r , and G is a constant. Obtain an
expression for the pressure as a function of radius when the fluid (a) has constant density,
and (b) is an isothermal ideal gas (if possible). The star is of radius a.

2.7 At what latitude is the angle between the direction of Newtonian gravity (due solely to the
mass of the Earth) and that of effective gravity (Newtonian gravity plus centrifugal terms) the
largest? At what latitudes, if any, is this angle zero?

2.8 " Write the momentum equations in true spherical coordinates, including the centrifugal and
gravitational terms. Show that for reasonable values of the wind, the dominant balance in the
meridional component of this equation involves a balance between centrifugal and pressure
gradient terms. Can this balance be subtracted out of the equations in a sensible way, so
leaving a useful horizontal momentum equation that involves the Coriolis and acceleration
terms? If so, obtain a closed set of equations for the flow this way. Discuss the pros and cons
of this approach versus the geometric approximation discussed in section 2.2.1.

2.9 For an ideal gas show that the expressions (2.225) and (2.229) are equivalent.

2.10 Consider an ocean at rest with known vertical profiles of potential temperature and salinity,
θ(z) and S(z). Suppose we also know the equation of state in the form ρ = ρ(θ, S, p). Obtain
an expression for the buoyancy frequency. Check your expression by substituting the equation
of state for an ideal gas and recovering a known expression for the buoyancy frequency.

2.11 Convection and its parameterization

(a) Consider a Boussinesq system in which the vertical momentum equation is modified by
the parameter α to read

α2 Dw
Dt

= −∂φ
∂z

+ b, (P2.5)

and the other equations are unchanged. (If α = 0 the system is hydrostatic, and if α = 1
the system is the original one.) Linearize these equations about a state of rest and of
constant stratification (as in section 2.10.1) and obtain the dispersion relation for the
system, and plot it for various values of α, including 0 and 1. Show that for α > 1 the
system approaches its limiting frequency more rapidly than with α = 1.

(b) " Argue that if N2 < 0, convection in a system with α > 1 generally occurs at a larger
scale than with α = 1. Show this explicitly by adding some diffusion or friction to the
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right-hand sides of the equations of motion and obtaining the dispersion relation. You
may do this approximately.

2.12 (a) The geopotential height is the height of a given pressure level. Show that in an atmosphere
with a uniform lapse rate (i.e., dT/dz = Γ = constant) the geopotential height at a pressure
p is given by

z = T0

Γ

⎡
⎣1−

(
p0

p

)−RΓ /g⎤
⎦ (P2.6)

where T0 is the temperature at z = 0.
(b) In an isothermal atmosphere, obtain an expression for the geopotential height as function

of pressure, and show that this is consistent with the expression (P2.6) in the appropriate
limit.

2.13 Show that the inviscid, adiabatic, hydrostatic primitive equations for a compressible fluid
conserve a form of energy (kinetic plus potential plus internal), and that the kinetic energy
has no contribution from the vertical velocity. You may assume Cartesian geometry and a
uniform gravitational field in the vertical direction.

2.14 Consider the simple Boussinesq equations, Dv/Dt = −∇p + kb + ν∇2v, ∇ · v = 0, Db/Dt =
Q + κ∇2b. Obtain an energy equation similar to (2.112), but now with the terms on the
right-hand side that represent viscous and diabatic effects. Over a closed volume, show
that the dissipation of kinetic energy is balanced by a buoyancy source. Also show that,
in a statistically steady state, the heating must occur at a lower level than the cooling if a
kinetic-energy dissipating circulation is to be maintained.

2.15 " Suppose a fluid is contained in a closed container, with insulating sidewalls, and heated
from below and cooled from above. The heating and cooling are adjusted so that there is
no net energy flux into the fluid. Let us also suppose that any viscous dissipation of kinetic
energy is returned as heating, so the total energy of the fluid is exactly constant. Suppose the
fluid starts out at rest and at a uniform temperature, and the heating and cooling are then
turned on. A very short time afterwards, the fluid is lighter at the bottom and heavier at the
top; that is, its potential energy has increased. Where has this energy come from? Discuss this
paradox for both a compressible fluid (e.g., an ideal gas) and for a simple Boussinesq fluid.

2.16 Consider a rapidly rotating (i.e., in near geostrophic balance) Boussinesq fluid on the f -plane.

(a) Show that the pressure divided by the density scales as φ ∼ fUL.
(b) Show that the horizontal divergence of the geostrophic wind vanishes. Thus, argue that

the scaling W ∼ UH/L is an overestimate for the magnitude of the vertical velocity.
(Optional extra: obtain a scaling estimate for the magnitude of vertical velocity in rapidly
rotating flow.)

(c) Using these results, or otherwise, discuss whether hydrostatic balance is more or less
likely to hold in a rotating flow than in non-rotating flow.

2.17 Estimate the size of the zonal wind 5 km above the surface in the mid-latitude atmosphere in
summer and winter using (approximate) values for the meridional temperature gradient in the
atmosphere. Also estimate the shear corresponding to the pole–equator temperature gradient
in the ocean.

2.18 Using approximate but realistic values for the observed stratification, what is the buoyancy
period for (a) the mid-latitude troposphere, (b) the stratosphere, (c) the oceanic thermocline,
(d) the oceanic abyss?

2.19 Consider a dry, hydrostatic, ideal-gas atmosphere whose lapse rate is one of constant potential
temperature. What is its vertical extent? That is, at what height does the density vanish? Is
this a problem for the anelastic approximation discussed in the text?
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120 Chapter 2. Effects of Rotation and Stratification

2.20 Show that for an ideal gas, the expressions (2.229), (2.224), (2.225) are all equivalent, and
express N2 terms of the temperature lapse rate, ∂T/∂z.

2.21 " Calculate an approximate but reasonably accurate expression for the buoyancy equation for
seawater. (From notes by R. de Szoeke)
Solution (i): the buoyancy frequency is given by

N2 = −g
ρ

(∂ρpot

∂z

)

env
= g
α

(∂αpot

∂z

)

env
= −g

2

α2

(
∂αpot

∂p

)

env

(P2.7)

where αpot = α(θ, S, pR) is the potential density, and pR a reference pressure. From (1.155)

αpot = α0

[
1− α0

c2
0
pR + βT (1+ γ∗pR)θ′ +

1
2
β∗Tθ′2 − βS(S − S0)

]
. (P2.8)

Using this and (P2.7) we obtain the buoyancy frequency,

N2 = −g
2

α2
α0

[
βT

(
1+ γpR +

β∗T
βT

θ
)(

∂θ
∂p

)

env

− βS
(
∂S
∂p

)

env

]
, (P2.9)

although we must substitute local pressure for the reference pressure pR. (Why?)

Solution (ii): the sound speed is given by

c−2
s = − 1

α2

(
∂α
∂p

)

θ,S
= 1
α2

(
α2

0

c2
0
− γα1θ

)
(P2.10)

and, using (P2.7) and (2.229) the square of the buoyancy frequency may be written

N2 = g
α

(∂α
∂z

)

env
− g

2

c2
s
= −g

2

α2

[(
∂α
∂p

)

env

+ α2

c2
s

]
. (P2.11)

Using (1.155), (P2.10) and (P2.11) we recover (P2.9), although now with p explicitly in place
of pR.

2.22 (a) Use the chain rule to show that the horizontal gradients of a field in height coordinates
and in ξ coordinates are related by

∇zΨ = ∇ξΨ − (∂Ψ/∂ξ)(∂ξ/∂z)∇ξz. (P2.12)

(b) Show thatw, the vertical velocity in height coordinates, may be expressed in ξ coordinates
as

w = Dz/Dt = (∂z/∂t)ξ + u ·∇ξz + ξ̇∂z/∂ξ . (P2.13)

(c) Use the above expressions to verify (2.143), the expression for the material derivative in ξ
coordinates.

2.23 Begin with the mass conservation in height coordinates, namely Dρ/Dt + ρ∇ · v = 0. Trans-
form this into pressure coordinates using the chain rule (or otherwise) and derive the mass
conservation equation in the form ∇p · u+ ∂ω/∂p = 0.

2.24 " Starting with the primitive equations in pressure coordinates, derive the form of the primitive
equations of motion in sigma-pressure coordinates. In particular, show that the prognostic
equation for surface pressure is,

∂ps
∂t

+∇ · (psu)+ ps
∂σ̇
∂σ

= 0 (P2.14)

and that hydrostatic balance may be written ∂Φ/∂σ = −RT/σ .
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2.25 Starting with the primitive equations in pressure coordinates, derive the form of the primitive
equations of motion in log-pressure coordinates in which Z = −H ln(p/pr ) is the vertical
coordinate. Here, H is a reference height (e.g., a scale height RTr/g where Tr is a typical or
an average temperature) and pr is a reference pressure (e.g., 1000 mb). In particular, show
that if the ‘vertical velocity’ is W = DZ/Dt then W = −Hω/p and that

∂ω
∂p

= − ∂
∂p

(pW
H

)
= ∂W

∂Z
− W
H
. (P2.15)

and obtain the mass conservation equation (2.158b). Show that this can be written in the form

∂u
∂x

+ ∂v
∂y

+ 1
ρs

∂
∂Z
(ρsW) = 0, (P2.16)

where ρs = ρr exp(−Z/H).
2.26 (a) Prove that the argument of the square root in (2.260) is always positive.

Solution: The largest value or the argument occurs when m = 0 and k2 = 1/(4H2).
The argument is then 1 − 4H2N2/c2

s . But c2
s = γRT0 = γgH and N2 = gκ/H so that

4N2H2/c2
s = 4κ/γ ≈ 0.8.

(b) " This argument seems to depend on the parameters in the ideal gas equation of state. Is
it more general than this? Is a natural system possible for which the argument is negative,
and if so what physical interpretation could one ascribe to the situation?

2.27 Consider a wind stress imposed by a mesoscale cyclonic storm (in the atmosphere) given by

τ = −Ae−(r/λ)
2(y i− x j) (P2.17)

where r 2 = x2 + y2, and A and λ are constants. Also assume constant Coriolis gradient
β = ∂f/∂y and constant ocean depth H. In the ocean, find (a) the Ekman transport, (b) the
vertical velocitywE(x,y, z) below the Ekman layer, (c) the northward velocity v(x,y, z) below
the Ekman layer and (d) indicate how you would find the westward velocity u(x,y, z) below
the Ekman layer.

2.28 " In an atmospheric Ekman layer on the f -plane let us write the momentum equation as

f × u = −∇φ+ 1
ρa

∂τ
∂z
, (P2.18)

where τ = Aρa∂u/∂z and A is a constant eddy viscosity coefficient. An independent formula
for the stress at the ground is τ = Cρau, where C is a constant. Let us take ρa = 1, and
assume that in the free atmosphere the wind is geostrophic and zonal, with ug = U i.

(a) Find an expression for the wind vector at the ground. Discuss the limits C = 0 and C =∞.
Show that when C = 0 the frictionally-induced vertical velocity at the top of the Ekman
layer is zero.

(b) Find the vertically integrated horizontal mass flux caused by the boundary layer.
(c) When the stress on the atmosphere is τ, the stress on the ocean beneath is also τ. Why?

Show how this consistent with Newton’s third law.
(d) Determine the direction and strength of the surface current, and the mass flux in the

oceanic Ekman layer, in terms of the geostrophic wind in the atmosphere, the oceanic
Ekman depth and the ratio ρa/ρo, where ρo is the density of the seawater. Include a figure
showing the directions of the various winds and currents. How does the boundary-layer
mass flux in the ocean compare to that in the atmosphere? (Assume, as needed, that the
stress in the ocean may be parameterized with an eddy viscosity.)
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122 Chapter 2. Effects of Rotation and Stratification

Partial solution for (a): A useful trick in Ekman layer problems is to write the velocity as a
complex number, û = u+ iv and ûg = ug + ivg. The Ekman layer equation, (2.297a), may
then be written as

A∂
2Û
∂z2

= if Û, (P2.19)

where Û = û− ûg. The solution to this is

û− ûg = [û(0)− ûg] exp
[
− (1+ i)z

d

]
, (P2.20)

where d =
√

2A/f and the boundary condition of finiteness at infinity eliminates the exponen-
tially growing solution. The boundary condition at z = 0 is ∂û/∂z = (C/A)û; applying this
gives [û(0)− ûg] exp(iπ/4) = −Cdû(0)/(

√
2A), from which we obtain û(0), and the rest of

the solution follows. We may also obtain a solution using the same method that was used to
obtain (2.301).

2.29 The logarithmic boundary layer
Close to ground rotational effects are unimportant and small-scale turbulence generates a
mixed layer. In this layer, assume that the stress is constant and that it can be parameterized
by an eddy diffusivity the size of which is proportional to the distance from the surface. Show
that the velocity then varies logarithmically with height.
Solution: Write the stress as τ = ρ0u∗2 where the constant u∗ is called the friction velocity.
Using the eddy diffusivity hypothesis this stress is given by

τ = ρ0u∗2 = ρ0A
∂u
∂z

where A = u∗kz, (P2.21)

where k is von Karman’s (‘universal’) constant (approximately equal to 0.4). From (P2.21) we
have ∂u/∂z = u∗/(kz) which integrates to give u = (u∗/k) ln(z/z0). The parameter z0 is
known as the roughness length.
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