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PHYSIQUE STATISTIQUE HORS EQUILIBRE
Transport coefficients and Kubo formulas: Shear viscosity

The aim of this exercise is to establish the expression of the shear viscosity n
as a function of a self-correlation function. This expression is similar to the
Kubo formula for the diffusion coefficient D.
1) The evolution of the local velocity u(7, t) is described by the Navier-Stokes
equation: _
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where m is the mass of one molecule, p is the numeric density and P the
pressure. (7, t) represents the average of the dynamical quantity «(7,¢) on
a small, but macroscopic, volume:

and

where ¢ = 1,.., N is the index of the (identical) particles in the system.
We define j(k,t) = | dre”™7 (7, t). Show that the transverse components

( perpendicular to k ) of 7, denoted as j 1o (a0 =1,2), verify the equation
of evolution: _
O () = 2 Lo (R.)
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2) We denote 2z’ the axis bearing E, and 7 is an axis perpendicular to Z2.
Consider the correlation function:
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Show that, for small k, we can write:
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Show that:
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3) Deduce from that result the following expression of the shear viscosity 7:
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where V' is the volume and p,, = ma;. To find this result, identify the
coefficients of k? in both parts of the first equation of question 2).
4) Show that we can also write:
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Here, we shall use the fact that the system is isolated, and is in equilibrium.
5) We can also note that:
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where Fj,(t) is the component along x of the force exerting on the molecule
i

Show finally that:
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