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Scientific Goals 
Nonequilibrium processes with a wide range of length and time 
scales: Contact, adhesion, friction, lubrication, multiphase flows

Self-affine fractal surface and distribution of contact areas

Scientific Goals
Nonequilibrium processes with a wide range of length and time 
scales: Contact, adhesion, friction, lubrication, multiphase flows

Problems where interfaces or small scale singularity affects large 
scale behavior

Require algorithms that are dynamic, finite temperature, nonlinear in 
continuum region, treat both solid and fluid phases and interfaces

Nanomotor (C. Denniston & MOR)
Model contact region atomistically, 
elastic deformations with finite-elements, 
constrain deformations in overlap region

Streamlines in L~100nm channel with moving 
top wall.  Atomistic solution in <1% of area 
(green) removes continuum singularity

Linking Atomistic and Continuum Regions
Three overlap regions where solve both continuum and MD

Outermost → Continuum solution gives MD boundary condition
Innermost → MD gives continuum boundary condition
Middle → Two solutions equilibrate independently

Fluids: Apply boundary conditions to velocities
Solids: Apply boundary conditions to displacements

Linking Atomistic and Continuum Regions
Three overlap regions where solve both continuum and MD

Outermost → Continuum solution gives MD boundary condition
Innermost → MD gives continuum boundary condition
Middle → Two solutions equilibrate independently

Fluids: Apply boundary conditions to velocities
Solids: Apply boundary conditions to displacements
Fluids: S. T. O’Connell & P. A. Thompson, Phys. Rev. E52, R5792, (1995)

Why not use forces instead of displacements/velocities?
E. G. Flekkoy, G. Wagner & J. Feder, Europhys. Lett. 52, 271 (2000)

Fluids – Position of boundary is undetermined 
→ drifts in response to fluctuations or systematic errors

General – Any error in constitutive relation creates problems in 
overlap region

Less sensitive when match displacements 
any global factor in stress is irrelevant

Fluid Continuum – Incompressible Navier-Stokes
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Projection method (time splitting, staggered grid):

02 =∇−∇⋅+
Δ

nnn
n*

uuuu-u ν
FDt

01 1 =∇+
Δ

+
+

n

FD

p
t ρ

*1n u-u
0=⋅∇ +1nu

,1 *u⋅∇
Δ

=∇ +

FD

n

t
p ρ 01 =⋅ +npn



2

Navier slip boundary condition

S

u||

Slip length
Knowledge of S and μ completely characterizes 
a simple fluid.

Find can apply within atomic distance from solid
and S ~ atomic size in most cases

u║|w=S ∂⊥u║ |
w 

∝ stress

wall

Why parametrize instead of finding S, μ on the fly?
Substantial computational overhead → thermal fluctuations
When simple parameters aren’t good, need explicit atoms

Atomistic Region → Molecular Dynamics

σ: Characteristic length, particle diameter.
ε:  Characteristic energy. 
τ≡(mσ2/ε)1/2: Characteristic time of the potential.
rc: Cut-off distance, usually 2.2σ for fluids
Integrate with velocity-Verlet, time step ΔtMD=0.005τ

Determine parameters for fluid continuum model:
Temperature 1.1ε/kB, density ρ=0.81mσ-3, viscosity μ=2.14ετσ-3.
Wall (111) surface of fcc crystal
Wall-fluid interaction εwf controls flow boundary condition (BC)    

εwf=0.95ε → no-slip BC, S=0

Truncated and shifted Lennard-Jones potential

Single Fluid Slip
• Bulk flow extrapolates (lines) 

to u(0) ≠ uwall (shaded bars)
us ≡ u(0)-uwall

• Define local η from local v
η∂zvx(z)=σxz

(or finite difference)
• Then find Navier slip condition

• S> 0 slip,  S< 0 stick
• S/a typically ~-2 – 20 can be 

much bigger for polymers
(Thompson & Robbins PRA41, 6830 (1990))

monomers

16-mers

16-mers

us

us
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Continuum:  Incompressible Navier-Stokes (Projection method)
Atomistic: Molecular dynamics of Lennard-Jones atoms, no-slip

Potential: U(r) =4ε((σ/r)12 - (σ/r)6] ;   Units ε, σ

Hybrid Algorithm Applied to Fluids
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MD → Continuum

Continuum → MD

Potential confines 
particles at y3

Insert/remove 
number of particles 
equal to net flux

Velocity Coupling Scheme
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C->P: Velocity constraint in cell J:

P->C: uv >⇒<
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Integral of Lagrangian function
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Equation of Motion for Constrained Particle
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The equation of motion for the particle i:

Finite Difference Scheme for the equation of motion:
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ΔtFE=40ΔtMD → Staggered time grid
Average MD over ΔtFE to fix continuum boundary
Extrapolate continuum to integrate next MD interval
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Particle Confinement and Mass Flux
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Schematic of simulation

Continuum 

MD

Overlap 

Still Wall 

Moving Wall U 

Dynamic Couette Flow
Hybrid solution (symbols) tracks 
full continuum (lines) as a function 
of time after motion starts

X. B. Nie, S. Y. Chen and M. O. 
Robbins, J. Fluid Mech. 2004.

Couette Flow with Velocity Slip
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Hybrid vs. Pure MDHybrid vs. Continuum with no-slip

Hybrid vs. MD    Hybrid vs. Continuum

Flow past a rough wall
Continuum 

MD

Overlap 

Still Wall 

Moving Wall U 

Streamlines from hybrid ≈ MD
includes flow between regions

Continuum fails because doesn’t
match complex boundary
condition around bump

Vertical Velocity for Rough Wall

Statistical uncertainties are about 0.003       .τσ

Including Heat Flux

Heat capacity Cp, for 
incompressible fluid
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Determination of Thermal Conductivity λ
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Heat current

Site energy

Thermal conductivity λ is calculated using Green-Kubo formula
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Coupling Scheme: Momentum and Energy

)(1
, t

N MDJ
i

i
J

uv =∑
MD Continuum :

Continuum MD (Constraint Dynamics and velocity rescaling):

i
CJ

i Dt
tD

ς+=
)(,u

x&&

∑
=

−=
JN

i
i

J

i
i mNm 1

1 FFς

∑
=

+−=
JN

i

CJ
i

J

i
i Dt

tD
mNm 1

, )(1 u
FFx&&

Mass flux across the interface :
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Temperature in Steady State Couette Flow

At boundaries of overlap region:
rms MD veloc. ⇔ continuum T

Hybrid solution (symbols) tracks 
full continuum (line)
Smooth variation in overlap region
Allows determination of Kapitza
resistance at solid-fluid interface

T*=(T-T1)/(T2-T1)

T2

T1

Heat Flow with Roughness (U=0 σ/τ)
0.28Lx

0.72Lx0.5Lx

Heat Flow with Roughness (U=1 σ/τ)
0.28Lx

0.72Lx0.5Lx

Channel Flow with Roughness (U=1 σ/τ)
0.28Lx

0.5Lx 0.72Lx
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Singular Cavity Flow

Corner flow ⇒Molecular scale
influences macroscopic forces

No-slip boundary condition  is 
discontinuous at corners a, b
⇒Stress diverges as 1/r
⇒Log divergence in total force

on wall

Only need atomic information near corners
⇒ Use hybrid method that treats bulk with continuum  

Navier-Stokes equations, corners with MD

Continuum approach: Navier-Stokes + no-slip boundary condition (bc)     
Usually phenomenological no-slip bc has little effect at large scales
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Coupling in Overlap Region
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Continuum ⇒ MD
1) Average tangential MD velocity in 
shadowed bins forced to NS value:

2) Normal MD velocity constrained by 
matching mass flux at boundary

Have tested:
Agrees with pure MD calculations.
Independent of  continuum grid 1, 3 and 6σ and specific set of 
constrained velocities (within MD noise)

MD ⇒ Navier Stokes
Mean atomic velocity gives 
boundary condition to NS eqs.

X.B. Nie, S.Y. Chen and M. R. Robbins, Physics of Fluids 2004.

Comparison With Full MD Near Corners

τσ35.0=U
σ125=L

Velocity

Stress

NS and Hybrid Velocities Near Corners

Effect like slip BC on scale S
S is larger of ~2σ and U/0.1σ/τ

discreteness shear-thinning
Hard to use effective Navier BC: spatially varying, nonlinear

hybrid

Stresses Near Corners

50=eR

10=eR

Treating Large Range of Length Scales
Problem: Size of atomistic region independent of system size L 

BUT time to equilibrate NS flow field grows with L.
Initial approach limited to L~0.1μm.

Solution: Multigrid and time approach
Integrate to steady state at each scale with optimum time step.
Iterate between scales till self-consistent (~10 times).

Result: Size limited only by onset of non-steady, turbulent flow
Show results for 0.1mm cavities.
> 10 orders of magnitude faster than fully atomistic
~ 20 minutes per iteration
Use average over 16 MD representations to accelerate     
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Schematic of Local Refinement

M M

Flow at each scale reaches steady state at its own 
characteristic time

Coarse ->Fine: Prolongation. Fine->Coarse: Restriction.

Multiscale Solution for Re=6400 (U=0.068σ/τ)

• Ten grid levels, largest 256x256, others 64x64, smallest mesh 0.95σ 
• Dashed lines: the regions expanded in successive plots. Final plot → MD region
• Stokes equations→ bottom corners self-similar under mag. by ~16 (red arrows)

This scaling is cut off by atomic structure.
• Computational time saving more than 1010 over fully atomistic.

211

23 25

2927

0.1mm

Stress along the moving wall
Three regions contribute to force F:

Atomistic, Stokes, high Re             Re=ρUL/μ

Re=25 – 6400

U=0.27 σ/τ

Re=6400

U=0.27 σ/τ

Breakdown of Stokes for r<S – atomistic or r>RI ≡μ/ρU – inertial
Little change for r < RI as increase Re by increasing L
Large r contribution gives change in F for fixed U, atomic props.         
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Total Force on the Moving Wall
Re - only parameter in continuum theory
Find strong variation with U at fixed Re, atomic model

Re=400

U (σ/τ)
○ 0.27
□ 0.68

Refff
U
F

StokesS ++=
μ
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Re
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Re98.185.3
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r<S    S<r<RI RI<r

fS given by assumption that stress saturates at S
S= 0.3+ 7UtLJ;            fRe is phenomenological fit

Moving Contact-line Problem
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Fluid 1 Fluid 2

No-slip condition also leads to 1/r 
singularity at moving contact line
Interface bent by viscous stress
θ(r)=θ0 + Ca (Q+ln(r/S))

where Ca=μU/γ, Q, S, consts. 
Contact line affects entire flow field

Solve in transformed coordinate 
system with fixed multigrid

Interface: xs=f(t,ys)
x’=x-f(t,y), y’=y

θ

Hybrid Scheme for Two Phase Flow

1) Fix the boundary shape, let 
system reach steady state.

2) Correct boundary shape 
according to the new interface 
and then  repeat the first step 
until the the boundary and 
interface shapes are consistent. 

MD 

Continuum 

C->P 

P->C 
Overlap 

Procedure to get steady MD solution:

Must fix interface angle, 
position in addition to 
velocity 

P⇒C: Find location where 
concentration changes to 
determine angle & position

C⇒P: Add forces that 
enforce interface position at 
outer edge Displace atoms to 
maintain location in middle

Originally C had no-slip at 
fluid-fluid interface,
but found slip length ~5.5σ.
Had to change C code
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Typical Results of Full Flow Field
• We have developed a multiscale hybrid method that can 

simulate a macro-length scale flow while still resolving the 
atomistic structure in a small region.  Treats mass and heat 
flux

• The ability to resolve the stress on all scales enables the first 
calculation of the drag force on the moving wall in cavity 
flow. The force depends on three dimensionless numbers:

• Algorithm adapted to dynamic interfaces
Initial results for contact line motion will be extended to study 
interface shape and stress over wide range of length scales.

Summary for Fluid Flow
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Multi-scale modeling of contacts 
between self-affine surfaces

Contact geometry and stresses central to friction & adhesion
Real surfaces often rough on many scales → self-affine

Surfaces steeper at smaller scales, fractal contact regions,
most connected regions of contact at resolution of calculation
⇒Not clear continuum mechanics applies

H=0.5

Self-affine surface Contact (blue) of self-affine surface

Hybrid model for 2d self-affine surfaces
Easily treat volumes with ~108 atoms

At edge of overlap region 
MD and FEM 
displacements provide 
BC’s for each other

FEM->MD

MD->FEMMD

overlapFEM

Continuum Treatment of Solid
• Linear finite elements
• Explicit dynamics for nodes 
• Newmark method ΔtFE ~10 ΔtMD , Langevin thermostat
• Staggered time grid as for fluids
• Constitutive law – quadratic in strain

– accurate to 2% in each strain component

Atomistic Treatment of Solid
• Two dimensional triangular lattice
• Lennard-Jones interactions between neigbors
• Velocity Verlet, Langevin thermostat
Show low T results to minimize noise, but works at high T

Quasistatic Test
Cylindrical Contact

Mesh, atomistic & overlap

Lines – pure MD

Symbols – hybrid
Filled – MD region
Open – FEM region
▲ - σyy ● - σxx

■ -σxy

line A

line B
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Quasistatic Test
Cylindrical Contact

Mesh, atomistic & overlap

Lines – pure MD

Symbols – hybrid
Filled – MD region
Open – FEM region
▲ - σyy

line C

Scaling of Contact Width a with Load

― Continuum theory
□,○ All MD
x,* Hybrid

Excellent agreement of
hybrid with MD

Deviate from continuum
due to anelastic response
and atomic discreteness

dense 
cylinder

commensurate 
cylinder

Contact Area vs Load for Self-Affine Fractal

1024 atomic spacings in 
each dimension

Roughness exponent 0.6
Voss midpoint algorithm
Excellent agreement of
hybrid with MD

Only deviation due to 
activated plastic event.
See fluctuations in time 
of occurrence for all MD

― Continuum theory
□ All MD
x Hybrid

Multiscale simulation of shear wave in solid

Apply pulse

Fixed 
wall

Hybrid and full MD 
results track well as 
long as dispersion of 
pulse is small

Multiscale simulation of shear wave in solid

― Full MD
□ Hybrid
x FEM

Deviations from full MD are 
like those caused by coarse 
resolution in FEM.

Percentage of energy reflected 
at overlap region comparable to 
that from resolution change in 
FEM

Small for pulse > ten times 
mesh size 4σ

11σ, 22%

22σ, 1.1%

44σ, 0.3%

Multiscale simulation of dynamic friction
L=1024 dnn U=0.01σ/τ
N=204.8ε/σ

Flat on flat geometry

Flat on self-affine rough 
surface 

― Full MD ▲ Hybrid
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Friction vs. Load for Rough Surface
L=1024 dnn U=0.01σ/τ  − Not in quasistatic limit

Static Friction:
x-Hybrid, □ Full MD

Kinetic Friction:
*Hybrid, ○ Full MD

Smooth surfaces, Δ=0.26, little plasticity
Δ=rms surface slope
L= # atoms on side

Results nearly converged 
for L=4096 atoms ~1μm 

Find A ∝ W, but ratio 2-3 
times continuum

Plastic results for Δ=0.78 show size effects
• Still have A∝W, but

L dependent
• Surface flattening 

before dislocations 
important

L
x  512
▲1024
□ 2048
○ 4096

A/A0

W
/A

0E
’

Friction forces

○ comm.
▲□ incomm.

commensurate:
plastic ≈ elastic

incommensurate:
plastic < elastic

because contacts 
bigger, forces 
average to zero

Conclusions for Hybrid Method
• Have robust multiscale method for both fluids and solids 
• Implemented for quasi-2D flows near solids

→ lengths to ~1μm for dynamic cases, ~1mm for quasistatic
• Implemented for quasi-2D contact between

self-affine surfaces
• Incorporated heat flux for sheared fluids
• Comparisons to MD and continuum results show limitations of 

continuum approximation at interfaces
→Position and rate dependent slip near solids
→Sensitivity of contact area and stress to atomic scale structure,

unexpected mode of plastic deformation at interface
• First calculation of drag force in singular corner flow

→ integrate stress over 5 orders of magnitude in length
• First calculation of atomistic effects in self-affine contact

→ rough over 4 orders of magnitude in length scale


