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Convolutional network

• Defined with a directed graph

• node ↔ image, edge ↔ filter



Linear and nonlinear 
computations

• At edge ab
– convolution by wab

• At node a
– addition of results
– nonlinear activation function

Ia = f wab ∗
b
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Relation to neural networks

• Can be viewed either as a 
generalization or as a specialization.

• Gradient learning can be done via 
backpropagation.



Properties suited for low-level 
image processing

• Translation invariance
– inherited from the convolution operation

• Locality
– filters are typically small



Visual object recognition

• handprinted characters
– LeCun, Bottou, Bengio, Haffner (1998)

• objects
– LeCun, Huang, Bottou (2004)



High-level vs. low-level

• High-level vision
– convolution alternates with subsampling

• Low-level vision
– no subsampling
– possibly supersampling



Learning image processing

• Based on hand-designed features
– Martin, Fowlkes, and Malik (2004)
– Dollar, Tu, Belongie (2006)

• End-to-end learning



Neural networks for image 
processing

• reviewed by Egmont-Petersen, de 
Ridder, and Handels (2002)

• active field in the 80s and 90s
• ignored by the computer vision 

community
• convolutional structure is novel
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QuickTime™ and a
TIFF decompressor

are needed to see this picture.

SBF-SEM

• Denk & Horstmann, PLOS Biol. (2004).
• Briggman & Denk, Curr. Opin. Neuro. (2006).



The two problems of 
connectomics

• Recognize synapses
• Trace neurites back to their sources

Anna Klintsova



What is connectomics?

• High-throughput generation of data 
about neural connectivity
– data-driven

• Mining of connectivity data to obtain 
knowledge about the brain
– hypothesis-driven



Nanoscale imaging and 
cutting

• Axons and spine necks can be 100 nm 
in diameter.

• xy resolution: electron microscopy
– Transmission EM (TEM)
– Scanning EM (SEM)

• z resolution: cutting



C. elegans connectome

• list of 300 neurons
• 7000 synapses
• 10-20 years to find
• not high-throughput!



Near future: teravoxel datsets

• one cubic millimeter
• entire brains of small animals
• small brain areas of large animals
• speed and accuracy are both 

challenges



QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.
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Binary image restoration

• Map each voxel to “in” or “out”



Training and test sets

• rabbit retina (outer plexiform layer)
• 800×600×100 image at 26×26×50 

nm 
• boundaries traced by two humans

– disagreement on 9% of voxels
– mostly subtle variations in boundary 

placement
• 0.5/1.3 megavoxel training/test split



Baseline performance

• Guessing “in” all the time: 25% error
• Simple thresholding

– training error 14%
– test error 19%

• Thresholding after smoothing by 
anisotropic diffusion 
– not significantly better



CN1: a complex network

• 5 hidden layers, each containing 8 images



Gradient learning

• each edge: 5×5×5 filters
• each node: bias
• 35,041 adjustable parameters
• cross-entropy loss function
• gradient calculation by backpropagation



QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.



CN1 halves the error rate of 
simple thresholding

• The test error is about the same as the 
disagreement between two humans.

• The training error is less.
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Model of image generation

• Clean image x is drawn at random
– Image prior p(x)

• and corrupted to yield noisy image y
– Noise model p(y|x)

• restoration by MAP inference

argmax
x

p x y( )



What image prior?

• Intuition
– Geman and Geman (1984)

• Unsupervised learning
– Examples of noisy images only
– Roth and Black (2005)

• Supervised learning
– Examples of noisy and clean images



Markov random field

• Prior for binary images

• Translation-invariant interactions
– filter w
– external field b

p(x) ∝exp 1
2

xi w ∗ x( )i + bxi
i
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MRF learning

• maximum likelihood
– Boltzmann machine
– MCMC sampling

• maximum pseudolikelihood
– Besag (1977)

p xi | x−i( )



MRF inference

• maximize the posterior

• simulated annealing
• min-cut algorithms

– polynomial time for nonnegative w
– Greig, Porteous, and Seheult (1989)
– Boykov and Kolmogorov (2004)

p(x | y) ∝exp 1
2

xi w ∗ x( )i + bixi
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MRF performance is similar to 
thresholding

• Pseudolikelihood might be a bad 
approximation to maximum likelihood

• Min-cut inference might not perform 
MAP, if the weights are of mixed sign.

• Maximizing p(x,y) might be misguided



Conditional random field

• Learn by maximizing the posterior
• Pseudolikelihood was really bad
• Zero temperature Boltzmann learning

– min-cut for inference
– contrastive update

– constraint w to be nonnegative

Δw j ∝ xi+ j xi
i

∑
0

− xi+ j xi
i

∑
∞



Contrastive Hebbian learning



CRF performance is similar to 
thresholding

• Perhaps the CRF cannot represent a 
powerful enough computation.

• To test this hypothesis, try a 
convolutional network with a simple 
architecture.



CN2: simple network

• Mean field inference for the CRF

μi = tanh w ∗ μ( )i + yi + b( )



Nonnegativity constraints hurt 
performance

• CN2+ performed the same as the CRF 
and thresholding.

• CN2 performed better than 
thresholding, but not as well as CN1



Filter comparison



Comparison of restoration 
performance



Restored images
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Image restoration and 
segmentation



A problem due to inadequate 
image resolution

• Two objects (“in” regions) may touch.
• Not separated by an (“out” boundary).



Supersampling



Segmented images
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The cost of convexity is 
representational power.

• MAP inference for an CRF with 
nonnegative interactions is a convex 
optimization.

• The CRF was worse than CN2, and no 
better than thresholding.

• This was due to the nonnegativity
constraint.



Bayesian methods have 
technical difficulties.

• MCMC sampling is slow
• Pseudolikelihood

– trains the CRF to predict one output voxel
from all the other output voxels.

– This is evidently irrelevant for predicting 
the output from the input.

• Other approximations may have 
problems too.



Discriminative training may 
not be better.

• A discriminatively trained CRF was 
about the same as a generatively 
trained MRF.



Convolutional networks avoid 
Bayesian difficulties

• Their representational power is greater 
than or equal to that of MRFs.

• The gradient of the objective function for 
learning can be calculated exactly.

• Theoretical foundation is empirical error 
minimization.
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