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VMC

The Variational Monte Carlo method helps to accomplish two things:

• Given a wave function, ΨT , extract information out of it (i.e. energy,
spin-spin correlation functions, etc.)

• Given a class of wave functions, ΨT [α] parameterized by α , find the α
that produces the “best” wavefunction.

We will start with the first of these. Taking a wave function and extracting
observables can be done by computing integrals of the form

´

|ΨT (c)|2 O(c; ΨT ) dc
´

|ΨT (c)|2 dc

by sampling configurations c with probability proportional to |ΨT (c)|2 and com-
puting the average 〈O(c)〉|ΨT |2 . For example, one might want to compute the
spin-spin correlation functions.

Another, observable of interest might be the energy

〈ΨT |H |ΨT 〉 =

´

dc Ψ∗
T (c)HΨT (c)

´

dc Ψ∗
T ΨT

=

´

dc Ψ∗
T (c)ΨT (c)HΨT (c)

ΨT (c)
´

dc Ψ∗
T (c)ΨT (c)

We define the local energy to be

EL ≡
HΨT (c)

ΨT (c)

Why VMC

1. Although VMC is a biased method, there are situations where it is useful
even in the face of unbiased techniques. For example, unbiased QMC
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methods often can give correlation functions but not the nature of the
wave-function. It is sometimes useful to (even approximately) know this
latter information.

2. Fermions are hard I: In many cases, there aren’t any unbiased (low scaling)
methods that compute properties of fermions. This is largely because of
the sign problem. VMC does not have a sign problem (unless you happen
to be working in a non-orthogonal basis.) Although only an approximate
method, it allows access to “answers” that are not accessible in other ways.

3. Fermions are hard II: There are other(even better) approximate methods
(like fixed node diffusion Monte Carlo which we will talk about next lec-
ture) that build on top of good trial wave-functions. Consequently, we can
use the output of VMC as the input to these better methods.

MCMC

When using the variational monte carlo method, one sample a configuration c
with probability |ΨT (c)|2 using Markov chain Monte Carlo. We have already
talked about the use of MCMC in previous talks so we will not spend much time
with that here. It should be pointed out that to accomplish this, it is important
to select some basis to work in. Then a snapshot of your Monte Carlo simulation
is the configuration c.

MCMC algorithm

1. Choose arbitrary c

2. Choose configuration c′ with probability T (c → c′) (often taken to be a
uniform “box” or gaussian around the current position c)

3. Accept configuration c′ with metropolis acceptance probablity

min

(

1,
T (c′ → c)

T (c → c′
|ΨT (c′)|2

|ΨT (c)|2

)

4. Compute observables O(c; ΨT ) ocassionally.

5. Loop back to (2).

There are not typically ergodic problems with VMC simulations so one does not
usually have to be concerned with sophisticated Monte Carlo moves, etc.
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Selecting the “best” wave-functions

There are a number of possible metrics that we might use to say that we have
selected the “best” wave-function from a class of wave-functions. They include

• minimizing the energy. We know that the true ground state has the lowest
energy minimized over all wave-functions ΨT (where we are restricted to
wave-functions with the right symmetry).

• minimizing the variance of EL. For the true ground state, the local energy
EL = [HΨ0](c)

Ψ0(c) = EΨ0(c)
Ψ0(c)

= E0 is independent of the given configuration c.
This means that the variance of EL,

σ(EL) = 〈E2
L〉 − 〈EL〉

2

is equal to 0.

• maximizing the overlap with the true ground state |〈ΨT |Ψ0〉| .

Probably maximizing the overlap with the true ground state is the best thing to
do, but no one knows how this can actually be done (although optimizing the
overlap with the fixed node wave-function can be done (with some fair amount
of difficulty) and might be a reasonable proxy for this). The general wisdom,
then, is that the best metric is to select the wave funtion that has the lowest
energy E. In practice whether this works well depends partially on the sort of
properties in which you are interested. For example, one can get very good
energies and still get the far off diagonal terms of your 1-body density matrix
incorrect as the energy is often not very sensitive to this.

Optimization of Wave Functions

Optimization is hard and still somewhat akin to black magic. In fact, even
finding local minima is difficult (to say nothing of global minima) Even though a
lot of recent work has gone into procedures for better optimizing wave functions,
it is still an active and important research area.

A method to optimize poorly

In this section we start by describing a bad, but naively appealing way to opti-
mize our wave function. We will then see how to improve this method so that
it works.

Local optimization of deterministic functions is something that has been
worked on for a long time. VMC, though, is a stochastic process and returns
the energy E ± δ with some error bar δ. As a start, we would like to write
down an approximation for the energy that is a deterministic function. Then,
we could naively use a typical black box optimization method.
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To accomplish this, imagine we have 1000 configuration {c1...c1000} that are
all sampled from the distribution |ΨT [α0]|

2. We know that an approximation
to the energy E[α0] is

〈E(α0)〉 ≈
1000
∑

i=1

EL(ci;α0)

It is also possible, though, that from these same 1000 configurations, we
can also estimate the energy of E(α) where α is a different set of parameters
then α0. Notice, that the configurations we want to use have not been sampled
from ΨT (α) . Nonetheless, we can reweight them so they look as if they’ve
been sampled from this other distribution. To accomplish this we will use the
function

〈E(α)〉 ≈

∑1000
i=1 EL(ci;α) ΨT (ci,α)

ΨT (ci,α0)
∑1000

i=1
ΨT (ci,α)
ΨT (ci,α0)

as our estimate for the energy of our system with parameters α.
Notice that 〈E(α)〉 is a deterministic objective function. Optimizing deter-

ministic objective functions is a long and well studied subject. At this point,
one might be tempted to stick this objective function into a black-box optimizer
and get our results.

There are two problems with this approach though:

1. If the wave functions ΨT (α) and ΨT (α0) differ significantly then there
will be a very small number of effective points and our average energy will
be very unreliable. This is not a major problem. When the number of
effective points becomes small, you can always refresh the configurations
ocassionally. Also, it is empirically the case that if you just optimize with-
out reweighting the configurations (i.e. assume ΨT (ci;α)/ΨT (ci,α0) ≈ 1
) this works and is often more stable (although a couple refreshes will still
be necessary).

2. Imagine the limit where we only have one configuration. Almost certainly
we will find parameters α that are good for this configuration but bad in
general. This problem persists even in the limit of 1000’s of configurations.
One of the fundamental reasons for this problem is that the energy is not
bounded from below. Consequently, their are parameter regions that can
(for a finite set of configurations) severly underestimate the energy.

The (now somewhat deprecated) approach to dealing with this problem is that
instead of optimizing the energy of your system, optimize the variance of EL.
Because this is bounded below by 0, it is less sensitive to undersampling prob-
lems. The main downside to this is that minimizing the energy is likely a better
proxy for the “best” wave-function then minimizing the variance. (Often you
can also get away with minimizing some linear combination of the variance and
the energy.)
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Suppose we really want to optimize the energy though. Is their anything we
can do?

Generic Approach I: Optimize the infinite sample.

Fundamentally our problem was that we were minimizing with respect to a finite
sample and not an infinite sample. So, if we had a finite number of samples and
walked toward the parameters that minimize the finite sample energy we get
something that is too low. Instead let’s figure out how we can bias it to walk
toward the true ground state.

The prior problem was mainly one of undersampling. Another way to say
this is that if you followed the gradient of the finite set of configurations, you
were travelling in the wrong direction. There are new sophisticated ways of
solving this problem. Instead of describing them all in complete detail, here I
would like to describe some key tricks that help resolve this. This first trick
is important for optimization, but it’s really much more general. It’s a really
a lesson on variance reduction and how it’s important to think hard about it
when doing Monte Carlo. You should think of variance reduction in the same
bag of tricks as optimization ensemble and loop/cluster moves.

Trick I: Variance reduction or how to add 0 and get much better
answers.

So we want to walk in the direction of the gradient.
Let’s take the derivative of

∂α〈E〉 = ∂α

[

´

|Ψ|2 HΨ
Ψ

´

|Ψ|2

]

=

´ (

2Ψα

Ψ
HΨ
Ψ + HΨα

Ψ − HΨ
Ψ

Ψα

Ψ

)

|Ψ|2
´

|Ψ|2
−

´

HΨ
Ψ |Ψ|2
´

|Ψ|2

´

2Ψα

Ψ |Ψ|2
´

|Ψ|2

=

ˆ

|Ψ|2
(

Ψα

Ψ
EL +

HΨα

Ψ
− 2〈E〉

Ψα

Ψ

)

/

ˆ

|Ψ|2

where we define Ψα ≡ ∂
∂αΨ.

Let us now look more closely at the term
ˆ

Ψ∗Ψ [HΨα]

Ψ
=

ˆ

Ψ∗ [ΨH ]Ψα

Ψ
=

ˆ

Ψα

Ψ

HΨ

Ψ
|Ψ|2

where the first equality is allowed by the hermiticity of H . In other words, we
have learned that

0 =

ˆ

dc |Ψ(c)|2
[

[HΨα] (c)

Ψ(c)
− EL(c)

Ψα(c)

Ψ(c)

]

but it is not true for all c that

|Ψ(c)|2
[

[HΨα] (c)

Ψ(c)
− EL(c)

Ψα(c)

Ψ(c)

]
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is equal to 0. We can then add 0 to ∂α〈E〉 giving us

∂α〈E〉 =

ˆ

|Ψ|2
Ψα

Ψ
(EL − 〈E〉) /

ˆ

|Ψ|2

If you use this bottom equation as a gradient to minimize with respect to,
you will get much better answers then the earlier equation. At first glance, this
seems like a bit of a paradox. All we have done is remove a term that is equal
to 0. What is going on, though, is the following. These two equations are the
same in the limit of an infinite number of configuration. They are not the same
on a finite sample. In fact, the bottom equation will not be the true gradient
of the finite sample (so if you’re checking your code with finite differences, it
will naively look wrong). Consequently, the set of parameters where the bottom
gradient is 0 is not going to be the minimum of the finite sample. By using a
property of the infinite sample (i.e. the hermiticity of H) we have a situation
where we are better optimizing for the infinite system even on a finite sample.

To further understand what is going on, let’s look at the limit where we have
the exact ground state ΨT = Ψ0. We know that in the exact ground state the
gradient should be 0. The first equation, though, has configuration by config-
uration fluctuations. If we are summing an infinite number of configurations,
it will add up to 0 but for any finite sample it will push you away even from
the true ground state. Since EL = 〈E〉, when you have the true ground state
wavefunction, the second equation is 0 configuration by configuration. Even
summing over a single configuration would give a useful gradient.

Trick II: Linearize

Another useful trick is the following. These implicitly uses the idea of variance
reduction from above (although not in as clear and obvious a way as enumerated
above) Given a wave function Ψ[α] you can taylor exapnd this Hamiltonian and
write

Ψ[α] = Ψ[α0] +
∑

i

(α− αi)
∂Ψ

∂αi

where α0 is some initial set of parameters. Then, write

Hij =

〈

Ψi

Ψ0

HΨj

Ψ0

〉

|Ψ0|2

and

Sij =

〈

Ψi

Ψ0

Ψj

Ψ0

〉

|Ψ0|2

Then if we solve the generalized eigenvalue equation

H∆α = ES∆α

we retreive a set of changed parameters ∆α. In principle, one could then update
the set of parameters as α ← α+ ∆α . Although a reasonable approach, in the
case where your parameter weren’t linear to begin with, this is not the best way
to update the parameters. (see prl 98, 110201 for a better approach).
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Generic Approach II: Optimize Stochastically

There is another (reasonably new) approach for this optimization problem. This
is essentially to stochastically follow the “gradient” by “refreshing” the configu-
rations you are using to calculate the gradients frequently. One might imagine
that this avoids the problem of undersampling because as you’re heading to
energies that are too low, you switch to new configurations which have different
energies.

More concretely, one imagines that the following could happen:

• Accumulate a few configurations from the markov chain, compute the
gradients

gapprox =
∑

c

[∇α〈E〉] (c)

and walk some small distance in the direction of the gradient τgapprox .

If this gradient involved only EL and not ΨT , then one can show, from the
linearity of expectations, that the expected gradient equals the true gradient.
In this (not satisfied) limit this optimization method would be formally correct
(to find local minima) and one can argue that in the long term limit, this would
sample parameters whose average should be the true parameters. The problem
with this idea are that the

• the gradient does involve ΨT and

• often these stochastic gradients can have extremely large values. This then
throws you into crazy parameter regimes that are hard to return from.

To resolve these difficulties, for each parameter, one walks a fixed distance
rδsign[∂α〈E〉] where δ is some small constant and r is a parameter that starts
at 1 and can be ramped down as the optimization progresses. The fact that this
seems to work well in practice is somewhat mysterious. The advantages of this
method is that it seems reasonably robust and is fairly simple to implement. We
should note that this primarily works because as you move around in parameter
space, you don’t change the markov chain much.

A comment on global minima

These approaches have been mainly concerned with finding a good local minima.
(In practice, these methods often do a bit better then this because they are
stochastic and tend not to get stuck in shallow local minima). Often this is
good enough. Many systems seem not to have too many local minima and we
can typically start somehere close to the right answer (or try a number of initial
starting points).

In cases, where this is not good enough, there are other potential approaches.
For example, you can do some form of stochastic simulated annealing.
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Wave Function Zoo

Ideally we want to write down a wave-function that is a good representation of
the ground state. Properties of useful wavefunctions are those that

• can be represented compactly compactly (with a polynomial number of
parameters)

• are easy to manipulate. (i..e. averages like the energy of the wave function
can be computed quickly). Usually you want to be able to calculate these
averages exactly although the recent interest in PEPS is somehow a set of
interesting wavefunctions that contrasts with this.

Projected Gutzweiller

One reasonable place to start for writing down good wave-functions is with
reasonably simple limits. For example, let’s take a non-interacting system (po-
tentially living in some external potential) We can think of this as coming from
a free fermion system, some tight binding model, Hartree-Fock or density func-
tional theory. We know that the ground state for such a wave function can the
be represented as

ΨT = detM

where
Mij = Φi(rj)

where Φi is a d-dimensional function that takes a position/configuration of a
single electron and returns a value. The parameters α of this wave function is
selecting the values of these n d-dimensional functions. One should note that
their is a redundancy here. Because the determinant is invariant with respect
to any unitary transformation of M , there are many different choices for the
same orbitals that give the same wavefunctions.

Now, we can ask how we can intorduce some correlations into these wave
functions. Notice that so far the spin up and spin down electrons don’t even
notice the existence of each other. One approach is, instead of writing our
wave function as a single determinant, we can instead write it is a sum of many
determinants. For example

ΨT =
∑

k

det [Mk]

where for each Mk we select n orbitals φi (different matrices can have the same
orbitals although obviously it isn’t useful to have any two matrices have exactly
the same set of orbitals). We know that we can write a complete basis as a
sum of slater determinants. Therefore, in the limit of a large number of slater
determinants this is always a good representation. This is essentially what
quantum chemists do when doing a full CI calculation (and for small molecules
it works reasonably well). The basic problem with this approach is that it is
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not size extensive. The number of determinants required will generically scale
exponentially with the size of your system making it not particularly effective for
condensed matter systems. Instead, we would like to add correlation in a more
size-extensive way. To accomplish this, let’s consider for a moment the opposite
limit of free fermions: a hubbard model with an extremely large U. Because of
the large energy cost to having double occupancy, we want to include in our
wavefunction some term that forbids them. One approach to this is to add a
projection that explicitly projects out double occupancy. This is typically called
gutzweiller projection which we will write as

ΨT = PG detM

where PG is the projection that forbids double occupancy. We should note that
this constraint is easy to implement in real space in a variational Monte Carlo
simulation (and very hard to implement when our representation is not in real
space). We can simply reject any Monte Carlo moves where two particles end
up on the same point.

Slater-Jastrow

Of course, at intermediate U/t it is probably a bit extreme to disallow all double
occupancy. Instead, let us soften this projection by replacing it with a Jastrow
Factor. We can write a jastrow factor as

J = exp



−
∑

i

u1(ri) −
∑

ij

u2(ri, rj) −
∑

ijk

u3(ri, rj , rk) + ...





where u is a real function. Often we will only work with 1 and 2 body terms
and let the two body term u2 be a function only of the magnitude |ri − rj |.
The parameters in these systems include those of projected gutzweiller and the
functions u1, u2, u3

A few comments about Jastrow factors:

• We can see that if we let u2(0) → ∞ this reduces back to the projected
gutzweiller function.

• In a translationally invariant function, it might seem a bit strange to
include a one body function. One way to think about its important is
the following: Often the slater matrix ansatz will have a pretty good
distribution for the density (especially if you happen to be pulling it from
Density Functional Theory). By putting in the 2-body terms you’ve added
some correlation into the system (important) but you’ve screwed up the
density. The one body term u1 will fix the density back up.

• In the continuum (i.e. when our Hamiltonian is ∇2 +1/r) we can actually
put certain constraints on u because we can solve the two body problem
as the particles come close to each other. This is called the cusp condition.
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• Imagine we are working with a bosonic system. Then this expansion
is a comlete basis for the ground state of bosonic wave functions. Jas-
trow’s were first used by Mcmillan for calculating ground state energies
of Helium-4. We can see what we’ve really done for our fermionic wave
function is write it as

Ψ = ΨfermionΨboson

a product of a fermionic and bosonic wave function

• If we were to generalize our jastrow wave functions to allow complex factors
we can get quantum hall states, etc. We will talk about this a bit more
when we talk about Huse-Elser/CPS states.

RVB

We would like to do better then slater-jastrow. One approach is to use a pro-
jected BCS wave function. A projected BCS wave function applies a gutzweiler
projection to the mean field BCS hamiltonian. We can write this as

PG |BCS〉 = PG

∏

k

(uk + vkc†k↑c
†
−k↓)

Converting this to real space we get

Ψ = PG

(

∑

r<r′

fr−r′

(

c†r↑c
†
r′↓ + c†r′↑c

†
r↓

)

)N/2

|0〉

Notice that this can be represented as a determinant where each row is an
up spin, each column is a down spin and the matrix element is fr−r′. These
fr−r′ are the parameters α in these systems. We can generalize this state, by
multiplying it by a Jastrow instead of projecting.

Backflow

Earlier we discussed how we could take elements of our slater matrix to be φi(rj)
. One can do better by instead of working with rj working with generalized
coordinates rj = rj + ζj(R) (i.e. using quasiparticles). As long as ζj(R) is
symmetric with respect to R this produces a legitimate antisymmetric function.
One adds to the parameters α the function ζj(R).

MultiSlater Jastrow

We’ve already discussed the idea of doing better then slater-determinants by
just using a sum of them. Even better is to take a sum of slater determinants
multiplied by a Jastrow. Even though this shares many of the problems that
we discussed above, it still can help improve the wave function.
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Huse Elser/Correlator Product States

For spin systems (and some fermion systems), one can often do very well with
Huse Elser/CSP.

We can write a general wave function as

Ψ =
∑

{n}

Ψn1n2n3...nN
|n1, n2, n3...nn〉

This obviously has a lot of states. Instead we will decompose our state

Ψn1n2..nN
=

∏

i

C(ni)
∏

ij

C(ni, nj)
∏

ijk

C(ni, nj , nk)...

into a product over correlation functions. We allow the C to be general complex
values.

So for example our wave function might be

Ψ =
∑

{n}

C(n1, n2)C(n3, n4, n5) |n1, n2, n3, n4, n5〉

Notice, that if you do large enough products (instead of just 2-body terms
and 3-body terms, do up to n-body terms), then you have a complete basis. If
we think the physics is somehow local, it makes sense to choose correlators that
are local. Let us count the total number of parameters. For two body terms we
have 4n2 points. For three body terms it is 2n3 terms. Therefore, for a small
“bond” dimension, the number of parameters is reasonably compact.

Others:

Valence Bond Basis, Geminals, MPS, PEPS, etc.

Fast Updates

Let us take the specific example of doing Variational Monte Carlo using a pro-
jected gutzweiller wave-function. To perform Variational Monte Carlo one needs
to evaluate the ratio of the wave functions between configuration c and c′ where
they differ by the location of the particle at position k . This operation needs
to be done over and over again (for different postions k′, etc). One can write
this as

∣

∣

∣

∣

Ψ[c′]

Ψ[c]

∣

∣

∣

∣

2

=

[

det[M + eT
k u]

det M

]2

where eT
k is the unit vector with a 1 at location k and 0 at all other positions and

u = φk(si) − φk(sj) . Evalauting determinant ratios of this type is a common
operation that is required in a variety of different quantum Monte Carlo simu-
lations (CTQMC, Hirsh-Fye, DQMC, VMC, DMC, etc.). The naive approach
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involves simply taking the determinant of the numerator and denominator sep-
arately. This is not only slow (an O(n3) algorithm), but also is not numerically
stable in the limit of large matrices. A superior approach is to use

det[M + ekuT ]

detM
= 1 + uT M−1ek

to evaluate this ratio. In order to accomplish this, we need to have access to
the value M−1. To avoid the calculation of the value M−1 at each step we can
calculate it once and then update it. This update can be done by the Shermann
Morrison formula,

(M + ekuT )−1 = M−1 −
M−1ekuT M−1

1 + uT M−1ek
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