
1

Multiscale Modeling

Means many things to many people and rapidly developing field.  
Goal is to give idea of issues and approaches and some lessons 
learned.
Collaborators: C. Denniston, S. Hyun, X. Nie, B. Luan, L. Pei,

J. Rottler, S. Chen, J. F. Molinari, J. A. Harrison, N. Bernstein
Sponsor:  National Science Foundation DMR and CMS
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Why Multiscale?
Behavior controlled by processes on wide range of lengths and times
0.1to 1 nm – chemical bond, size of ions, polymer diameter, …
1nm to 1μm – size of colloid, polymer, actin, microtubule, …

size of defect structures: fibrils, dislocations, surface roughness
1μm to 1mm – microstructure – collections of defects, domains,

scale of cells, heterogeneity in composition, …
large scales – hydrodynamic degrees of freedom, global geometry, …

Polymer fracture:
nm polymer → 10nm fibril →
10μm craze → 10mm crack

Why Multiscale?
• Behavior controlled by processes on wide range of lengths and times
• Want to include relevant physics from all scales 
• Usual approach → Choose scale of interest and use appropriate 

method for phenomena at that scale.  Model at that scale often 
chosen phenomenologically or fit to experiment.

• Multiscale approach → Couple calculations at different scales
Two basic paradigms:

Sequential or hierarchical – Do separate calculations at each scale,   
pass the results between scales → coarse-graining or fine-graining

Concurrent – Do simultaneous coupled calculations with different
resolutions in different regions 

Sequential best when clear separation between processes at different 
scales, relatively homogeneous large scale systems.

Wide range of single scale methods

Multiscale methods couple descriptions either 
sequentially or concurrently
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Single Scale Methods
• Quantum Monte Carlo – Full quantum treatment of electron 

interactions, and perhaps even quantum treatment of nuclei.  
Exponential increase in computational effort with number of particles 
→ limited to 10-100 quantum particles.

• Electronic structure calculations – Treat quantum mechanical nature of 
electrons finding ground state for fixed nuclear positions.  Algorithms 
that are linear in # of electrons allow thousands of atoms to be treated 
for picoseconds.  Tight-binding treatment → larger systems and times

• Classical Molecular Dynamics and Monte Carlo – Coarse-grain to 
follow only the motion of atoms, including effect of electrons through a 
classical potential energy that depends only on the positions of nuclei.  
Depending on complexity of potential energy can treat 107 to 109 atoms 
for nanosecond and longer times.  
Coarse-grained potentials lump atoms together, follow these groups  
Example: Lump carbon and hydrogens into a single “united atom” or 
represent a protein by the carbon atoms along its backbone.

United-Atom Force Field PMMA CH3 – X →50-fold faster
Chemically motivated 

potential form

Still coarser scales –
bead-spring model 
captures bending 
and connectivity

Single Scale Methods – coarser scales.
• Particles representing entire polymers, fluid elements, galaxies, …

Solve dynamics with MD or on lattice (Lattice Boltzmann Method)
Know that if equations obey conservation laws, particles will follow
hydrodynamic equations → solve Navier-Stokes, magnetohydrodynamics

• Slip-link models for polymer dynamics
• Discrete defect dynamics – Identify lines or surfaces where there is a

defect in the order parameter: dislocation, interface, …
Average out atoms, follow dynamics of defect

• Phase field models – Define local free energy that depends on order 
parameter:  concentration, magnetization, nematic director, …
Follow dynamics of order parameter assuming overdamped dynamics

• Purely continuum treatment:
Elasticity of solids, Navier-Stokes equation for fluid, …

Coarse Graining in Sequential Coupling
Coarse-graining:  Formally want to integrate out fine-scale degrees 

of freedom (DOF) as in Renormalization Group 
Divide DOF into coarse – labeled I, and fine – labeled i
For equilibrium partition function can formally write:

Z=ΣI,i exp(-βU(ui,uI)) = ΣI exp(-βU’(uI))
where exp(-βU’(uI)) ≡ Σi exp(-βU(ui,uI)) 

However:
Summation can not be done analytically in most cases of interest, 
Numerical approximations are difficult
Dynamic treatments are even harder
Effective potential U’ depends on temperature, density, …

while want potential that is transferable to different cases

Common Method of Sequential Coupling
Calculate some quantity with fine-scale description 

– eg. pair distribution function, energy, viscosity, elastic 
constants, pressure-volume curve, Kuhn length, order parameter

Adjust parameters of coarser description to reproduce fine-scale data
→ Bad parametrization may miss physics 
→ Quantities not included in fit may be inaccurate
→ Very different parameters may fit fine-scale data equally well

Best if can calculate parameters directly 
– i.e. viscosity, elastic moduli, boundary conditions

(Historically this approach was often followed using experimental 
data to calibrate the description)

Fine-graining requires way of reinserting fine-scale structure – not 
unique in general, so must allow re-equilibration.  Can equilibrate 
at coarse scale, reinsert atoms to find polarizability, …

Connecting Atomic Simulations to Continuum Theory
Continuum mechanics needs:

Boundary conditions (BC)    +    Constitutive Relations
velocity or stress                          stress vs. strain (rate)
slip, friction, adhesion                 viscous, elastic, plastic

Traditionally:
Assume no-slip for fluids,           Simple analytic functions
simple friction and                       Linear response gives
adhesion laws for solids.             viscosity or elastic modulii

→ Down to what scale do continuum equations apply?
→ Is there new mesoscopic behavior between atomic and bulk?
→ Do usual assumptions for BC and constitutive laws work?

Continuum assumes homogeneity, short-range correlations
Simple molecules → Continuum good at a few diameters (3-10)
Polymers → New behavior on entanglement scale
Near phase transition, correlation length sets larger scale
Interfacial behavior may be more complicated than assumed
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• Conservation of each species i:
ρi-mass density, uiα− velocity

• Conservation of momentum:
σαβ=stress tensor, σαα/3=-p, p-pressure

• Constitutive relation for stress:
ηb - viscosity, u=mass-averaged velocity

• Need BC’s:  uiz=0, σzz=const
ux(0) = slip velocity ?
uix(0)-ux(0) = surf. diffusion?
σxz(0)-σxz(wall) = surf. stress?

• Nanofluidics applications → nearly molecular scale flow

Continuum Equations For Fluids –
Steady, low Re, low Ma, Newtonian flows

0)( iαα =∂ uρi

0βαα =∂ σ

xzbz u∂=ησ x

x

z

Ls

ux

wall at z=0

Complex Fluids ⇒ Internal Structure

• Constitutive relations and boundary 
conditions also depend on the internal 
structure  ⇒ order parameter φ

• Convective-diffusion equation describes time 
evolution of φ.

• Additional equation requires knowledge of 
chemical potential μ(φ,ρ) and diffusivity Γ.

• Stress may also involve μ(φ,ρ).

μut
2)( ∇Γ=∂+∂ αα φφ

Basics of a Molecular Dynamics Simulation
Choose initial positions & velocities of atoms
Integrate Newton’s equations numerically

⇒ Calculate forces from positions and potentials   
⇒ Calculate positions & velocities after time step dt
⇒ Calculate new forces and repeat

• As system evolves
→ calculate average experimental quantities

(stresses, strains, pressure, volume,
temperature, energy, heat flow, work, …)

→ follow detailed motion of atoms
• Can work in any ensemble or geometry:

Fix energy or temperature, stress or strain, 
number or chemical potential, …

Potentials Between Atoms or Molecules
Ball and spring models ⇒ Tomlinson, Frenkel-Kontorova, etc.
Generic pair potential ⇒ Lennard-Jones potential 4ε[(σ/r)12-(σ/r)6] 
Effect of neighbors on bonds ⇒ Embedded atom method for metals

⇒ Tersoff, Brenner, Harrison potentials for H, C, Si, …
Electronic energies ⇒ Find ground state energy of electrons

using tight-binding or density functional method
No good method for including excited states (triboluminescence, etc.)

or of treating atomic dynamics quantum mechanically (T> ΘD/3)
More realistic potential ⇒ can ask more specific questions,

⇒but takes longer to calculate force and dt often decreases
Today’s workstation:                total #atoms       time     length
Quantum electrons                             1000         10ps 5nm
Realistic hydrocarbons                    10,000       100ps    10nm
Embedded atom method          10,000,000       100ps       100nm
Lennard-Jones                          10,000,000           1ns       100nm

Simulations: Generic behavior →simple potential
•Spherical molecules, Lennard-Jones (LJ) interactions:

VLJ=4εij [(aij/r)12-(aij/r)6]   for r<rc (usually rc=21/6a)
•Add unbreakable FENE bonds to make n-mers
•Solid walls → atoms held to sites by springs

(111) surface of fcc crystal here
•Characteristic LJ energy and length depend on species

w – solid wall, 1 and 2 – fluid atoms
Vary ε12, a12, make fluids miscible or immiscible
Vary εIw, aIw, change wetting, flow BC

•Units: average a, ε, m, and τ=a(m/ε)1/2

•Concentration gradients
with Maxwell demon wall
→ one way transport

x

z
y

Single Fluid Structure
• Near walls – layering

& in-plane order
Exponential decay over
correlation length ξ.
Initial peak set by wall
interactions

• To compare with continuum
average over layers – mesoscale model 

• Choice of wall position z=0 is not unique at molecular level.
Choose center of first layer of solid atoms
Midpoint between solid and fluid layer gives same physics,
different numbers

• Polymers, complex fluids, generally less layering can use 
continuous variables to smaller scale



4

Navier slip boundary condition

Ls

u||

Slip length

Knowledge of Ls (ρ), p0(ρ) and η(ρ) completely 
characterizes a simple fluid.

Find can apply within atomic distance from solid
and Ls ~ atomic size in most cases

In continuum equations apply BC at plane
→ “sharp interface” BC

u║|w=Ls∂⊥u║ |
w 

∝ stress

wall

Single Fluid Slip
• Bulk flow extrapolates (lines)

to u(0) ≠ uwall (shaded bars) 
us ≡ u(0)-uwall

• Define local η from local v
η∂zvx(z)=σxz

→ bulk after a few diameters
• Then find Navier slip condition

• Ls> 0 slip,  Ls < 0 stick
• Ls/a typically ~-2 – 20 can be

much bigger for polymers
Not length scale of deviation from bulk

monomers

16-mers

16-mers

us

us

∫
∫

−≡

=−∂=
b

w bs

bxzs
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b zs

dzL
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ηη

ησ

exponential 
decay

⇒⇒Deviations from noDeviations from no--slip BCslip BC
Viscosity Viscosity ≈≈ bulk within ~ bulk within ~ σσ

WallWall⇒⇒InducesInduces layeringlayering
Density vs. height z between wallsDensity vs. height z between walls

Thompson & 
Robbins, Phys. 
Rev. A41, 
6830 (1990)

Small gap – fundamental change in behavior
Glass transition as 
wall spacing decreases

Viscosity and relaxation time 
diverge as:  lower T, increase 
pressure or decrease number 
of layers

When thickness drops below 2 
to 6 layers ⇒ solid layer

Yield stress corresponds to 
static friction

Boundary Conditions For Mixtures?
•What “average” velocity should we apply the 
boundary condition to?

•Koplik and Banavar, PRL 80, 5125 (‘98).
→v1=v2 at wall, both vanish.

•Ganesan and Brenner, PRL 82, 1333 (‘99); PRE 61, 6879 (‘00).
→If true, not a useful B.C. for macroscopic equations: D=0.
•Denniston and Robbins, PRL 87, 178302 (‘01)
→Diffusion leads to v1≠v2, mass-averaged v satisfies Navier BC

•What about differential wetting of solid?

•Mass average u= (ρ1u1 + ρ2u2)/ ρ

•Number average?

•Volume average?

Diffusion in Concentration Gradient

JA=ρA(uA-u)=-ρD∇cA

Simulation times ~ μs.

Maxwell Demon’s Wall

Lennard-Jones interactions

x

z
y

Diffusion → bulk on same 
length as viscosity → bulk
Stick → D lower at wall

stick

slip
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Wetting + Conc. Gradient → Couette or 
Poisseuille-like flow between static walls

1 rich
2 rich

z/a                              z/a

x

z

us

us

Marangoni Surface Stress
• Surface stress ∂xγ near wall since σxx=σyy≠σzz=-p

•Stress balance →
Δσ≡σxz(0)-σxz(wall) 

= ∂xγ

)( pzd xx

b

w
+≡ ∫ σγ

-p

•Stress boundary 
condition satisfied 
along walls in 
simulations of 
complex flows

asymmetric wetting

Slip Boundary Condition
• Sharp interface model for slip can only depend on 
continuum values at wall: σxz(0), ∂xγ, ∂xc1

• Integrating v gives

and fi reflects drag force from species i

• Usual Navier condition is limiting case ∂x →0

• No change in Ls by added surface stresses

• Fits detailed simulations
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Flow without drag – neutral wetting

mred > mblue

C.Denniston & M.O.Robbins, PRL 87, 178302 (2001).

∇P>0

∇P<0

∇P=0

Adding pressure gradient 
→Extra Poiseuille flow with

constant Ls

Continuum treatments 
normally assume that such 
flows are impossible

x

z

Slip at Polymer/Polymer Interfaces

Motivation: Mechanical properties of polymer/polymer interfaces
crucial to adhesion and to processing of polymer blends.
Typically assume no slip at boundary in continuum models,
but analytic work and experiment indicate slip should occur.

Impose shear gradient normal to interface between symmetric,
immiscible polymers

Examine structure and viscosity as vary:
immiscibility, chain length N, shear rate

Length s* of polymer segments that enter interfacial region is
only of order aI

2, where aI is interface width.
As suggested by de Gennes, interfacial viscosity ηI equals bulk

viscosity of chains of length s*.
Find slip length scales as N/s* for Rouse chains, will increase

dramatically for entangled chains.
Shear thinning of interface like that for chains of length s* 

Effect of Degree of Immiscibility ε*

Extra repulsion ε* between unlike monomers

⇐ Increasing ε* narrows interface
→shorter chain segments s* in interface

⇐Smaller s* → decrease in interfacial 
viscosity
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Flow Profile shows slip at interface

Mean profile shows jog that can be 
included as extra width = slip length 
Extra repulsion e* between unlike 
monomers

Different species 
(open and closed symbols) 
have different velocities 
near interface

Variation of Interfacial Viscosity with Immiscibility

When s*<N, interfacial viscosity is
→ independent of chain length N
→ much smaller than bulk viscosity
→ amount of slip increases with N

Value of interfacial viscosity ηI
consistent with de Gennes’ 
argument: ηI = bulk viscosity of 
chains with radius of gyration 
equal to 1.6 times the interface 
width.

Barsky & Robbins, Phys. Rev. E63, 
021801 (2001}; E65, 021808 (2002)

Phase-Field Model of Fluid-Fluid Interface
•If ξ » a → coarse-grained F functional of ρ, φ
•Square-gradient theories

Usually ignore Kρφ (odd in φ), assume Kρρ>0
Often fix ρ, expand ψ as quartic polynomial in φ

 → None of these assumptions is good
 Assume overdamped dynamics: ∂φ/∂t=-c δF/δφ

 • Obtain ψ and K’s from MD measurements of
coexistence line, and pressure and linear 
response near coexistence

 • Fit gives surface tension and width that agrees
with MD results although not fit to them

 Denniston & Robbins, Physical Review E69, 021505 (2004)

{ }∫ ∇⋅∇+∇+∇+= )()()(),,(F 2
12

2
12

2
1 φρφρφρψ ρφφρ KKKT

Linear Response
•Apply perturbation: δμρ=−μρθ sinqx, δμφ =-μφθ sinqx

•Measure resulting ρq, φq

Lρρ=∂2ψ/∂ρ2 + Kρρ q2 , …

•Find L’s linear in q2 to 2π/q≈2σ,
but Kρρ,Kρφ<0

•Usual to add q4 terms if Kρρ<0
but expect Kρρ→0 as q→∞
since cost of forcing atoms
onto arbitrarily fine lattice→0 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q

q

q

q

uLL
LL

φ

ρ

φφρφ

ρφρρ μ
φ
ρ

Liquid-liquid Interface

Small dip in r at 
interface → big 
change in free 
energy and 
surface tension

Molecular Dynamics Lattice Boltzmann

Laplace pressure
(sharp interface)
prediction

Fit near coexistence line reproduces
Laplace pressure: Δp=γ/R, γ=surf. tension

a/R

Δp
10

0 
a3

/ε
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Conclusions for Fluid/Fluid Interfaces

• Square gradient theory quantitatively describes liquid-
liquid interfaces down to molecular dimensions if
density and the order parameter are given equal footing. 

• Density fluctuations less costly as q increases.
Lower surface tension by factor two to four.

• Simpler models may fit static cases but not dynamics 
→ miss variations in γ with time, position, etc. Geometry Stress from thermal    

expansion

Molecular Dynamics Study of the Stress Singularity at a Corner
O. Vafek and M. O. Robbins Phys. Rev. E60, 12002 (1999)

Continuum mechanics predicts stress singularity at corners 
between dissimilar materials ⇒ important for initiation of failure
Simulations show:
⇒ Singularity has continuum form at large scales, but is cut off at 

molecular scale by discreteness, anharmonicity or plastic flow
⇒ Maximum stress increases as a power of the system size

⇒ small bonds less likely to fail

h

Stress release is anisotropic, inconsistent with many continuum 
models

For large enough system, yield stress exceeded, stress relieved 
by dislocation motion Continuum theories: Hertz, Johnson-Kendall-Roberts

Assume:   1) continuous displacements, bulk elastic const.
2) smooth surface (often spherical) at small scales

Only tested for atomically flat mica bent into cylinders
and elastomers with liquid behavior on small scales

Find (1) valid down to a few atomic diameters, but atomic
scale roughness causes failure of continuum theories.

Important for small contacts between rough surfaces  
and ideal single asperities: scanning probe or nanoindenter

Macro View                      Molecular View

What are limits of Continuum Theory for Solids?

Luan & Robbins, Nature 435, 929 (2005)

Continuum vs. MD for Sphere or Cylinder on Flat
Rigid cylinder or sphere, elastic flat
(dimensions W, t >>a so ~irrelevant)

Purely repulsive (Hertz) or adhesive
Substrate ideal elasticity E’
or Lennard-Jones

R=100-1000σ~30-300nm
σ=mol. diameter
Units: length σ~0.3nm

force ε/σ~5pN

X

Y
Z

fcc crystal

|↔|
2a

R

2W

W

Vary atomic scale roughness
Examine normal displacement δ, radius a, friction F, 
lateral stiffness k & pressure distribution P(x) vs. load N

t

⇓N

δ

• Substrate- atomically flat 100 or 111 fcc surface
• Cylindrical or spherical tip constructed by:

a) Bending crystalline solid 
b) Cutting amorphous solid
c) Cutting crystalline solid

Atomic tip structure → Close as possible to curve

commensurate or
incommensurate
with substrate
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Pressure distribution for sphere on flat

Bent crystal      Amorphous  Stepped Crystal

Pressure with 
adhesion

Atomic scale roughness qualitatively changes pressure, yield
Bent crystal agrees with Hertz/JKR, more realistic tips do not

Pressure without  
adhesion

R=100σ
∼30nm

~107 atoms

Comparison to Hertz Theory for Sphere on Flat
Fits of δ to Hertz give 
approx. right E’, R (10%),
but small shift  (1/4 atom) 
in zero of δ

Contact radius > Hertz
Area may be twice Hertz 
prediction AH at small N

Qualitative change in F  
Commensurate: F = μN

μ≈0.7
Incommensurate:  F ~ 0
Amorphous: F ∝ Area

but small

Hertz

Luan & Robbins, Nature 435, 929 (2005), PRE in press

Atomic Scale Roughness Changes Adhesion

Reduces adhesion energy up to factor of five as go from 
bent commensurate to amorphous

Pulloff force Nc may be outside JKR/DMT bounds 
|Nc|/(πwR) = 1.5 for JKR, 2.0 for DMT

Maugis-Dugdale |Nc|/(πwR)=1.74 for w=0.46 εσ-2

Commensurate:   |Nc|/(πwR)=1.77
Incommensurate: |Nc|/(πwR)=1.79
Amorphous:         |Nc|/(πwR)=2.26    
Stepped:               |Nc|/(πwR)=0.72  -less than half JKR

Single Asperity Conclusions
• Bulk elastic modulus describes stress/strain to ~3σ

Atomic roughness ⇒ deviations from continuum theory
• Molecular scale geometry has little effect on normal 

displacement vs. force curves
→ Moduli from continuum fits are accurate

• Contact areas, morphologies and pressures are changed 
→ Yield stress, areas, pulloff force off by factor ~2
→ Adhesive energy off by factor ~5

• Lateral stiffness and friction vary by more than order of 
magnitude with atomic geometry
→ Contact stiffness dominated by interface
→ Friction scales with real contact area for bent or

amorphous tips, but not stepped tips
→ Shear stresses from continuum fits too high

Limitation – small times < ~10ns and distances < ~μm
⇒focus on polymer glasses where rate dependence small

Toughness or fracture energy G Crack resistance
G ≡ work / fractured area 
Lower bound Geq=2γ

→ interfacial free energy change 
Glassy polymer: G/2γ ~ 103-104

<103 for metals
How is G-2γ dissipated?

⇑

⇑

Why use molecular dynamics to answer this question?
•Allows study of NONEQUILIBIUM systems
•Gives experimental quantities – force, stress, strain, T   

AND can correlate to motions of individual atoms
•Easy to test hypotheses about what matters – full control

Fracture in Polymer Glasses Many Length Scales
cm crack → μm craze → 10nm fibril → nm polymer

craze
dense polymer

elastic/plastic deformation
active zone where craze forms

stressed craze

craze failure – pullout or scission

•Study atomistic processes in each region
•Determine constitutive relations
•Build macroscopic model for fracture energy G
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⇒Capture physics with simple coarse-grained model

•Total length N repeat units
•Length to change direction

⇒Persistence length Np units
•Constraints due to surrounding polymers   

⇒entanglement length Ne units
Diffuses as if fixed rings spaced by Ne along backbone

Experiments:  N/Ne is key ratio for craze formation

Many polymer properties scale with dimensionless ratios

NeNp

Interaction Potential Bead-Spring Model
Each polymer contains N spherical beads

All interact with Lennard-Jones potential
VLJ(r) = 4ε[(σ/r)12 − (σ/r)6] for r < rc
ε~3kJ/mol=30meV, σ~0.5nm, τ=(m/ε)1/2σ∼5ps

→ Empirical potential that breaks at force fB
experiment ⇒ fB = 100 fLJ

Semiflexible chains → add bond-bending terms
→ less flexible, smaller Ne

Backbone

Control stress or strain, 3D periodic boundaries or walls
Vary: N/Ne

Flexibility of chains – Ne
Temperature: T=0.01 to 0.3ε/kB (Tg ≈0.4ε/kB)
Ratio of backbone and LJ bond-breaking forces fB/fLJ

α

• Expand simulation cell in one direction at constant velocity:

• Dense polymer is expanded at interface by extension ratio λ =ρi/ρf

dense polymer ρi

less dense craze ρf

Ne ≈ 30
Ne ≈ 70

z

time

Ne ≈ 70 (flexible): λfl ≈ 6.0 ± 0.6

Ne ≈ 30 (semiflexible): λsfl ≈ 3.6 ± 0.3

zCraze expanded by ratio λ Craze Nucleation & Growth

T=0.01
Chain length N=256

6

5

4

3

2

1

Vf/Vi

•Growth at constant plateau stress S 
•Deformation localized in “active zone” at 
craze boundary expands volume by λ

Constant velocity extension 
Fix perpendicular dimensions

Expansion Vf/Vi

•zf = λzi → affine expansion
deviations ±Ne/3 along z
independent of fibril size

•Smaller lateral deviations do
vary with fibril size

Local deformation yields uniform expansion
λzi

Ne
fl/3~70/3=23

Ne
sfl/3~30/3=10

fl

sfl

Simple model (E. J. Kramer): Stretch segments of length Ne until taut
λmax=Nel0/di = (Ne l0/lp)1/2

• Agrees with values of λ in  
experiment and our simulations
Flexible:          λmax≈ 6.5, λ ≈ 6.0
Semiflexible:   λmax≈ 3.5, λ ≈ 3.6

• Average straight segment only Ne/3
since only expand z component of di

• Expansion limited by few aligned 
segments that fully stretched

di = (lpl0 Ne)1/2

df = λdi = Ne l0

What Limits λ?

•Not dependent on potential, just initial radius of gyration of polymer
⇒Explains why melt properties control λ
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Simple Fracture Model (H. R. Brown, 1991)

Solution of continuum model ⇒ d/D0 = 4πκ(Smax/S)2, 
κ depends on anisotropic elastic moduli of craze,
diverges if no lateral stress transmission via cross ties

Neither κ nor Smax known from experiment

Craze grows at plateau stress S, expands by λ
⇒G=S(d-d/λ)
What limits d?

⇒ Stress to crack  
craze Smax

Stress diverges as
approach crack tip
Smax ∝ S (d/D0)1/2

D0=fibril spacing

Stress elemental volume → Find response in each region

• determine elastic constants c11, c33, c12, c13, and shear modulus c44 of craze network
by applying small step strains (.25 to .5%) and measuring resulting stress.

• consider two temperatures T=0.1 u0/kB and T=0.01 u0/kB, two extensions of craze 

Summary: 

• κ=1.1-1.7 (semiflexible polymers)

• κ=2.0-2.8 (flexible polymers)

• c11/c33 = 0.015-0.12

• c44/c33 = 0.038-0.15

• about 2-6 times higher than previous estimates

• found simple approximate expression κ ≈ (c33/4c44 )1/2

problem dominated by tensile and shear modulus

( ) ( )
2/1

21
44

33
2

21

21
4

1
2
1

21
1

⎥
⎦

⎤
⎢
⎣

⎡
−+−

−
= CC

c
cC

CC
κ C1=c13/c33, C2=c13/(c11 +c12)

Calculating κ

Summary: 

• Smax/S=3.4-3.8 for T=0.01 u0/kB

• Smax/S=5.0-5.3 for T=0.3 u0/kB

• short chains N/Ne = 2 (flexible) or      
N/Ne = 4 (semiflexible) disentangle rapidly

• Smax/S rises as N increases to ~10 

• Then chain scission ⇒ Smax/S saturates

• crossover to chain scission at N/Ne = 6-10 
(flexible) or N/Ne = 10-16 (semiflexible) 

• real polymers: crossover between          
N/Ne = 6-12 

and Smax/S

• Compressive forces (f<0): Gaussian distribution

• Tensile forces (f>0): exponential distribution 
independent of N, T, rc if normalize by mean <f>

Force distribution in craze

P(x)=e(-x)
Hallmark of 
systems 
jammed by 
compression

Large effect 
on onset of 
chain scission

Dimensionless Craze Width:  d/D0

Simulation: d/D0 = 4πκ(Smax/S)2  

flexible chains ⇒ d/D0 = 290-890
semiflexible “ ⇒ d/D0 = 200-600

Experiment:  
d = 3-20 μm, D0 = 20-30 nm 

⇒ d/D0 = 100-1000

Toughness enhancement G/2γ

Simulations:

flexible chains ⇒ G/2γ=1300-4300
semiflexible “ ⇒ G/2γ=1200−3500

In both simulation and experiment: 
• G/2γ rises rapidly as N/Ne rises above ~2, saturates for N/Ne~10.
• Toughness drops with decreasing temperature.
• Scission more prevalent at low temperature.

( )λ
γγ

/11
22 0

0 −=
D
dSDG

Experiment:
PMMA: G/2γ~ 2500
PS: G/2γ~ 5000

How do results compare to real polymers?
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• Simple model reproduces elastoplastic deformation, craze 
growth and failure of polymers

• No sharp onset of plastic deformation
Shear stress obeys pressure-modified von Mises: τy=τ0+αp
Different line for onset of cavitation

• Entanglements act like chemical crosslinks
Limit extension ratio to λ = (l0/lp Ne)1/2

Chains stretched taut over length Ne/3
• Plateau stress S determined by bulk yield behavior

Sλ = const. for fixed potential
Sλ scales with bulk yield stress when change potential

• Distribution of tensions follows universal exponential form, 
scission controlled by long tail of high tensions

• Simple multiscale model reproduces macroscopic toughness G
• Crosslinking in bulk can change interfacial toughness
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New approach
⇒vary level of

detail as needed

•finite-element to
treat long-range
elastic deformations

•simple potential in  
nonlinear regions

•detailed electronic 
calculation where 
bonds break


