Example 1:

The spin-triplet superconductor \(\text{Sr}_2\text{RuO}_4 \)

Unconventional pairing - disorder effect

sensitivity to non-magnetic impurities

- \(T_c \approx 1.5K \)

Maeno et al 1994

- layered crystal structure

quasi-2D metal

- \(\rho_{ab} \)

- \(\rho_c \)

at \(T = 2K \)

Maeno et al

- 3 quasi-2D bands derived from 4d-t\(^2\)g orbitals of Ru

most likely \(\gamma \)-band strongly dominant

Sr\(_2\)Ru\(_4\) - quasi-2D-superconductor

Superconducting phases - analogy to \(^3\)He

- basic symmetries:
 - \(G = G \times S \times K \times U(1) \)

- \(^3\)He phases

 - \(B \)-phase
 - \(\tilde{d}(k) = \hat{z}k_x + \hat{y}k_y + \hat{z}k_z \)

 - \(A \)-phase
 - \(\tilde{d}(k) = \hat{z}(k_x \pm i k_y) \)

\(\hat{\Psi}_k = (\tilde{d}(k) \cdot \hat{\sigma}) i \hat{\sigma}^y \)

- \(p \)-wave pairing states:
 - point group: \(D_{4h} \) tetragonal
 - spin-orbit coupling strong
 - inplane pairing

\((k_z = (k_x, k_y, 0)) \)

Textbook like suppression of \(T_c \)

- \(\ell \leq \xi \approx 660 \AA \)

- \(T_c = 0 \)

Mackenzie et al.

Kikugawa et al.

Bergemann, Mackenzie et al.
Experimental evidence for pairing symmetry

Spin-polarizability

\[\vec{H} \parallel \hat{z} \]

In-plane equal-spin pairing \(\vec{d} \parallel \hat{z} \)

Ishida et al. (1998)

NMR-Knight shift

\[T(K) \]

\[0 \rightarrow 0 \]

Yosida

Magnetic moment

\[\mu_{SR} \text{ zero-field relaxation} \]

Luke et al. (1998)

Intrinsic magnetism

Field distribution

\[\mu_{SR} \text{ field distribution in vortex phase} \]

Luke et al. (2000)

Ultrasound absorption

\[T(K) \]

\[100 \rightarrow 100 \]

Lupien, Taillefer et al.

2-component order parameter

\[\text{Sound velocity renormalization for transversal mode} \]
Sr$_2$RuO$_4$ - chiral p-wave superconductor

\[\tilde{d}(\vec{k}) = \hat{\tau}(k_x \pm ik_y) \quad \Rightarrow \quad \hat{\psi}_\vec{k} = \begin{pmatrix} 0 & k_x \pm ik_y \\ k_x \pm ik_y & 0 \end{pmatrix} \]

degeneracy: 2

topological phase

\[D_{4h} \times SU(2) \times \mathcal{K} \times U(1)_{\phi}\]

\[U(1)_{S_z} \times U(1)_{L_z+\phi}\]

broken time reversal symmetry \mathcal{K}

Edge states & Spontaneous currents

\[\text{Deguchi & Maeno}\]

Sr$_2$RuO$_4$ - chiral p-wave superconductor

\[\tilde{d}(\vec{k}) = \hat{\tau}(k_x \pm ik_y) \quad \Rightarrow \quad \hat{\psi}_\vec{k} = \begin{pmatrix} 0 & k_x \pm ik_y \\ k_x \pm ik_y & 0 \end{pmatrix} \]

topological phase

\[D_{4h} \times SU(2) \times \mathcal{K} \times U(1)_{\phi}\]

\[U(1)_{S_z} \times U(1)_{L_z+\phi}\]

\[\text{Deguchi & Maeno}\]
Spontaneous currents
at inhomogeneities, surface and domain wall

Andreev bound state
at surface

subgap spectrum $E_{k_{\parallel}} = \Delta_0 \sin \theta_k = \Delta_0 k_{\parallel} k_F$
penetration depth $\xi = \hbar v_F / \Delta_0$

surface current

analogous at domain walls and around impurities

direct observation
negative
- scanning Hall probe
Tamegai et al
- scanning SQUID probe
Kirtley, Moler et al

screening current
Quasiparticle states

at inhomogeneities, surface and domain wall

Andreev bound state

at surface

Electron hole

k_\perp θ

Surface x y

Quasiparticle tunneling in NS junctions

Tunneling conductance

$g(eV) = \frac{dI}{dV}(eV)$

conventional superconductor

chiral p-wave superconductor

$g_s/g_{1\Delta}$

$g_s/g_{1\Delta}$

Honerkamp, Matsumoto & MS

Yamashiro, Tanaka et al.

Quasiparticle states

at inhomogeneities, surface and domain wall

Andreev bound state

at surface

Electron hole

k_\perp θ

Surface x y

Quasiparticle tunneling in NS junctions

Tunneling conductance

$g(eV) = \frac{dI}{dV}(eV)$

conventional superconductor

chiral p-wave superconductor

$g_s/g_{1\Delta}$

$g_s/g_{1\Delta}$

Honerkamp, Matsumoto & MS

Yamashiro, Tanaka et al.
Quasiparticle tunneling in NS junctions

Tunneling conductance

\[g_s / g_n \]

\[+ \Delta \]

\[- \Delta \]

\[(eV) \]

NS-tunneling

\[\text{Sr}_2\text{RuO}_4 \]

Mao, Liu et al.

chiral p-wave superconductor

Point contact spectroscopy

\[\text{Sr}_2\text{RuO}_4 \]

Laube, Goll, von Lohneysen et al.

Further evidence for chiral p-wave pairing

Phase sensitive experiments

Josephson effect and domain walls

two domains

\[\bar{d}_\pm (k) = \eta_0 \hat{z} (k_x \pm i k_y) \]

interference effect in magnetic field

Josephson contact

\[k = \frac{2\pi}{\Phi_0} dH_{c2} \]

\[\Phi_0 = \frac{hc}{2e} \]

critical current

\[I = \max_\alpha \left| \int dy I_c(y) \sin(kx + \phi(y)) + \alpha \right| \]

intrinsic phase shift associated with domain

Phase sensitive experiments

SQUID type of measurements

corner „SQUID“ geometry

\[J_y \propto i(\psi^* \eta_x - \psi_x \eta_y) \propto \sin(\alpha) \]

\[\pm \pi / 2 \]

phase difference

Interference pattern

off-centered

broken time reversal chiral p-wave
Kerr effect

Rotation of polarization axis for reflected light

\[
\theta_K \approx \frac{4\pi \sigma_{xy}}{n(n^2-1)\omega} \left(\frac{\Delta^2}{\hbar \omega^3} \right)
\]

Kapitulnik et al. (2006)

Kerr effect strongly reduced for \(\hbar \omega \gg \Delta\)

debate:
- effects of gauge-invariance
- Yakovenko, Kallin, Mineev, ...
- Buhmann & MS in 90s: Joynt; Yip & Sauls, ...

Case 2:

Superconductors without inversion center

Key symmetries for Cooper pairing

Heavy Fermion superconductor \(\text{CePt}_3\text{Si}\)

Status of evidence for chiral p-wave

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Consistent</th>
<th>Unexplained</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMR Knight shift (\vec{H} \parallel \hat{z})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu)SR ZF relaxation rate</td>
<td>consistent</td>
<td></td>
</tr>
<tr>
<td>Flux distribution/ultrasound (2-comp OP)</td>
<td>consistent</td>
<td></td>
</tr>
<tr>
<td>Phase sensitive test / Josephson effect</td>
<td>consistent</td>
<td></td>
</tr>
<tr>
<td>Edge states in quasiparticle tunneling</td>
<td>consistent</td>
<td></td>
</tr>
<tr>
<td>Direct observation of spontaneous currents</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>Phenomenology of 3K-phase</td>
<td>consistent</td>
<td></td>
</tr>
<tr>
<td>Limiting behavior for inplane field</td>
<td>unexplained</td>
<td></td>
</tr>
<tr>
<td>Kerr effect</td>
<td>consistent</td>
<td></td>
</tr>
<tr>
<td>Disorder effects non-magnetic impurities</td>
<td>consistent</td>
<td></td>
</tr>
</tbody>
</table>

Superconductivity and magnetism

\(T_c = 0.45 \text{K}\) \quad \(T_N = 2.2 \text{K}\)

\(\text{CePt}_3\text{Si}\)

discovered by Ernst Bauer et al (2003)
Heavy Fermion superconductor CePt_3Si

Superconductivity and magnetism

CePt_3Si

LaPt_3Si

$T_c = 0.45 \, \text{K}$

$T_N = 2.2 \, \text{K}$

non-centrosymmetric crystal

$P4mm \rightarrow C_{4v}$

tetragonal

Onuki et al.,

Bauer et al.

Pressure (GPa)

Temperature (K)

$T_N = 2.2 \, \text{K}$

$T_c = 0.45 \, \text{K}$

non-centrosymmetric crystal

$P4mm \rightarrow C_{4v}$

tetragonal

Other Ce-based compounds

CeRhSi_3, CeIrSi_3, CeCoGe_3

antiferromagnets with superconductivity under pressure at QCP

non-centrosymmetric point group C_{4v}

Doniach's phase diagram

Onuki et al.

Kimura et al. (2005)

Onuki et al. (2005)

Onuki et al. (2007)
Electronic states of non-centrosymmetric metal

Non-centrosymmetric superconductors

\[\hat{\Delta}_k = \left(\begin{array}{ccc} \Delta_{k,11} & \Delta_{k,12} & \Delta_{k,14} \\ \Delta_{k,21} & \Delta_{k,22} & \Delta_{k,24} \\ \Delta_{k,41} & \Delta_{k,42} & \Delta_{k,44} \end{array} \right) \]

\[\hat{\Delta}_k = i \sum_{\mu=0}^{3} d_{\mu}(\vec{k}) \hat{\sigma}^\mu \hat{\sigma}^\nu \]

gap function

\[\hat{\mathcal{H}} = \sum_{\vec{k},s} \epsilon_{\vec{k}} c_{\vec{k}s}^\dagger c_{\vec{k}s} + \sum_{\vec{k},s,s'} \tilde{g}_{\vec{k}} \cdot \hat{\sigma}^s \hat{c}_{\vec{k}s}^\dagger c_{\vec{k}s'} \]

spin-orbit coupling

\[\tilde{g}_{\vec{k}} = \alpha (\hat{z} \times \vec{k}) \]

spin-splitting

symmetry classification

inversion is not a symmetry

mixed-parity pairing

parity

even-spin-singlet odd-spin-triplet

d\(0(\vec{k})\) = \Delta_e \quad d\(\vec{k}\) = \Delta_o \tilde{g}_{\vec{k}}

full-symmetry pairing state

non-unitary \(\hat{\Delta} \hat{\Delta} \neq \hat{\sigma}^0 \)

full-symmetry pairing state

even-parity component

odd-parity component

pairing symmetry

\[d_0(\vec{k}) = \Delta_e \quad d(\vec{k}) = \Delta_o \tilde{g}_{\vec{k}} \]

parity

full-symmetry pairing state

mixed-parity pairing

even-parity component

odd-parity component

\[\Gamma^+ \otimes \Gamma^- \]

\[\Gamma \]

\[\begin{array}{c|c|c} \Gamma & d_0(\vec{k}) & d(\vec{k}) \\ \hline \Gamma_1 & \Gamma^- & \Gamma^- \\ \Gamma_2 & k_x k_y (k_x^2 - k_y^2) & k_x k_y (k_x^2 - k_y^2) \tilde{g}_{\vec{k}} \\ \Gamma_3 & k_x^2 - k_y^2 & (k_x^2 - k_y^2) \tilde{g}_{\vec{k}} \\ \Gamma_4 & k_x k_y & k_x k_y \tilde{g}_{\vec{k}} \\ \Gamma_5 & \{k_x k_z, k_y k_z\} & \{k_x k_z \tilde{g}_{\vec{k}}, k_y k_z \tilde{g}_{\vec{k}}\} \end{array} \]
Non-centrosymmetric superconductors

Pairing symmetry

\[D_{4h} \]

\[C_{4v} \]

Even-parity component

\(\Gamma^+ \)

Odd-parity component

\(\Gamma^+ \otimes \Gamma^- \)

\[\Gamma \]

\[d_0(\mathbf{k}) = \Delta_e \]

\[\bar{d}(\mathbf{k}) = \Delta_0 \mathbf{g}_k \]

\[\begin{array}{c|c}
\Gamma & d_0(\mathbf{k}) \\
\hline
\Gamma_1 & 1 \\
\Gamma_2 & k_z k_y (k^2_x - k^2_y) \\
\Gamma_3 & k^2_x - k^2_y \\
\Gamma_4 & k_z k_y (k^2_x - k^2_y) \mathbf{g}_k \\
\Gamma_5 & \{k_z k_x, k_y k_z\} \\
\end{array} \]

\[\hat{\Delta}_k = (\Delta_e + \Delta_0 \mathbf{g}_k \cdot \hat{\sigma}) \hat{i} \hat{\sigma}_y \]

Mixed-parity states are non-unitary

Unitary superconducting states:

\[\hat{\Delta} \Delta^\dagger = |\Delta|^2 \delta_{\mathbf{0}} \propto 2\times2 \text{ unit matrix} \]

\[\hat{\Delta} = \{\psi(\mathbf{k})\hat{\sigma}_0 + \bar{d}(\mathbf{k}) \cdot \hat{\sigma}\} i \hat{\sigma}_y \]

\[\hat{\Delta} \Delta^\dagger = \{\psi^* \bar{d} + \psi \bar{d}^*\} \cdot \hat{\sigma} + i \{\bar{d} \times \bar{d}^*\} \cdot \hat{\sigma} \]

\[\chi = \text{const. for } \bar{d}(\mathbf{k}) \cdot \mathbf{H} = 0 \]

Note: \(\hat{\mathbf{S}} \| \mathbf{H} \) with \(\bar{d} \perp \hat{\mathbf{S}} \)

\[\chi = \text{Yosida behavior of spin susceptibility} \]

Spin singlet pairing

\[\chi \uparrow \]

Pair breaking by spin polarization

Spin triplet pairing

\[\chi \downarrow \]

No pair breaking for equal-spin pairing

\[\chi = \text{const. for } \bar{d}(\mathbf{k}) \cdot \mathbf{H} = 0 \]
Spin susceptibility & Rashba spin-orbit coupling

Spin susceptibility of non-centrosymmetric SC

$$\vec{g}_k = \vec{z} \times \vec{k} = \left(\begin{array}{c} k_y \\ -k_x \\ 0 \end{array} \right)$$
Gorkov & Rashba
Frigeri et al., Samokhin et al.

van Vleck type of spin polarization
not pair breaking

as in CePt$_3$Si, CeRhSi$_3$, CeIrSi$_3$

van Vleck type of spin polarization
not pair breaking

"transverse field" interband spin polarization
partially "transverse field" interband spin polarization limited

Spin susceptibility & Rashba spin-orbit coupling

Spin susceptibility of non-centrosymmetric SC

$$\chi / \chi_p$$

as in CePt$_3$Si, CeRhSi$_3$, CeIrSi$_3$

van Vleck type of spin polarization
not pair breaking

"transverse field" interband spin polarization
partially "transverse field" interband spin polarization limited

"transverse field" interband spin polarization
partially "transverse field" interband spin polarization limited

"irrespective of pairing symmetry"
Paramagnetic limiting

Spin susceptibility of non-centrosymmetric SC

\[\chi_{\mu\nu}(T = 0) \approx \chi_p \left\{ \delta_{\mu\nu} - \frac{g_\mu^2 g_\nu^2}{|\mathbf{g}|^2} \right\} \]

Gorkov & Rashba, Frigeri et al., Samokhin et al.

“Irrespective of pairing symmetry”

Paramagnetic limiting field

\[H_p = \frac{H_c(0)}{\sqrt{4\pi(\chi_p - \chi(0))}} \]

\[\mathbf{H} \perp \hat{z} \quad \text{paramagnetic limiting} \]
\[\mathbf{H} \parallel \hat{z} \quad \text{no paramagn. limiting} \]

Upper critical field and paramagnetic limiting

Comparison of different heavy Fermion superconductors

Paramagnetic limit

(BCS weak coupling)

\[H_P = 1.85k_B T_c / g\mu_B \]

Non-centrosymmetric superconductors

\[\text{CeIrSi}_3 \quad \text{CeRhSi}_3 \quad \text{CeCoGe}_3 \]

Highest \(H_{c2} \) among heavy Fermion materials
CeIrSi₃

Upper critical field and paramagnetic limiting

29Si-Knight shift

fits very well to theoretical expectations of paramagnetic limiting

Mukuda et al (2010)

Phase diagram - QPT

quantum critical fluctuations

unusual T-dependence of H_{c2} for $\vec{H} \parallel \hat{z}$

Tada, Fujimoto and Kawakami (2009)

Onuki et al.

Upper critical field and paramagnetic limiting

Comparison with the non-heavy Fermion variant

100 x smaller H_{c2}

orbital depairing relevant light electrons ξ

LalIrSi₃

Upper critical field and paramagnetic limiting

Onuki et al.

Upper critical field and paramagnetic limiting

$H_{c2}(T = 0) \parallel \hat{z}$

Onuki et al.

2.6 GPa

quantum critical fluctuations

unusual T-dependence of H_{c2} for $\vec{H} \parallel \hat{z}$

Tada, Fujimoto and Kawakami (2009)

Upper critical field and paramagnetic limiting

Upper critical field and paramagnetic limiting

Comparison with the non-heavy Fermion variant

100 x smaller H_{c2}

orbital depairing relevant light electrons ξ

LalIrSi₃

Upper critical field and paramagnetic limiting

Onuki et al.
Conclusion & Remarks

inversion key symmetry for Cooper pairing
without inversion symmetry → mixed-parity pairing

dominant unconventional component
rich phenomena and complex phenomenology

Intriguing novel features:

magnetolectric phenomena connection to spintronics and multiferroics Edelstein, Mineev, Samokhin, Eschrig, Aoyama, …

Josephson effect phase sensitive probes Hayashi, Linder, Subdo, Borkje, Klam, …

Coexistence of magnetism and superconductivity at quantum critical points Yanase, Fujimoto, …

Order parameter symmetry of unconventional superconductors

Identified order parameters

• High-T_c superconductors
 \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4, \text{YBa}_2\text{Cu}_3\text{O}_7, \ldots \)

• Ruthenate \(\text{Sr}_2\text{RuO}_4 \)
 spin singlet, \(d \)-wave pairing
 \(\psi(\mathbf{k}) = k_x^2 - k_y^2 \) 1D rep.

 \(\mathbf{d}(\mathbf{k}) = \hat{z}(k_x \pm ik_y) \) 2D rep.

Conclusions and final remarks

Superconductivity in strongly correlated electron systems likely unconventional
strong Coulomb repulsion favors angular momentum \(l > 0 \)
exotic pairing mechanisms in particular close to quantum critical points

Unconventional order parameters give rise to new phenomena
 quasi-particle properties, tunneling and Josephson effect
mixed phase, vortex matter, flux dynamics
superconducting multi-phase diagrams
magnetism and connection to competing phases
disorder effects

higher dimensional order parameters (\(\text{Sr}_2\text{RuO}_4, \text{U,Th} \text{Be}_13 \), \(\text{UPt}_3 \), …) are more interesting than one-dimensional ones (high-T_c superconductors, …)

Many chapters on unconventional superconductivity are still unwritten and new materials are discovered at an accelerating pace (sample purity is mandatory ! ?)