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Semiclassical Theory of Chaotic Quantum Transport
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We present a refined semiclassical approach to the Landauer conductance and Kubo conductivity of
clean chaotic mesoscopic systems. We demonstrate for systems with uniformly hyperbolic dynamics
that including off-diagonal contributions to double sums over classical paths gives a weak-localization
correction in quantitative agreement with results from random matrix theory. We further discuss the
magnetic-field dependence. This semiclassical treatment accounts for current conservation.
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scattered paths, differing slightly in their initial direc-
tions, was first pointed out by Argaman [9], who found tnm�E;B� is the transition amplitude between incoming
Among the prominent wave phenomena which consti-
tute mesoscopic behavior of small phase-coherent con-
ductors, weak localization (WL) represents one key
mechanism. This quantum effect shows up as a decrease
in the average conductivity with respect to the classical
one. WL, originally observed for light [1] and electron
waves [2] in disordered samples, has been extensively
studied during the last decade for electrons in ballistic
conductors, i.e., mesoscopic cavities or quantum dots
where the elastic mean free path is considerably larger
than the system size. WL is attributed to constructive
interference of electron waves which are either coherently
backscattered from impurities in disordered systems or
multiply reflected at the boundaries of ballistic devices.

In describing ballistic transport semiclassical methods
have attracted much interest, since they establish a direct
link between quantum transport and features of the cor-
responding classical dynamics, e.g., chaotic, integrable,
or mixed behavior [3,4]. This was demonstrated for clean
microstructures in a seminal semiclassical approach [5]
to the average reflection in the Landauer framework: the
WL peak profile (as a function of a magnetic field) was
shown to be Lorentzian for chaotic systems while being
linear for integrable geometries, probing in an impressive
way the imprint of the classical dynamics on a measured
quantum effect [6]. However, while the line shape of the
WL peak agreed with results from random matrix theory
(RMT), the approach turned out to be inadequate to give
the correct WL magnitude for ballistic systems, contrary
to the diffusive case [2]. This long-lasting problem to
semiclassically obtain the correct leading-order quantum
correction to the conductance is related to the so-called
diagonal approximation used. It is based on the consid-
eration of a restricted class of pairs of paths built from
each backscattered orbit and its time-reversed partner,
which moreover violates current conservation [7]. Simi-
larly, WL is not captured in a related semiclassical ap-
proach to the Kubo conductivity of ballistic systems [8].

The possible relevance of pairs of nonidentical back-
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agreement with RMT results by introducing a self-
consistently chosen electric field within the Kubo formal-
ism. Aleiner and Larkin [10] approached the problem of
ballistic WL using both perturbation theory and super-
symmetrical methods to derive a RMT result for the
conductance. However, their techniques still rely on the
presence of quantum scatterers (to regularize the Liou-
ville operator) and strictly speaking do not treat the case
of a clean, disorder-free, system. Their approach was
semiclassically interpreted in Ref. [11] arguing that
diffraction effects are relevant for ballistic WL.

We present an adequate, current-conserving semiclas-
sical treatment of the problem to quantitatively describe
the average quantum conductance in clean chaotic sys-
tems without relying on any diffraction or impurity scat-
tering effects. We consider the leading-order off-diagonal
contribution in a semiclassical loop expansion of the
Landauer conductance. The relevant terms consist of
pairs of orbits which are very close almost everywhere
(in configuration space), and differ only in whether they
undergo or avoid a self-intersection with a small crossing
angle. Analogous pairs of periodic orbits have recently
been used to derive the �2 term in the spectral form factor
of RMT [12]. They are ballistic analogs of corresponding
objects in the diffusive regime [13]. Our results for
transport are strictly derived for chaotic systems with
uniformly hyperbolic dynamics, but related results for
ballistic cavities show [14] that they apply to general
chaotic systems.

We first compute semiclassical conductance contribu-
tions beyond the diagonal approximation in the Landauer
framework and later return to the corresponding problem
in the Kubo formalism. Consider a two-dimensional,
classically chaotic clean cavity with two leads of width
w�w0� attached that support N�N0� open channels. The
Landauer formula for the conductance G then reads [15]

G�E;B� � 2
e2

h
T � 2

e2

h
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and outgoing channelsm and n at energyE in the presence
of a magnetic field B, and T �R� is the transmission
(reflection), T �R � N. We first consider the case of
time-reversal symmetry, B � 0, and return to the B de-
pendence of WL later. We assume that the ergodic time is
much smaller than the escape time � of the cavity and that
contributions from direct, lead-connecting processes are
negligible. Then the following RMT results for the aver-
ages of the transmission and reflection probabilities hold
which we give for later reference [16,17]:

hjtnmj2i �
1

N � N0 � 1
�

1
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Our conductance calculation is based on the semiclas-
sical representation of transmission amplitudes [18],

tnm ’ 


������������
� �h
2ww0

s X
�� �nn; �mm�

�� exp��i= �h�S�

j cos�0�nn cos� �mmM
�
21j

1=2
: (4)

The sum runs over all lead-connecting trajectories �
which enter into the cavity at �x; y� with an angle
sin� �mm � �mm�=�kw� and exit the cavity at �x0; y0� with
angle sin��nn � �nn�=�kw0�, where �nn � �n, and p � �hk is
the momentum; see Fig. 1(a). In Eq. (4), S� is the classical
action, M�

21 an element of the stability matrix, and �� �
sgn� �nn�sgn� �mm� exp�i�� �mmy=w
 �nny0=w0 
��=2� 1=4� is
a phase factor where �� contains the Morse index. An
expression corresponding to Eq. (4) holds true for rnm in
terms of paths reflected back.

The Landauer Eq. (1) contains products tnmt�nm which
semiclassically amounts to evaluate double sums over an
infinite number of trajectory pairs. In a treatment of the
energy-averaged conductance most pairs, consisting of
orbits with uncorrelated actions, will cancel each other
upon summation. The existing semiclassical approach [5]
is based on the diagonal approximation, where only pairs
of identical orbits or orbits related to each other by
time inversion are taken into account. Then the phase
FIG. 1. Sketch of an off-diagonal trajectory pair formed by a
self-intersecting classical orbit (solid line) with small crossing
angle " and a neighboring orbit (dashed) differing mainly in
the region around the self-intersection. The paths represent
orbits with many reflections at the system boundaries. They
contribute to the quantum transmission (a) and reflection (b).
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factors from Eq. (4) cancel, and one has jtnmj
2
diag � � �h=

�2ww0�
P

�� �nn; �mm� j cos�
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1.
First we give an alternative further evaluation of this

expression employing the sum rule [19]

X
��y0;�0n;y;�m�

��T 
 T��

jM�
21j

’
cos�0n cos�m

��E�
dydy0��T� (5)

for ergodic dynamics. The sum runs over all orbits with
periods T�, which begin and end in intervals dy0 and dy
around y0 and y with fixed orientations of the initial and
final velocities. ��E� � 2�mA is the energy surface in
phase space for billiards of area A. The survival proba-
bility ��T� � exp�
T=�� (for T ! 1) represents the ex-
ponential loss of particles with velocity v which escape
through the openings characterized by the escape rate

1

�
�
v�w� w0�

A�
�

�h
mA

�N � N0�: (6)

By applying the sum rule (5) to the diagonal contribution,
integrating over the lead cross sections, and including a
factor of 4 for each tupel � �nn; �mm� one finds for the average
of the transmission coefficient of an ergodic system

jtnmj
2
diag � 4

� �h=2
2�mA

Z
dTe
T=� �

1

N � N0
: (7)

Correspondingly, the average of a quantum reflection
coefficient reads in the diagonal approximation

jrnmj2diag �
1

N � N0
�

�nm
N � N0

: (8)

The semiclassical evaluation at this level yields the
�k � 0� term of the RMT result (2) and (3). Note that
the sum rule (5) allows us to compute individual trans-
mission and reflection coefficients, while Ref. [5] gives
results only for the entire classical transmission and
reflection.

Summing the first term in Eq. (8) over all channels
yields the classical reflection Rcl � N2=�N � N0�.
The second term in Eq. (8) arises from contributions to
jrnnj2 from backscattered orbits paired with their time-
reversed partners (elastic enhancement). This gives rise
to the diagonal contribution to WL, �Rdiag � N=
�N � N0� [5]. For N � N0 ! 1 one has �Rdiag � 1=2,
deviating from the RMT result �RRMT � 1=4.

In the following we go beyond the diagonal approxi-
mation and consider pairs of different trajectories as
sketched in Fig. 1 in coordinate space. They consist of a
long, self-intersecting orbit [solid line in Figs. 1(a) and
1(b)] with small crossing angle " forming a closed loop
and a second orbit in its close vicinity (dashed line). The
two orbits are traversed along the two open trajectory
segments, beginning and ending at (exponentially) close
points at the lead mouths, in the same direction but along
the loop in opposite directions. Given a self-intersecting
orbit with small " we showed that the neighboring orbit,
indeed, exists by linearizing the motion in its vicinity
206801-2
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[20]. The action difference �S�"� of the two orbits
is computed by expanding the action around the self-
intersecting orbit up to second order. The resulting for-
mula for �S, expressed through the elements of the
stability matrices for the loop and the two open segments,
is rather involved. Hence, we will focus from now on onto
chaotic systems with uniformly hyperbolic dynamics
characterized by a single Lyapunov exponent " and no
conjugate points. One then finds [20]

�S�"� �
p2"2

2m"
: (9)

Since a partner orbit is associated with each self-
intersection with small crossing angle, we compute the
conductance contribution from all such orbit pairs by
first summing for each orbit �� �nn; �mm� over all " self-
intersections and finally by integrating over ". Using
Eq. (9) for the action differences occurring in tnmt

�
nm

[with tnm from Eq. (4)] and the sum rule (5) one finds
for this ‘‘loop’’ contribution

jtnmj2loop ’
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with
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Z �
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d"P�";T� exp

�
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: (11)

In the semiclassical limit ( �h ! 0) the contribution from
small angles is dominant. In Eq. (11), the density P�";T�
of self-crossings with angle " for a long orbit of time T
can be expressed as an integral over all loops, associated
with the self-crossings, with times Tmin�"�< t < T:

P�";T� ’ 2mv2
Z T

Tmin�"�
dt�T 
 t� sin�"�perg; (12)

where perg � 1=�2�mA� is the ergodic classical return
probability. The lower cutoff accounts for the fact that a
minimum time Tmin�"� is required to form a closed loop
from two trajectories starting at the crossing with initial
angular difference ". Because of the exponential diver-
gence of neighboring orbits in a hyperbolic system,
Tmin�"� can be estimated from c ’ " exp�"Tmin�"�=2
with c of order �. Detailed numerical and analytical
studies [12] have shown that this, indeed, holds true and
that the number of crossings for T ! 1 is given by

P�";T�d"�
T2v2

�A
sin"
2

�
1
 2

Tmin�"�
T

�
d" (13)

with Tmin�"� � 
�2="� ln�"=c�. The integral (11) over the
leading-order T2 term in Eq. (13) is purely imaginary,
and thus its contribution vanishes. However, the contri-
bution to I�"; T� of the second, logarithmic term in
Eq. (13) is finite and gives 
� �h=2mA�T, independent of
". We then obtain from Eq. (10)
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Hence, the lack of short loops with t < Tmin�"� gives rise
to a negative quantum correction to the transmission.

Correspondingly, we find for the loop correction to the
average of the reflection coefficient

jrnmj
2
loop � 


1� �nm
�N � N0�2

: (15)

Here, as for the diagonal contribution (8), backscattering
into the same channel is twice as probable.

Summing over all initial and final channels we
obtain for the leading-order quantum transmission and
reflection �T loop � 
NN0=�N � N0�2 and �Rloop �

N�N � 1�=�N � N0�2. For N;N0 � 1 we have �Rdiag �
�Rloop ’ NN0=�N � N0�2 � 
�T loop. This implies con-
servation of the average current in the semiclassical limit.
Considering off-diagonal terms allows us to semiclassi-
cally computeWL corrections consistently in either trans-
mission or reflection. They precisely coincide with the
RMT result �T RMT � 
1=4 for N � N0 ! 1. Com-
parison with RMT for finite N;N0 suggests that the kth
order terms in Eqs. (2) and (3) correspond to semiclas-
sical k-loop contributions; the diagonal terms are consid-
ered as 0-loop and the orbits in Fig. 1 as 1-loop terms.

Since the closed loops formed by the off-diagonal orbit
pairs are traversed in opposite directions (see Fig. 1),
these orbits acquire an additional action or phase differ-
ence in the presence of a weak magnetic field B due to the
flux enclosed. For a uniform perpendicular field the action
difference is 4�AB='0, where A is the area of the loops
and '0 the flux quantum. We assume that the distribution
p�t;A� of enclosed areas for trajectories of time t is
Gaussian with a system specific parameter (,

p�t;A� ’
1������������

2�t(
p exp

�



A

2t(

	
: (16)

This is usually well fulfilled for chaotic systems
[3–5]. For finite B fields we have to perform an addi-
tional integration of the field-induced phase dif-
ferences over the area distribution:

R
1

1 dAp�t;A� �

cos�4�AB='0� � exp�
t=tB�, with the magnetic time
tB � '2

0=�8�
2(B2�. Up to time scales Tmin�"� a negligible

flux is enclosed by loops with small crossing angles. We
consider this by a respective time shift when inserting
exp�
t=tB� into the integral (12) over loop lengths:
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v2
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Z T
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dt�T 
 t�e
�t
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�
v2t2B
�A

sin"
�
T
tB

� �e
T=tB 
 1�

�
1�

Tmin�"�
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	�
:

(17)

In Eq. (17) we used Tmin�"� � tB. This corresponds to
the original assumption, Tmin�"� � �, in the range of
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interest, �� tB. Only the term linear in Tmin�"� con-
tributes to the integral (11), and we obtain from Eq. (10)
a Lorentzian field dependence of the transmission coef-
ficient: jtnm�B�j2loop ’ jtnm�0�j2loop=�1� �=tB�. A corre-
sponding result applies to jrnm�B�j2loop. This coincides
with the WL line shape obtained in the diagonal approxi-
mation [5], making clear why the diagonal terms already
qualitatively account for the WL peak profile. The
entire WL correction from the diagonal and off-diagonal
(1-loop) contribution then reads, in terms of the classical
reflection and transmission coefficients rcl and tcl,

�R�B� ’
tclrcl

1� �=tB
: (18)

Our refined semiclassical approach to the Landauer con-
ductance yields the correct WL magnitude and line shape.

For the Kubo conductivity the trace integral in the
Kubo formula is semiclassically evaluated by approxi-
mating the products of Green functions involved through
double sums over classical paths. Pairing identical orbits
(diagonal approximation) leads to the classical conduc-
tivity [4,8,9]; off-diagonal terms are again required to
compute WL. Consider a two-dimensional Lorentz gas as
a prototype of an extended clean chaotic system. It has
been experimentally realized by ensembles of antidots in
semiconductor heterostructures [21]. The antidots act as
classical scatterers leading to diffusive motion on long
time scales, while the dynamics for intermediate times is
governed by chaotic scattering.

Our semiclassical treatment of WL is based on orbit
pairs similar to the orbits discussed [Fig. 1(b)]: they
consist of a long self-intersecting path being backscat-
tered after multiple bounces with antidots with nearly
opposite momentum and a neighboring orbit following
the loop formed by the first in opposite direction. The
evaluation of the trace integral for such paths (involving
again cutoff times logarithmic in the crossing angle)
yields a negative quantum contribution �) at B � 0
[20]. This WL correction for chaotic systems with classi-
cal scatterers turns out to coincide with that from disor-
dered systems with quantum impurity scattering. We find

�) ’ 
�e2=�h� ln�t'=tel�; (19)

where t' is the phase-coherence time and tel the elastic
scattering time due to reflections at the antidots.
Diffusive motion, accounted for in a sum rule similar
to Eq. (5), is reflected in the logarithm. Equation (19)
coincides with the result of Ref. [10] for antidot systems
when t� is large compared to the Ehrenfest time.

To conclude, a semiclassical treatment beyond the di-
agonal approximation is appropriate to compute quantum
corrections to the average conductance in clean chaotic
conductors. Chaotic classical dynamics is responsible for
a logarithmic angular dependence of the classical return
206801-4
probability or the loops involved, respectively, which
turns out to be crucial for computing WL. This behavior
holds true also for nonuniformly hyperbolic systems [14]
indicating that the mechanism presented here is rather
general. While higher-order loop corrections are not neg-
ligible for the spectral form factor, the one-loop correc-
tions considered here play the dominant role for quantum
transport in the mesoscopic regime.
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